401
|
Eyre DW, Peto TEA, Crook DW, Walker AS, Wilcox MH. Hash-Based Core Genome Multilocus Sequence Typing for Clostridium difficile. J Clin Microbiol 2019; 58:e01037-19. [PMID: 31666367 PMCID: PMC6935933 DOI: 10.1128/jcm.01037-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/24/2019] [Indexed: 12/27/2022] Open
Abstract
Pathogen whole-genome sequencing has huge potential as a tool to better understand infection transmission. However, rapidly identifying closely related genomes among a background of thousands of other genomes is challenging. Here, we describe a refinement to core genome multilocus sequence typing (cgMLST) in which alleles at each gene are reproducibly converted to a unique hash, or short string of letters (hash-cgMLST). This avoids the resource-intensive need for a single centralized database of sequentially numbered alleles. We test the reproducibility and discriminatory power of cgMLST/hash-cgMLST compared to those of mapping-based approaches in Clostridium difficile, using repeated sequencing of the same isolates (replicates) and data from consecutive infection isolates from six English hospitals. Hash-cgMLST provided the same results as standard cgMLST, with minimal performance penalty. Comparing 272 replicate sequence pairs using reference-based mapping, there were 0, 1, or 2 single-nucleotide polymorphisms (SNPs) between 262 (96%), 5 (2%), and 1 (<1%) of the pairs, respectively. Using hash-cgMLST, 218 (80%) of replicate pairs assembled with SPAdes had zero gene differences, and 31 (11%), 5 (2%), and 18 (7%) pairs had 1, 2, and >2 differences, respectively. False gene differences were clustered in specific genes and associated with fragmented assemblies, but were reduced using the SKESA assembler. Considering 412 pairs of infections with ≤2 SNPS, i.e., consistent with recent transmission, 376 (91%) had ≤2 gene differences and 16 (4%) had ≥4. Comparing a genome to 100,000 others took <1 min using hash-cgMLST. Hash-cgMLST is an effective surveillance tool for rapidly identifying clusters of related genomes. However, cgMLST/hash-cgMLST generate more false variants than mapping-based approaches. Follow-up mapping-based analyses are likely required to precisely define close genetic relationships.
Collapse
Affiliation(s)
- David W Eyre
- Big Data Institute, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Tim E A Peto
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institutes of Health Research Health Protection Unit on Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, United Kingdom
| | - Derrick W Crook
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institutes of Health Research Health Protection Unit on Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, United Kingdom
| | - A Sarah Walker
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institutes of Health Research Health Protection Unit on Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, United Kingdom
| | - Mark H Wilcox
- Healthcare Associated Infections Research Group, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
402
|
Saltykova A, Mattheus W, Bertrand S, Roosens NHC, Marchal K, De Keersmaecker SCJ. Detailed Evaluation of Data Analysis Tools for Subtyping of Bacterial Isolates Based on Whole Genome Sequencing: Neisseria meningitidis as a Proof of Concept. Front Microbiol 2019; 10:2897. [PMID: 31921072 PMCID: PMC6930190 DOI: 10.3389/fmicb.2019.02897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022] Open
Abstract
Whole genome sequencing is increasingly recognized as the most informative approach for characterization of bacterial isolates. Success of the routine use of this technology in public health laboratories depends on the availability of well-characterized and verified data analysis methods. However, multiple subtyping workflows are now often being used for a single organism, and differences between them are not always well described. Moreover, methodologies for comparison of subtyping workflows, and assessment of their performance are only beginning to emerge. Current work focuses on the detailed comparison of WGS-based subtyping workflows and evaluation of their suitability for the organism and the research context in question. We evaluated the performance of pipelines used for subtyping of Neisseria meningitidis, including the currently widely applied cgMLST approach and different SNP-based methods. In addition, the impact of the use of different tools for detection and filtering of recombinant regions and of different reference genomes were tested. Our benchmarking analysis included both assessment of technical performance of the pipelines and functional comparison of the generated genetic distance matrices and phylogenetic trees. It was carried out using replicate sequencing datasets of high- and low-coverage, consisting mainly of isolates belonging to the clonal complex 269. We demonstrated that cgMLST and some of the SNP-based subtyping workflows showed very good performance characteristics and highly similar genetic distance matrices and phylogenetic trees with isolates belonging to the same clonal complex. However, only two of the tested workflows demonstrated reproducible results for a group of more closely related isolates. Additionally, results of the SNP-based subtyping workflows were to some level dependent on the reference genome used. Interestingly, the use of recombination-filtering software generally reduced the similarity between the gene-by-gene and SNP-based methodologies for subtyping of N. meningitidis. Our study, where N. meningitidis was taken as an example, clearly highlights the need for more benchmarking comparative studies to eventually contribute to a justified use of a specific WGS data analysis workflow within an international public health laboratory context.
Collapse
Affiliation(s)
- Assia Saltykova
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
- IDLab, IMEC, Department of Information Technology, Ghent University, Ghent, Belgium
| | - Wesley Mattheus
- Belgian National Reference Centre for Neisseria, Human Bacterial Diseases, Sciensano, Brussels, Belgium
| | - Sophie Bertrand
- Belgian National Reference Centre for Neisseria, Human Bacterial Diseases, Sciensano, Brussels, Belgium
| | | | - Kathleen Marchal
- IDLab, IMEC, Department of Information Technology, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, VIB, Ghent University, Ghent, Belgium
| | | |
Collapse
|
403
|
Vasquez-Rifo A, Veksler-Lublinsky I, Cheng Z, Ausubel FM, Ambros V. The Pseudomonas aeruginosa accessory genome elements influence virulence towards Caenorhabditis elegans. Genome Biol 2019; 20:270. [PMID: 31823826 PMCID: PMC6902481 DOI: 10.1186/s13059-019-1890-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multicellular animals and bacteria frequently engage in predator-prey and host-pathogen interactions, such as the well-studied relationship between Pseudomonas aeruginosa and the nematode Caenorhabditis elegans. This study investigates the genomic and genetic basis of bacterial-driven variability in P. aeruginosa virulence towards C. elegans to provide evolutionary insights into host-pathogen relationships. RESULTS Natural isolates of P. aeruginosa that exhibit diverse genomes display a broad range of virulence towards C. elegans. Using gene association and genetic analysis, we identify accessory genome elements that correlate with virulence, including both known and novel virulence determinants. Among the novel genes, we find a viral-like mobile element, the teg block, that impairs virulence and whose acquisition is restricted by CRISPR-Cas systems. Further genetic and genomic evidence suggests that spacer-targeted elements preferentially associate with lower virulence while the presence of CRISPR-Cas associates with higher virulence. CONCLUSIONS Our analysis demonstrates substantial strain variation in P. aeruginosa virulence, mediated by specific accessory genome elements that promote increased or decreased virulence. We exemplify that viral-like accessory genome elements that decrease virulence can be restricted by bacterial CRISPR-Cas immune defense systems, and suggest a positive, albeit indirect, role for host CRISPR-Cas systems in virulence maintenance.
Collapse
Affiliation(s)
- Alejandro Vasquez-Rifo
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Isana Veksler-Lublinsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Zhenyu Cheng
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Frederick M Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Victor Ambros
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
404
|
Yuan C, Yin Z, Wang J, Qian C, Wei Y, Zhang S, Jiang L, Liu B. Comparative Genomic Analysis of Citrobacter and Key Genes Essential for the Pathogenicity of Citrobacter koseri. Front Microbiol 2019; 10:2774. [PMID: 31866966 PMCID: PMC6908497 DOI: 10.3389/fmicb.2019.02774] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
Citrobacter species are opportunistic bacterial pathogens that have been implicated in both nosocomial and community-acquired infections. Among the genus Citrobacter, Citrobacter koseri is often isolated from clinical material, and has been known to cause meningitis and brain abscess in neonates and immunocompromised individuals. The virulence determinants of Citrobacter, however, remain largely unknown. Based on traditional methods, the genus Citrobacter has been divided into 11 species, but this has been problematic. Here, we determined an improved, detailed, and more accurate phylogeny of the genus Citrobacter based on whole genome sequence (WGS) data from 129 Citrobacter genomes, 31 of which were sequenced in this study. A maximum likelihood (ML) phylogeny constructed with core genome single-nucleotide polymorphisms (SNPs) classified all Citrobacter isolates into 11 distinct groups, with all C. koseri strains clustering into a single group. For comprehensive and systematic comparative genomic analyses, we investigated the distribution of virulence factors, resistance genes, and macromolecular secretion systems among the Citrobacter genus. Moreover, combined with group-specific genes analysis, we identified a key gene cluster for iron transport, which is present in the C. koseri group, but absent in other the groups, suggesting that the high-pathogenicity island (HPI) cluster may be important for the pathogenicity of C. koseri. Animal experiments showed that loss of the HPI cluster significantly decreased C. koseri virulence in mice and rat. Further, we provide evidence to explain why Citrobacter freundii is less susceptible than C. koseri to several antibiotics in silico. Overall, our data reveal novel virulence clusters specific to the predominantly pathogenic C. koseri strains, which form the basis for elucidating the virulence mechanisms underlying these important pathogens.
Collapse
Affiliation(s)
- Chao Yuan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA College, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Zhiqiu Yin
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA College, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Junyue Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA College, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Chengqian Qian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA College, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Yi Wei
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA College, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Si Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA College, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Lingyan Jiang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA College, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA College, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| |
Collapse
|
405
|
Crellen T, Turner P, Pol S, Baker S, Nguyen Thi Nguyen T, Stoesser N, Day NPJ, Turner C, Cooper BS. Transmission dynamics and control of multidrug-resistant Klebsiella pneumoniae in neonates in a developing country. eLife 2019; 8:e50468. [PMID: 31793878 PMCID: PMC6977969 DOI: 10.7554/elife.50468] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022] Open
Abstract
Multidrug-resistant Klebsiella pneumoniae is an increasing cause of infant mortality in developing countries. We aimed to develop a quantitative understanding of the drivers of this epidemic by estimating the effects of antibiotics on nosocomial transmission risk, comparing competing hypotheses about mechanisms of spread, and quantifying the impact of potential interventions. Using a sequence of dynamic models, we analysed data from a one-year prospective carriage study in a Cambodian neonatal intensive care unit with hyperendemic third-generation cephalosporin-resistant K. pneumoniae. All widely-used antibiotics except imipenem were associated with an increased daily acquisition risk, with an odds ratio for the most common combination (ampicillin + gentamicin) of 1.96 (95% CrI 1.18, 3.36). Models incorporating genomic data found that colonisation pressure was associated with a higher transmission risk, indicated sequence type heterogeneity in transmissibility, and showed that within-ward transmission was insufficient to maintain endemicity. Simulations indicated that increasing the nurse-patient ratio could be an effective intervention.
Collapse
Affiliation(s)
- Thomas Crellen
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
- Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Paul Turner
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
- Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
- Cambodia-Oxford Medical Research UnitAngkor Hospital for ChildrenSiem ReapCambodia
| | - Sreymom Pol
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
- Cambodia-Oxford Medical Research UnitAngkor Hospital for ChildrenSiem ReapCambodia
| | - Stephen Baker
- Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
- Oxford University Clinical Research UnitCentre for Tropical MedicineHo Chi Minh CityViet Nam
| | - To Nguyen Thi Nguyen
- Oxford University Clinical Research UnitCentre for Tropical MedicineHo Chi Minh CityViet Nam
| | - Nicole Stoesser
- Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Nicholas PJ Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
- Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Claudia Turner
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
- Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
- Cambodia-Oxford Medical Research UnitAngkor Hospital for ChildrenSiem ReapCambodia
| | - Ben S Cooper
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
- Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
406
|
Stam R, Sghyer H, Tellier A, Hess M, Hückelhoven R. The Current Epidemic of the Barley Pathogen Ramularia collo-cygni Derives from a Population Expansion and Shows Global Admixture. PHYTOPATHOLOGY 2019; 109:2161-2168. [PMID: 31322487 DOI: 10.1094/phyto-04-19-0117-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ramularia leaf spot is becoming an ever-increasing problem in main barley-growing regions since the 1980s, causing up to 70% yield loss in extreme cases. Yet, the causal agent Ramularia collo-cygni remains poorly studied. The diversity of the pathogen in the field thus far remains unknown. Furthermore, it is unknown to what extent the pathogen has a sexual reproductive cycle. The teleomorph of R. collo-cygni has not been observed. To study the genetic diversity of R. collo-cygni and get more insights in its biology, we sequenced the genomes of 19 R. collo-cygni isolates from multiple geographic locations and diverse hosts. Nucleotide polymorphism analyses of all isolates shows that R. collo-cygni is genetically diverse worldwide, with little geographic or host specific differentiation. Next, we used two different methods to detect signals of recombination in our sample set. Both methods find putative recombination events, which indicate that sexual reproduction happens or has happened in the global R. collo-cygni population. Lastly, we used these data on recombination to perform historic population size analyses. These suggest that the effective population size of R. collo-cygni decreased during the domestication of barley and subsequently grew with the rise of agriculture. Our findings deepen our understanding of R. collo-cygni biology and can help us to understand the current epidemic. We discuss how our findings support possible global spread through seed transfer, and we highlight how recombination, clonal spreading, and lack of host specificity could amplify global epidemics of this increasingly important disease and suggest specific approaches to combat the pathogen.
