4451
|
Lei JH, Zhang L, Wang Z, Peltier R, Xie Y, Chen G, Lin S, Miao K, Deng CX, Sun H. FGFR2-BRD4 Axis Regulates Transcriptional Networks of Histone 3 Modification and Synergy Between Its Inhibitors and PD-1/PD-L1 in a TNBC Mouse Model. Front Immunol 2022; 13:861221. [PMID: 35547739 PMCID: PMC9084888 DOI: 10.3389/fimmu.2022.861221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Epigenetic reprogramming is an independent mode of gene expression that often involves changes in the transcription and chromatin structure due to tumor initiation and development. In this study, we developed a specifically modified peptide array and searched for a recognized epigenetic reader. Our results demonstrated that BRD4 is not only an acetylation reader but of propionylation as well. We also studied the quantitative binding affinities between modified peptides and epigenetic regulators by isothermal titration calorimetry (ITC). Furthermore, we introduced the Fgfr2-S252W transgenic mouse model to confirm that this acetylation is associated with the activation of c-Myc and drives tumor formation. Targeted disruption of BRD4 in Fgfr2-S252W mouse tumor cells also confirmed that BRD4 is a key regulator of histone 3 acetylation. Finally, we developed a tumor slice culture system and demonstrated the synergy between immune checkpoint blockade and targeted therapy in triple-negative breast cancer (TNBC). These data extend our understanding of epigenetic reprogramming and epigenetics-based therapies.
Collapse
Affiliation(s)
- Josh Haipeng Lei
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China.,Ministry of Education (MOE) Frontier Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR, China.,Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Lei Zhang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China.,Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhenyi Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Heifei, China
| | - Raoul Peltier
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yusheng Xie
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China.,Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ganchao Chen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Shiqi Lin
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China.,Ministry of Education (MOE) Frontier Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Kai Miao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China.,Ministry of Education (MOE) Frontier Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Chu-Xia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China.,Ministry of Education (MOE) Frontier Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Hongyan Sun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, City University of Hong Kong, Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
4452
|
Wang Z, Li P, Pegram MD, Chen X. Editorial: Metabolic Abnormalities and Breast Cancer: Challenges From Bench to Bedside. Front Oncol 2022; 12:890810. [PMID: 35574318 PMCID: PMC9091551 DOI: 10.3389/fonc.2022.890810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Zheng Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pu Li
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mark Daniel Pegram
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Xiaosong Chen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4453
|
Biagioni A, Peri S, Schiavone N, Giommoni E, Papucci L. Editorial: Redox Potential and Metabolic Behavior in Gastrointestinal Cancers. Front Oncol 2022; 12:882237. [PMID: 35574349 PMCID: PMC9092526 DOI: 10.3389/fonc.2022.882237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Sara Peri
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Elisa Giommoni
- Medical Oncology Unit, Department of Oncology and Robotic Surgery, AOU Careggi, Firenze, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| |
Collapse
|
4454
|
Purine nucleotide depletion prompts cell migration by stimulating the serine synthesis pathway. Nat Commun 2022; 13:2698. [PMID: 35577785 PMCID: PMC9110385 DOI: 10.1038/s41467-022-30362-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022] Open
Abstract
Purine nucleotides are necessary for various biological processes related to cell proliferation. Despite their importance in DNA and RNA synthesis, cellular signaling, and energy-dependent reactions, the impact of changes in cellular purine levels on cell physiology remains poorly understood. Here, we find that purine depletion stimulates cell migration, despite effective reduction in cell proliferation. Blocking purine synthesis triggers a shunt of glycolytic carbon into the serine synthesis pathway, which is required for the induction of cell migration upon purine depletion. The stimulation of cell migration upon a reduction in intracellular purines required one-carbon metabolism downstream of de novo serine synthesis. Decreased purine abundance and the subsequent increase in serine synthesis triggers an epithelial-mesenchymal transition (EMT) and, in cancer models, promotes metastatic colonization. Thus, reducing the available pool of intracellular purines re-routes metabolic flux from glycolysis into de novo serine synthesis, a metabolic change that stimulates a program of cell migration. Nucleotides are essential for different biological processes and have been also associated to cancer development. Depleting cellular nucleotides is a strategy commonly employed to target cancers. Here, the authors show that purine depletion induces serine synthesis to promote cancer cell migration and metastasis.
Collapse
|
4455
|
Richardson DS, Spehar JM, Han DT, Chakravarthy PA, Sizemore ST. The RAL Enigma: Distinct Roles of RALA and RALB in Cancer. Cells 2022; 11:cells11101645. [PMID: 35626682 PMCID: PMC9139244 DOI: 10.3390/cells11101645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
RALA and RALB are highly homologous small G proteins belonging to the RAS superfamily. Like other small GTPases, the RALs are molecular switches that can be toggled between inactive GDP-bound and active GTP-bound states to regulate diverse and critical cellular functions such as vesicle trafficking, filopodia formation, mitochondrial fission, and cytokinesis. The RAL paralogs are activated and inactivated by a shared set of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) and utilize similar sets of downstream effectors. In addition to their important roles in normal cell biology, the RALs are known to be critical mediators of cancer cell survival, invasion, migration, and metastasis. However, despite their substantial similarities, the RALs often display striking functional disparities in cancer. RALA and RALB can have redundant, unique, or even antagonistic functions depending on cancer type. The molecular basis for these discrepancies remains an important unanswered question in the field of cancer biology. In this review we examine the functions of the RAL paralogs in normal cellular physiology and cancer biology with special consideration provided to situations where the roles of RALA and RALB are non-redundant.
Collapse
|
4456
|
Wang YH, Sheetz MP. When PIP 2 Meets p53: Nuclear Phosphoinositide Signaling in the DNA Damage Response. Front Cell Dev Biol 2022; 10:903994. [PMID: 35646908 PMCID: PMC9136457 DOI: 10.3389/fcell.2022.903994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The mechanisms that maintain genome stability are critical for preventing tumor progression. In the past decades, many strategies were developed for cancer treatment to disrupt the DNA repair machinery or alter repair pathway selection. Evidence indicates that alterations in nuclear phosphoinositide lipids occur rapidly in response to genotoxic stresses. This implies that nuclear phosphoinositides are an upstream element involved in DNA damage signaling. Phosphoinositides constitute a new signaling interface for DNA repair pathway selection and hence a new opportunity for developing cancer treatment strategies. However, our understanding of the underlying mechanisms by which nuclear phosphoinositides regulate DNA damage repair, and particularly the dynamics of those processes, is rather limited. This is partly because there are a limited number of techniques that can monitor changes in the location and/or abundance of nuclear phosphoinositide lipids in real time and in live cells. This review summarizes our current knowledge regarding the roles of nuclear phosphoinositides in DNA damage response with an emphasis on the dynamics of these processes. Based upon recent findings, there is a novel model for p53's role with nuclear phosphoinositides in DNA damage response that provides new targets for synthetic lethality of tumors.
Collapse
Affiliation(s)
| | - Michael P. Sheetz
- Biochemistry and Molecular Biology Dept., University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
4457
|
Petermann AB, Reyna-Jeldes M, Ortega L, Coddou C, Yévenes GE. Roles of the Unsaturated Fatty Acid Docosahexaenoic Acid in the Central Nervous System: Molecular and Cellular Insights. Int J Mol Sci 2022; 23:5390. [PMID: 35628201 PMCID: PMC9141004 DOI: 10.3390/ijms23105390] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Fatty acids (FAs) are essential components of the central nervous system (CNS), where they exert multiple roles in health and disease. Among the FAs, docosahexaenoic acid (DHA) has been widely recognized as a key molecule for neuronal function and cell signaling. Despite its relevance, the molecular pathways underlying the beneficial effects of DHA on the cells of the CNS are still unclear. Here, we summarize and discuss the molecular mechanisms underlying the actions of DHA in neural cells with a special focus on processes of survival, morphological development, and synaptic maturation. In addition, we examine the evidence supporting a potential therapeutic role of DHA against CNS tumor diseases and tumorigenesis. The current results suggest that DHA exerts its actions on neural cells mainly through the modulation of signaling cascades involving the activation of diverse types of receptors. In addition, we found evidence connecting brain DHA and ω-3 PUFA levels with CNS diseases, such as depression, autism spectrum disorders, obesity, and neurodegenerative diseases. In the context of cancer, the existing data have shown that DHA exerts positive actions as a coadjuvant in antitumoral therapy. Although many questions in the field remain only partially resolved, we hope that future research may soon define specific pathways and receptor systems involved in the beneficial effects of DHA in cells of the CNS, opening new avenues for innovative therapeutic strategies for CNS diseases.
Collapse
Affiliation(s)
- Ana B. Petermann
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile;
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
| | - Mauricio Reyna-Jeldes
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, Coquimbo 1781421, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Lorena Ortega
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, Coquimbo 1781421, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Claudio Coddou
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, Coquimbo 1781421, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Gonzalo E. Yévenes
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile;
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
| |
Collapse
|
4458
|
Affiliation(s)
- Oltea Sampetrean
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Cancer Center, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
4459
|
Lyu J, Pirooznia M, Li Y, Xiong J. The short-chain fatty acid acetate modulates epithelial-to-mesenchymal transition. Mol Biol Cell 2022; 33. [PMID: 35544303 DOI: 10.1091/mbc.e22-02-0066] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Normal tissue and organ morphogenesis requires epithelial cell plasticity and conversion to a mesenchymal phenotype through a tightly regulated process: epithelial-to-mesenchymal transition (EMT). Alterations of EMT go far beyond cell-lineage segregation and contribute to pathologic conditions such as cancer. EMT is subject to intersecting control pathways; however, EMT's metabolic mechanism remains poorly understood. Here, we demonstrate that transforming growth factor β (TGF-β)-induced EMT is accompanied by decreased fatty acid oxidation (FAO) and reduced acetyl-coenzyme A (acetyl-CoA) levels. Acetyl-CoA is a central metabolite and the sole donor of acetyl groups to acetylate key proteins. Further, the short-chain fatty acid acetate increases acetyl-CoA levels-robustly inhibiting EMT and cancer cell migration. Acetate can restore EMT-associated α-tubulin acetylation levels, increasing microtubule stability. Transcriptome profiling and flow cytometric analysis show that acetate inhibits the global gene expression program associated with EMT and the EMT-associated G1 cell cycle arrest. Taken together, these results demonstrate that acetate is a potent metabolic regulator of EMT and that therapeutic manipulation of acetate metabolism could provide the basis for treating a wide range of EMT-linked pathological conditions, including cancer.
