1
|
Begni V, Marchesin A, Riva MA. IUPHAR review - Novel therapeutic targets for schizophrenia treatment: A translational perspective. Pharmacol Res 2025; 214:107690. [PMID: 40073951 DOI: 10.1016/j.phrs.2025.107690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Schizophrenia is a severe and debilitating psychiatric disorder that profoundly impacts cognitive, emotional, and social functioning. Despite its devastating personal and societal toll, current treatments often provide only partial relief, underscoring the urgent need for innovative therapeutic strategies. This review explores emerging approaches that target the complex neurobiological underpinnings of schizophrenia, moving beyond traditional dopamine-centric models. Among these, some novel drugs still employ multimodal mechanisms, simultaneously targeting dopaminergic and serotonergic systems to enhance efficacy and tolerability. Given the well-documented excitatory/inhibitory imbalance in schizophrenia, significant efforts have been directed toward addressing NMDA receptor hypofunctionality. However, strategies targeting this pathway have yet to demonstrate consistent clinical efficacy. In contrast, therapies targeting the cholinergic system have shown greater promise. For instance, the xanomeline-trospium combination, which modulates muscarinic receptors, has recently gained approval, and other molecules with similar mechanisms are currently under development. Beyond these approaches, novel strategies are being explored to target innovative pathways, including neuroplasticity, neuroinflammation, and mitochondrial dysfunction. These efforts are often designed as part of a combinatorial strategy to enhance the efficacy of currently available antipsychotic drugs. Despite significant progress, challenges remain in translating experimental discoveries into effective clinical applications. Future research should prioritize biomarker-driven approaches and precision medicine to optimize individualized treatment outcomes. By integrating these emerging therapeutic targets, schizophrenia treatment may evolve toward a more comprehensive and personalized approach, addressing the disorder's full spectrum of symptoms and improving patient quality of life.
Collapse
Affiliation(s)
- Veronica Begni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, Brescia 25125, Italy
| | - Alessia Marchesin
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| | - Marco Andrea Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, Brescia 25125, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy.
| |
Collapse
|
2
|
Baytunca MB, Shi XF, Nuñez NA, Boxer D, Fitzgerald C, Ongur D, Yurgelun-Todd D, Renshaw P, Kondo D. Diminished Compensatory Energy Production Following Hypoxic Stress in the Prefrontal and Anterior Cingulate Cortex Among Individuals With Schizophrenia. Psychiatry Investig 2025; 22:243-251. [PMID: 40143720 PMCID: PMC11962527 DOI: 10.30773/pi.2024.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/15/2024] [Accepted: 12/03/2024] [Indexed: 03/28/2025] Open
Abstract
OBJECTIVE The purpose of this study was to explore the capacity for energy production under conditions of increased energy demand in schizophrenia (SCZ) subjects compared to healthy controls. METHODS Twelve healthy controls (33.00±6.07 years) and 12 subjects diagnosed with SCZ or schizoaffective disorder (36.00±8.33 years) matched for age and sex, were recruited for this study. Hypoxic stress was induced during MR scans to elevate the energy demand on the subjects' bioenergetic systems. Participants breathed air with a lower oxygen concentration (FiO2=13%), maintaining their SpO2 levels (86%) during the initial phase of the scan. 31Phosphorus MR spectroscopy was employed to examine metabolite levels, including phosphocreatine (PCr), β-adenosine triphosphate (ATP), and inorganic phosphate (Pi), as well as the ratios of PCr/Pi and PCr/β-ATP, in regions such as the prefrontal cortex (PFC), anterior cingulate cortex (ACC), and posterior cortex (POC), as well as across the entire brain, during both hypoxia and hyperoxia scans. RESULTS Subjects with SCZ had significantly lower levels of Pi across the brain and particularly, in the PFC, POC, and ACC during the hypoxia scan. Moreover, levels of PCr/Pi, indicative of mitochondrial energy production, were found to be higher in the same brain regions in the SCZ group. No significant differences were found in hyperoxia scan phase. CONCLUSION These findings suggest a deficit in the bioenergetic systems of individuals with SCZ under conditions of heightened energy demand. Further studies are warranted.