Collapse
Affiliation(s)
- Remco Stam
- Chair of Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Hind Sghyer
- Chair of Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Aurélien Tellier
- Section of Population Genetics, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Michael Hess
- Chair of Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
407
|
Yang C, Zhang X, Fan H, Li Y, Hu Q, Yang R, Cui Y. Genetic diversity, virulence factors and farm-to-table spread pattern of Vibrio parahaemolyticus food-associated isolates. Food Microbiol 2019; 84:103270. [DOI: 10.1016/j.fm.2019.103270] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/30/2019] [Accepted: 07/12/2019] [Indexed: 01/15/2023]
|
408
|
Ferrari C, Corbella M, Gaiarsa S, Comandatore F, Scaltriti E, Bandi C, Cambieri P, Marone P, Sassera D. Multiple Klebsiella pneumoniae KPC Clones Contribute to an Extended Hospital Outbreak. Front Microbiol 2019; 10:2767. [PMID: 31849904 PMCID: PMC6896718 DOI: 10.3389/fmicb.2019.02767] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
The circulation of carbapenem-resistant Klebsiella pneumoniae (CRKP) is a significant problem worldwide. In this work we characterize the isolates and reconstruct the spread of a multi-clone epidemic event that occurred in an Intensive Care Unit in a hospital in Northern Italy. The event took place from August 2015 to May 2016 and involved 23 patients. Twelve of these patients were colonized by CRKP at the gastrointestinal level, while the other 11 were infected in various body districts. We retrospectively collected data on the inpatients and characterized a subset of the CRKP isolates using antibiotic resistance profiling and whole genome sequencing. A SNP-based phylogenetic approach was used to depict the evolutionary context of the obtained genomes, showing that 26 of the 32 isolates belong to three genome clusters, while the remaining six were classified as sporadic. The first genome cluster was composed of multi-resistant isolates of sequence type (ST) 512. Among those, two were resistant to colistin, one of which indicating the insurgence of resistance during an infection. One patient hospitalized in this period was colonized by two strains of CRKP, both carrying the blaKPC gene (variant KPC-3). The analysis of the genome contig containing the blaKPC locus indicates that the gene was not transmitted between the two isolates. The second infection cluster comprised four other genomes of ST512, while the third one (ST258) colonized 12 patients, causing five clinical infections and resulting in seven deaths. This cluster presented the highest level of antibiotic resistance, including colistin resistance in all 17 analyzed isolates. The three outbreaking clones did not present more virulence genes than the sporadic isolates and had different patterns of antibiotic resistance, however, were clearly distinct from the sporadic ones in terms of infection status, being the only ones causing overt infections.
Collapse
Affiliation(s)
- Carolina Ferrari
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marta Corbella
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Biometric and Medical Statistics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefano Gaiarsa
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesco Comandatore
- Pediatric Research Center Romeo ed Enrica Invernizzi, University of Milan, Milan, Italy.,Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Erika Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Brescia, Italy
| | - Claudio Bandi
- Pediatric Research Center Romeo ed Enrica Invernizzi, University of Milan, Milan, Italy.,Department of Biosciences, University of Milan, Milan, Italy
| | - Patrizia Cambieri
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Piero Marone
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
409
|
Abstract
The 7th cholera pandemic began in 1961 in Sulawesi, Indonesia, and then spread around the world in at least three waves. However, the lack of genome sequences for Vibrio cholerae strains under long-term surveillance in East Asia, especially in China, has restricted our understanding of the dynamics of the intracountry and intercountry evolution and transmission of the 7th-pandemic clones. In this study, we obtained the genome sequences of 60 V. cholerae strains isolated in Shanghai, the largest port in the world and the largest city in China, from 1961 to 2011. Our whole-genome-based phylogeny of 7th-pandemic strains revealed that all but one fell into five "stages," most of which are single clades and share independent ancestors. Each stage dominated in succession for a period, with little overlap between them. In addition, two near-identical Shanghai strains belonging to a pre-7th-pandemic precursor and 4 nontoxigenic O1/O139 strains attributed to independent recombination events at the O-antigen loci were present. The major lineages of the 7th pandemic in Shanghai appeared to be closely related to V. cholerae strains isolated from South or Southeast Asia. Stage succession was consistently related to changes in society and human activity, implying that human-caused niche change may play a vital role in the cholera dynamics in Shanghai.IMPORTANCE V. cholerae is the causative agent of cholera, a life-threatening disease characterized by severe, watery diarrhea. The 7th pandemic started in Indonesia in 1961 and spread globally, currently infecting 1.3 million to 4 million people annually. Here, we applied whole-genome sequencing to analyze a long-term collection of V. cholerae clinical strains to reveal the phylogenetic background and evolutionary dynamics of the 7th pandemic in Shanghai, which had undergone breathtakingly rapid development in the last half-century. All but one of the Shanghai 7th-pandemic strains fell into five "stages" that were dominant in Shanghai and appeared to be closely related to 7th-pandemic strains of South or Southeast Asia. Our findings extended the understanding of the dynamics of the evolution and transmission of the 7th-pandemic clones in East Asia and the relationship between social changes and cholera epidemiology.
Collapse
|
410
|
Epigenomic characterization of Clostridioides difficile finds a conserved DNA methyltransferase that mediates sporulation and pathogenesis. Nat Microbiol 2019; 5:166-180. [PMID: 31768029 PMCID: PMC6925328 DOI: 10.1038/s41564-019-0613-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/18/2019] [Indexed: 12/20/2022]
Abstract
Clostridioides difficile is a leading cause of health care-associated infections. Although significant progress has been made in the understanding of its genome, the epigenome of C. difficile and its functional impact has not been systematically explored. Here, we performed a comprehensive DNA methylome analysis of C. difficile using 36 human isolates and observed great epigenomic diversity. We discovered an orphan DNA methyltransferase with a well-defined specificity whose corresponding gene is highly conserved across our dataset and in all ∼300 global C. difficile genomes examined. Inactivation of the methyltransferase gene negatively impacted sporulation, a key step in C. difficile disease transmission, consistently supported by multi-omics data, genetic experiments, and a mouse colonization model. Further experimental and transcriptomic analysis also suggested that epigenetic regulation is associated with cell length, biofilm formation, and host colonization. These findings provide a unique epigenetic dimension to characterize medically relevant biological processes in this critical pathogen. This work also provides a set of methods for comparative epigenomics and integrative analysis, which we expect to be broadly applicable to bacterial epigenomics studies.
Collapse
|
411
|
Cabrera-Contreras R, Santamaría RI, Bustos P, Martínez-Flores I, Meléndez-Herrada E, Morelos-Ramírez R, Barbosa-Amezcua M, González-Covarrubias V, Silva-Herzog E, Soberón X, González V. Genomic diversity of prevalent Staphylococcus epidermidis multidrug-resistant strains isolated from a Children's Hospital in México City in an eight-years survey. PeerJ 2019; 7:e8068. [PMID: 31768302 PMCID: PMC6874853 DOI: 10.7717/peerj.8068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/20/2019] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus epidermidis is a human commensal and pathogen worldwide distributed. In this work, we surveyed for multi-resistant S. epidermidis strains in eight years at a children's health-care unit in México City. Multidrug-resistant S. epidermidis were present in all years of the study, including resistance to methicillin, beta-lactams, fluoroquinolones, and macrolides. To understand the genetic basis of antibiotic resistance and its association with virulence and gene exchange, we sequenced the genomes of 17 S. epidermidis isolates. Whole-genome nucleotide identities between all the pairs of S. epidermidis strains were about 97% to 99%. We inferred a clonal structure and eight Multilocus Sequence Types (MLSTs) in the S. epidermidis sequenced collection. The profile of virulence includes genes involved in biofilm formation and phenol-soluble modulins (PSMs). Half of the S. epidermidis analyzed lacked the ica operon for biofilm formation. Likely, they are commensal S. epidermidis strains but multi-antibiotic resistant. Uneven distribution of insertion sequences, phages, and CRISPR-Cas immunity phage systems suggest frequent horizontal gene transfer. Rates of recombination between S. epidermidis strains were more prevalent than the mutation rate and affected the whole genome. Therefore, the multidrug resistance, independently of the pathogenic traits, might explain the persistence of specific highly adapted S. epidermidis clonal lineages in nosocomial settings.
Collapse
Affiliation(s)
- Roberto Cabrera-Contreras
- Laboratorio de Patogenicidad Bacteriana, Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Rosa I Santamaría
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Patricia Bustos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Irma Martínez-Flores
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Enrique Meléndez-Herrada
- Laboratorio de Patogenicidad Bacteriana, Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Rubén Morelos-Ramírez
- Laboratorio de Patogenicidad Bacteriana, Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | | | | | - Xavier Soberón
- Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Víctor González
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
412
|
Cheng Q, Jiang X, Xu Y, Hu L, Luo W, Yin Z, Gao H, Yang W, Yang H, Zhao Y, Zhao X, Zhou D, Dai E. Type 1, 2, and 1/2-Hybrid IncC Plasmids From China. Front Microbiol 2019; 10:2508. [PMID: 31803147 PMCID: PMC6872532 DOI: 10.3389/fmicb.2019.02508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/18/2019] [Indexed: 11/13/2022] Open
Abstract
A collection of 11 IncC plasmids from China were fully sequenced herein and compared with reference plasmids pR148 and pR55. These 13 plasmids could be assigned into three different subgroups: type 1, type 2, and type 1/2 hybrid. Type 1/2-hybrid plasmids most likely emerged from homologous recombination between type 1 and type 2 plasmids. Different IncC plasmids had evolved to acquire quite different profiles of accessory modules and thus different collections of resistance genes. The accessory resistance modules included not only the bla CMY-carrying region, the ARI-A island, and the ARI-B island, but also various additional kinds of resistance islands such as the bla CTX-M-carrying regions and the MDR regions. Insertion of accessory modules was sometimes accompanied by deletion, inversion, and translocation of surrounding backbone regions. pR148 and pR55 were confirmed to have the most complete backbones for type 1 and type 2, respectively. This was the first report of a bla IMP- 8-carrying IncC plasmid, and that of three novel mobile elements: a Tn1696-derived unit transposon Tn6395, a class 2 integron In2-76, and an insertion sequence ISEcl10.
Collapse
Affiliation(s)
- Qiaoxiang Cheng
- Department of Clinical Laboratory Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyuan Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanan Xu
- Department of Clinical Laboratory Medicine, Hebei Medical University, Shijiazhuang, China.,Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wenbo Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Huixia Gao
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuee Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaodong Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Erhei Dai
- Department of Clinical Laboratory Medicine, Hebei Medical University, Shijiazhuang, China.,Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
413
|
Vila Nova M, Durimel K, La K, Felten A, Bessières P, Mistou MY, Mariadassou M, Radomski N. Genetic and metabolic signatures of Salmonella enterica subsp. enterica associated with animal sources at the pangenomic scale. BMC Genomics 2019; 20:814. [PMID: 31694533 PMCID: PMC6836353 DOI: 10.1186/s12864-019-6188-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Salmonella enterica subsp. enterica is a public health issue related to food safety, and its adaptation to animal sources remains poorly described at the pangenome scale. Firstly, serovars presenting potential mono- and multi-animal sources were selected from a curated and synthetized subset of Enterobase. The corresponding sequencing reads were downloaded from the European Nucleotide Archive (ENA) providing a balanced dataset of 440 Salmonella genomes in terms of serovars and sources (i). Secondly, the coregenome variants and accessory genes were detected (ii). Thirdly, single nucleotide polymorphisms and small insertions/deletions from the coregenome, as well as the accessory genes were associated to animal sources based on a microbial Genome Wide Association Study (GWAS) integrating an advanced correction of the population structure (iii). Lastly, a Gene Ontology Enrichment Analysis (GOEA) was applied to emphasize metabolic pathways mainly impacted by the pangenomic mutations associated to animal sources (iv). RESULTS Based on a genome dataset including Salmonella serovars from mono- and multi-animal sources (i), 19,130 accessory genes and 178,351 coregenome variants were identified (ii). Among these pangenomic mutations, 52 genomic signatures (iii) and 9 over-enriched metabolic signatures (iv) were associated to avian, bovine, swine and fish sources by GWAS and GOEA, respectively. CONCLUSIONS Our results suggest that the genetic and metabolic determinants of Salmonella adaptation to animal sources may have been driven by the natural feeding environment of the animal, distinct livestock diets modified by human, environmental stimuli, physiological properties of the animal itself, and work habits for health protection of livestock.
Collapse
Affiliation(s)
- Meryl Vila Nova
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
- Applied Mathematics and Computer Science, from Genomes to the Environment (MaIAGE), French National Institute for Agricultural Research (INRA), Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Kévin Durimel
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
| | - Kévin La
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
| | - Arnaud Felten
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
| | - Philippe Bessières
- Applied Mathematics and Computer Science, from Genomes to the Environment (MaIAGE), French National Institute for Agricultural Research (INRA), Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Michel-Yves Mistou
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
| | - Mahendra Mariadassou
- Applied Mathematics and Computer Science, from Genomes to the Environment (MaIAGE), French National Institute for Agricultural Research (INRA), Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Nicolas Radomski
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France.
| |
Collapse
|
414
|
Comandatore F, Sassera D, Bayliss SC, Scaltriti E, Gaiarsa S, Cao X, Gales AC, Saito R, Pongolini S, Brisse S, Feil EJ, Bandi C. Gene Composition as a Potential Barrier to Large Recombinations in the Bacterial Pathogen Klebsiella pneumoniae. Genome Biol Evol 2019; 11:3240-3251. [PMID: 31665331 PMCID: PMC6865855 DOI: 10.1093/gbe/evz236] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2019] [Indexed: 12/24/2022] Open
Abstract
Klebsiella pneumoniae (Kp) is one of the most important nosocomial pathogens worldwide, able to cause multiorgan infections and hospital outbreaks. One of the most widely disseminated lineage of Kp is the clonal group 258 (CG258), which includes the highly resistant "high-risk" sequence types ST258 and ST11. Genomic investigations revealed that very large recombination events have occurred during the emergence of Kp lineages. A striking example is provided by ST258, which has undergone a recombination event that replaced over 1 Mb of the genome with DNA from an unrelated Kp donor. Although several examples of this phenomenon have been documented in Kp and other bacterial species, the significance of these very large recombination events for the emergence of either hypervirulent or resistant clones remains unclear. Here, we present an analysis of 834 Kp genomes that provides data on the frequency of these very large recombination events (defined as those involving >100 kb), their distribution within the genome, and the dynamics of gene flow within the Kp population. We note that very large recombination events occur frequently, and in multiple lineages, and that the majority of recombinational exchanges are clustered within two overlapping genomic regions, which have been involved by recombination events with different frequencies. Our results also indicate that certain lineages are more likely to act as donors to CG258. Furthermore, comparison of gene content in CG258 and non-CG258 strains agrees with this pattern, suggesting that the success of a large recombination depends on gene composition in the exchanged genomic portion.