Collapse
Affiliation(s)
- Junfang Lyu
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701
| | - Mehdi Pirooznia
- National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892
| | - Yuesheng Li
- National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892
| | - Jianhua Xiong
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701
| |
Collapse
|
4460
|
Pirlog R, Chiroi P, Rusu I, Jurj AM, Budisan L, Pop-Bica C, Braicu C, Crisan D, Sabourin JC, Berindan-Neagoe I. Cellular and Molecular Profiling of Tumor Microenvironment and Early-Stage Lung Cancer. Int J Mol Sci 2022; 23:5346. [PMID: 35628157 PMCID: PMC9140615 DOI: 10.3390/ijms23105346] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancers are broadly divided into two categories: non-small-cell lung carcinoma (NSCLC), which accounts for 80-85% of all cancer cases, and small-cell lung carcinoma (SCLC), which covers the remaining 10-15%. Recent advances in cancer biology and genomics research have allowed an in-depth characterization of lung cancers that have revealed new therapy targets (EGFR, ALK, ROS, and KRAS mutations) and have the potential of revealing even more biomarkers for diagnostic, prognostic, and targeted therapies. A new source of biomarkers is represented by non-coding RNAs, especially microRNAs (miRNAs). MiRNAs are short non-coding RNA sequences that have essential regulatory roles in multiple cancers. Therefore, we aim to investigate the tumor microenvironment (TME) and miRNA tumor profile in a subset of 51 early-stage lung cancer samples (T1 and T2) to better understand early tumor and TME organization and molecular dysregulation. We analyzed the immunohistochemistry expression of CD4 and CD8 as markers of the main TME immune populations, E-cadherin to evaluate early-stage epithelial-to-mesenchymal transition (EMT), and p53, the main altered tumor suppressor gene in lung cancer. Starting from these 4 markers, we identified and validated 4 miRNAs that target TP53 and regulate EMT that can be further investigated as potential early-stage lung cancer biomarkers.
Collapse
Affiliation(s)
- Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (P.C.); (A.M.J.); (L.B.); (C.P.-B.); (C.B.)
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (P.C.); (A.M.J.); (L.B.); (C.P.-B.); (C.B.)
| | - Ioana Rusu
- Department of Pathology, Regional Institute of Gastroenterology and Hepatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania;
| | - Ancuta Maria Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (P.C.); (A.M.J.); (L.B.); (C.P.-B.); (C.B.)
| | - Liviuta Budisan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (P.C.); (A.M.J.); (L.B.); (C.P.-B.); (C.B.)
| | - Cecilia Pop-Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (P.C.); (A.M.J.); (L.B.); (C.P.-B.); (C.B.)
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (P.C.); (A.M.J.); (L.B.); (C.P.-B.); (C.B.)
| | - Doinita Crisan
- Department of Morphological Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Jean-Christophe Sabourin
- Pathology Department and INSERM U1245, Rouen University Hospital, Normandy University, 76000 Rouen, France;
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (P.C.); (A.M.J.); (L.B.); (C.P.-B.); (C.B.)
| |
Collapse
|
4461
|
Non-Melanoma Skin Cancer: A Genetic Update and Future Perspectives. Cancers (Basel) 2022; 14:cancers14102371. [PMID: 35625975 PMCID: PMC9139429 DOI: 10.3390/cancers14102371] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Non-melanoma skin cancer (NMSC) is the main type of cancer in the Caucasian population, and the number of cases continues to rise. Research mostly focuses on clinical characteristics analysis, but genetic features are crucial to malignancies’ establishment and advance. We aim to explore the genetic basics of skin cancer, surrounding microenvironment interactions, and regulation mechanisms to provide a broader perspective for new therapies’ development. Abstract Skin cancer is one of the main types of cancer worldwide, and non-melanoma skin cancer (NMSC) is the most frequent within this group. Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common types. Multifactorial features are well-known for cancer development, and new hallmarks are gaining relevance. Genetics and epigenetic regulation play an essential role in cancer susceptibility and progression, as well as the variety of cells and molecules that interact in the tumor microenvironment. In this review, we provide an update on the genetic features of NMSC, candidate genes, and new therapies, considering diverse perspectives of skin carcinogenesis. The global health situation and the pandemic have been challenging for health care systems, especially in the diagnosis and treatment of patients with cancer. We provide innovative approaches to overcome the difficulties in the current clinical dynamics.
Collapse
|
4462
|
Yin S, Yang L, Zheng Y, Zang R. MS: Wip1 suppresses angiogenesis through the STAT3-VEGF signalling pathway in serous ovarian cancer. J Ovarian Res 2022; 15:56. [PMID: 35538489 PMCID: PMC9087943 DOI: 10.1186/s13048-022-00990-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/25/2022] [Indexed: 12/20/2022] Open
Abstract
Multifaceted functions of the so-called “oncogene” Wip1 have been reported in a previous study, while its actual role remains to be explored in serous ovarian cancer (SOC). In this study, by performing bioinformatic analysis with a public database and immunohistochemical staining of Wip1 in tumour tissue from SOC, we concluded that decreased expression of Wip1 was associated with a higher rate of tumour metastasis and platinum-based therapy resistance and increased ascites volume, which led to poorer prognosis in SOC patients. We also found that overexpression of Wip1 in SKOV3 cells decreased the levels of several cytokines, including VEGF, by secretome profiling analysis, and Wip1 overexpression suppressed angiogenesis both in vitro and in vivo. Mechanistic studies indicated that overexpression of Wip1 decreased the expression of VEGF at both the protein and mRNA levels and that the inhibitory effect was mediated by dephosphorylation of STAT3 at Ser727. Our study uncovered the role of Wip1 in SOC and provides a novel therapeutic strategy for suppressing angiogenesis.
Collapse
Affiliation(s)
- Sheng Yin
- Department of Gynaecologic Oncology, Ovarian Cancer Program, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lina Yang
- Department of Obstetrics and Gynecology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yiyan Zheng
- Department of Gynaecologic Oncology, Ovarian Cancer Program, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rongyu Zang
- Department of Gynaecologic Oncology, Ovarian Cancer Program, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4463
|
Blagosklonny MV. Hallmarks of cancer and hallmarks of aging. Aging (Albany NY) 2022; 14:4176-4187. [PMID: 35533376 PMCID: PMC9134968 DOI: 10.18632/aging.204082] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022]
Abstract
A thought-provoking article by Gems and de Magalhães suggests that canonic hallmarks of aging are superficial imitations of hallmarks of cancer. I took their work a step further and proposed hallmarks of aging based on a hierarchical principle and the hyperfunction theory. To do this, I first reexamine the hallmarks of cancer proposed by Hanahan and Weinberg in 2000. Although six hallmarks of cancer are genuine, they are not hierarchically arranged, i.e., molecular, intra-cellular, cellular, tissue, organismal and extra-organismal. (For example, invasion and angiogenesis are manifestations of molecular alterations on the tissue level; metastasis on the organismal level, whereas cell immortality is observed outside the host). The same hierarchical approach is applicable to aging. Unlike cancer, however, aging is not a molecular disease. The lowest level of its origin is normal intracellular signaling pathways such as mTOR that drive developmental growth and, later in life, become hyperfunctional, causing age-related diseases, whose sum is aging. The key hallmark of organismal aging, from worms to humans, are age-related diseases. In addition, hallmarks of aging can be arranged as a timeline, wherein initial hyperfunction is followed by dysfunction, organ damage and functional decline.
Collapse
|
4464
|
Shen W, Zhou Q, Peng C, Li J, Yuan Q, Zhu H, Zhao M, Jiang X, Liu W, Ren C. FBXW7 and the Hallmarks of Cancer: Underlying Mechanisms and Prospective Strategies. Front Oncol 2022; 12:880077. [PMID: 35515121 PMCID: PMC9063462 DOI: 10.3389/fonc.2022.880077] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
FBXW7, a member of the F-box protein family within the ubiquitin–proteasome system, performs an indispensable role in orchestrating cellular processes through ubiquitination and degradation of its substrates, such as c-MYC, mTOR, MCL-1, Notch, and cyclin E. Mainly functioning as a tumor suppressor, inactivation of FBXW7 induces the aberrations of its downstream pathway, resulting in the occurrence of diseases especially tumorigenesis. Here, we decipher the relationship between FBXW7 and the hallmarks of cancer and discuss the underlying mechanisms. Considering the interplay of cancer hallmarks, we propose several prospective strategies for circumventing the deficits of therapeutic resistance and complete cure of cancer patients.
Collapse
Affiliation(s)
- Wenyue Shen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Quanwei Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chenxi Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaheng Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qizhi Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hecheng Zhu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Changsha Kexin Cancer Hospital, Changsha, China
| | - Ming Zhao
- Changsha Kexin Cancer Hospital, Changsha, China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Weidong Liu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, China
| | - Caiping Ren
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, China
| |
Collapse
|
4465
|
Deng S, Feng Y, Pauklin S. 3D chromatin architecture and transcription regulation in cancer. J Hematol Oncol 2022; 15:49. [PMID: 35509102 PMCID: PMC9069733 DOI: 10.1186/s13045-022-01271-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2022] [Indexed: 12/18/2022] Open
Abstract
Chromatin has distinct three-dimensional (3D) architectures important in key biological processes, such as cell cycle, replication, differentiation, and transcription regulation. In turn, aberrant 3D structures play a vital role in developing abnormalities and diseases such as cancer. This review discusses key 3D chromatin structures (topologically associating domain, lamina-associated domain, and enhancer-promoter interactions) and corresponding structural protein elements mediating 3D chromatin interactions [CCCTC-binding factor, polycomb group protein, cohesin, and Brother of the Regulator of Imprinted Sites (BORIS) protein] with a highlight of their associations with cancer. We also summarise the recent development of technologies and bioinformatics approaches to study the 3D chromatin interactions in gene expression regulation, including crosslinking and proximity ligation methods in the bulk cell population (ChIA-PET and HiChIP) or single-molecule resolution (ChIA-drop), and methods other than proximity ligation, such as GAM, SPRITE, and super-resolution microscopy techniques.
Collapse
Affiliation(s)
- Siwei Deng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Yuliang Feng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Siim Pauklin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK.
| |
Collapse
|
4466
|
Liu Y, Feng J, Yuan K, Wu Z, Hu L, Lu Y, Li K, Guo J, Chen J, Ma C, Pang X. The oncoprotein BCL6 enables solid tumor cells to evade genotoxic stress. eLife 2022; 11:69255. [PMID: 35503721 PMCID: PMC9064299 DOI: 10.7554/elife.69255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
Genotoxic agents remain the mainstay of cancer treatment. Unfortunately, the clinical benefits are often countered by a rapid tumor adaptive response. Here, we report that the oncoprotein B cell lymphoma 6 (BCL6) is a core component that confers solid tumor adaptive resistance to genotoxic stress. Multiple genotoxic agents promoted BCL6 transactivation, which was positively correlated with a weakened therapeutic efficacy and a worse clinical outcome. Mechanistically, we discovered that treatment with the genotoxic agent etoposide led to the transcriptional reprogramming of multiple pro-inflammatory cytokines, among which the interferon-α and interferon-γ responses were substantially enriched in resistant cells. Our results further revealed that the activation of interferon/signal transducer and activator of transcription 1 axis directly upregulated BCL6 expression. The increased expression of BCL6 further repressed the tumor suppressor PTEN and consequently enabled resistant cancer cell survival. Accordingly, targeted inhibition of BCL6 remarkably enhanced etoposide-triggered DNA damage and apoptosis both in vitro and in vivo. Our findings highlight the importance of BCL6 signaling in conquering solid tumor tolerance to genotoxic stress, further establishing a rationale for a combined approach with genotoxic agents and BCL6-targeted therapy.