Collapse
Affiliation(s)
- M Burak Baytunca
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Xian-Feng Shi
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Nicolas A Nuñez
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Department of Psychiatry and Psychology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Danielle Boxer
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | | | - Dost Ongur
- Division of Psychotic Disorder, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Deborah Yurgelun-Todd
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- VA Salt Lake City Health Care System, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Perry Renshaw
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Department of Psychiatry, Utah Science Technology and Research Initiative (USTAR), Salt Lake City, UT, USA
| | - Douglas Kondo
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- VA Salt Lake City Health Care System, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Widmaier MS, Kaiser A, Baup S, Wenz D, Pierzchała K, Xiao Y, Huang Z, Jiang Y, Xin L. Fast 3D 31P B 1 + mapping with a weighted stack of spiral trajectory at 7 T. Magn Reson Med 2025; 93:481-489. [PMID: 39365949 PMCID: PMC11604843 DOI: 10.1002/mrm.30321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
PURPOSE Phosphorus MRS (31P MRS) enables noninvasive assessment of energy metabolism, yet its application is hindered by sensitivity limitations. To overcome this, often high magnetic fields are used, leading to challenges such as spatialB 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneity and therefore the need for accurate flip-angle determination in accelerated acquisitions with short TRs. In response to these challenges, we propose a novel short TR and look-up table-based double-angle method for fast 3D 31PB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping (fDAM). METHODS Our method incorporates 3D weighted stack-of-spiral gradient-echo acquisitions and a frequency-selective pulse to enable efficientB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping based on the phosphocreatine signal at 7 T. Protocols were optimized using simulations and validated through phantom experiments. The method was validated in the human brain using a 31P 1Ch-trasmit/32Ch-receive coil and skeletal muscle using a birdcage 1H/31P volume coil. RESULTS The results of fDAM were compared with the classical DAM. A good correlation (r = 0.95) was obtained between the twoB 1 + $$ {\mathrm{B}}_1^{+} $$ maps. A 3D 31PB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping in the human calf muscle was achieved in about 10:50 min using a birdcage volume coil, with a 20% extended coverage (number of voxels with SNR > 3) relative to that of the classical DAM (24 min). fDAM also enabled the first full-brain coverage 31P 3DB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping in approximately 10:15 min using a 1Ch-transmit/32Ch-receive coil. CONCLUSION fDAM is an efficient method for 31P 3DB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping, showing promise for future applications in rapid 31P MRSI.
Collapse
Affiliation(s)
- Mark Stephan Widmaier
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
- Laboratory of Functional and Metabolic ImagingEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
| | - Antonia Kaiser
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
| | - Salomé Baup
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
| | - Daniel Wenz
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
| | - Katarzyna Pierzchała
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
| | - Ying Xiao
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
- Laboratory of Functional and Metabolic ImagingEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
| | - Zhiwei Huang
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
| | - Yun Jiang
- Department of RadiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Lijing Xin
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
- Institute of PhysicsEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
4
|
Chouinard VA, Du F, Chen X, Tusuzian E, Ren B, Anderson J, Cuklanz K, Feizi W, Zhou S, Weerasekera A, Cohen BM, Öngür D, Lewandowski KE. Cognitive Impairment in Psychotic Disorders Is Associated with Brain Reductive Stress and Impaired Energy Metabolism as Measured by 31P Magnetic Resonance Spectroscopy. Schizophr Bull 2025:sbaf003. [PMID: 39869459 DOI: 10.1093/schbul/sbaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