Collapse
Affiliation(s)
- Francesco Comandatore
- Sky Net UNIMI Platform - Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche Luigi Sacco, Università degli Studi di Milano, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology L. Spallanzani, Universita' degli Studi di Pavia, Italy
| | - Sion C Bayliss
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, United Kingdom
| | - Erika Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Parma, Italy
| | - Stefano Gaiarsa
- U.O.C. Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Xiaoli Cao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Ana C Gales
- Laboratório ALERTA, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina - EPM, Universidade Federal de São Paulo (UNIFESP), Brazil
| | - Ryoichi Saito
- Department of Molecular Microbiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Stefano Pongolini
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Parma, Italy
| | - Sylvain Brisse
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Edward J Feil
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, United Kingdom
| | - Claudio Bandi
- Sky Net UNIMI Platform - Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Dipartimento di Bioscienze, Università degli Studi di Milano, Italy
| |
Collapse
|
415
|
Eyre DW, Davies KA, Davis G, Fawley WN, Dingle KE, De Maio N, Karas A, Crook DW, Peto TEA, Walker AS, Wilcox MH. Two Distinct Patterns of Clostridium difficile Diversity Across Europe Indicating Contrasting Routes of Spread. Clin Infect Dis 2019; 67:1035-1044. [PMID: 29659747 PMCID: PMC6137122 DOI: 10.1093/cid/ciy252] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 04/05/2018] [Indexed: 01/05/2023] Open
Abstract
Background Rates of Clostridium difficile infection vary widely across Europe, as do prevalent ribotypes. The extent of Europe-wide diversity within each ribotype, however, is unknown. Methods Inpatient diarrheal fecal samples submitted on a single day in summer and winter (2012–2013) to laboratories in 482 European hospitals were cultured for C. difficile, and isolates the 10 most prevalent ribotypes were whole-genome sequenced. Within each ribotype, country-based sequence clustering was assessed using the ratio of the median number of single-nucleotide polymorphisms between isolates within versus across different countries, using permutation tests. Time-scaled Bayesian phylogenies were used to reconstruct the historical location of each lineage. Results Sequenced isolates (n = 624) were from 19 countries. Five ribotypes had within-country clustering: ribotype 356, only in Italy; ribotype 018, predominantly in Italy; ribotype 176, with distinct Czech and German clades; ribotype 001/072, including distinct German, Slovakian, and Spanish clades; and ribotype 027, with multiple predominantly country-specific clades including in Hungary, Italy, Germany, Romania, and Poland. By contrast, we found no within-country clustering for ribotypes 078, 015, 002, 014, and 020, consistent with a Europe-wide distribution. Fluoroquinolone resistance was significantly more common in within-country clustered ribotypes (P = .009). Fluoroquinolone-resistant isolates were also more tightly clustered geographically with a median (interquartile range) of 43 (0–213) miles between each isolate and the most closely genetically related isolate, versus 421 (204–680) miles in nonresistant pairs (P < .001). Conclusions Two distinct patterns of C. difficile ribotype spread were observed, consistent with either predominantly healthcare-associated acquisition or Europe-wide dissemination via other routes/sources, for example, the food chain.
Collapse
Affiliation(s)
- David W Eyre
- Nuffield Department of Medicine, University of Oxford
| | - Kerrie A Davies
- Healthcare Associated Infections Research Group, University of Leeds
| | - Georgina Davis
- Healthcare Associated Infections Research Group, University of Leeds
| | - Warren N Fawley
- Healthcare Associated Infections Research Group, University of Leeds.,Public Health England, Leeds
| | - Kate E Dingle
- Nuffield Department of Medicine, University of Oxford
| | | | | | | | - Tim E A Peto
- Nuffield Department of Medicine, University of Oxford
| | | | - Mark H Wilcox
- Healthcare Associated Infections Research Group, University of Leeds
| | | |
Collapse
|
416
|
Dave J, Paul J, Pasvol TJ, Williams A, Warburton F, Cole K, Miari VF, Stabler R, Eyre DW. Ethnically diverse urban transmission networks of Neisseria gonorrhoeae without evidence of HIV serosorting. Sex Transm Infect 2019; 96:106-109. [PMID: 31662418 PMCID: PMC7035678 DOI: 10.1136/sextrans-2019-054025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/24/2019] [Accepted: 10/06/2019] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE We aimed to characterise gonorrhoea transmission patterns in a diverse urban population by linking genomic, epidemiological and antimicrobial susceptibility data. METHODS Neisseria gonorrhoeae isolates from patients attending sexual health clinics at Barts Health NHS Trust, London, UK, during an 11-month period underwent whole-genome sequencing and antimicrobial susceptibility testing. We combined laboratory and patient data to investigate the transmission network structure. RESULTS One hundred and fifty-eight isolates from 158 patients were available with associated descriptive data. One hundred and twenty-nine (82%) patients identified as male and 25 (16%) as female; four (3%) records lacked gender information. Self-described ethnicities were: 51 (32%) English/Welsh/Scottish; 33 (21%) white, other; 23 (15%) black British/black African/black, other; 12 (8%) Caribbean; 9 (6%) South Asian; 6 (4%) mixed ethnicity; and 10 (6%) other; data were missing for 14 (9%). Self-reported sexual orientations were 82 (52%) men who have sex with men (MSM); 49 (31%) heterosexual; 2 (1%) bisexual; data were missing for 25 individuals. Twenty-two (14%) patients were HIV positive. Whole-genome sequence data were generated for 151 isolates, which linked 75 (50%) patients to at least one other case. Using sequencing data, we found no evidence of transmission networks related to specific ethnic groups (p=0.64) or of HIV serosorting (p=0.35). Of 82 MSM/bisexual patients with sequencing data, 45 (55%) belonged to clusters of ≥2 cases, compared with 16/44 (36%) heterosexuals with sequencing data (p=0.06). CONCLUSION We demonstrate links between 50% of patients in transmission networks using a relatively small sample in a large cosmopolitan city. We found no evidence of HIV serosorting. Our results do not support assortative selectivity as an explanation for differences in gonorrhoea incidence between ethnic groups.
Collapse
Affiliation(s)
- Jayshree Dave
- National Infection Service, Public Health Laboratory London, Public Health England, London, UK
| | - John Paul
- Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, UK.,Department of Microbiology, Royal Sussex County Hospital, Brighton, UK
| | | | - Andy Williams
- Ambrose King Centre, Royal London Hospital, London, UK
| | - Fiona Warburton
- Statistics, Modelling and Economics Department, Public Health England, London, UK
| | - Kevin Cole
- Department of Microbiology, Public Health England Collaborative Centre, Royal Sussex County Hospital, Brighton, UK
| | - Victoria Fotini Miari
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Richard Stabler
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - David W Eyre
- Nuffield Department of Medicine, University of Oxford, Oxford, UK .,Big Data Institute, University of Oxford, Oxford, UK
| |
Collapse
|
417
|
Abstract
Due to the promiscuous exchange of genetic material and asexual reproduction, delineating microbial species (and, by extension, populations) remains challenging. Because of this, the vast majority of microbial studies assessing population structure often compare divergent strains from disparate environments under varied selective pressures. Here, we investigated the population structure within a single bacterial ecotype, a unit equivalent to a eukaryotic species, defined as highly clustered genotypic and phenotypic strains with the same ecological niche. Using a combination of genomic and computational analyses, we assessed the phylogenetic structure, extent of recombination, and flexible gene content of this genomic diversity to infer patterns of gene flow. To our knowledge, this study is the first to do so for a dominant soil bacterium. Our results indicate that bacterial soil populations, similarly to those in other environments, are structured by gene flow discontinuities and exhibit distributional patterns consistent with both isolation by distance and isolation by environment. Thus, both dispersal limitation and local environments contribute to the divergence among closely related soil bacteria as observed in macroorganisms. For free-living bacteria and archaea, the equivalent of the biological species concept does not exist, creating several obstacles to the study of the processes contributing to microbial diversification. These obstacles are particularly high in soil, where high bacterial diversity inhibits the study of closely related genotypes and therefore the factors structuring microbial populations. Here, we isolated strains within a single Curtobacterium ecotype from surface soil (leaf litter) across a regional climate gradient and investigated the phylogenetic structure, recombination, and flexible gene content of this genomic diversity to infer patterns of gene flow. Our results indicate that microbial populations are delineated by gene flow discontinuities, with distinct populations cooccurring at multiple sites. Bacterial population structure was further delineated by genomic features allowing for the identification of candidate genes possibly contributing to local adaptation. These results suggest that the genetic structure within this bacterium is maintained both by ecological specialization in localized microenvironments (isolation by environment) and by dispersal limitation between geographic locations (isolation by distance).
Collapse
|
418
|
Lee RS, Gonçalves da Silva A, Baines SL, Strachan J, Ballard S, Carter GP, Kwong JC, Schultz MB, Bulach DM, Seemann T, Stinear TP, Howden BP. The changing landscape of vancomycin-resistant Enterococcus faecium in Australia: a population-level genomic study. J Antimicrob Chemother 2019; 73:3268-3278. [PMID: 30189014 DOI: 10.1093/jac/dky331] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/23/2018] [Indexed: 12/17/2022] Open
Abstract
Background Vancomycin-resistant Enterococcus faecium (VREfm) represent a major source of nosocomial infection worldwide. In Australia, there has been a recent concerning increase in bacteraemia associated with the vanA genotype, prompting investigation into the genomic epidemiology of VREfm. Methods A population-level study of VREfm (10 November-9 December 2015) was conducted. A total of 321 VREfm isolates (from 286 patients) across Victoria State were collected and sequenced with Illumina NextSeq. SNPs were used to assess relatedness. STs and genes associated with resistance and virulence were identified. The vanA-harbouring plasmid from an isolate from each ST was assembled using long-read data. Illumina reads from remaining isolates were then mapped to these assemblies to identify their probable vanA-harbouring plasmid. Results vanA-VREfm comprised 17.8% of isolates. ST203, ST80 and a pstS(-) clade, ST1421, predominated (30.5%, 30.5% and 37.2%, respectively). Most vanB-VREfm were ST796 (77.7%). vanA-VREfm were more closely related within hospitals versus between them [core SNPs 10 (IQR 1-357) versus 356 (179-416), respectively], suggesting discrete introductions of vanA-VREfm, with subsequent intra-hospital transmission. In contrast, vanB-VREfm had similar core SNP distributions within versus between hospitals, due to widespread dissemination of ST796. Different vanA-harbouring plasmids were found across STs. With the exception of ST78 and ST796, Tn1546 transposons also varied. Phylogenetic analysis revealed Australian strains were often interspersed with those from other countries, suggesting ongoing cross-continental transmission. Conclusions Emerging vanA-VREfm in Australia is polyclonal, indicating repeat introductions of vanA-VREfm into hospitals and subsequent dissemination. The close relationship to global strains reinforces the need for ongoing screening and control of VREfm in Australia and abroad.
Collapse
Affiliation(s)
- Robyn S Lee
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia.,Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Level 5, Boston, MA, USA
| | - Anders Gonçalves da Silva
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Sarah L Baines
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Janet Strachan
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Susan Ballard
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Glen P Carter
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Jason C Kwong
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Mark B Schultz
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Dieter M Bulach
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Torsten Seemann
- Melbourne Bioinformatics Group, Lab-14, 700 Swanston Street, Carlton, Victoria, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Benjamin P Howden
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia.,Infectious Diseases Department, Austin Health, Studley Rd, Heidelberg, Victoria, Australia
| |
Collapse
|
419
|
Rezaei Javan R, Ramos-Sevillano E, Akter A, Brown J, Brueggemann AB. Prophages and satellite prophages are widespread in Streptococcus and may play a role in pneumococcal pathogenesis. Nat Commun 2019; 10:4852. [PMID: 31649284 PMCID: PMC6813308 DOI: 10.1038/s41467-019-12825-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
Prophages (viral genomes integrated within a host bacterial genome) can confer various phenotypic traits to their hosts, such as enhanced pathogenicity. Here we analyse >1300 genomes of 70 different Streptococcus species and identify nearly 800 prophages and satellite prophages (prophages that do not encode their own structural components but rely on the bacterial host and another helper prophage for survival). We show that prophages and satellite prophages are widely distributed among streptococci in a structured manner, and constitute two distinct entities with little effective genetic exchange between them. Cross-species transmission of prophages is not uncommon. Furthermore, a satellite prophage is associated with virulence in a mouse model of Streptococcus pneumoniae infection. Our findings highlight the potential importance of prophages in streptococcal biology and pathogenesis. Prophages are viral genomes integrated within bacterial genomes. Here, Rezaei Javan et al. identify nearly 800 prophages and satellite prophages in > 1300 Streptococcus genomes, and show that a satellite prophage is associated with virulence in a mouse model of pneumococcal infection.
Collapse
Affiliation(s)
| | | | - Asma Akter
- Department of Medicine, Imperial College London, London, UK
| | - Jeremy Brown
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Angela B Brueggemann
- Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Department of Medicine, Imperial College London, London, UK. .,Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| |
Collapse
|
420
|
Radomski N, Cadel-Six S, Cherchame E, Felten A, Barbet P, Palma F, Mallet L, Le Hello S, Weill FX, Guillier L, Mistou MY. A Simple and Robust Statistical Method to Define Genetic Relatedness of Samples Related to Outbreaks at the Genomic Scale - Application to Retrospective Salmonella Foodborne Outbreak Investigations. Front Microbiol 2019; 10:2413. [PMID: 31708892 PMCID: PMC6821717 DOI: 10.3389/fmicb.2019.02413] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/07/2019] [Indexed: 12/21/2022] Open
Abstract
The investigation of foodborne outbreaks (FBOs) from genomic data typically relies on inspecting the relatedness of samples through a phylogenomic tree computed on either SNPs, genes, kmers, or alleles (i.e., cgMLST and wgMLST). The phylogenomic reconstruction is often time-consuming, computation-intensive and depends on hidden assumptions, pipelines implementation and their parameterization. In the context of FBO investigations, robust links between isolates are required in a timely manner to trigger appropriate management actions. Here, we propose a non-parametric statistical method to assert the relatedness of samples (i.e., outbreak cases) or whether to reject them (i.e., non-outbreak cases). With typical computation running within minutes on a desktop computer, we benchmarked the ability of three non-parametric statistical tests (i.e., Wilcoxon rank-sum, Kolmogorov-Smirnov and Kruskal-Wallis) on six different genomic features (i.e., SNPs, SNPs excluding recombination events, genes, kmers, cgMLST alleles, and wgMLST alleles) to discriminate outbreak cases (i.e., positive control: C+) from non-outbreak cases (i.e., negative control: C-). We leveraged four well-characterized and retrospectively investigated FBOs of Salmonella Typhimurium and its monophasic variant S. 1,4,[5],12:i:- from France, setting positive and negative controls in all the assays. We show that the approaches relying on pairwise SNP differences distinguished all four considered outbreaks in contrast to the other tested genomic features (i.e., genes, kmers, cgMLST alleles, and wgMLST alleles). The freely available non-parametric method written in R has been designed to be independent of both the phylogenomic reconstruction and the detection methods of genomic features (i.e., SNPs, genes, kmers, or alleles), making it widely and easily usable to anybody working on genomic data from suspected samples.