Collapse
Affiliation(s)
- Yanan Liu
- Changning Maternity and Infant Health Hospital, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Juanjuan Feng
- Changning Maternity and Infant Health Hospital, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kun Yuan
- Changning Maternity and Infant Health Hospital, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhengzhen Wu
- Changning Maternity and Infant Health Hospital, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Longmiao Hu
- Changning Maternity and Infant Health Hospital, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yue Lu
- Changning Maternity and Infant Health Hospital, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kun Li
- Changning Maternity and Infant Health Hospital, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiawei Guo
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jing Chen
- Key Laboratory of Reproduction and Genetics in Ningxia, Ningxia Medical University, Yinchuan, China
| | - Chengbin Ma
- Changning Maternity and Infant Health Hospital, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiufeng Pang
- Changning Maternity and Infant Health Hospital, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
4467
|
Seeneevassen L, Dubus P, Gronnier C, Varon C. Hippo in Gastric Cancer: From Signalling to Therapy. Cancers (Basel) 2022; 14:cancers14092282. [PMID: 35565411 PMCID: PMC9105983 DOI: 10.3390/cancers14092282] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
The Hippo pathway is one of the most important ones in mammals. Its key functions in cell proliferation, tissue growth, repair, and homeostasis make it the most crucial one to be controlled. Many means have been deployed for its regulation, since this pathway is not only composed of core regulatory components, but it also communicates with and regulates various other pathways, making this signalisation even more complex. Its role in cancer has been studied more and more over the past few years, and it presents YAP/TAZ as the major oncogenic actors. In this review, we relate how vital this pathway is for different organs, and how regulatory mechanisms have been bypassed to lead to cancerous states. Most studies present an upregulation status of YAP/TAZ, and urge the need to target them. A focus is made here on gastric carcinogenesis, its main dysregulations, and the major strategies adopted and tested to counteract Hippo pathway disbalance in this disease. Hippo pathway targeting can be achieved by various means, which are described in this review. Many studies have tested different potential molecules, which are detailed hereby. Though not all tested in gastric cancer, they could represent a real interest.
Collapse
Affiliation(s)
- Lornella Seeneevassen
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
| | - Pierre Dubus
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
- Department of Histology and Pathology, CHU Bordeaux, F-33000 Bordeaux, France
| | - Caroline Gronnier
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
- Department of Digestive Surgery, Haut-Lévêque Hospital, CHU Bordeaux, F-33000 Bordeaux, France
| | - Christine Varon
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
- Correspondence:
| |
Collapse
|
4468
|
Berlanga P, Pierron G, Lacroix L, Chicard M, Adam de Beaumais T, Marchais A, Harttrampf AC, Iddir Y, Larive A, Soriano Fernandez A, Hezam I, Chevassus C, Bernard V, Cotteret S, Scoazec JY, Gauthier A, Abbou S, Corradini N, André N, Aerts I, Thebaud E, Casanova M, Owens C, Hladun-Alvaro R, Michiels S, Delattre O, Vassal G, Schleiermacher G, Geoerger B. The European MAPPYACTS Trial: Precision Medicine Program in Pediatric and Adolescent Patients with Recurrent Malignancies. Cancer Discov 2022; 12:1266-1281. [PMID: 35292802 PMCID: PMC9394403 DOI: 10.1158/2159-8290.cd-21-1136] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 02/07/2022] [Indexed: 01/07/2023]
Abstract
ABSTRACT MAPPYACTS (NCT02613962) is an international prospective precision medicine trial aiming to define tumor molecular profiles in pediatric patients with recurrent/refractory malignancies in order to suggest the most adapted salvage treatment. From February 2016 to July 2020, 787 patients were included in France, Italy, Ireland, and Spain. At least one genetic alteration leading to a targeted treatment suggestion was identified in 436 patients (69%) with successful sequencing; 10% of these alterations were considered "ready for routine use." Of 356 patients with follow-up beyond 12 months, 107 (30%) received one or more matched targeted therapies-56% of them within early clinical trials-mainly in the AcSé-ESMART platform trial (NCT02813135). Overall, matched treatment resulted in a 17% objective response rate, and of those patients with ready for routine use alterations, it was 38%. In patients with extracerebral tumors, 76% of actionable alterations detected in tumor tissue were also identified in circulating cell-free DNA (cfDNA). SIGNIFICANCE MAPPYACTS underlines the feasibility of molecular profiling at cancer recurrence in children on a multicenter, international level and demonstrates benefit for patients with selected key drivers. The use of cfDNA deserves validation in prospective studies. Our study highlights the need for innovative therapeutic proof-of-concept trials that address the underlying cancer complexity. This article is highlighted in the In This Issue feature, p. 1171.
Collapse
Affiliation(s)
- Pablo Berlanga
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Gaelle Pierron
- Unité de Génétique Somatique, Service de Génétique, Hospital Group, Institut Curie, Paris, France
| | - Ludovic Lacroix
- Department of Pathology and Laboratory Medicine, Translational Research Laboratory and Biobank, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Mathieu Chicard
- INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Research Center, PSL Research University, Institut Curie, Paris, France
| | - Tiphaine Adam de Beaumais
- Clinical Research Direction, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Antonin Marchais
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Anne C. Harttrampf
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Yasmine Iddir
- INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Research Center, PSL Research University, Institut Curie, Paris, France
- Equipe SiRIC RTOP Recherche Translationelle en Oncologie Pédiatrique, Institut Curie, Paris, France
| | - Alicia Larive
- Biostatistics and Epidemiology Unit, Gustave Roussy Cancer Campus, INSERM U1018, CESP, Université Paris-Saclay, Villejuif, France
| | - Aroa Soriano Fernandez
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - Imene Hezam
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Cecile Chevassus
- Biostatistics and Epidemiology Unit, Gustave Roussy Cancer Campus, INSERM U1018, CESP, Université Paris-Saclay, Villejuif, France
| | - Virginie Bernard
- Institut Curie Genomics of Excellence (ICGex) Platform, Research Center, Institut Curie, Paris, France
| | - Sophie Cotteret
- Department of Pathology and Laboratory Medicine, Translational Research Laboratory and Biobank, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Jean-Yves Scoazec
- Department of Pathology and Laboratory Medicine, Translational Research Laboratory and Biobank, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Arnaud Gauthier
- Department of Pathology, PSL Research University, Institut Curie, Paris, France
| | - Samuel Abbou
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Nadege Corradini
- Department of Pediatric Oncology, Institut d'Hematologie et d'Oncologie Pédiatrique/Centre Léon Bérard, Lyon, France
| | - Nicolas André
- Department of Pediatric Hematology and Oncology, Hôpital de La Timone, AP-HM, Marseille, France
- UMR Inserm 1068, CNRS UMR 7258, Aix Marseille Université U105, Marseille Cancer Research Center (CRCM), Marseille, France
| | - Isabelle Aerts
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, PSL Research University, Paris, France
| | - Estelle Thebaud
- Department of Pediatric Oncology, Centre Hospitalier Universitaire, Nantes, France
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Cormac Owens
- Paediatric Haematology/Oncology, Children's Health Ireland, Crumlin, Dublin, Republic of Ireland
| | - Raquel Hladun-Alvaro
- Division of Paediatric Haematology and Oncology, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Stefan Michiels
- Biostatistics and Epidemiology Unit, Gustave Roussy Cancer Campus, INSERM U1018, CESP, Université Paris-Saclay, Villejuif, France
| | - Olivier Delattre
- INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Research Center, PSL Research University, Institut Curie, Paris, France
- Institut Curie Genomics of Excellence (ICGex) Platform, Research Center, Institut Curie, Paris, France
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, PSL Research University, Paris, France
| | - Gilles Vassal
- Clinical Research Direction, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Gudrun Schleiermacher
- INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Research Center, PSL Research University, Institut Curie, Paris, France
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, PSL Research University, Paris, France
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
4469
|
Stanniocalcin 2 (STC2): a universal tumour biomarker and a potential therapeutical target. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:161. [PMID: 35501821 PMCID: PMC9063168 DOI: 10.1186/s13046-022-02370-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022]
Abstract
Stanniocalcin 2 (STC2) is a glycoprotein which is expressed in a broad spectrum of tumour cells and tumour tissues derived from human breast, colorectum, stomach, esophagus, prostate, kidney, liver, bone, ovary, lung and so forth. The expression of STC2 is regulated at both transcriptional and post-transcriptional levels; particularly, STC2 is significantly stimulated under various stress conditions like ER stress, hypoxia and nutrient deprivation. Biologically, STC2 facilitates cells dealing with stress conditions and prevents apoptosis. Importantly, STC2 also promotes the development of acquired resistance to chemo- and radio- therapies. In addition, multiple groups have reported that STC2 overexpression promotes cell proliferation, migration and immune response. Therefore, the overexpression of STC2 is positively correlated with tumour growth, invasion, metastasis and patients' prognosis, highlighting its potential as a biomarker and a therapeutic target. This review focuses on discussing the regulation, biological functions and clinical importance of STC2 in human cancers. Future perspectives in this field will also be discussed.
Collapse
|
4470
|
Ma A, Biersack B, Goehringer N, Nitzsche B, Höpfner M. Novel Thienyl-Based Tyrosine Kinase Inhibitors for the Treatment of Hepatocellular Carcinoma. J Pers Med 2022; 12:jpm12050738. [PMID: 35629160 PMCID: PMC9146161 DOI: 10.3390/jpm12050738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
New medical treatments are urgently needed for advanced hepatocellular carcinoma (HCC). Recently, we showed the anticancer effects of novel thiophene-based kinase inhibitors. In this study, we further characterized the antineoplastic effects and modes of action of the two most promising inhibitors, Thio-Iva and Thio-Dam, and compared their effects with the clinically relevant multi-kinase inhibitor, sorafenib, in HCC cells. Crystal violet staining and real-time cell growth monitoring showed pronounced antiproliferative effects in Huh-7 and SNU-449 cells with IC50 values in the (sub-)micromolar range. Long-term incubation experiments revealed the reduced clonogenicity of Thio-Iva and Thio-Dam-treated HCC cells. LDH-release tests excluded cytotoxicity as an unspecific mode of action of the inhibitors, while flow cytometry analysis revealed a dose-dependent and pronounced G2/M phase cell cycle arrest and cyclin B1 suppression. Additionally, mitochondria-driven apoptosis was observed through the cytosolic increase of reactive oxygen species, a concomitant PARP cleavage, and caspase-3 induction. Both compounds were found to effectively inhibit the capillary tube formation of endothelial EA.hy926 cells in vitro, pointing towards additional antiangiogenic effects. Antiangiogenic and antineoplastic effects were confirmed in vivo by CAM assays. In summary, the thienyl-acrylonitrile derivatives, Thio-Iva and Thio-Dam, exert significant antineoplastic and antiangiogenic effects in HCC cells.
Collapse
Affiliation(s)
- Andi Ma
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany; (A.M.); (N.G.); (M.H.)
| | - Bernhard Biersack
- Organic Chemistry 1, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany;
| | - Nils Goehringer
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany; (A.M.); (N.G.); (M.H.)
| | - Bianca Nitzsche
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany; (A.M.); (N.G.); (M.H.)