BACKGROUND AND HYPOTHESIS Convergent evidence shows the presence of brain metabolic abnormalities in psychotic disorders. This study examined brain reductive stress and energy metabolism in people with psychotic disorders with impaired or average range cognition. We hypothesized that global cognitive impairment would be associated with greater brain metabolic dysregulation. STUDY DESIGN Participants with affective and non-affective psychosis (n = 62) were administered the MATRICS Consensus Cognitive Battery (MCCB) and underwent a 31P-magnetic resonance spectroscopy scan at 4T. We used a cluster-analysis approach to identify 2 clusters of participants with and without cognitive dysfunction. We compared clusters on brain redox balance or reductive stress, measured by the ratio of nicotinamide adenine dinucleotide (NAD+) and its reduced form NADH, in addition to creatine kinase (CK) enzymatic activity and pH. STUDY RESULTS The mean (SD) age of participants was 25.1 (6.3) years. The mean NAD+/NADH ratio differed between groups, with lower NAD+/NADH ratio, suggesting more reductive stress, in the impaired cognitive cluster (t = -2.60, P = .01). There was also a significant reduction in CK activity in the impaired cognitive cluster (t = -2.19, P = .03). Intracellular pH did not differ between the 2 cluster groups (t = 1.31, P = .19). The clusters did not significantly differ on severity of mood and psychotic symptomatology or other measures of illness severity. CONCLUSIONS Our results demonstrate that psychotic disorders with greater cognitive impairment have greater brain metabolic dysregulation, with more reductive stress and decrease in energy metabolic rate markers. This provides new evidence for the potential of emerging metabolic therapies to treat cognitive deficits in psychotic disorders.
Collapse
Affiliation(s)
- Virginie-Anne Chouinard
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Xi Chen
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Emma Tusuzian
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
| | - Boyu Ren
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Department of Biostatistics, McLean Hospital, Belmont, MA, United States
| | - Jacey Anderson
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
| | - Kyle Cuklanz
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
| | - Wirya Feizi
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Shuqin Zhou
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Akila Weerasekera
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Bruce M Cohen
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Kathryn E Lewandowski
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
van der Meer D, Kopal J, Shadrin AA, Fuhrer J, Rokicki J, Stinson SE, Djurovic S, Dale AM, Andreassen OA. Atlas of plasma metabolic markers linked to human brain morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.12.632645. [PMID: 39868214 PMCID: PMC11761619 DOI: 10.1101/2025.01.12.632645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Background Metabolic processes form the basis of the development, functioning and maintenance of the brain. Despite accumulating evidence of the vital role of metabolism in brain health, no study to date has comprehensively investigated the link between circulating markers of metabolic activity and in vivo brain morphology in the general population. Methods We performed uni- and multivariate regression on metabolomics and MRI data from 24,940 UK Biobank participants, to estimate the individual and combined associations of 249 circulating metabolic markers with 91 measures of global and regional cortical thickness, surface area and subcortical volume. We investigated similarity of the identified spatial patterns with brain maps of neurotransmitters, and used Mendelian randomization to uncover causal relationships between metabolites and the brain. Results Intracranial volume and total surface area were highly significantly associated with circulating lipoproteins and glycoprotein acetyls, with correlations up to .15. There were strong regional associations of individual markers with mixed effect directions, with distinct patterns involving frontal and temporal cortical thickness, brainstem and ventricular volume. Mendelian randomization provided evidence of bidirectional causal effects, with the majority of markers affecting frontal and temporal regions. Discussion The results indicate strong bidirectional causal relationships between circulating metabolic markers and distinct patterns of global and regional brain morphology. The generated atlas of associations provides a better understanding of the role of metabolic pathways in structural brain development and maintenance, in both health and disease.