Collapse
Affiliation(s)
- Nicolas Radomski
- ANSES, Laboratory for Food Safety, Université PARIS-EST, Maisons-Alfort, France
| | - Sabrina Cadel-Six
- ANSES, Laboratory for Food Safety, Université PARIS-EST, Maisons-Alfort, France
| | - Emeline Cherchame
- ANSES, Laboratory for Food Safety, Université PARIS-EST, Maisons-Alfort, France
| | - Arnaud Felten
- ANSES, Laboratory for Food Safety, Université PARIS-EST, Maisons-Alfort, France
| | - Pauline Barbet
- ANSES, Laboratory for Food Safety, Université PARIS-EST, Maisons-Alfort, France
| | - Federica Palma
- ANSES, Laboratory for Food Safety, Université PARIS-EST, Maisons-Alfort, France
| | - Ludovic Mallet
- ANSES, Laboratory for Food Safety, Université PARIS-EST, Maisons-Alfort, France
| | - Simon Le Hello
- Unité des Bactéries Pathogènes Entériques, Institut Pasteur, Centre National de Référence des Salmonella, Paris, France
| | - François-Xavier Weill
- Unité des Bactéries Pathogènes Entériques, Institut Pasteur, Centre National de Référence des Salmonella, Paris, France
| | - Laurent Guillier
- ANSES, Laboratory for Food Safety, Université PARIS-EST, Maisons-Alfort, France
| | - Michel-Yves Mistou
- ANSES, Laboratory for Food Safety, Université PARIS-EST, Maisons-Alfort, France
| |
Collapse
|
421
|
Yin Z, Yuan C, Du Y, Yang P, Qian C, Wei Y, Zhang S, Huang D, Liu B. Comparative genomic analysis of the Hafnia genus reveals an explicit evolutionary relationship between the species alvei and paralvei and provides insights into pathogenicity. BMC Genomics 2019; 20:768. [PMID: 31646960 PMCID: PMC6806506 DOI: 10.1186/s12864-019-6123-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/20/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The Hafnia genus is an opportunistic pathogen that has been implicated in both nosocomial and community-acquired infections. Although Hafnia is fairly often isolated from clinical material, its taxonomy has remained an unsolved riddle, and the involvement and importance of Hafnia in human disease is also uncertain. Here, we used comparative genomic analysis to define the taxonomy of Hafnia, identify species-specific genes that may be the result of ecological and pathogenic specialization, and reveal virulence-related genetic profiles that may contribute to pathogenesis. RESULTS One complete genome sequence and 19 draft genome sequences for Hafnia strains were generated and combined with 27 publicly available genomes. We provided high-resolution typing methods by constructing phylogeny and population structure based on single-copy core genes in combination with whole genome average nucleotide identity to identify two distant Hafnia species (alvei and paralvei) and one mislabeled strain. The open pan-genome and the presence of numerous mobile genetic elements reveal that Hafnia has undergone massive gene rearrangements. Presence of species-specific core genomes associated with metabolism and transport suggests the putative niche differentiation between alvei and paralvei. We also identified possession of diverse virulence-related profiles in both Hafnia species., including the macromolecular secretion system, virulence, and antimicrobial resistance. In the macromolecular system, T1SS, Flagellum 1, Tad pilus and T6SS-1 were conserved in Hafnia, whereas T4SS, T5SS, and other T6SSs exhibited the evolution of diversity. The virulence factors in Hafnia are related to adherence, toxin, iron uptake, stress adaptation, and efflux pump. The identified resistance genes are associated with aminoglycoside, beta-lactam, bacitracin, cationic antimicrobial peptide, fluoroquinolone, and rifampin. These virulence-related profiles identified at the genomic level provide insights into Hafnia pathogenesis and the differentiation between alvei and paralvei. CONCLUSIONS Our research using core genome phylogeny and comparative genomics analysis of a larger collection of strains provides a comprehensive view of the taxonomy and species-specific traits between Hafnia species. Deciphering the genome of Hafnia strains possessing a reservoir of macromolecular secretion systems, virulence factors, and resistance genes related to pathogenicity may provide insights into addressing its numerous infections and devising strategies to combat the pathogen.
Collapse
Affiliation(s)
- Zhiqiu Yin
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, People’s Republic of China
- TEDA institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomeics, TEDA college, Nankai university, Tianjin, People’s Republic of China
| | - Chao Yuan
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, People’s Republic of China
- TEDA institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomeics, TEDA college, Nankai university, Tianjin, People’s Republic of China
| | - Yuhui Du
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, People’s Republic of China
- TEDA institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomeics, TEDA college, Nankai university, Tianjin, People’s Republic of China
| | - Pan Yang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, People’s Republic of China
- TEDA institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomeics, TEDA college, Nankai university, Tianjin, People’s Republic of China
| | - Chengqian Qian
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, People’s Republic of China
- TEDA institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomeics, TEDA college, Nankai university, Tianjin, People’s Republic of China
| | - Yi Wei
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, People’s Republic of China
- TEDA institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomeics, TEDA college, Nankai university, Tianjin, People’s Republic of China
| | - Si Zhang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, People’s Republic of China
- TEDA institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomeics, TEDA college, Nankai university, Tianjin, People’s Republic of China
| | - Di Huang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, People’s Republic of China
- TEDA institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomeics, TEDA college, Nankai university, Tianjin, People’s Republic of China
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, People’s Republic of China
- TEDA institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomeics, TEDA college, Nankai university, Tianjin, People’s Republic of China
| |
Collapse
|
422
|
Zhong LL, Phan HTT, Shen C, Vihta KD, Sheppard AE, Huang X, Zeng KJ, Li HY, Zhang XF, Patil S, Crook DW, Walker AS, Xing Y, Lin JL, Feng LQ, Doi Y, Xia Y, Stoesser N, Tian GB. High Rates of Human Fecal Carriage of mcr-1-Positive Multidrug-Resistant Enterobacteriaceae Emerge in China in Association With Successful Plasmid Families. Clin Infect Dis 2019; 66:676-685. [PMID: 29040419 DOI: 10.1093/cid/cix885] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/07/2017] [Indexed: 12/21/2022] Open
Abstract
Background mcr-1-mediated colistin resistance in Enterobacteriaceae is concerning, as colistin is used in treating multidrug-resistant Enterobacteriaceae infections. We identified trends in human fecal mcr-1-positivity rates and colonization with mcr-1-positive, third-generation cephalosporin-resistant (3GC-R) Enterobacteriaceae in Guangzhou, China, and investigated the genetic contexts of mcr-1 in mcr-1-positive 3GC-R strains. Methods Fecal samples were collected from in-/out-patients submitting specimens to 3 hospitals (2011-2016). mcr-1 carriage trends were assessed using iterative sequential regression. A subset of mcr-1-positive isolates was sequenced (whole-genome sequencing [WGS], Illumina), and genetic contexts (flanking regions, plasmids) of mcr-1 were characterized. Results Of 8022 fecal samples collected, 497 (6.2%) were mcr-1 positive, and 182 (2.3%) harbored mcr-1-positive 3GC-R Enterobacteriaceae. We observed marked increases in mcr-1 (0% [April 2011] to 31% [March 2016]) and more recent (since January 2014; 0% [April 2011] to 15% [March 2016]) increases in human colonization with mcr-1-positive 3GC-R Enterobacteriaceae (P < .001). mcr-1-positive 3GC-R isolates were commonly multidrug resistant. WGS of mcr-1-positive 3GC-R isolates (70 Escherichia coli, 3 Klebsiella pneumoniae) demonstrated bacterial strain diversity; mcr-1 in association with common plasmid backbones (IncI, IncHI2/HI2A, IncX4) and sometimes in multiple plasmids; frequent mcr-1 chromosomal integration; and high mobility of the mcr-1-associated insertion sequence ISApl1. Sequence data were consistent with plasmid spread among animal/human reservoirs. Conclusions The high prevalence of mcr-1 in multidrug-resistant E. coli colonizing humans is a clinical threat; diverse genetic mechanisms (strains/plasmids/insertion sequences) have contributed to the dissemination of mcr-1, and will facilitate its persistence.
Collapse
Affiliation(s)
- Lan-Lan Zhong
- Program in Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Hang T T Phan
- Modernising Medical Microbiology, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Cong Shen
- Program in Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Karina-Doris Vihta
- Modernising Medical Microbiology, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Anna E Sheppard
- Modernising Medical Microbiology, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Xi Huang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Guangzhou, China
| | - Kun-Jiao Zeng
- Program in Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Hong-Yu Li
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xue-Fei Zhang
- Program in Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Sandip Patil
- Program in Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Derrick W Crook
- Modernising Medical Microbiology, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - A Sarah Walker
- Modernising Medical Microbiology, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Yong Xing
- Program in Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jia-Lin Lin
- Program in Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Lian-Qiang Feng
- Program in Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yohei Doi
- University of Pittsburgh Medical Center, Pennsylvania
| | - Yong Xia
- Department of Clinical Laboratory Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Nicole Stoesser
- Modernising Medical Microbiology, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Guo-Bao Tian
- Program in Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|
423
|
Pidot SJ, Gao W, Buultjens AH, Monk IR, Guerillot R, Carter GP, Lee JYH, Lam MMC, Grayson ML, Ballard SA, Mahony AA, Grabsch EA, Kotsanas D, Korman TM, Coombs GW, Robinson JO, Gonçalves da Silva A, Seemann T, Howden BP, Johnson PDR, Stinear TP. Increasing tolerance of hospital Enterococcus faecium to handwash alcohols. Sci Transl Med 2019; 10:10/452/eaar6115. [PMID: 30068573 DOI: 10.1126/scitranslmed.aar6115] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/10/2018] [Accepted: 04/03/2018] [Indexed: 11/03/2022]
Abstract
Alcohol-based disinfectants and particularly hand rubs are a key way to control hospital infections worldwide. Such disinfectants restrict transmission of pathogens, such as multidrug-resistant Staphylococcus aureus and Enterococcus faecium Despite this success, health care infections caused by E. faecium are increasing. We tested alcohol tolerance of 139 hospital isolates of E. faecium obtained between 1997 and 2015 and found that E. faecium isolates after 2010 were 10-fold more tolerant to killing by alcohol than were older isolates. Using a mouse gut colonization model of E. faecium transmission, we showed that alcohol-tolerant E. faecium resisted standard 70% isopropanol surface disinfection, resulting in greater mouse gut colonization compared to alcohol-sensitive E. faecium We next looked for bacterial genomic signatures of adaptation. Alcohol-tolerant E. faecium accumulated mutations in genes involved in carbohydrate uptake and metabolism. Mutagenesis confirmed the roles of these genes in the tolerance of E. faecium to isopropanol. These findings suggest that bacterial adaptation is complicating infection control recommendations, necessitating additional procedures to prevent E. faecium from spreading in hospital settings.