- Correspondence:
| | - Michael Höpfner
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany; (A.M.); (N.G.); (M.H.)
| |
Collapse
|
4471
|
Hawkins GM, Burkett WC, McCoy AN, Nichols HB, Olshan AF, Broaddus R, Merker JD, Weissman B, Brewster WR, Roach J, Keku TO, Bae-Jump V. Differences in the microbial profiles of early stage endometrial cancers between Black and White women. Gynecol Oncol 2022; 165:248-256. [PMID: 35277280 PMCID: PMC9093563 DOI: 10.1016/j.ygyno.2022.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Black women suffer a higher mortality from endometrial cancer (EC) than White women. Potential biological causes for this disparity include a higher prevalence of obesity and more lethal histologic/molecular subtypes. We hypothesize that another biological factor driving this racial disparity could be the EC microbiome. METHODS Banked tumor specimens of postmenopausal, Black and White women undergoing hysterectomy for early stage endometrioid EC were identified. The microbiota of the tumors were characterized by bacterial 16S rRNA sequencing. The microbial component of endometrioid ECs in The Cancer Genome Atlas (TCGA) database were assessed for comparison. RESULTS 95 early stage ECs were evaluated: 23 Black (24%) and 72 White (76%). Microbial diversity was increased (p < 0.001), and Firmicutes, Cyanobacteria and OD1 phyla abundance was higher in tumors from Black versus White women (p < 0.001). Genus level abundance of Dietzia and Geobacillus were found to be lower in tumors of obese Black versus obese White women (p < 0.001). Analysis of early stage ECs in TCGA found that microbial diversity was higher in ECs from Black versus White women (p < 0.05). When comparing ECs from obese Black versus obese White women, 5 bacteria distributions were distinct, with higher abundance of Lactobacillus acidophilus in ECs from Black women being the most striking difference. Similarly in TCGA, Dietzia and Geobacillus were more common in ECs from White women compared to Black. CONCLUSION Increased microbial diversity and the distinct microbial profiles between ECs of obese Black versus obese White women suggests that intra-tumoral bacteria may contribute to EC disparities and pathogenesis.
Collapse
Affiliation(s)
- Gabrielle M Hawkins
- University of North Carolina at Chapel Hill, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, United States of America
| | - Wesley C Burkett
- University of North Carolina at Chapel Hill, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, United States of America.
| | - Amber N McCoy
- University of North Carolina at Chapel Hill, Department of Medicine, Center for Gastrointestinal Biology and Disease, United States of America.
| | - Hazel B Nichols
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Epidemiology, United States of America; University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, United States of America.
| | - Andrew F Olshan
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Epidemiology, United States of America; University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, United States of America.
| | - Russell Broaddus
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, United States of America; University of North Carolina at Chapel Hill, Department of Pathology and Laboratory Medicine, United States of America.
| | - Jason D Merker
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, United States of America; University of North Carolina at Chapel Hill, Department of Pathology and Laboratory Medicine, United States of America.
| | - Bernard Weissman
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, United States of America; University of North Carolina at Chapel Hill, Department of Pathology and Laboratory Medicine, United States of America.
| | - Wendy R Brewster
- University of North Carolina at Chapel Hill, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, United States of America; University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, United States of America.
| | - Jeffrey Roach
- University of North Carolina at Chapel Hill, Department of Medicine, Center for Gastrointestinal Biology and Disease, United States of America.
| | - Temitope O Keku
- University of North Carolina at Chapel Hill, Department of Medicine, Center for Gastrointestinal Biology and Disease, United States of America.
| | - Victoria Bae-Jump
- University of North Carolina at Chapel Hill, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, United States of America; University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, United States of America.
| |
Collapse
|
4472
|
Blangé D, Stroes CI, Derks S, Bijlsma MF, van Laarhoven HW. Resistance Mechanisms to HER2-Targeted Therapy in Gastroesophageal Adenocarcinoma: A Systematic Review. Cancer Treat Rev 2022; 108:102418. [DOI: 10.1016/j.ctrv.2022.102418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/16/2022]
|
4473
|
Wu X, Xu L. The RNA-binding protein HuR in human cancer: A friend or foe? Adv Drug Deliv Rev 2022; 184:114179. [PMID: 35248670 PMCID: PMC9035123 DOI: 10.1016/j.addr.2022.114179] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/26/2022] [Accepted: 02/27/2022] [Indexed: 12/12/2022]
Abstract
The RNA-binding proteins (RBPs) are critical trans factors that associate with specific cis elements present in mRNAs whose stability and translation are subject to regulation. The RBP Hu antigen R (HuR) is overexpressed in a wide variety of human cancers and serves as a prognostic factor of poor clinical outcome. HuR promotes tumorigenesis by interacting with a subset of oncogenic mRNAs implicated in different cancer hallmarks, and resistance to therapy. Reduction of HuR levels in cancer cells leads to tumor regression in mouse xenograft models. These findings prompt a working model whereby cancer cells use HuR, a master switch of multiple oncogenic mRNAs, to drive drug resistance and promote cell survival and metastasis, thus rendering the tumor cells with high cytoplasmic HuR more progressive and resistant to therapy. This review summarizes the roles of HuR in cancer and other diseases, therapeutic potential of HuR inhibition, and the current status of drug discovery on HuR.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Higuchi Biosciences Center, The University of Kansas, Lawrence, KS, USA; The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS, USA.
| | - Liang Xu
- The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS, USA; Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, USA; Department of Radiation Oncology, The University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
4474
|
Systemic treatment of recurrent and/or metastatic squamous cell carcinomas of the head and neck: what is the best therapeutic sequence? Curr Opin Oncol 2022; 34:196-203. [DOI: 10.1097/cco.0000000000000834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4475
|
Chelvanambi M, Wargo JA. Trust your gut when it comes to driving CARs. MED 2022; 3:281-283. [DOI: 10.1016/j.medj.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4476
|
Liu N, Shi F, Yang L, Liao W, Cao Y. Oncogenic viral infection and amino acid metabolism in cancer progression: Molecular insights and clinical implications. Biochim Biophys Acta Rev Cancer 2022; 1877:188724. [DOI: 10.1016/j.bbcan.2022.188724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 02/08/2023]
|
4477
|
Sepich-Poore GD, Guccione C, Laplane L, Pradeu T, Curtius K, Knight R. Cancer's second genome: Microbial cancer diagnostics and redefining clonal evolution as a multispecies process: Humans and their tumors are not aseptic, and the multispecies nature of cancer modulates clinical care and clonal evolution: Humans and their tumors are not aseptic, and the multispecies nature of cancer modulates clinical care and clonal evolution. Bioessays 2022; 44:e2100252. [PMID: 35253252 PMCID: PMC10506734 DOI: 10.1002/bies.202100252] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 12/13/2022]
Abstract
The presence and role of microbes in human cancers has come full circle in the last century. Tumors are no longer considered aseptic, but implications for cancer biology and oncology remain underappreciated. Opportunities to identify and build translational diagnostics, prognostics, and therapeutics that exploit cancer's second genome-the metagenome-are manifold, but require careful consideration of microbial experimental idiosyncrasies that are distinct from host-centric methods. Furthermore, the discoveries of intracellular and intra-metastatic cancer bacteria necessitate fundamental changes in describing clonal evolution and selection, reflecting bidirectional interactions with non-human residents. Reconsidering cancer clonality as a multispecies process similarly holds key implications for understanding metastasis and prognosing therapeutic resistance while providing rational guidance for the next generation of bacterial cancer therapies. Guided by these new findings and challenges, this Review describes opportunities to exploit cancer's metagenome in oncology and proposes an evolutionary framework as a first step towards modeling multispecies cancer clonality. Also see the video abstract here: https://youtu.be/-WDtIRJYZSs.
Collapse
Affiliation(s)
| | - Caitlin Guccione
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Lucie Laplane
- Institut d’histoire et de philosophie des sciences et des techniques (UMR8590), CNRS & Panthéon-Sorbonne University, 75006 Paris, France
- Hematopoietic stem cells and the development of myeloid malignancies (UMR1287), Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Thomas Pradeu
- ImmunoConcept (UMR5164), CNRS & University of Bordeaux, 33076 Bordeaux Cedex, France
| | - Kit Curtius
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Rob Knight
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4478
|
Bruno S, Ghelli Luserna di Rorà A, Napolitano R, Soverini S, Martinelli G, Simonetti G. CDC20 in and out of mitosis: a prognostic factor and therapeutic target in hematological malignancies. J Exp Clin Cancer Res 2022; 41:159. [PMID: 35490245 PMCID: PMC9055704 DOI: 10.1186/s13046-022-02363-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
Cell division cycle 20 homologue (CDC20) is a well-known regulator of cell cycle, as it controls the correct segregation of chromosomes during mitosis. Many studies have focused on the biological role of CDC20 in cancer development, as alterations of its functionality have been linked to genomic instability and evidence demonstrated that high CDC20 expression levels are associated with poor overall survival in solid cancers. More recently, novel CDC20 functions have been demonstrated or suggested, including the regulation of apoptosis and stemness properties and a correlation with immune cell infiltration. Here, we here summarize and discuss the role of CDC20 inside and outside mitosis, starting from its network of interacting proteins. In the last years, CDC20 has also attracted more interest in the blood cancer field, being overexpressed and showing an association with prognosis both in myeloid and lymphoid malignancies. Preclinical findings showed that selective CDC20 and APC/CCDC20/APC/CCDH1 inhibitors, namely Apcin and proTAME, are effective against lymphoma and multiple myeloma cells, resulting in mitotic arrest and apoptosis and synergizing with clinically-relevant drugs. The evidence and hypothesis presented in this review provide the input for further biological and chemical studies aiming to dissect novel potential CDC20 roles and targeting strategies in hematological malignancies.
Collapse
Affiliation(s)
- Samantha Bruno
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy.
| | - Roberta Napolitano
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Simona Soverini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| |
Collapse
|
4479
|
Michire A, Anghel R, Draghia PM, Burlacu MG, Georgescu TF, Georgescu DE, Balcangiu-Stroescu AE, Vacaroiu IA, Barbu M, Gaube A. The Microbiota and the Relationship with Colorectal Cancer: Surgical Complications—A Review. GASTROINTESTINAL DISORDERS 2022; 4:66-76. [DOI: 10.3390/gidisord4020008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers and represents a major global health burden. While genetics are implicated in a portion of CRC patients, most cases are sporadic. A new possibility of tumor initiation and promotion might be microbiome composition. It was recently shown that bacteria from the gut microbiome might be used as biomarkers for CRC detection, especially Fusobacterium nucleatum, Peptostreoptococcus stomatis, Parvimonas mica, Solobacterium moorei, and Peptostreptococcus anaerobius. Conversely, the healthy gut microbiome is mostly colonized by Bacterioides (Bacterioides fragilis, vulgatus, uniformis), Firmicutes (Clostridium spp., Ruminococcus faecis, Enterococcus faecium), and Actinobacteria (Bifidobacterium bifidum). Some strains of gut bacteria favor tumor promotion through DNA and RNA damage (directly or through interaction with other known food carcinogens) and through local immune inhibition. It is possible that bacteria (e.g., Bacillus polyfermenticus, Alistipes shahii, Lactobacillus casei) exist with protective functions against tumor promotion. Despite current advances in colorectal cancer treatment, especially in the medical oncology and radiotherapy domains, surgery remains the mainstay of curative treatment for colorectal cancer patients, even in the oligometastatic setting. Surgical complications like anastomotic leakage, excessive blood loss, abscess, and abdominal sepsis can reduce 1-year and 5-year overall survival and increase the recurrence rates for these patients; therefore, we reviewed currently published data focusing on the relationship between gut microbiota and postoperative complications for colorectal cancer patients.