Collapse
Affiliation(s)
- Dennis van der Meer
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jakub Kopal
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexey A. Shadrin
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Julian Fuhrer
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jaroslav Rokicki
- Centre of Research and Education in Forensic Psychiatry (SIFER), Oslo University Hospital, Oslo, Norway
| | - Sara E. Stinson
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Anders M. Dale
- Center for Multimodal Imaging and Genetics, University of California at San Diego, La Jolla, CA 92037, USA
| | - Ole A. Andreassen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Widmaier M, Kaiser A, Pandurevic P, Lim SI, Döring A, Huang Z, Wenz D, Xiao Y, Jiang Y, Xin L. 3D Creatine Kinase Imaging (CKI) for In Vivo Whole-Brain Mapping of Creatine Kinase Reaction Rates with 31P-Magnetization Transfer MR Fingerprinting. RESEARCH SQUARE 2024:rs.3.rs-5271263. [PMID: 39483893 PMCID: PMC11527232 DOI: 10.21203/rs.3.rs-5271263/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The creatine kinase (CK) is a key enzyme involved in brain bioenergetics, playing a key role in brain function and the pathogenesis of neurological and psychiatric diseases, but imaging its activity noninvasively in the human brain in vivo remains a significant challenge. This study aims to advance the magnetization transfer (MT)- 31P magnetic resonance fingerprinting (MRF) for 3D Creatine Kinase Imaging (CKI). The method was implemented and validated on a clinical 7 Tesla MRI scanner. It enables whole-brain mapping of CK reaction rates for the first time, showing robust reproducibility for 25-minute scan sessions. CKI acquisition also provided simultaneous mapping of adenosine triphosphate and phosphocreatine concentration ratios, phosphocreatine longitudinal relaxation time, andB 0 maps. Furthermore, a functional CKI (fCKI) study demonstrated the first CK activation map in response to visual stimulation, revealing a mean 15% increase in CK rates in the visual cortex. The novel imaging modalities, CKI and fCKI, have the potential to offer new insights into brain bioenergetics both at rest and during activity.
Collapse
Affiliation(s)
- Mark Widmaier
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne,Switzerland
- Laboratory of functional and metabolic imaging, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne,Switzerland
| | - Antonia Kaiser
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne,Switzerland
| | - Pontus Pandurevic
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne,Switzerland
| | - Song-I Lim
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne,Switzerland
| | - Andre Döring
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne,Switzerland
| | - Zhiwei Huang
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne,Switzerland
| | - Daniel Wenz
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne,Switzerland
| | - Ying Xiao
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne,Switzerland
- Laboratory of functional and metabolic imaging, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne,Switzerland
| | - Yun Jiang
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lijing Xin
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne,Switzerland
- Institute of Physics, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne,Switzerland
| |
Collapse
|
7
|
Zhang X, Valeri J, Eladawi MA, Gisabella B, Garrett MR, Vallender EJ, McCullumsmith R, Pantazopoulos H, O'Donovan SM. Transcriptomic Analysis of the Amygdala in Subjects with Schizophrenia, Bipolar Disorder and Major Depressive Disorder Reveals Differentially Altered Metabolic Pathways. Schizophr Bull 2024:sbae193. [PMID: 39526318 DOI: 10.1093/schbul/sbae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND HYPOTHESIS The amygdala, crucial for mood, anxiety, fear, and reward regulation, shows neuroanatomical and molecular divergence in psychiatric disorders like schizophrenia, bipolar disorder and major depression. This region is also emerging as an important regulator of metabolic and immune pathways. The goal of this study is to address the paucity of molecular studies in the human amygdala. We hypothesize that diagnosis-specific gene expression alterations contribute to the unique pathophysiological profiles of these disorders. STUDY DESIGN We used a cohort of subjects diagnosed with SCZ, BPD or MDD, and nonpsychiatrically ill control subjects (n = 15/group), together with our bioinformatic 3-pod analysis consisting of full transcriptome pathway analysis, targeted pathway analysis, leading-edge gene analysis and iLINCS perturbagen