Collapse
Affiliation(s)
- Sacha J Pidot
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Wei Gao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Andrew H Buultjens
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Ian R Monk
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Romain Guerillot
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Glen P Carter
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Jean Y H Lee
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Margaret M C Lam
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - M Lindsay Grayson
- Infectious Diseases Department, Austin Health, Heidelberg, Victoria 3084, Australia.,Department of Medicine, University of Melbourne, Heidelberg, Victoria 3084, Australia.,Department of Epidemiology and Preventive Medicine, Monash University, Victoria 3800, Australia
| | - Susan A Ballard
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Andrew A Mahony
- Infectious Diseases Department, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Elizabeth A Grabsch
- Infectious Diseases Department, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Despina Kotsanas
- Monash Infectious Diseases, Monash Health, Clayton, Victoria 3168, Australia
| | - Tony M Korman
- Monash Infectious Diseases, Monash Health, Clayton, Victoria 3168, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia.,Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Murdoch, Western Australia 6150, Australia
| | - J Owen Robinson
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia.,Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Murdoch, Western Australia 6150, Australia
| | - Anders Gonçalves da Silva
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Torsten Seemann
- Melbourne Bioinformatics, University of Melbourne, Carlton, Victoria 3053, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia.,Infectious Diseases Department, Austin Health, Heidelberg, Victoria 3084, Australia.,Department of Medicine, University of Melbourne, Heidelberg, Victoria 3084, Australia.,Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Paul D R Johnson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia. .,Infectious Diseases Department, Austin Health, Heidelberg, Victoria 3084, Australia.,Department of Medicine, University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
424
|
Yang C, Pei X, Wu Y, Yan L, Yan Y, Song Y, Coyle NM, Martinez-Urtaza J, Quince C, Hu Q, Jiang M, Feil E, Yang D, Song Y, Zhou D, Yang R, Falush D, Cui Y. Recent mixing of Vibrio parahaemolyticus populations. THE ISME JOURNAL 2019; 13:2578-2588. [PMID: 31235840 PMCID: PMC6775990 DOI: 10.1038/s41396-019-0461-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023]
Abstract
Humans have profoundly affected the ocean environment but little is known about anthropogenic effects on the distribution of microbes. Vibrio parahaemolyticus is found in warm coastal waters and causes gastroenteritis in humans and economically significant disease in shrimps. Based on data from 1103 genomes of environmental and clinical isolates, we show that V. parahaemolyticus is divided into four diverse populations, VppUS1, VppUS2, VppX and VppAsia. The first two are largely restricted to the US and Northern Europe, while the others are found worldwide, with VppAsia making up the great majority of isolates in the seas around Asia. Patterns of diversity within and between the populations are consistent with them having arisen by progressive divergence via genetic drift during geographical isolation. However, we find that there is substantial overlap in their current distribution. These observations can be reconciled without requiring genetic barriers to exchange between populations if long-range dispersal has increased dramatically in the recent past. We found that VppAsia isolates from the US have an average of 1.01% more shared ancestry with VppUS1 and VppUS2 isolates than VppAsia isolates from Asia itself. Based on time calibrated trees of divergence within epidemic lineages, we estimate that recombination affects about 0.017% of the genome per year, implying that the genetic mixture has taken place within the last few decades. These results suggest that human activity, such as shipping, aquatic products trade and increased human migration between continents, are responsible for the change of distribution pattern of this species.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Xiaoyan Pei
- National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Lin Yan
- National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yuqin Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | | | | | | | - Qinghua Hu
- Shenzhen Centre for Disease Control and Prevention, Shenzhen, 518055, China
| | - Min Jiang
- Shenzhen Centre for Disease Control and Prevention, Shenzhen, 518055, China
| | | | - Dajin Yang
- National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | | | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
425
|
Sipola A, Marttinen P, Corander J. Bacmeta: simulator for genomic evolution in bacterial metapopulations. Bioinformatics 2019; 34:2308-2310. [PMID: 29474733 DOI: 10.1093/bioinformatics/bty093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 02/20/2018] [Indexed: 12/25/2022] Open
Abstract
Summary The advent of genomic data from densely sampled bacterial populations has created a need for flexible simulators by which models and hypotheses can be efficiently investigated in the light of empirical observations. Bacmeta provides fast stochastic simulation of neutral evolution within a large collection of interconnected bacterial populations with completely adjustable connectivity network. Stochastic events of mutations, recombinations, insertions/deletions, migrations and micro-epidemics can be simulated in discrete non-overlapping generations with a Wright-Fisher model that operates on explicit sequence data of any desired genome length. Each model component, including locus, bacterial strain, population and ultimately the whole metapopulation, is efficiently simulated using C++ objects and detailed metadata from each level can be acquired. The software can be executed in a cluster environment using simple textual input files, enabling, e.g. large-scale simulations and likelihood-free inference. Availability and implementation Bacmeta is implemented with C++ for Linux, Mac and Windows. It is available at https://bitbucket.org/aleksisipola/bacmeta under the BSD 3-clause license. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Aleksi Sipola
- Department of Mathematics and Statistics, University of Helsinki, Finland.,Department of Computer Science, Helsinki Institute for Information Technology HIIT, Aalto University, Finland
| | - Pekka Marttinen
- Department of Computer Science, Helsinki Institute for Information Technology HIIT, Aalto University, Finland
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Finland.,Department of Biostatistics, University of Oslo, Norway
| |
Collapse
|
426
|
Antimicrobial susceptibility and molecular characterisation using whole-genome sequencing of Clostridioides difficile collected in 82 hospitals in Japan between 2014 and 2016. Antimicrob Agents Chemother 2019:AAC.01259-19. [PMID: 31527041 PMCID: PMC6879216 DOI: 10.1128/aac.01259-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We studied the antimicrobial susceptibility and molecular characteristics, using draft whole-genome sequencing, of Clostridioides (Clostridium) difficile strains before and after treatment in adults with C. difficile infection (CDI) enrolled in a phase III, randomized, nationwide study of fidaxomicin versus vancomycin in Japan (ClinicalTrials.gov identifier NCT02179658). C. difficile strains were cultured from stool samples collected before and after standard treatment with either fidaxomicin or vancomycin. We studied the antimicrobial susceptibility and molecular characteristics, using draft whole-genome sequencing, of Clostridioides (Clostridium) difficile strains before and after treatment in adults with C. difficile infection (CDI) enrolled in a phase III, randomized, nationwide study of fidaxomicin versus vancomycin in Japan (ClinicalTrials.gov identifier NCT02179658). C. difficile strains were cultured from stool samples collected before and after standard treatment with either fidaxomicin or vancomycin. Overall, 285 C. difficile strains were recovered, with 188 derived from CDI cases at baseline (87 patients received fidaxomicin, and 101 received vancomycin). No strains isolated from episodes of CDI at baseline were shown to have reduced susceptibilities to fidaxomicin (MIC, ≥1 mg/liter) or resistance to vancomycin and metronidazole. Thirty-three sequence types (STs) were identified, the most common being ST17 (n = 61 [32.4%]), ST8 (n = 26 [13.8%]), and ST2 (n = 21 [11.2%]). Core-genome single-nucleotide polymorphism analysis showed that outbreaks of C. difficile were unlikely to have occurred at each hospital. The predominant toxin gene profile was tcdA+ tcdB+ cdtA-cdtB− (n = 149 [79.3%]). Six of 87 patients who received fidaxomicin harbored C. difficile isolates with reduced fidaxomicin susceptibilities conferred by previously described mutations, Val1143Leu/Gly/Asp in RpoB or Arg89Gly in RpoC or putative mutations, Gln1149Pro in RpoB, or Arg326Cys in RpoC. Allelic exchange studies of these putative mutations were not performed. Prior to fidaxomicin use, we found no C. difficile strains with reduced fidaxomicin susceptibility causing CDI in Japan; however, mutant strains with reduced fidaxomicin susceptibility were detected after fidaxomicin treatment.
Collapse
|
427
|
Kwun MJ, Oggioni MR, Bentley SD, Fraser C, Croucher NJ. Synergistic Activity of Mobile Genetic Element Defences in Streptococcus pneumoniae. Genes (Basel) 2019; 10:genes10090707. [PMID: 31540216 PMCID: PMC6771155 DOI: 10.3390/genes10090707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 01/02/2023] Open
Abstract
A diverse set of mobile genetic elements (MGEs) transmit between Streptococcus pneumoniae cells, but many isolates remain uninfected. The best-characterised defences against horizontal transmission of MGEs are restriction-modification systems (RMSs), of which there are two phase-variable examples in S. pneumoniae. Additionally, the transformation machinery has been proposed to limit vertical transmission of chromosomally integrated MGEs. This work describes how these mechanisms can act in concert. Experimental data demonstrate RMS phase variation occurs at a sub-maximal rate. Simulations suggest this may be optimal if MGEs are sometimes vertically inherited, as it reduces the probability that an infected cell will switch between RMS variants while the MGE is invading the population, and thereby undermine the restriction barrier. Such vertically inherited MGEs can be deleted by transformation. The lack of between-strain transformation hotspots at known prophage att sites suggests transformation cannot remove an MGE from a strain in which it is fixed. However, simulations confirmed that transformation was nevertheless effective at preventing the spread of MGEs into a previously uninfected cell population, if a recombination barrier existed between co-colonising strains. Further simulations combining these effects of phase variable RMSs and transformation found they synergistically inhibited MGEs spreading, through limiting both vertical and horizontal transmission.
Collapse
Affiliation(s)
- Min Jung Kwun
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College London, London W2 1PG, UK.
| | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK.
| | - Stephen D Bentley
- Pathogens and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| | - Christophe Fraser
- Big Data Institute, Nuffield Department of Medicine, Old Road Campus, University of Oxford, Oxford OX3 7LF, UK.
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
428
|
Gaiarsa S, Bitar I, Comandatore F, Corbella M, Piazza A, Scaltriti E, Villa L, Postiglione U, Marone P, Nucleo E, Pongolini S, Migliavacca R, Sassera D. Can Insertion Sequences Proliferation Influence Genomic Plasticity? Comparative Analysis of Acinetobacter baumannii Sequence Type 78, a Persistent Clone in Italian Hospitals. Front Microbiol 2019; 10:2080. [PMID: 31572316 PMCID: PMC6751323 DOI: 10.3389/fmicb.2019.02080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/23/2019] [Indexed: 01/23/2023] Open
Abstract
Acinetobacter baumannii is a known opportunistic pathogen, dangerous for public health mostly due to its ability to rapidly acquire antibiotic-resistance traits. Its genome was described as characterized by remarkable plasticity, with a high frequency of homologous recombinations and proliferation of Insertion Sequences (IS). The SMAL pulsotype is an A. baumannii strain currently isolated only in Italy, characterized by a low incidence and a high persistence over the years. In this present work, we have conducted a comparative genomic analysis on this clone. The genome of 15 SMAL isolates was obtained and characterized in comparison with 24 other assemblies of evolutionary related isolates. The phylogeny highlighted the presence of a monophyletic clade (named ST78A), which includes the SMAL isolates. ST78A isolates have a low rate of homologous recombination and low gene content variability when compared to two related clades (ST78B and ST49) and to the most common A. baumannii variants worldwide (International Clones I and II). Remarkably, genomes in the ST78A clade present a high number of IS, including classes mostly absent in the other related genomes. Among these IS, one copy of IS66 was found to interrupt the gene comEC/rec2, involved in the acquisition of exogenous DNA. The genomic characterization of SMAL isolates shed light on the surprisingly low genomic plasticity and the high IS proliferation present in this strain. The interruption of the gene comEC/rec2 by an IS in the SMAL genomes brought us to formulate an evolutionary hypothesis according to which the proliferation of IS is slowing the acquisition of exogenous DNA, thus limiting genome plasticity. Such genomic architecture could explain the epidemiological behavior of high persistence and low incidence of the clone and provides an interesting framework to compare ST78 with the highly epidemic International Clones, characterized by high genomic plasticity.
Collapse
Affiliation(s)
- Stefano Gaiarsa
- UOC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ibrahim Bitar
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Università degli Studi di Pavia, Pavia, Italy
| | - Francesco Comandatore
- Pediatric Clinical Research Center, Dipartimento di Scienze Biomediche e Cliniche “Luigi Sacco”, Università degli Studi di Milano, Milan, Italy
| | - Marta Corbella
- UOC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Servizio di Epidemiologia Clinica e Biometria, Direzione Scientifica, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Aurora Piazza
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Università degli Studi di Pavia, Pavia, Italy
- Pediatric Clinical Research Center, Dipartimento di Scienze Biomediche e Cliniche “Luigi Sacco”, Università degli Studi di Milano, Milan, Italy
| | - Erika Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Parma, Italy
| | - Laura Villa
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanitá, Rome, Italy
| | - Umberto Postiglione
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università degli Studi di Pavia, Pavia, Italy
| | - Piero Marone
- UOC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisabetta Nucleo
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Università degli Studi di Pavia, Pavia, Italy
| | - Stefano Pongolini
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Parma, Italy
| | - Roberta Migliavacca
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Università degli Studi di Pavia, Pavia, Italy
| | - Davide Sassera
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università degli Studi di Pavia, Pavia, Italy
| |
Collapse
|
429
|
Patané JSL, Martins J, Rangel LT, Belasque J, Digiampietri LA, Facincani AP, Ferreira RM, Jaciani FJ, Zhang Y, Varani AM, Almeida NF, Wang N, Ferro JA, Moreira LM, Setubal JC. Origin and diversification of Xanthomonas citri subsp. citri pathotypes revealed by inclusive phylogenomic, dating, and biogeographic analyses. BMC Genomics 2019; 20:700. [PMID: 31500575 PMCID: PMC6734499 DOI: 10.1186/s12864-019-6007-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Xanthomonas citri subsp. citri pathotypes cause bacterial citrus canker, being responsible for severe agricultural losses worldwide. The A pathotype has a broad host spectrum, while A* and Aw are more restricted both in hosts and in geography. Two previous phylogenomic studies led to contrasting well-supported clades for sequenced genomes of these pathotypes. No extensive biogeographical or divergence dating analytic approaches have been so far applied to available genomes. RESULTS Based on a larger sampling of genomes than in previous studies (including six new genomes sequenced by our group, adding to a total of 95 genomes), phylogenomic analyses resulted in different resolutions, though overall indicating that A + AW is the most likely true clade. Our results suggest the high degree of recombination at some branches and the fast diversification of lineages are probable causes for this phylogenetic blurring effect. One of the genomes analyzed, X. campestris pv. durantae, was shown to be an A* strain; this strain has been reported to infect a plant of the family Verbenaceae, though there are no reports of any X. citri subsp. citri pathotypes infecting any plant outside the Citrus genus. Host reconstruction indicated the pathotype ancestor likely had plant hosts in the family Fabaceae, implying an ancient jump to the current Rutaceae hosts. Extensive dating analyses indicated that the origin of X. citri subsp. citri occurred more recently than the main phylogenetic splits of Citrus plants, suggesting dispersion rather than host-directed vicariance as the main driver of geographic expansion. An analysis of 120 pathogenic-related genes revealed pathotype-associated patterns of presence/absence. CONCLUSIONS Our results provide novel insights into the evolutionary history of X. citri subsp. citri as well as a sound phylogenetic foundation for future evolutionary and genomic studies of its pathotypes.
Collapse
Affiliation(s)
- José S L Patané
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
| | - Joaquim Martins
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luiz Thiberio Rangel
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - José Belasque
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Luciano A Digiampietri
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Agda Paula Facincani
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brazil
| | - Rafael Marini Ferreira
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brazil
| | - Fabrício José Jaciani
- Departamento de Pesquisa e Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, SP, Brazil
| | - Yunzeng Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL, USA
| | - Alessandro M Varani
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brazil
| | - Nalvo F Almeida
- Faculdade de Computação, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL, USA
| | - Jesus A Ferro
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brazil
| | - Leandro M Moreira
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - João C Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
- Biocomplexity Institute of Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
430
|
Whole-genome sequencing reveals recent and frequent genetic recombination between clonal lineages of Cryphonectria parasitica in western Europe. Fungal Genet Biol 2019; 130:122-133. [DOI: 10.1016/j.fgb.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/30/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
|
431
|
Wu B, Hao W. Mitochondrial‐encoded endonucleases drive recombination of protein‐coding genes in yeast. Environ Microbiol 2019; 21:4233-4240. [DOI: 10.1111/1462-2920.14783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/18/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Baojun Wu
- Department of Biological Sciences Wayne State University Detroit MI USA
| | - Weilong Hao
- Department of Biological Sciences Wayne State University Detroit MI USA
| |
Collapse
|
432
|
Sanaei E, Husemann M, Seiedy M, Rethwisch M, Tuda M, Toshova TB, Kim MJ, Atanasova D, Kim I. Global genetic diversity, lineage distribution, and Wolbachia infection of the alfalfa weevil Hypera postica (Coleoptera: Curculionidae). Ecol Evol 2019; 9:9546-9563. [PMID: 31534674 PMCID: PMC6745856 DOI: 10.1002/ece3.5474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/06/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023] Open
Abstract
The alfalfa weevil (Hypera postica) is a well-known example of a worldwide-distributed pest with high genetic variation. Based on the mitochondrial genes, the alfalfa weevil clusters into two main mitochondrial lineages. However, there is no clear picture of the global diversity and distribution of these lineages; neither the drivers of its diversification are known. However, it appears likely that historic demographic events including founder effects played a role. In addition, Wolbachia, a widespread intracellular parasite/symbiont, likely played an important role in the evolution of the species. Wolbachia infection so far was only detected in the Western lineage of H. postica with no information on the infecting strain, its frequency, and its consequences on the genetic diversity of the host. We here used a combination of mitochondrial and nuclear sequences of the host and sequence information on Wolbachia to document the distribution of strains and the degree of infection. The Eastern lineage has a higher genetic diversity and is found in the Mediterranean, the Middle East, Eastern Europe, and eastern America, whereas the less diverse Western lineage is found in Central Europe and the western America. Both lineages are infected with the same common strain of Wolbachia belonging to Supergroup B. Based on neutrality tests, selection tests, and the current distribution and diversification of Wolbachia in H. postica, we suggested the Wolbachia infection did not shape genetic diversity of the host. The introduced populations in the United States are generally genetically less diverse, which is in line with founder effects.