Collapse
Affiliation(s)
- Alexandru Michire
- Department 8—Radiology, Oncology, Hematology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania
| | - Rodica Anghel
- Department 8—Radiology, Oncology, Hematology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania
- Radiation Therapy Department, “Prof. Dr. Al. Trestioreanu” Oncology Institute, Sos. Fundeni No. 252, 022328 Bucharest, Romania
| | - Petruta Maria Draghia
- Radiation Therapy Department, “Prof. Dr. Al. Trestioreanu” Oncology Institute, Sos. Fundeni No. 252, 022328 Bucharest, Romania
| | - Mihnea Gabriel Burlacu
- Radiation Therapy Department, “Prof. Dr. Al. Trestioreanu” Oncology Institute, Sos. Fundeni No. 252, 022328 Bucharest, Romania
| | - Teodor Florin Georgescu
- Department 10—General Surgery, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania
| | - Dragos Eugen Georgescu
- Department 10—General Surgery, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania
| | - Andra-Elena Balcangiu-Stroescu
- Department 3—Physiology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania
| | - Ileana Adela Vacaroiu
- Department 3—Nephrology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania
| | - Maria Barbu
- Department 8—Radiology, Oncology, Hematology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania
| | - Alexandra Gaube
- National Institute of Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania
| |
Collapse
|
4480
|
The Antitumoral/Antimetastatic Action of the Flavonoid Brachydin A in Metastatic Prostate Tumor Spheroids In Vitro Is Mediated by (Parthanatos) PARP-Related Cell Death. Pharmaceutics 2022; 14:pharmaceutics14050963. [PMID: 35631550 PMCID: PMC9147598 DOI: 10.3390/pharmaceutics14050963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Metastatic prostate cancer (mPCa) is resistant to several chemotherapeutic agents. Brachydin A (BrA), a glycosylated flavonoid extracted from Fridericia platyphylla, displays a remarkable antitumoral effect against in vitro mPCa cells cultured as bidimensional (2D) monolayers. Considering that three-dimensional (3D) cell cultures provide a more accurate response to chemotherapeutic agents, this study investigated the antiproliferative/antimetastatic effects of BrA and the molecular mechanisms underlying its action in mPCa spheroids (DU145) in vitro. BrA at 60–100 μM was cytotoxic, altered spheroid morphology/volume, and suppressed cell migration and tumor invasiveness. High-content analysis revealed that BrA (60–100 µM) reduced mitochondrial membrane potential and increased apoptosis and necrosis markers, indicating that it triggered cell death mechanisms. Molecular analysis showed that (i) 24-h treatment with BrA (80–100 µM) increased the protein levels of DNA disruption markers (cleaved-PARP and p-γ-H2AX) as well as decreased the protein levels of anti/pro-apoptotic (BCL-2, BAD, and RIP3K) and cell survival markers (p-AKT1 and p-44/42 MAPK); (ii) 72-h treatment with BrA increased the protein levels of effector caspases (CASP3, CASP7, and CASP8) and inflammation markers (NF-kB and TNF-α). Altogether, our results suggest that PARP-mediated cell death (parthanatos) is a potential mechanism of action. In conclusion, BrA confirms its potential as a candidate drug for preclinical studies against mPCa.
Collapse
|
4481
|
Duly AMP, Kao FCL, Teo WS, Kavallaris M. βIII-Tubulin Gene Regulation in Health and Disease. Front Cell Dev Biol 2022; 10:851542. [PMID: 35573698 PMCID: PMC9096907 DOI: 10.3389/fcell.2022.851542] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022] Open
Abstract
Microtubule proteins form a dynamic component of the cytoskeleton, and play key roles in cellular processes, such as vesicular transport, cell motility and mitosis. Expression of microtubule proteins are often dysregulated in cancer. In particular, the microtubule protein βIII-tubulin, encoded by the TUBB3 gene, is aberrantly expressed in a range of epithelial tumours and is associated with drug resistance and aggressive disease. In normal cells, TUBB3 expression is tightly restricted, and is found almost exclusively in neuronal and testicular tissues. Understanding the mechanisms that control TUBB3 expression, both in cancer, mature and developing tissues will help to unravel the basic biology of the protein, its role in cancer, and may ultimately lead to the development of new therapeutic approaches to target this protein. This review is devoted to the transcriptional and posttranscriptional regulation of TUBB3 in normal and cancerous tissue.
Collapse
Affiliation(s)
- Alastair M. P. Duly
- Children’s Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Randwick, NSW, Australia
| | - Felicity C. L. Kao
- Children’s Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Randwick, NSW, Australia
- Australian Center for NanoMedicine, UNSW Sydney, Sydney, NSW, Australia
- School of Women and Children’s Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Wee Siang Teo
- Children’s Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Randwick, NSW, Australia
- Australian Center for NanoMedicine, UNSW Sydney, Sydney, NSW, Australia
| | - Maria Kavallaris
- Children’s Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Randwick, NSW, Australia
- Australian Center for NanoMedicine, UNSW Sydney, Sydney, NSW, Australia
- School of Women and Children’s Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- UNSW RNA Institute, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
4482
|
Morris RM, Mortimer TO, O’Neill KL. Cytokines: Can Cancer Get the Message? Cancers (Basel) 2022; 14:cancers14092178. [PMID: 35565306 PMCID: PMC9103018 DOI: 10.3390/cancers14092178] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cytokines are important molecular players in cancer development, progression, and potential targets for treatment. Despite being small and overlooked, research has revealed that cytokines influence cancer biology in multiple ways. Cytokines are often found to contribute to immune function, cell damage, inflammation, angiogenesis, metastasis, and several other cellular processes important to tumor survival. Cytokines have also proven to have powerful effects on complex tumor microenvironment molecular biology and microbiology. Due to their heavy involvement in critical cancer-related processes, cytokines have also become attractive therapeutic targets for cancer treatment. In this review, we describe the relationship between several cytokines and crucial cancer-promoting processes and their therapeutic potential. Abstract Cytokines are small molecular messengers that have profound effects on cancer development. Increasing evidence shows that cytokines are heavily involved in regulating both pro- and antitumor activities, such as immune activation and suppression, inflammation, cell damage, angiogenesis, cancer stem-cell-like cell maintenance, invasion, and metastasis. Cytokines are often required to drive these cancer-related processes and, therefore, represent an important research area for understanding cancer development and the potential identification of novel therapeutic targets. Interestingly, some cytokines are reported to be related to both pro- and anti-tumorigenicity, indicating that cytokines may play several complex roles relating to cancer pathogenesis. In this review, we discuss some major cancer-related processes and their relationship with several cytokines.
Collapse
|
4483
|
Engelsen AST, Lotsberg ML, Abou Khouzam R, Thiery JP, Lorens JB, Chouaib S, Terry S. Dissecting the Role of AXL in Cancer Immune Escape and Resistance to Immune Checkpoint Inhibition. Front Immunol 2022; 13:869676. [PMID: 35572601 PMCID: PMC9092944 DOI: 10.3389/fimmu.2022.869676] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
The development and implementation of Immune Checkpoint Inhibitors (ICI) in clinical oncology have significantly improved the survival of a subset of cancer patients with metastatic disease previously considered uniformly lethal. However, the low response rates and the low number of patients with durable clinical responses remain major concerns and underscore the limited understanding of mechanisms regulating anti-tumor immunity and tumor immune resistance. There is an urgent unmet need for novel approaches to enhance the efficacy of ICI in the clinic, and for predictive tools that can accurately predict ICI responders based on the composition of their tumor microenvironment. The receptor tyrosine kinase (RTK) AXL has been associated with poor prognosis in numerous malignancies and the emergence of therapy resistance. AXL is a member of the TYRO3-AXL-MERTK (TAM) kinase family. Upon binding to its ligand GAS6, AXL regulates cell signaling cascades and cellular communication between various components of the tumor microenvironment, including cancer cells, endothelial cells, and immune cells. Converging evidence points to AXL as an attractive molecular target to overcome therapy resistance and immunosuppression, supported by the potential of AXL inhibitors to improve ICI efficacy. Here, we review the current literature on the prominent role of AXL in regulating cancer progression, with particular attention to its effects on anti-tumor immune response and resistance to ICI. We discuss future directions with the aim to understand better the complex role of AXL and TAM receptors in cancer and the potential value of this knowledge and targeted inhibition for the benefit of cancer patients.
Collapse
Affiliation(s)
- Agnete S. T. Engelsen
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Maria L. Lotsberg
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Jean-Paul Thiery
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
- Guangzhou Laboratory, Guangzhou, China
- Inserm, UMR 1186, Integrative Tumor Immunology and Immunotherapy, Villejuif, France
| | - James B. Lorens
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- Inserm, UMR 1186, Integrative Tumor Immunology and Immunotherapy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Faculty of Medicine, University Paris Sud, Le Kremlin-Bicêtre, France
| | - Stéphane Terry
- Inserm, UMR 1186, Integrative Tumor Immunology and Immunotherapy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Faculty of Medicine, University Paris Sud, Le Kremlin-Bicêtre, France
- Research Department, Inovarion, Paris, France
| |
Collapse
|
4484
|
Wang W, Sun Y, Liu X, Kumar SK, Jin F, Dai Y. Dual-Targeted Therapy Circumvents Non-Genetic Drug Resistance to Targeted Therapy. Front Oncol 2022; 12:859455. [PMID: 35574302 PMCID: PMC9093074 DOI: 10.3389/fonc.2022.859455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 02/05/2023] Open
Abstract
The introduction of various targeted agents into the armamentarium of cancer treatment has revolutionized the standard care of patients with cancer. However, like conventional chemotherapy, drug resistance, either preexisting (primary or intrinsic resistance) or developed following treatment (secondary or acquired resistance), remains the Achilles heel of all targeted agents with no exception, via either genetic or non-genetic mechanisms. In the latter, emerging evidence supports the notion that intracellular signaling pathways for tumor cell survival act as a mutually interdependent network via extensive cross-talks and feedback loops. Thus, dysregulations of multiple signaling pathways usually join forces to drive oncogenesis, tumor progression, invasion, metastasis, and drug resistance, thereby providing a basis for so-called "bypass" mechanisms underlying non-genetic resistance in response to targeted agents. In this context, simultaneous interruption of two or more related targets or pathways (an approach called dual-targeted therapy, DTT), via either linear or parallel inhibition, is required to deal with such a form of drug resistance to targeted agents that specifically inhibit a single oncoprotein or oncogenic pathway. Together, while most types of tumor cells are often addicted to two or more targets or pathways or can switch their dependency between them, DTT targeting either intrinsically activated or drug-induced compensatory targets/pathways would efficiently overcome drug resistance caused by non-genetic events, with a great opportunity that those resistant cells might be particularly more vulnerable. In this review article, we discuss, with our experience, diverse mechanisms for non-genetic resistance to targeted agents and the rationales to circumvent them in the treatment of cancer, emphasizing hematologic malignancies.