analysis. STUDY RESULTS We identified altered expression of metabolic pathways in each disorder. Subjects with SCZ displayed downregulation of mitochondrial respiration and nucleotide metabolism pathways. In comparison, we observed upregulation of mitochondrial respiration pathways in subjects with MDD, while subjects with BPD displayed enrichment of pathways involved in carbohydrate metabolism. Several pathways associated with brain metabolism including immune system processes and calcium ion transport were also differentially altered between diagnosis groups. CONCLUSION Our findings suggest metabolic pathways, including downregulation of energy metabolism pathways in SCZ and upregulation of energy metabolism pathways in MDD, are uniquely altered in the amygdala in these disorders, which may impact approaches for therapeutic strategies.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 70112, United States
| | - Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Mahmoud A Eladawi
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, United States
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Michael R Garrett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Eric J Vallender
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Robert McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, United States
- Promedica Neuroscience Institute, Toledo, OH 43606, United States
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Sinead M O'Donovan
- Department of Biological Sciences, University of Limerick, Limerick V94T9PX, Ireland
| |
Collapse
|
8
|
Ni P, Ma Y, Chung S. Mitochondrial dysfunction in psychiatric disorders. Schizophr Res 2024; 273:62-77. [PMID: 36175250 DOI: 10.1016/j.schres.2022.08.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
Psychiatric disorders are a heterogeneous group of mental disorders with abnormal mental or behavioral patterns, which severely distress or disable affected individuals and can have a grave socioeconomic burden. Growing evidence indicates that mitochondrial function plays an important role in developing psychiatric disorders. This review discusses the neuropsychiatric consequences of mitochondrial abnormalities in both animal models and patients. We also discuss recent studies associated with compromised mitochondrial function in various psychiatric disorders, such as schizophrenia (SCZ), major depressive disorder (MD), and bipolar disorders (BD). These studies employ various approaches including postmortem studies, imaging studies, genetic studies, and induced pluripotent stem cells (iPSCs) studies. We also summarize the evidence from animal models and clinical trials to support mitochondrial function as a potential therapeutic target to treat various psychiatric disorders. This review will contribute to furthering our understanding of the metabolic etiology of various psychiatric disorders, and help guide the development of optimal therapies.
Collapse
Affiliation(s)
- Peiyan Ni
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
| | - Yao Ma
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Sangmi Chung
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
9
|
Sarnyai Z, Ben-Shachar D. Schizophrenia, a disease of impaired dynamic metabolic flexibility: A new mechanistic framework. Psychiatry Res 2024; 342:116220. [PMID: 39369460 DOI: 10.1016/j.psychres.2024.116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Schizophrenia is a chronic, neurodevelopmental disorder with unknown aetiology and pathophysiology that emphasises the role of neurotransmitter imbalance and abnormalities in synaptic plasticity. The currently used pharmacological approach, the antipsychotic drugs, which have limited efficacy and an array of side-effects, have been developed based on the neurotransmitter hypothesis. Recent research has uncovered systemic and brain abnormalities in glucose and energy metabolism, focusing on altered glycolysis and mitochondrial oxidative phosphorylation. These findings call for a re-conceptualisation of schizophrenia pathophysiology as a progressing bioenergetics failure. In this review, we provide an overview of the fundamentals of brain bioenergetics and the changes identified in schizophrenia. We then propose a new explanatory framework positing that schizophrenia is a disease of impaired dynamic metabolic flexibility, which also reconciles findings of abnormal glucose and energy metabolism in the periphery and in the brain along the course of the disease. This evidence-based framework and testable hypothesis has the potential to transform the way we conceptualise this debilitating condition and to develop novel treatment approaches.