Collapse
Affiliation(s)
- Ehsan Sanaei
- Department of Applied BiologyCollege of Agriculture and Life ScienceChonnam National UniversityGwnagjuKorea
- School of Biological ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | | | - Marjan Seiedy
- School of Biology and Center of Excellence in Phylogeny of Living OrganismsCollege of ScienceUniversity of TehranTehranIran
| | | | - Midori Tuda
- Faculty of AgricultureInstitute of Biological ControlKyushu UniversityFukuokaJapan
- Laboratory of Insect Natural EnemiesDepartment of Bioresource SciencesFaculty of AgricultureKyushu UniversityFukuokaJapan
| | - Teodora B. Toshova
- Institute of Biodiversity and Ecosystem ResearchBulgarian Academy of SciencesSofiaBulgaria
| | - Min Jee Kim
- Department of Applied BiologyCollege of Agriculture and Life ScienceChonnam National UniversityGwnagjuKorea
| | - Daniela Atanasova
- Department of EntomologyFaculty of Plant Protection and AgroecologyAgricultural UniversityPlovdivBulgaria
| | - Iksoo Kim
- Department of Applied BiologyCollege of Agriculture and Life ScienceChonnam National UniversityGwnagjuKorea
| |
Collapse
|
433
|
Rates of Molecular Evolution in a Marine Synechococcus Phage Lineage. Viruses 2019; 11:v11080720. [PMID: 31390807 PMCID: PMC6722890 DOI: 10.3390/v11080720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 12/30/2022] Open
Abstract
Cyanophages are characterized by vast genomic diversity and the formation of stable ecotypes over time. The evolution of phage diversity includes vertical processes, such as mutation, and horizontal processes, such as recombination and gene transfer. Here, we study the contribution of vertical and horizontal processes to short-term evolution of marine cyanophages. Analyzing time series data of Synechococcus-infecting Myoviridae ecotypes spanning up to 17 years, we found a high contribution of recombination relative to mutation (r/m) in all ecotypes. Additionally, we found a molecular clock of substitution and recombination in one ecotype, RIM8. The estimated RIM8 evolutionary rates are 2.2 genome-wide substitutions per year (1.275 × 10−5 substitutions/site/year) and 29 genome-wide nucleotide alterations due to recombination per year. We found 26 variable protein families, of which only two families have a predicted functional annotation, suggesting that they are auxiliary metabolic genes with bacterial homologs. A comparison of our rate estimates to other phage evolutionary rate estimates in the literature reveals a negative correlation of phage substitution rates with their genome size. A comparison to evolutionary rates in bacterial organisms further shows that phages have high rates of mutation and recombination compared to their bacterial hosts. We conclude that the increased recombination rate in phages likely contributes to their vast genomic diversity.
Collapse
|
434
|
A Reverse Ecology Approach Based on a Biological Definition of Microbial Populations. Cell 2019; 178:820-834.e14. [DOI: 10.1016/j.cell.2019.06.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/28/2019] [Accepted: 06/24/2019] [Indexed: 01/30/2023]
|
435
|
Li X, Wang H, Tong W, Feng L, Wang L, Rahman SU, Wei G, Tao S. Exploring the evolutionary dynamics of Rhizobium plasmids through bipartite network analysis. Environ Microbiol 2019; 22:934-951. [PMID: 31361937 DOI: 10.1111/1462-2920.14762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/24/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
Abstract
The genus Rhizobium usually has a multipartite genome architecture with a chromosome and several plasmids, making these bacteria a perfect candidate for plasmid biology studies. As there are no universally shared genes among typical plasmids, network analyses can complement traditional phylogenetics in a broad-scale study of plasmid evolution. Here, we present an exhaustive analysis of 216 plasmids from 49 complete genomes of Rhizobium by constructing a bipartite network that consists of two classes of nodes, the plasmids and homologous protein families that connect them. Dissection of the network using a hierarchical clustering strategy reveals extensive variety, with 34 homologous plasmid clusters. Four large clusters including one cluster of symbiotic plasmids and two clusters of chromids carrying some truly essential genes are widely distributed among Rhizobium. In contrast, the other clusters are quite small and rare. Symbiotic clusters and rare accessory clusters are exogenetic and do not appear to have co-evolved with the common accessory clusters; the latter ones have a large coding potential and functional complementarity for different lifestyles in Rhizobium. The bipartite network also provides preliminary evidence of Rhizobium plasmid variation and formation including genetic exchange, plasmid fusion and fission, exogenetic plasmid transfer, host plant selection, and environmental adaptation.
Collapse
Affiliation(s)
- Xiangchen Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hao Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenjun Tong
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Feng
- College of Enology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lina Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Siddiq Ur Rahman
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa, 27200, Pakistan
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shiheng Tao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
436
|
Pérez-Carrascal OM, Terrat Y, Giani A, Fortin N, Greer CW, Tromas N, Shapiro BJ. Coherence of Microcystis species revealed through population genomics. ISME JOURNAL 2019; 13:2887-2900. [PMID: 31363173 DOI: 10.1038/s41396-019-0481-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/05/2019] [Accepted: 07/05/2019] [Indexed: 11/09/2022]
Abstract
Microcystis is a genus of freshwater cyanobacteria, which causes harmful blooms in ecosystems worldwide. Some Microcystis strains produce harmful toxins such as microcystin, impacting drinking water quality. Microcystis colony morphology, rather than genetic similarity, is often used to classify Microcystis into morphospecies. Yet colony morphology is a plastic trait, which can change depending on environmental and laboratory culture conditions, and is thus an inadequate criterion for species delineation. Furthermore, Microcystis populations are thought to disperse globally and constitute a homogeneous gene pool. However, this assertion is based on relatively incomplete characterization of Microcystis genomic diversity. To better understand these issues, we performed a population genomic analysis of 33 newly sequenced genomes mainly from Canada and Brazil. We identified 17 Microcystis clusters of genomic similarity, five of which correspond to monophyletic clades containing at least three newly sequenced genomes. Four out of these five clades match to named morphospecies. Notably, M. aeruginosa is paraphyletic, distributed across 12 genomic clusters, suggesting it is not a coherent species. A few clades of closely related isolates are specific to a unique geographic location, suggesting biogeographic structure over relatively short evolutionary time scales. Higher homologous recombination rates within than between clades further suggest that monophyletic groups might adhere to a Biological Species-like concept, in which barriers to gene flow maintain species distinctness. However, certain genes-including some involved in microcystin and micropeptin biosynthesis-are recombined between monophyletic groups in the same geographic location, suggesting local adaptation.
Collapse
Affiliation(s)
| | - Yves Terrat
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| | - Alessandra Giani
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Nicolas Tromas
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada.
| | - B Jesse Shapiro
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
437
|
Abstract
Over the past decade, a genomics revolution, made possible through the development of high-throughput sequencing, has triggered considerable progress in the study of ancient DNA, enabling complete genomes of past organisms to be reconstructed. A newly established branch of this field, ancient pathogen genomics, affords an in-depth view of microbial evolution by providing a molecular fossil record for a number of human-associated pathogens. Recent accomplishments include the confident identification of causative agents from past pandemics, the discovery of microbial lineages that are now extinct, the extrapolation of past emergence events on a chronological scale and the characterization of long-term evolutionary history of microorganisms that remain relevant to public health today. In this Review, we discuss methodological advancements, persistent challenges and novel revelations gained through the study of ancient pathogen genomes.
Collapse
|
438
|
Ding W, Baumdicker F, Neher RA. panX: pan-genome analysis and exploration. Nucleic Acids Res 2019; 46:e5. [PMID: 29077859 PMCID: PMC5758898 DOI: 10.1093/nar/gkx977] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/10/2017] [Indexed: 11/24/2022] Open
Abstract
Horizontal transfer, gene loss, and duplication result in dynamic bacterial genomes shaped by a complex mixture of different modes of evolution. Closely related strains can differ in the presence or absence of many genes, and the total number of distinct genes found in a set of related isolates—the pan-genome—is often many times larger than the genome of individual isolates. We have developed a pipeline that efficiently identifies orthologous gene clusters in the pan-genome. This pipeline is coupled to a powerful yet easy-to-use web-based visualization for interactive exploration of the pan-genome. The visualization consists of connected components that allow rapid filtering and searching of genes and inspection of their evolutionary history. For each gene cluster, panX displays an alignment, a phylogenetic tree, maps mutations within that cluster to the branches of the tree and infers gain and loss of genes on the core-genome phylogeny. PanX is available at pangenome.de. Custom pan-genomes can be visualized either using a web server or by serving panX locally as a browser-based application.
Collapse
Affiliation(s)
- Wei Ding
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Franz Baumdicker
- Mathematisches Institut, Albert-Ludwigs University of Freiburg, 79104 Freiburg, Germany
| | - Richard A Neher
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.,Biozentrum and SIB Swiss Institute of Bioinformatics, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
439
|
Bos KI, Kühnert D, Herbig A, Esquivel-Gomez LR, Andrades Valtueña A, Barquera R, Giffin K, Kumar Lankapalli A, Nelson EA, Sabin S, Spyrou MA, Krause J. Paleomicrobiology: Diagnosis and Evolution of Ancient Pathogens. Annu Rev Microbiol 2019; 73:639-666. [PMID: 31283430 DOI: 10.1146/annurev-micro-090817-062436] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The last century has witnessed progress in the study of ancient infectious disease from purely medical descriptions of past ailments to dynamic interpretations of past population health that draw upon multiple perspectives. The recent adoption of high-throughput DNA sequencing has led to an expanded understanding of pathogen presence, evolution, and ecology across the globe. This genomic revolution has led to the identification of disease-causing microbes in both expected and unexpected contexts, while also providing for the genomic characterization of ancient pathogens previously believed to be unattainable by available methods. In this review we explore the development of DNA-based ancient pathogen research, the specialized methods and tools that have emerged to authenticate and explore infectious disease of the past, and the unique challenges that persist in molecular paleopathology. We offer guidelines to mitigate the impact of these challenges, which will allow for more reliable interpretations of data in this rapidly evolving field of investigation.
Collapse
Affiliation(s)
- Kirsten I Bos
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Denise Kühnert
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Alexander Herbig
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Luis Roger Esquivel-Gomez
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Aida Andrades Valtueña
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Karen Giffin
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Aditya Kumar Lankapalli
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Elizabeth A Nelson
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Susanna Sabin
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Maria A Spyrou
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany; .,Faculty of Biological Sciences, Friedrich Schiller University, 07737 Jena, Germany
| |
Collapse
|
440
|
Ozer EA, Nnah E, Didelot X, Whitaker RJ, Hauser AR. The Population Structure of Pseudomonas aeruginosa Is Characterized by Genetic Isolation of exoU+ and exoS+ Lineages. Genome Biol Evol 2019; 11:1780-1796. [PMID: 31173069 PMCID: PMC6690169 DOI: 10.1093/gbe/evz119] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
The diversification of microbial populations may be driven by many factors including adaptation to distinct ecological niches and barriers to recombination. We examined the population structure of the bacterial pathogen Pseudomonas aeruginosa by analyzing whole-genome sequences of 739 isolates from diverse sources. We confirmed that the population structure of P. aeruginosa consists of two major groups (referred to as Groups A and B) and at least two minor groups (Groups C1 and C2). Evidence for frequent intragroup but limited intergroup recombination in the core genome was observed, consistent with sexual isolation of the groups. Likewise, accessory genome analysis demonstrated more gene flow within Groups A and B than between these groups, and a few accessory genomic elements were nearly specific to one or the other group. In particular, the exoS gene was highly overrepresented in Group A compared with Group B isolates (99.4% vs. 1.1%) and the exoU gene was highly overrepresented in Group B compared with Group A isolates (95.2% vs. 1.8%). The exoS and exoU genes encode effector proteins secreted by the P. aeruginosa type III secretion system. Together these results suggest that the major P. aeruginosa groups defined in part by the exoS and exoU genes are divergent from each other, and that these groups are genetically isolated and may be ecologically distinct. Although both groups were globally distributed and caused human infections, certain groups predominated in some clinical contexts.
Collapse
Affiliation(s)
- Egon A Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine
| | - Ekpeno Nnah
- Lurie Children’s Hospital, Chicago, Illinois
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Rachel J Whitaker
- Department of Microbiology and the Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana-Champaign
| | - Alan R Hauser
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine
| |
Collapse
|
441
|
Didelot X, Croucher NJ, Bentley SD, Harris SR, Wilson DJ. Bayesian inference of ancestral dates on bacterial phylogenetic trees. Nucleic Acids Res 2019; 46:e134. [PMID: 30184106 PMCID: PMC6294524 DOI: 10.1093/nar/gky783] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/21/2018] [Indexed: 12/15/2022] Open
Abstract
The sequencing and comparative analysis of a collection of bacterial genomes from a single species or lineage of interest can lead to key insights into its evolution, ecology or epidemiology. The tool of choice for such a study is often to build a phylogenetic tree, and more specifically when possible a dated phylogeny, in which the dates of all common ancestors are estimated. Here, we propose a new Bayesian methodology to construct dated phylogenies which is specifically designed for bacterial genomics. Unlike previous Bayesian methods aimed at building dated phylogenies, we consider that the phylogenetic relationships between the genomes have been previously evaluated using a standard phylogenetic method, which makes our methodology much faster and scalable. This two-step approach also allows us to directly exploit existing phylogenetic methods that detect bacterial recombination, and therefore to account for the effect of recombination in the construction of a dated phylogeny. We analysed many simulated datasets in order to benchmark the performance of our approach in a wide range of situations. Furthermore, we present applications to three different real datasets from recent bacterial genomic studies. Our methodology is implemented in a R package called BactDating which is freely available for download at https://github.com/xavierdidelot/BactDating.