Collapse
Affiliation(s)
- Wei Wang
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yue Sun
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xiaobo Liu
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Shaji K. Kumar
- Division of Hematology, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Fengyan Jin
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4485
|
Carmona-Carmona CA, Dalla Pozza E, Ambrosini G, Errico A, Dando I. Divergent Roles of Mitochondria Dynamics in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14092155. [PMID: 35565283 PMCID: PMC9105422 DOI: 10.3390/cancers14092155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma is one of the most lethal neoplasia due to the lack of early diagnostic markers and effective therapies. The study of metabolic alterations of PDAC is of crucial importance since it would open the way to the discovery of new potential therapies. Mitochondria represent key organelles that regulate energy metabolism, and they remodel their structure by undergoing modifications by fusing with other mitochondria or dividing to generate smaller ones. The alterations of mitochondria arrangement may influence the metabolism of PDAC cells, thus supporting the proliferative needs of cancer. Shedding light on this topic regarding cancer and, more specifically, PDAC may help identify new potential strategies that hit cancer cells at their “core,” i.e., mitochondria. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors; it is often diagnosed at an advanced stage and is hardly treatable. These issues are strictly linked to the absence of early diagnostic markers and the low efficacy of treatment approaches. Recently, the study of the metabolic alterations in cancer cells has opened the way to important findings that can be exploited to generate new potential therapies. Within this scenario, mitochondria represent important organelles within which many essential functions are necessary for cell survival, including some key reactions involved in energy metabolism. These organelles remodel their shape by dividing or fusing themselves in response to cellular needs or stimuli. Interestingly, many authors have shown that mitochondrial dynamic equilibrium is altered in many different tumor types. However, up to now, it is not clear whether PDAC cells preferentially take advantage of fusion or fission processes since some studies reported a wide range of different results. This review described the role of both mitochondria arrangement processes, i.e., fusion and fission events, in PDAC, showing that a preference for mitochondria fragmentation could sustain tumor needs. In addition, we also highlight the importance of considering the metabolic arrangement and mitochondria assessment of cancer stem cells, which represent the most aggressive tumor cell type that has been shown to have distinctive metabolic features to that of differentiated tumor cells.
Collapse
Affiliation(s)
| | | | | | | | - Ilaria Dando
- Correspondence: (C.A.C.-C.); (I.D.); Tel.: +39-045-802-7174 (C.A.C.-C.); +39-045-802-7169 (I.D.)
| |
Collapse
|
4486
|
DNA Damage Response Inhibitors in Cholangiocarcinoma: Current Progress and Perspectives. Cells 2022; 11:cells11091463. [PMID: 35563769 PMCID: PMC9101358 DOI: 10.3390/cells11091463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/24/2022] [Indexed: 12/27/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a poorly treatable type of cancer and its incidence is dramatically increasing. The lack of understanding of the biology of this tumor has slowed down the identification of novel targets and the development of effective treatments. Based on next generation sequencing profiling, alterations in DNA damage response (DDR)-related genes are paving the way for DDR-targeting strategies in CCA. Based on the notion of synthetic lethality, several DDR-inhibitors (DDRi) have been developed with the aim of accumulating enough DNA damage to induce cell death in tumor cells. Observing that DDRi alone could be insufficient for clinical use in CCA patients, the combination of DNA-damaging regimens with targeted approaches has started to be considered, as evidenced by many emerging clinical trials. Hence, novel therapeutic strategies combining DDRi with patient-specific targeted drugs could be the next level for treating cholangiocarcinoma.
Collapse
|
4487
|
George S, Bertagnolli MM. Linking genotype to phenotype: bench to bedside. Clin Cancer Res 2022; 28:2725-2727. [PMID: 35467726 DOI: 10.1158/1078-0432.ccr-22-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
Abstract
Over the past three decades, researchers in the NCI-funded cancer cooperative groups have routinely incorporated collection of biospecimens, quality of life assessments, diet and physical activity data and other health outcome variables from clinical trial participants to provide an expanding resource for correlative science in cancer clinical research.
Collapse
|
4488
|
Lotsberg ML, Røsland GV, Rayford AJ, Dyrstad SE, Ekanger CT, Lu N, Frantz K, Stuhr LEB, Ditzel HJ, Thiery JP, Akslen LA, Lorens JB, Engelsen AST. Intrinsic Differences in Spatiotemporal Organization and Stromal Cell Interactions Between Isogenic Lung Cancer Cells of Epithelial and Mesenchymal Phenotypes Revealed by High-Dimensional Single-Cell Analysis of Heterotypic 3D Spheroid Models. Front Oncol 2022; 12:818437. [PMID: 35530312 PMCID: PMC9076321 DOI: 10.3389/fonc.2022.818437] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/22/2022] [Indexed: 11/30/2022] Open
Abstract
The lack of inadequate preclinical models remains a limitation for cancer drug development and is a primary contributor to anti-cancer drug failures in clinical trials. Heterotypic multicellular spheroids are three-dimensional (3D) spherical structures generated by self-assembly from aggregates of two or more cell types. Compared to traditional monolayer cell culture models, the organization of cells into a 3D tissue-like structure favors relevant physiological conditions with chemical and physical gradients as well as cell-cell and cell-extracellular matrix (ECM) interactions that recapitulate many of the hallmarks of cancer in situ. Epidermal growth factor receptor (EGFR) mutations are prevalent in non-small cell lung cancer (NSCLC), yet various mechanisms of acquired resistance, including epithelial-to-mesenchymal transition (EMT), limit the clinical benefit of EGFR tyrosine kinase inhibitors (EGFRi). Improved preclinical models that incorporate the complexity induced by epithelial-to-mesenchymal plasticity (EMP) are urgently needed to advance new therapeutics for clinical NSCLC management. This study was designed to provide a thorough characterization of multicellular spheroids of isogenic cancer cells of various phenotypes and demonstrate proof-of-principle for the applicability of the presented spheroid model to evaluate the impact of cancer cell phenotype in drug screening experiments through high-dimensional and spatially resolved imaging mass cytometry (IMC) analyses. First, we developed and characterized 3D homotypic and heterotypic spheroid models comprising EGFRi-sensitive or EGFRi-resistant NSCLC cells. We observed that the degree of EMT correlated with the spheroid generation efficiency in monocultures. In-depth characterization of the multicellular heterotypic spheroids using immunohistochemistry and high-dimensional single-cell analyses by IMC revealed intrinsic differences between epithelial and mesenchymal-like cancer cells with respect to self-sorting, spatiotemporal organization, and stromal cell interactions when co-cultured with fibroblasts. While the carcinoma cells harboring an epithelial phenotype self-organized into a barrier sheet surrounding the fibroblasts, mesenchymal-like carcinoma cells localized to the central hypoxic and collagen-rich areas of the compact heterotypic spheroids. Further, deep-learning-based single-cell segmentation of IMC images and application of dimensionality reduction algorithms allowed a detailed visualization and multiparametric analysis of marker expression across the different cell subsets. We observed a high level of heterogeneity in the expression of EMT markers in both the carcinoma cell populations and the fibroblasts. Our study supports further application of these models in pre-clinical drug testing combined with complementary high-dimensional single-cell analyses, which in turn can advance our understanding of the impact of cancer-stroma interactions and epithelial phenotypic plasticity on innate and acquired therapy resistance in NSCLC.
Collapse
Affiliation(s)
- Maria L. Lotsberg
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Gro V. Røsland
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Austin J. Rayford
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- BerGenBio, Bergen, Norway
| | - Sissel E. Dyrstad
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Camilla T. Ekanger
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ning Lu
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kirstine Frantz
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Linda E. B. Stuhr
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Henrik J. Ditzel
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Jean Paul Thiery
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Guangzhou Laboratory, Guangzhou, China
- Gustave Roussy Cancer Campus, UMR 1186, Inserm, Université Paris-Saclay, Villejuif, France
| | - Lars A. Akslen
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, Section for Pathology, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - James B. Lorens
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Agnete S. T. Engelsen
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
4489
|
Targeting the gut and tumor microbiota in cancer. Nat Med 2022; 28:690-703. [PMID: 35440726 DOI: 10.1038/s41591-022-01779-2] [Citation(s) in RCA: 267] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023]
Abstract
Microorganisms within the gut and other niches may contribute to carcinogenesis, as well as shaping cancer immunosurveillance and response to immunotherapy. Our understanding of the complex relationship between different host-intrinsic microorganisms, as well as the multifaceted mechanisms by which they influence health and disease, has grown tremendously-hastening development of novel therapeutic strategies that target the microbiota to improve treatment outcomes in cancer. Accordingly, the evaluation of a patient's microbial composition and function and its subsequent targeted modulation represent key elements of future multidisciplinary and precision-medicine approaches. In this Review, we outline the current state of research toward harnessing the microbiome to better prevent and treat cancer.
Collapse
|
4490
|
Recalde M, Gárate-Rascón M, Herranz JM, Elizalde M, Azkona M, Unfried JP, Boix L, Reig M, Sangro B, Fernández-Barrena MG, Fortes P, Ávila MA, Berasain C, Arechederra M. DNA Methylation Regulates a Set of Long Non-Coding RNAs Compromising Hepatic Identity during Hepatocarcinogenesis. Cancers (Basel) 2022; 14:cancers14092048. [PMID: 35565178 PMCID: PMC9102946 DOI: 10.3390/cancers14092048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Hepatocarcinogenesis is a long process which implies the loss of hepatic functions. Our effort is to understand the mechanisms implicated in this pathological process in order to contribute to the development of new diagnostic markers and therapeutic targets. In this study we have identified a set of lncRNAs significantly downregulated in hepatocellular carcinoma (HCC) in correlation with the grade of tumor dedifferentiation and patients’ worse prognosis. Mechanistically, our results show that they are related with hepatic differentiation and at least a subset of those lncRNAs are essential to ensure the expression of other hepato-specific genes required for liver function. Moreover, we demonstrate that the expression of these lncRNAs in HCC is silenced by DNA methylation. All in all, we uncover connected epigenetic alterations involved in the progression of liver cancer and identify potential new biomarkers. Abstract Background: Long noncoding RNAs (lncRNAs) are emerging as key players in cancer, including hepatocellular carcinoma (HCC). Here we identify the mechanism implicated in the HCC inhibition of a set of lncRNAs, and their contribution to the process of hepatocarcinogenesis. Methods and Results: The top-ranked 35 lncRNAs downregulated in HCC (Top35 LNDH) were validated in several human HCC cohorts. We demonstrate that their inhibition is associated with promoter hypermethylation in HCC compared to control tissue, and in HCC human cell lines compared to primary hepatocytes. Moreover, demethylating treatment of HCC human cell lines induced the expression of these lncRNAs. The Top35 LNDH were preferentially expressed in the adult healthy liver compared to other tissues and fetal liver and were induced in well-differentiated HepaRG cells. Remarkably, their knockdown compromised the expression of other hepato-specific genes. Finally, the expression of the Top35 LNDH positively correlates with the grade of tumor differentiation and, more importantly, with a better patient prognosis. Conclusions: Our results demonstrate that the selected Top35 LNDH are not only part of the genes that compose the hepatic differentiated signature but participate in its establishment. Moreover, their downregulation through DNA methylation occurs during the process of hepatocarcinogenesis compromising hepatocellular differentiation and HCC patients’ prognosis.