Collapse
Affiliation(s)
- Xavier Didelot
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Nicholas J Croucher
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Stephen D Bentley
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Simon R Harris
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Daniel J Wilson
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
442
|
Williamson CHD, Stone NE, Nunnally AE, Hornstra HM, Wagner DM, Roe CC, Vazquez AJ, Nandurkar N, Vinocur J, Terriquez J, Gillece J, Travis J, Lemmer D, Keim P, Sahl JW. A global to local genomics analysis of Clostridioides difficile ST1/RT027 identifies cryptic transmission events in a northern Arizona healthcare network. Microb Genom 2019; 5:e000271. [PMID: 31107202 PMCID: PMC6700662 DOI: 10.1099/mgen.0.000271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/04/2019] [Indexed: 12/15/2022] Open
Abstract
Clostridioides difficile is a ubiquitous, diarrhoeagenic pathogen often associated with healthcare-acquired infections that can cause a range of symptoms from mild, self-limiting disease to toxic megacolon and death. Since the early 2000s, a large proportion of C. difficile cases have been attributed to the ribotype 027 (RT027) lineage, which is associated with sequence type 1 (ST1) in the C. difficile multilocus sequence typing scheme. The spread of ST1 has been attributed, in part, to resistance to fluoroquinolones used to treat unrelated infections, which creates conditions ideal for C. difficile colonization and proliferation. In this study, we analysed 27 isolates from a healthcare network in northern Arizona, USA, and 1352 publicly available ST1 genomes to place locally sampled isolates into a global context. Whole genome, single nucleotide polymorphism analysis demonstrated that at least six separate introductions of ST1 were observed in healthcare facilities in northern Arizona over an 18-month sampling period. A reconstruction of transmission networks identified potential nosocomial transmission of isolates, which were only identified via whole genome sequence analysis. Antibiotic resistance heterogeneity was observed among ST1 genomes, including variability in resistance profiles among locally sampled ST1 isolates. To investigate why ST1 genomes are so common globally and in northern Arizona, we compared all high-quality C. difficile genomes and identified that ST1 genomes have gained and lost a number of genomic regions compared to all other C. difficile genomes; analyses of other toxigenic C. difficile sequence types demonstrate that this loss may be anomalous and could be related to niche specialization. These results suggest that a combination of antimicrobial resistance and gain and loss of specific genes may explain the prominent association of this sequence type with C. difficile infection cases worldwide. The degree of genetic variability in ST1 suggests that classifying all ST1 genomes into a quinolone-resistant hypervirulent clone category may not be appropriate. Whole genome sequencing of clinical C. difficile isolates provides a high-resolution surveillance strategy for monitoring persistence and transmission of C. difficile and for assessing the performance of infection prevention and control strategies.
Collapse
Affiliation(s)
| | - Nathan E. Stone
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Amalee E. Nunnally
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Heidie M. Hornstra
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - David M. Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Chandler C. Roe
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Adam J. Vazquez
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Nivedita Nandurkar
- Northern Arizona Healthcare, Flagstaff Medical Center, Flagstaff, AZ 86001, USA
| | - Jacob Vinocur
- Northern Arizona Healthcare, Flagstaff Medical Center, Flagstaff, AZ 86001, USA
| | - Joel Terriquez
- Northern Arizona Healthcare, Flagstaff Medical Center, Flagstaff, AZ 86001, USA
| | - John Gillece
- Translational Genomics Research Institute, Flagstaff, AZ 86001, USA
| | - Jason Travis
- Translational Genomics Research Institute, Flagstaff, AZ 86001, USA
| | - Darrin Lemmer
- Translational Genomics Research Institute, Flagstaff, AZ 86001, USA
| | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Jason W. Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
443
|
Vanhove M, Retchless AC, Sicard A, Rieux A, Coletta-Filho HD, De La Fuente L, Stenger DC, Almeida RPP. Genomic Diversity and Recombination among Xylella fastidiosa Subspecies. Appl Environ Microbiol 2019; 85:e02972-18. [PMID: 31028021 PMCID: PMC6581164 DOI: 10.1128/aem.02972-18] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/19/2019] [Indexed: 12/21/2022] Open
Abstract
Xylella fastidiosa is an economically important bacterial plant pathogen. With insights gained from 72 genomes, this study investigated differences among the three main subspecies, which have allopatric origins: X. fastidiosa subsp. fastidiosa, multiplex, and pauca The origin of recombinogenic X. fastidiosa subsp. morus and sandyi was also assessed. The evolutionary rate of the 622 genes of the species core genome was estimated at the scale of an X. fastidiosa subsp. pauca subclade (7.62 × 10-7 substitutions per site per year), which was subsequently used to estimate divergence time for the subspecies and introduction events. The study characterized genes present in the accessory genome of each of the three subspecies and investigated the core genome to detect genes potentially under positive selection. Recombination is recognized to be the major driver of diversity in X. fastidiosa, potentially facilitating shifts to novel plant hosts. The relative effect of recombination in comparison to point mutation was calculated (r/m = 2.259). Evidence of recombination was uncovered in the core genome alignment; X. fastidiosa subsp. fastidiosa in the United States was less prone to recombination, with an average of 3.22 of the 622 core genes identified as recombining regions, whereas a specific clade of X. fastidiosa subsp. multiplex was found to have on average 9.60 recombining genes, 93.2% of which originated from X. fastidiosa subsp. fastidiosa Interestingly, for X. fastidiosa subsp. morus, which was initially thought to be the outcome of genome-wide recombination between X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. multiplex, intersubspecies homologous recombination levels reached 15.30% in the core genome. Finally, there is evidence of X. fastidiosa subsp. pauca strains from citrus containing genetic elements acquired from strains infecting coffee plants as well as genetic elements from both X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. multiplex In summary, our data provide new insights into the evolution and epidemiology of this plant pathogen.IMPORTANCEXylella fastidiosa is an important vector-borne plant pathogen. We used a set of 72 genomes that constitutes the largest assembled data set for this bacterial species so far to investigate genetic relationships and the impact of recombination on phylogenetic clades and to compare genome content at the subspecies level, and we used a molecular dating approach to infer the evolutionary rate of X. fastidiosa The results demonstrate that recombination is important in shaping the genomes of X. fastidiosa and that each of the main subspecies is under different selective pressures. We hope insights from this study will improve our understanding of X. fastidiosa evolution and biology.
Collapse
Affiliation(s)
- Mathieu Vanhove
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
| | - Adam C Retchless
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
| | - Anne Sicard
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
| | | | | | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Drake C Stenger
- San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, U.S. Department of Agriculture, Parlier, California, USA
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
| |
Collapse
|
444
|
Pascoe B, Williams LK, Calland JK, Meric G, Hitchings MD, Dyer M, Ryder J, Shaw S, Lopes BS, Chintoan-Uta C, Allan E, Vidal A, Fearnley C, Everest P, Pachebat JA, Cogan TA, Stevens MP, Humphrey TJ, Wilkinson TS, Cody AJ, Colles FM, Jolley KA, Maiden MCJ, Strachan N, Pearson BM, Linton D, Wren BW, Parkhill J, Kelly DJ, van Vliet AHM, Forbes KJ, Sheppard SK. Domestication of Campylobacter jejuni NCTC 11168. Microb Genom 2019; 5:e000279. [PMID: 31310201 PMCID: PMC6700657 DOI: 10.1099/mgen.0.000279] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Reference and type strains of well-known bacteria have been a cornerstone of microbiology research for decades. The sharing of well-characterized isolates among laboratories has run in parallel with research efforts and enhanced the reproducibility of experiments, leading to a wealth of knowledge about trait variation in different species and the underlying genetics. Campylobacter jejuni strain NCTC 11168, deposited at the National Collection of Type Cultures in 1977, has been adopted widely as a reference strain by researchers worldwide and was the first Campylobacter for which the complete genome was published (in 2000). In this study, we collected 23 C. jejuni NCTC 11168 reference isolates from laboratories across the UK and compared variation in simple laboratory phenotypes with genetic variation in sequenced genomes. Putatively identical isolates, identified previously to have aberrant phenotypes, varied by up to 281 SNPs (in 15 genes) compared to the most recent reference strain. Isolates also display considerable phenotype variation in motility, morphology, growth at 37 °C, invasion of chicken and human cell lines, and susceptibility to ampicillin. This study provides evidence of ongoing evolutionary change among C. jejuni isolates as they are cultured in different laboratories and highlights the need for careful consideration of genetic variation within laboratory reference strains. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Ben Pascoe
- The Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
- MRC CLIMB Consortium, Bath, UK
| | - Lisa K. Williams
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Jessica K. Calland
- The Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
| | - Guillaume Meric
- The Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne 3004, Victoria, Australia
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Matthew D. Hitchings
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Myles Dyer
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Joseph Ryder
- The Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
| | | | | | | | - Elaine Allan
- UCL Eastman Dental Institute, University College of London, London, UK
| | - Ana Vidal
- Animal and Plant Health Agency, Weybridge, Surrey, UK
- Present address: Antimicrobial Resistance Policy and Surveillance Team, Veterinary Medicines Directorate, Department for Environment, Food and Rural Affairs (Defra), Surrey, UK
| | | | | | | | | | | | - Thomas J. Humphrey
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Thomas S. Wilkinson
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
| | | | | | | | - Martin C. J. Maiden
- Department of Zoology, University of Oxford, Oxford, UK
- NIHR Health Protections Research Unit in Gastrointestinal Infections, University of Oxford, Oxford, UK
| | | | | | | | - Brendan W. Wren
- Quadram Institute Bioscience, Norwich, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - David J. Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | | | | | - Samuel K. Sheppard
- The Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
- MRC CLIMB Consortium, Bath, UK
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
445
|
Vigué L, Eyre-Walker A. The comparative population genetics of Neisseria meningitidis and Neisseria gonorrhoeae. PeerJ 2019; 7:e7216. [PMID: 31293838 PMCID: PMC6599670 DOI: 10.7717/peerj.7216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/30/2019] [Indexed: 12/31/2022] Open
Abstract
Neisseria meningitidis and N. gonorrhoeae are closely related pathogenic bacteria. To compare their population genetics, we compiled a dataset of 1,145 genes found across 20 N. meningitidis and 15 N. gonorrhoeae genomes. We find that N. meningitidis is seven-times more diverse than N. gonorrhoeae in their combined core genome. Both species have acquired the majority of their diversity by recombination with divergent strains, however, we find that N. meningitidis has acquired more of its diversity by recombination than N. gonorrhoeae. We find that linkage disequilibrium (LD) declines rapidly across the genomes of both species. Several observations suggest that N. meningitidis has a higher effective population size than N. gonorrhoeae; it is more diverse, the ratio of non-synonymous to synonymous polymorphism is lower, and LD declines more rapidly to a lower asymptote in N. meningitidis. The two species share a modest amount of variation, half of which seems to have been acquired by lateral gene transfer and half from their common ancestor. We investigate whether diversity varies across the genome of each species and find that it does. Much of this variation is due to different levels of lateral gene transfer. However, we also find some evidence that the effective population size varies across the genome. We test for adaptive evolution in the core genome using a McDonald–Kreitman test and by considering the diversity around non-synonymous sites that are fixed for different alleles in the two species. We find some evidence for adaptive evolution using both approaches.
Collapse
|
446
|
Work TM, Dagenais J, Stacy BA, Ladner JT, Lorch JM, Balazs GH, Barquero-Calvo E, Berlowski-Zier BM, Breeden R, Corrales-Gómez N, Gonzalez-Barrientos R, Harris HS, Hernández-Mora G, Herrera-Ulloa Á, Hesami S, Jones TT, Morales JA, Norton TM, Rameyer RA, Taylor DR, Waltzek TB. A novel host-adapted strain of Salmonella Typhimurium causes renal disease in olive ridley turtles (Lepidochelys olivacea) in the Pacific. Sci Rep 2019; 9:9313. [PMID: 31249336 PMCID: PMC6597722 DOI: 10.1038/s41598-019-45752-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/14/2019] [Indexed: 01/01/2023] Open
Abstract
Salmonella spp. are frequently shed by wildlife including turtles, but S. enterica subsp. enterica serovar Typhimurium or lesions associated with Salmonella are rare in turtles. Between 1996 and 2016, we necropsied 127 apparently healthy pelagic olive ridley turtles (Lepidochelys olivacea) that died from drowning bycatch in fisheries and 44 live or freshly dead stranded turtles from the west coast of North and Central America and Hawaii. Seven percent (9/127) of pelagic and 47% (21/44) of stranded turtles had renal granulomas associated with S. Typhimurium. Stranded animals were 12 times more likely than pelagic animals to have Salmonella-induced nephritis suggesting that Salmonella may have been a contributing cause of stranding. S. Typhimurium was the only Salmonella serovar detected in L. olivacea, and phylogenetic analysis from whole genome sequencing showed that the isolates from L. olivacea formed a single clade distinct from other S. Typhimurium. Molecular clock analysis revealed that this novel clade may have originated as recently as a few decades ago. The phylogenetic lineage leading to this group is enriched for non-synonymous changes within the genomic area of Salmonella pathogenicity island 1 suggesting that these genes are important for host adaptation.
Collapse
Affiliation(s)
- Thierry M Work
- US Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, Hawaii, 96850, United States of America.
| | - Julie Dagenais
- US Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, Hawaii, 96850, United States of America
| | - Brian A Stacy
- NOAA Fisheries, Office of Protected Resources, University of Florida, Gainesville, Florida, 32603, United States of America
| | - Jason T Ladner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, 86011, United States of America
| | - Jeffrey M Lorch
- US Geological Survey, National Wildlife Health Center, Madison, Wisconsin, 53711, United States of America
| | - George H Balazs
- Golden Honu Services of Oceania, Honolulu, Hawaii, 96825, United States of America
| | - Elías Barquero-Calvo
- Escuela de Medicina Veterinaria (EMV), Universidad Nacional Costa Rica, Heredia, 3000, Costa Rica
| | - Brenda M Berlowski-Zier
- US Geological Survey, National Wildlife Health Center, Madison, Wisconsin, 53711, United States of America
| | - Renee Breeden
- US Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, Hawaii, 96850, United States of America
| | | | - Rocio Gonzalez-Barrientos
- Pathology Area National Service of Animal Health (SENASA), Ministry of Agriculture and Livestock, Heredia, 3000, Costa Rica
| | - Heather S Harris
- NOAA Fisheries West Coast Region, Morro Bay, California, United States of America
| | - Gabriela Hernández-Mora
- Pathology Area National Service of Animal Health (SENASA), Ministry of Agriculture and Livestock, Heredia, 3000, Costa Rica
| | - Ángel Herrera-Ulloa
- Bacteriology Area, National Service of Animal Health (SENASA), Ministry of Agriculture and Livestock, Heredia, 3000, Costa Rica
| | - Shoreh Hesami
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, 32603, United States of America
| | - T Todd Jones
- NOAA Fisheries, Pacific Islands Fisheries Science Center, Honolulu, Hawaii, 96818, United States of America
| | - Juan Alberto Morales
- Escuela de Medicina Veterinaria (EMV), Universidad Nacional Costa Rica, Heredia, 3000, Costa Rica
| | - Terry M Norton
- Georgia Sea Turtle Center/Jekyll Island Authority, Jekyll Island, Georgia, 31527, United States of America
| | - Robert A Rameyer
- US Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, Hawaii, 96850, United States of America
| | - Daniel R Taylor
- US Geological Survey, National Wildlife Health Center, Madison, Wisconsin, 53711, United States of America
| | - Thomas B Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, 32603, United States of America
| |
Collapse
|
447
|
Barkham T, Zadoks RN, Azmai MNA, Baker S, Bich VTN, Chalker V, Chau ML, Dance D, Deepak RN, van Doorn HR, Gutierrez RA, Holmes MA, Huong LNP, Koh TH, Martins E, Mehershahi K, Newton P, Ng LC, Phuoc NN, Sangwichian O, Sawatwong P, Surin U, Tan TY, Tang WY, Thuy NV, Turner P, Vongsouvath M, Zhang D, Whistler T, Chen SL. One hypervirulent clone, sequence type 283, accounts for a large proportion of invasive Streptococcus agalactiae isolated from humans and diseased tilapia in Southeast Asia. PLoS Negl Trop Dis 2019; 13:e0007421. [PMID: 31246981 PMCID: PMC6597049 DOI: 10.1371/journal.pntd.0007421] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Background In 2015, Singapore had the first and only reported foodborne outbreak of invasive disease caused by the group B Streptococcus (GBS; Streptococcus agalactiae). Disease, predominantly septic arthritis and meningitis, was associated with sequence type (ST)283, acquired from eating raw farmed freshwater fish. Although GBS sepsis is well-described in neonates and older adults with co-morbidities, this outbreak affected non-pregnant and younger adults with fewer co-morbidities, suggesting greater virulence. Before 2015 ST283 had only been reported from twenty humans in Hong Kong and two in France, and from one fish in Thailand. We hypothesised that ST283 was causing region-wide infection in Southeast Asia. Methodology/Principal findings We performed a literature review, whole genome sequencing on 145 GBS isolates collected from six Southeast Asian countries, and phylogenetic analysis on 7,468 GBS sequences including 227 variants of ST283 from humans and animals. Although almost absent outside Asia, ST283 was found in all invasive Asian collections analysed, from 1995 to 2017. It accounted for 29/38 (76%) human isolates in Lao PDR, 102/139 (73%) in Thailand, 4/13 (31%) in Vietnam, and 167/739 (23%) in Singapore. ST283 and its variants were found in 62/62 (100%) tilapia from 14 outbreak sites in Malaysia and Vietnam, in seven fish species in Singapore markets, and a diseased frog in China. Conclusions GBS ST283 is widespread in Southeast Asia, where it accounts for a large proportion of bacteraemic GBS, and causes disease and economic loss in aquaculture. If human ST283 is fishborne, as in the Singapore outbreak, then GBS sepsis in Thailand and Lao PDR is predominantly a foodborne disease. However, whether transmission is from aquaculture to humans, or vice versa, or involves an unidentified reservoir remains unknown. Creation of cross-border collaborations in human and animal health are needed to complete the epidemiological picture. An outbreak due to a bacterium called Streptococccus agalactiae in Singapore in 2015 was caused by a clone called ST283, and was associated with consumption of raw freshwater-fish. It was considered unique as it was the only reported foodborne outbreak of this bacterium. Our new data show that invasive ST283 disease is far from unique. ST283 has been causing disease in humans and farmed fish in SE Asian countries for decades. Reports of ST283 are almost absent outside Asia. We suspect that human ST283 is fishborne in other Asian countries, as it was in Singapore, but we haven’t looked at this yet. We don’t know where ST283 originally came from; it may have been transmitted from humans to fish, or come from another animal. More studies are needed to determine ST283’s geographical extent and burden of disease, as well as its origin, how it is transmitted, and what enables it to be so aggressive. We may then be able to interrupt transmission, to the benefit of fish, farmers, and the general public.
Collapse
Affiliation(s)
- Timothy Barkham
- Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore
- * E-mail: (TB); (SLC)
| | - Ruth N. Zadoks
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mohammad Noor Amal Azmai
- Department of Biology, Faculty of Science, and Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Stephen Baker
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Vu Thi Ngoc Bich
- Centre for Tropical Medicine, Oxford University Clinical Research Unit, Hanoi, Vietnam
| | | | - Man Ling Chau
- Environmental Health Institute, National Environment Agency, Singapore
- National Centre for Food Science, Singapore Food Agency, Singapore
| | - David Dance
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - H. Rogier van Doorn
- Oxford University Clinical Research Unit, Hanoi, Vietnam
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | - Ramona A. Gutierrez
- Environmental Health Institute, National Environment Agency, Singapore
- National Centre for Infectious Diseases, Singapore
| | - Mark A. Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Tse Hsien Koh
- Department of Microbiology, Singapore General Hospital, Singapore
| | - Elisabete Martins
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Kurosh Mehershahi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Paul Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, Singapore
| | - Nguyen Ngoc Phuoc
- Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Hue City, Vietnam
| | - Ornuma Sangwichian
- Thailand Ministry of Public Health (MOPH)-US Centers for Disease Control and Prevention Collaboration (TUC), Nonthaburi, Thailand
| | - Pongpun Sawatwong
- Thailand Ministry of Public Health (MOPH)-US Centers for Disease Control and Prevention Collaboration (TUC), Nonthaburi, Thailand
| | - Uraiwan Surin
- Nakhon Phanom General Hospital, Nakhon Phanom Provincial Health Office, Nakhon Phanom, Thailand
| | - Thean Yen Tan
- Department of Laboratory Medicine, Changi General Hospital, Singapore
| | - Wen Ying Tang
- Molecular Biology Laboratory, Tan Tock Seng Hospital, Singapore
| | - Nguyen Vu Thuy
- National Hospital for Obstetrics & Gynaecology, Hanoi, Vietnam
| | - Paul Turner
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
- Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| | - Defeng Zhang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People’s Republic of China
| | - Toni Whistler
- Thailand Ministry of Public Health (MOPH)-US Centers for Disease Control and Prevention Collaboration (TUC), Nonthaburi, Thailand
- Division of Global Health Protection, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Swaine L. Chen
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Infectious Diseases Group, Genome Institute of Singapore, Singapore
- * E-mail: (TB); (SLC)
| |
Collapse
|
448
|
Liu Q, Liu HC, Zhou YG, Xin YH. Microevolution and Adaptive Strategy of Psychrophilic Species Flavobacterium bomense sp. nov. Isolated From Glaciers. Front Microbiol 2019; 10:1069. [PMID: 31178833 PMCID: PMC6538692 DOI: 10.3389/fmicb.2019.01069] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
Numerous mountain glaciers located on the Tibetan Plateau are inhabited by abundant microorganisms. The microorganisms on the glacier surface are exposed to the cold, barren, and high-ultraviolet radiation environments. Although the microbial community composition on glaciers has been revealed by high-throughput sequencing, little is known about the microevolution and adaptive strategy of certain bacterial populations. In this study, we used a polyphasic approach to determine the taxonomic status of 11 psychrophilic Flavobacterium strains isolated from glaciers on the Tibetan Plateau and performed a comparative genomic analysis. The phylogenetic tree based on the concatenated single-copy gene sequences showed the 11 strains clustered together, forming a distinct and novel clade in the genus Flavobacterium. The average nucleotide identity (ANI) values among these strains were higher than 96%. However, the values much lower than 90% between them and related species indicated that they represent a novel species and the name Flavobacterium bomense sp. nov. is proposed. The core and accessory genomes of strains in this new Flavobacterium species showed diverse distinct patterns of gene content and metabolism pathway. In order to infer the driving evolutionary forces of the core genomes, homologous recombination was found to contribute twice as much to nucleotide substitutions as mutations. A series of genes encoding proteins with known or predicted roles in cold adaptation were found in their genomes, for example, cold-shock protein, proteorhodopsin, osmoprotection, and membrane-related proteins. A comparative analysis of the group with optimal growth temperature (OGT) ≤ 20°C and the group with OGT > 20°C of the 32 Flavobacterium type strains and 11 new strains revealed multiple amino acid substitutions, including the decrease of the proline and glutamine content and the increase of the methionine and isoleucine content in the group with OGT ≤ 20°C, which may contribute to increased protein flexibility at low temperatures. Thus, this study discovered a novel Flavobacterium species in glaciers, which has high intraspecific diversity and multiple adaptation mechanisms that enable them to cope and thrive in extreme habitats.
Collapse
Affiliation(s)
- Qing Liu
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hong-Can Liu
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Guang Zhou
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Hua Xin
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
449
|
Ailloud F, Didelot X, Woltemate S, Pfaffinger G, Overmann J, Bader RC, Schulz C, Malfertheiner P, Suerbaum S. Within-host evolution of Helicobacter pylori shaped by niche-specific adaptation, intragastric migrations and selective sweeps. Nat Commun 2019; 10:2273. [PMID: 31118420 PMCID: PMC6531487 DOI: 10.1038/s41467-019-10050-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
The human pathogen Helicobacter pylori displays extensive genetic diversity. While H. pylori is known to evolve during infection, population dynamics inside the gastric environment have not been extensively investigated. Here we obtained gastric biopsies from multiple stomach regions of 16 H. pylori-infected adults, and analyze the genomes of 10 H. pylori isolates from each biopsy. Phylogenetic analyses suggest location-specific evolution and bacterial migration between gastric regions. Migration is significantly more frequent between the corpus and the fundus than with the antrum, suggesting that physiological differences between antral and oxyntic mucosa contribute to spatial partitioning of H. pylori populations. Associations between H. pylori gene polymorphisms and stomach niches suggest that chemotaxis, regulatory functions and outer membrane proteins contribute to specific adaptation to the antral and oxyntic mucosa. Moreover, we show that antibiotics can induce severe population bottlenecks and likely play a role in shaping the population structure of H. pylori.
Collapse
Affiliation(s)
- Florent Ailloud
- Department of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, 80336, Munich, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, MHH Hannover Medical School, 30625, Hannover, Germany
- DZIF German Center for Infection Research, Munich Site, Munich, Germany
- DZIF German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
| | - Xavier Didelot
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK
| | - Sabrina Woltemate
- Institute of Medical Microbiology and Hospital Epidemiology, MHH Hannover Medical School, 30625, Hannover, Germany
| | - Gudrun Pfaffinger
- Department of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, 80336, Munich, Germany
| | - Jörg Overmann
- DZIF German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, 38124, Braunschweig, Germany
| | - Ruth Christiane Bader
- Department of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, 80336, Munich, Germany
- National Reference Center for Helicobacter pylori, Max von Pettenkofer Institute, 80336, Munich, Germany
| | - Christian Schulz
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University, 39106, Magdeburg, Germany
- Department of Medicine 2, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University, 39106, Magdeburg, Germany
- Department of Medicine 2, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Sebastian Suerbaum
- Department of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, 80336, Munich, Germany.
- Institute of Medical Microbiology and Hospital Epidemiology, MHH Hannover Medical School, 30625, Hannover, Germany.
- DZIF German Center for Infection Research, Munich Site, Munich, Germany.
- DZIF German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany.
- National Reference Center for Helicobacter pylori, Max von Pettenkofer Institute, 80336, Munich, Germany.
| |
Collapse
|
450
|
Ahlstrom CA, Bonnedahl J, Woksepp H, Hernandez J, Reed JA, Tibbitts L, Olsen B, Douglas DC, Ramey AM. Satellite tracking of gulls and genomic characterization of faecal bacteria reveals environmentally mediated acquisition and dispersal of antimicrobial-resistant Escherichia coli on the Kenai Peninsula, Alaska. Mol Ecol 2019; 28:2531-2545. [PMID: 30980689 DOI: 10.1111/mec.15101] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022]
Abstract
Gulls (Larus spp.) have frequently been reported to carry Escherichia coli exhibiting antimicrobial resistance (AMR E. coli); however, the pathways governing the acquisition and dispersal of such bacteria are not well described. We equipped 17 landfill-foraging gulls with satellite transmitters and collected gull faecal samples longitudinally from four locations on the Kenai Peninsula, Alaska to assess: (a) gull attendance and transitions between sites, (b) spatiotemporal prevalence of faecally shed AMR E. coli, and (c) genomic relatedness of AMR E. coli isolates among sites. We also sampled Pacific salmon (Oncorhynchus spp.) harvested as part of personal-use dipnet fisheries at two sites to assess potential contamination with AMR E. coli. Among our study sites, marked gulls most commonly occupied the lower Kenai River (61% of site locations) followed by the Soldotna landfill (11%), lower Kasilof River (5%) and upper Kenai River (<1%). Gulls primarily moved between the Soldotna landfill and the lower Kenai River (94% of transitions among sites), which were also the two locations with the highest prevalence of AMR E. coli. There was relatively high spatial and temporal variability in AMR E. coli prevalence in gull faeces and there was no evidence of contamination on salmon harvested in personal-use fisheries. We identified E. coli sequence types and AMR genes of clinical importance, with some isolates possessing genes associated with resistance to as many as eight antibiotic classes. Our findings suggest that gulls acquire AMR E. coli at habitats with anthropogenic inputs and subsequent movements may represent pathways through which AMR is dispersed.
Collapse
Affiliation(s)
| | - Jonas Bonnedahl
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Infectious Diseases, Kalmar County Council, Kalmar, Sweden
| | - Hanna Woksepp
- Research Section, Department of Development and Public Health, Kalmar County Hospital, Kalmar, Sweden
| | - Jorge Hernandez
- Department of Clinical Microbiology, Kalmar County Hospital, Kalmar, Sweden
| | - John A Reed
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska
| | - Lee Tibbitts
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - David C Douglas
- U.S. Geological Survey, Alaska Science Center, Juneau, Alaska
| | - Andrew M Ramey
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska
| |
Collapse
|