Collapse
Affiliation(s)
- Miriam Recalde
- Program of Hepatology, Centre of Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.R.); (M.G.-R.); (J.M.H.); (M.E.); (M.A.); (M.G.F.-B.); (M.A.Á.)
| | - María Gárate-Rascón
- Program of Hepatology, Centre of Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.R.); (M.G.-R.); (J.M.H.); (M.E.); (M.A.); (M.G.F.-B.); (M.A.Á.)
| | - José María Herranz
- Program of Hepatology, Centre of Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.R.); (M.G.-R.); (J.M.H.); (M.E.); (M.A.); (M.G.F.-B.); (M.A.Á.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (L.B.); (M.R.); (B.S.); (P.F.)
| | - María Elizalde
- Program of Hepatology, Centre of Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.R.); (M.G.-R.); (J.M.H.); (M.E.); (M.A.); (M.G.F.-B.); (M.A.Á.)
| | - María Azkona
- Program of Hepatology, Centre of Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.R.); (M.G.-R.); (J.M.H.); (M.E.); (M.A.); (M.G.F.-B.); (M.A.Á.)
| | - Juan P. Unfried
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain;
| | - Loreto Boix
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (L.B.); (M.R.); (B.S.); (P.F.)
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - María Reig
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (L.B.); (M.R.); (B.S.); (P.F.)
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Bruno Sangro
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (L.B.); (M.R.); (B.S.); (P.F.)
- Hepatology Unit, Navarra University Clinic, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Maite G. Fernández-Barrena
- Program of Hepatology, Centre of Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.R.); (M.G.-R.); (J.M.H.); (M.E.); (M.A.); (M.G.F.-B.); (M.A.Á.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (L.B.); (M.R.); (B.S.); (P.F.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Puri Fortes
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (L.B.); (M.R.); (B.S.); (P.F.)
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Matías A. Ávila
- Program of Hepatology, Centre of Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.R.); (M.G.-R.); (J.M.H.); (M.E.); (M.A.); (M.G.F.-B.); (M.A.Á.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (L.B.); (M.R.); (B.S.); (P.F.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Carmen Berasain
- Program of Hepatology, Centre of Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.R.); (M.G.-R.); (J.M.H.); (M.E.); (M.A.); (M.G.F.-B.); (M.A.Á.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (L.B.); (M.R.); (B.S.); (P.F.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: (C.B.); (M.A.); Tel.: +34-948194700 (C.B. & M.A.)
| | - María Arechederra
- Program of Hepatology, Centre of Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.R.); (M.G.-R.); (J.M.H.); (M.E.); (M.A.); (M.G.F.-B.); (M.A.Á.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (L.B.); (M.R.); (B.S.); (P.F.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: (C.B.); (M.A.); Tel.: +34-948194700 (C.B. & M.A.)
| |
Collapse
|
4491
|
Vasarri M, Barletta E, Degl’Innocenti D. Marine Migrastatics: A Comprehensive 2022 Update. Mar Drugs 2022; 20:273. [PMID: 35621924 PMCID: PMC9145002 DOI: 10.3390/md20050273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
Metastasis is responsible for the bad prognosis in cancer patients. Advances in research on metastasis prevention focus attention on the molecular mechanisms underlying cancer cell motility and invasion to improve therapies for long-term survival in cancer patients. The so-called "migrastatics" could help block cancer cell invasion and lead to the rapid development of antimetastatic therapies, improving conventional cancer therapies. In the relentless search for migrastatics, the marine environment represents an important source of natural compounds due to its enormous biodiversity. Thus, this review is a selection of scientific research that has pointed out in a broad spectrum of in vitro and in vivo models the anti-cancer power of marine-derived products against cancer cell migration and invasion over the past five years. Overall, this review might provide a useful up-to-date guide about marine-derived compounds with potential interest for pharmaceutical and scientific research on antimetastatic drug endpoints.
Collapse
Affiliation(s)
- Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.B.); (D.D.)
| | - Emanuela Barletta
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.B.); (D.D.)
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.B.); (D.D.)
- Interuniversity Center of Marine Biology and Applied Ecology “G. Bacci” (CIBM), Viale N. Sauro 4, 57128 Livorno, Italy
| |
Collapse
|
4492
|
Quan J, Li N, Tan Y, Liu H, Liao W, Cao Y, Luo X. PGC1α-mediated fatty acid oxidation promotes TGFβ1-induced epithelial-mesenchymal transition and metastasis of nasopharyngeal carcinoma. Life Sci 2022; 300:120558. [PMID: 35452637 DOI: 10.1016/j.lfs.2022.120558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 01/14/2023]
Abstract
AIM Cancer cells frequently undergo metabolic reprogramming, which contributes to tumorigenicity and malignancy. Unlike primary cancers, during the process of invasion and distal dissemination, cancer cells are deficient in ATP due to damaged glucose transport. Cells need to rewire metabolic programs to overcome nutrient and energy crises, maintaining survival and forming metastasis. However, the underlying mechanism has not been well understood. We elucidated the metabolic alteration in TGFβ1-induced epithelial-mesenchymal transition (EMT) and metastasis of nasopharyngeal carcinoma (NPC). MAIN METHODS Fluorescent Bodipy fatty acid probe, UPLC-MS/MS analysis, β-oxidation assay, cellular ATP and NADPH/NADP measurement, and Oil Red-O staining were performed to evaluate the activation of FAO pathways in the TGFβ1-induced EMT of NPC cells. Three-dimensional (3D) invasion assay and metastatic animal model were applied to assess the invasive and metastatic capacity of NPC cells. KEY FINDINGS Our current findings reveal that PGC1α-mediated FAO promotes TGFβ1-induced EMT and metastasis of NPC cells. Mechanically, TGFβ1 up-regulates AMPKα1 to activate PGC1α, which transcriptionally boosts FAO-associated genes. The metabolic rewiring mediated by PGC1α facilitates EMT, invasion, and metastasis of NPC. SIGNIFICANCE The present study aims to establish the mechanistic connection between energy metabolic reprogramming and the aggressive phenotype of NPC. These actions further provide new opportunities for developing of novel therapeutics for NPC by targeting PGC1α/ FAO signaling.
Collapse
Affiliation(s)
- Jing Quan
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Namei Li
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Yue Tan
- Hengyang Medical College, University of South China, Hengyang 421001, Hunan, PR China
| | - Huiwei Liu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Weihua Liao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China; Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China; Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China; Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China.
| |
Collapse
|
4493
|
Deutsch RJ, D’Agostino VW, Sunassee ED, Kwan M, Madonna MC, Palmer G, Crouch BT, Ramanujam N. A Spectroscopic Technique to Simultaneously Characterize Fatty Acid Uptake, Mitochondrial Activity, Vascularity, and Oxygen Saturation for Longitudinal Studies In Vivo. Metabolites 2022; 12:metabo12050369. [PMID: 35629873 PMCID: PMC9143017 DOI: 10.3390/metabo12050369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Aggressive breast cancer has been shown to shift its metabolism towards increased lipid catabolism as the primary carbon source for oxidative phosphorylation. In this study, we present a technique to longitudinally monitor lipid metabolism and oxidative phosphorylation in pre-clinical tumor models to investigate the metabolic changes with mammary tissue development and characterize metabolic differences between primary murine breast cancer and normal mammary tissue. We used optical spectroscopy to measure the signal of two simultaneously injected exogenous fluorescent metabolic reporters: TMRE (oxidative phosphorylation surrogate) and Bodipy FL C16 (lipid catabolism surrogate). We leverage an inverse Monte Carlo algorithm to correct for aberrations resulting from tissue optical properties and to extract vascular endpoints relevant to oxidative metabolism, specifically oxygen saturation (SO2) and hemoglobin concentration ([Hb]). We extensively validated our optical method to demonstrate that our two fluorescent metabolic endpoints can be measured without chemical or optical crosstalk and that dual measurements of both fluorophores in vivo faithfully recapitulate the measurements of each fluorophore independently. We then applied our method to track the metabolism of growing 4T1 and 67NR breast tumors and aging mammary tissue, all highly metabolic tissue types. Our results show the changes in metabolism as a function of mammary age and tumor growth, and these changes can be best distinguished through the combination of endpoints measured with our system. Clustering analysis incorporating both Bodipy FL C16 and TMRE endpoints combined with either SO2 or [Hb] proved to be the most effective in minimizing intra-group variance and maximizing inter-group differences. Our platform can be extended to applications in which long-term metabolic flexibility is important to study, for example in tumor regression, recurrence following dormancy, and responses to cancer treatment.
Collapse
Affiliation(s)
- Riley J. Deutsch
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; (R.J.D.); (E.D.S.); (M.C.M.); (B.T.C.); (N.R.)
| | - Victoria W. D’Agostino
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; (R.J.D.); (E.D.S.); (M.C.M.); (B.T.C.); (N.R.)
- Correspondence:
| | - Enakshi D. Sunassee
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; (R.J.D.); (E.D.S.); (M.C.M.); (B.T.C.); (N.R.)
| | - Michelle Kwan
- Department of Biology, Duke University, Durham, NC 27708, USA;
| | - Megan C. Madonna
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; (R.J.D.); (E.D.S.); (M.C.M.); (B.T.C.); (N.R.)
| | - Gregory Palmer
- Department of Radiation Oncology, Duke University, Durham, NC 27708, USA;
| | - Brian T. Crouch
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; (R.J.D.); (E.D.S.); (M.C.M.); (B.T.C.); (N.R.)
| | - Nimmi Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; (R.J.D.); (E.D.S.); (M.C.M.); (B.T.C.); (N.R.)
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27708, USA
| |
Collapse
|
4494
|
Kramer CJH, Vreeswijk MPG, Thijssen B, Bosse T, Wesseling J. Beyond the snapshot: optimizing prognostication and prediction by moving from fixed to functional multidimensional cancer pathology. J Pathol 2022; 257:403-412. [PMID: 35438188 PMCID: PMC9324156 DOI: 10.1002/path.5915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/10/2022]
Abstract
The role of pathology in patient management has evolved over time from the retrospective review of cells, tissue, and disease (‘what happened’) to a prospective outlook (‘what will happen’). Examination of a static, two‐dimensional hematoxylin and eosin (H&E)‐stained tissue slide has traditionally been the pathologist's primary task, but novel ancillary techniques enabled by technological breakthroughs have supported pathologists in their increasing ability to predict disease status and behaviour. Nevertheless, the informational limits of 2D, fixed tissue are now being reached and technological innovation is urgently needed to ensure that our understanding of disease entities continues to support improved individualized treatment options. Here we review pioneering work currently underway in the field of cancer pathology that has the potential to capture information beyond the current basic snapshot. A selection of exciting new technologies is discussed that promise to facilitate integration of the functional and multidimensional (space and time) information needed to optimize the prognostic and predictive value of cancer pathology. Learning how to analyse, interpret, and apply the wealth of data acquired by these new approaches will challenge the knowledge and skills of the pathology community. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- C J H Kramer
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - M P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - B Thijssen
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - T Bosse
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - J Wesseling
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Pathology, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.,Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
4495
|
López-Cortés A, Guerrero S, Ortiz-Prado E, Yumiceba V, Vera-Guapi A, León Cáceres Á, Simbaña-Rivera K, Gómez-Jaramillo AM, Echeverría-Garcés G, García-Cárdenas JM, Guevara-Ramírez P, Cabrera-Andrade A, Puig San Andrés L, Cevallos-Robalino D, Bautista J, Armendáriz-Castillo I, Pérez-Villa A, Abad-Sojos A, Ramos-Medina MJ, León-Sosa A, Abarca E, Pérez-Meza ÁA, Nieto-Jaramillo K, Jácome AV, Morillo A, Arias-Erazo F, Fuenmayor-González L, Quiñones LA, Kyriakidis NC. Pulmonary Inflammatory Response in Lethal COVID-19 Reveals Potential Therapeutic Targets and Drugs in Phases III/IV Clinical Trials. Front Pharmacol 2022; 13:833174. [PMID: 35422702 PMCID: PMC9002106 DOI: 10.3389/fphar.2022.833174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/07/2022] [Indexed: 12/26/2022] Open
Abstract
Background: It is imperative to identify drugs that allow treating symptoms of severe COVID-19. Respiratory failure is the main cause of death in severe COVID-19 patients, and the host inflammatory response at the lungs remains poorly understood. Methods: Therefore, we retrieved data from post-mortem lungs from COVID-19 patients and performed in-depth in silico analyses of single-nucleus RNA sequencing data, inflammatory protein interactome network, and shortest pathways to physiological phenotypes to reveal potential therapeutic targets and drugs in advanced-stage COVID-19 clinical trials. Results: Herein, we analyzed transcriptomics data of 719 inflammatory response genes across 19 cell types (116,313 nuclei) from lung autopsies. The functional enrichment analysis of the 233 significantly expressed genes showed that the most relevant biological annotations were inflammatory response, innate immune response, cytokine production, interferon production, macrophage activation, blood coagulation, NLRP3 inflammasome complex, and the TLR, JAK-STAT, NF-κB, TNF, oncostatin M signaling pathways. Subsequently, we identified 34 essential inflammatory proteins with both high-confidence protein interactions and shortest pathways to inflammation, cell death, glycolysis, and angiogenesis. Conclusion: We propose three small molecules (baricitinib, eritoran, and montelukast) that can be considered for treating severe COVID-19 symptoms after being thoroughly evaluated in COVID-19 clinical trials.
Collapse
Affiliation(s)
- Andrés López-Cortés
- Programa de Investigación en Salud Global, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito, Ecuador.,Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - Santiago Guerrero
- Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Esteban Ortiz-Prado
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Verónica Yumiceba
- Institut für Humangenetik Lübeck, Universität zu Lübeck, Lübeck, Germany
| | - Antonella Vera-Guapi
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Ángela León Cáceres
- Heidelberg Institute of Global Health, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Katherine Simbaña-Rivera
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador.,Latin American Network for Cancer Research (LAN-CANCER), Lima, Peru
| | - Ana María Gómez-Jaramillo
- Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Gabriela Echeverría-Garcés
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - Jennyfer M García-Cárdenas
- Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Patricia Guevara-Ramírez
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | | | | | | | | | - Isaac Armendáriz-Castillo
- Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain.,Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | - Andy Pérez-Villa
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | | | | | | | | | - Álvaro A Pérez-Meza
- Biotechnology Engineering Career, Faculty of Life Sciences, Universidad Regional Amazónica Ikiam, Tena, Ecuador
| | | | - Andrea V Jácome
- Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | | | | | - Luis Abel Quiñones
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain.,Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Nikolaos C Kyriakidis
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
4496
|
Tse KY, Liu J, Lee SJ, Tan DSP. Editorial: Harnessing DNA Damage Response in Gynecologic Malignancies. Front Oncol 2022; 12:882925. [PMID: 35419284 PMCID: PMC8996443 DOI: 10.3389/fonc.2022.882925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ka Yu Tse
- Division of Gynaecological Oncology, Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jihong Liu
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Sung-Jong Lee
- Department of Obstetrics & Gynecology. Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - David S P Tan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Hospital (NUH) Singapore, Singapore, Singapore
| |
Collapse
|
4497
|
Abstract
Much of the current research into immune escape from cancer is focused on molecular and cellular biology, an area of biophysics that is easily overlooked. A large number of immune drugs entering the clinic are not effective for all patients. Apart from the molecular heterogeneity of tumors, the biggest reason for this may be that knowledge of biophysics has not been considered, and therefore an exploration of biophysics may help to address this challenge. To help researchers better investigate the relationship between tumor immune escape and biophysics, this paper provides a brief overview on recent advances and challenges of the biophysical factors and strategies by which tumors acquire immune escape and a comprehensive analysis of the relevant forces acting on tumor cells during immune escape. These include tumor and stromal stiffness, fluid interstitial pressure, shear stress, and viscoelasticity. In addition, advances in biophysics cannot be made without the development of detection tools, and this paper also provides a comprehensive summary of the important detection tools available at this stage in the field of biophysics.
Collapse
Affiliation(s)
- Maonan Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
4498
|
Wang X, Hua J, Li J, Zhang J, Dzakah EE, Cao G, Lin W. Mechanisms of non-coding RNA-modulated alternative splicing in cancer. RNA Biol 2022; 19:541-547. [PMID: 35427215 PMCID: PMC9037454 DOI: 10.1080/15476286.2022.2062846] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alternative splicing (AS) is a common and pivotal process for eukaryotic gene expression regulation, which enables a precursor RNA to produce multiple transcript variants with diverse cellular functions. Aberrant AS represents a hallmark of cancer, engaged in all stages of tumorigenesis from initiation to metastasis. Accumulating pieces of evidence have revealed the involvement of non-coding RNAs (ncRNAs) in regulating AS in human cancers. In this review, we overview the underlying mechanisms of non-coding RNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) modulated AS at diverse levels in human cancers, and summarize their regulatory functions in tumorigenesis.
Collapse
Affiliation(s)
- Xiaolin Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science (Hips), Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- University of Science and Technology of China, Hefei, Anhui, P. R. China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, HIPS, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui, P. R. China
| | - Jinghan Hua
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science (Hips), Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Jingxin Li
- University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Jiahui Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science (Hips), Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Emmanuel Enoch Dzakah
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Guozhen Cao
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science (Hips), Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Wenchu Lin
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science (Hips), Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, HIPS, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui, P. R. China
| |
Collapse
|
4499
|
Fayzullina D, Tsibulnikov S, Stempen M, Schroeder BA, Kumar N, Kharwar RK, Acharya A, Timashev P, Ulasov I. Novel Targeted Therapeutic Strategies for Ewing Sarcoma. Cancers (Basel) 2022; 14:cancers14081988. [PMID: 35454895 PMCID: PMC9032664 DOI: 10.3390/cancers14081988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Ewing sarcoma is an uncommon cancer that arises in mesenchymal tissues and represents the second most widespread malignant bone neoplasm after osteosarcoma in children. Therapy has increased the 5-year survival rate in the last 40 years, although the recurrence rate has remained high. There is an immediate and unmet need for the development of novel Ewing sarcoma therapies. We offer new prospective targets for the therapy of Ewing sarcoma. The EWSR1/FLI1 fusion protein, which is identified in 85–90% of Ewing sarcoma tumors, and its direct targets are given special focus in this study. Experimantal therapy that targets multiple signaling pathways activated during ES progression, alone or in combination with existing regimens, may become the new standard of care for Ewing sarcoma patients, improving patient survival. Abstract Ewing sarcoma (ES) is an uncommon cancer that arises in mesenchymal tissues and represents the second most widespread malignant bone neoplasm after osteosarcoma in children. Amplifications in genomic, proteomic, and metabolism are characteristics of sarcoma, and targeting altered cancer cell molecular processes has been proposed as the latest promising strategy to fight cancer. Recent technological advancements have elucidated some of the underlying oncogenic characteristics of Ewing sarcoma. Offering new insights into the physiological basis for this phenomenon, our current review examines the dynamics of ES signaling as it related to both ES and the microenvironment by integrating genomic and proteomic analyses. An extensive survey of the literature was performed to compile the findings. We have also highlighted recent and ongoing studies integrating metabolomics and genomics aimed at better understanding the complex interactions as to how ES adapts to changing biochemical changes within the tumor microenvironment.
Collapse
Affiliation(s)
- Daria Fayzullina
- Group of Experimental Biotherapy and Diagnostic, Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.F.); (S.T.); (M.S.); (P.T.)
| | - Sergey Tsibulnikov
- Group of Experimental Biotherapy and Diagnostic, Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.F.); (S.T.); (M.S.); (P.T.)
| | - Mikhail Stempen
- Group of Experimental Biotherapy and Diagnostic, Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.F.); (S.T.); (M.S.); (P.T.)
| | - Brett A. Schroeder
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA;
| | - Naveen Kumar
- Tumor Immunology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (N.K.); (A.A.)
| | - Rajesh Kumar Kharwar
- Endocrine Research Lab, Department of Zoology, Kutir Post Graduate College, Chakkey, Jaunpur 222146, India;
| | - Arbind Acharya
- Tumor Immunology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (N.K.); (A.A.)
| | - Peter Timashev
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.F.); (S.T.); (M.S.); (P.T.)
- Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.F.); (S.T.); (M.S.); (P.T.)
- Correspondence:
| |
Collapse
|
4500
|
Fu X, Wei S, Wang T, Fan H, Zhang Y, Costa CD, Brandner S, Yang G, Pan Y, He Y, Li N. Research Status of the Orphan G Protein Coupled Receptor 158 and Future Perspectives. Cells 2022; 11:cells11081334. [PMID: 35456013 PMCID: PMC9027133 DOI: 10.3390/cells11081334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) remain one of the most successful targets for therapeutic drugs approved by the US Food and Drug Administration (FDA). Many novel orphan GPCRs have been identified by human genome sequencing and considered as putative targets for refractory diseases. Of note, a series of studies have been carried out involving GPCR 158 (or GPR158) since its identification in 2005, predominantly focusing on the characterization of its roles in the progression of cancer and mental illness. However, advances towards an in-depth understanding of the biological mechanism(s) involved for clinical application of GPR158 are lacking. In this paper, we clarify the origin of the GPR158 evolution in different species and summarize the relationship between GPR158 and different diseases towards potential drug target identification, through an analysis of the sequences and substructures of GPR158. Further, we discuss how recent studies set about unraveling the fundamental features and principles, followed by future perspectives and thoughts, which may lead to prospective therapies involving GPR158.
Collapse
Affiliation(s)
- Xianan Fu
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
| | - Shoupeng Wei
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
| | - Tao Wang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
| | - Hengxin Fan
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
| | - Ying Zhang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
| | - Clive Da Costa
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK;
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK;
| | - Guang Yang
- Department of Burn and Plastic Surgery, Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518039, China;
| | - Yihang Pan
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
| | - Yulong He
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
- Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China
- Correspondence: (Y.H.); (N.L.)
| | - Ningning Li
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
- China-UK Institute for Frontier Science, Shenzhen 518107, China
- Correspondence: (Y.H.); (N.L.)
| |
Collapse
|