Collapse
Affiliation(s)
- Zoltán Sarnyai
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Department of Psychiatry, Rambam Health Campus, Haifa, Israel; Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Department of Psychiatry, Rambam Health Campus, Haifa, Israel.
| |
Collapse
|
10
|
Zhao Y, Bhosale AA, Zhang X. Multimodal surface coils for low field MR imaging. Magn Reson Imaging 2024; 112:107-115. [PMID: 38971265 DOI: 10.1016/j.mri.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Low field MRI is safer and more cost effective than the high field MRI. One of the inherent problems of low field MRI is its low signal-to-noise ratio or sensitivity. In this work, we introduce a multimodal surface coil technique for signal excitation and reception to improve the RF magnetic field (B1) efficiency and potentially improve MR sensitivity. The proposed multimodal surface coil consists of multiple identical resonators that are electromagnetically coupled to form a multimodal resonator. The field distribution of its lowest frequency mode is suitable for MR imaging applications. The prototype multimodal surface coils are built, and the performance is investigated and validated through numerical simulation, standard RF measurements and tests, and comparison with the conventional surface coil at low fields. Our results show that the B1 efficiency of the multimodal surface coil outperforms that of the conventional surface coil which is known to offer the highest B1 efficiency among all coil categories, i.e., volume coil, half-volume coil and surface coil. In addition, in low-field MRI, the required low-frequency coils often use large value capacitance to achieve the low resonant frequency which makes frequency tuning difficult. The proposed multimodal surface coil can be conveniently tuned to the required low frequency for low-field MRI with significantly reduced capacitance value, demonstrating excellent low-frequency operation capability over the conventional surface coil.
Collapse
Affiliation(s)
- Yunkun Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Aditya A Bhosale
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States; Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
11
|
Zhao Y, Bhosale AA, Zhang X. Coupled stack-up volume RF coils for low-field open MR imaging. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.30.24312851. [PMID: 39252906 PMCID: PMC11383509 DOI: 10.1101/2024.08.30.24312851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Background Low-field open magnetic resonance imaging (MRI) systems, typically operating at magnetic field strengths below 1 Tesla, has greatly expanded the accessibility of MRI technology to meet a wide range of patient needs. However, the inherent challenges of low-field MRI, such as limited signal-to-noise ratios and limited availability of dedicated radiofrequency (RF) coils, have prompted the need for innovative coil designs that can improve imaging quality and diagnostic capabilities. Purpose In response to these challenges, we introduce the coupled stack-up volume coil, a novel RF coil design that addresses the shortcomings of conventional birdcage in the context of low-field open MRI. Methods The proposed coupled stack-up volume coil design utilizes a unique architecture that optimizes both transmit/receive efficiency and RF field homogeneity and offers the advantage of a simple design and construction, making it a practical and feasible solution for low-field MRI applications. This paper presents a comprehensive exploration of the theoretical framework, design considerations, and experimental validation of this innovative coil design. Results We demonstrate the superior performance of the coupled stack-up volume coil in achieving 47.7% higher transmit/receive efficiency and 68% more uniform magnetic field distribution compared to traditional birdcage coils in electromagnetic simulations. Bench tests results show that the B1 field efficiency of coupled stack-up volume coil is 57.3% higher compared with that of conventional birdcage coil. Conclusions The proposed coupled stack-up volume coil outperforms the conventional birdcage coil in terms of B1 efficiency, imaging coverage, and low-frequency operation capability. This design provides a robust and simple solution to low-field MR RF coil design.
Collapse
Affiliation(s)
- Yunkun Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Aditya A Bhosale
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
- Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
12
|
Panizzutti B, Bortolasci CC, Spolding B, Kidnapillai S, Connor T, Martin SD, Truong TTT, Liu ZSJ, Gray L, Kowalski GM, McGee SL, Kim JH, Berk M, Walder K. Effects of antipsychotic drugs on energy metabolism. Eur Arch Psychiatry Clin Neurosci 2024; 274:1125-1135. [PMID: 38072867 DOI: 10.1007/s00406-023-01727-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/12/2023] [Indexed: 07/06/2024]
Abstract
Schizophrenia (SCZ) is a complex neuropsychiatric disorder associated with altered bioenergetic pathways and mitochondrial dysfunction. Antipsychotic medications, both first and second-generation, are commonly prescribed to manage SCZ symptoms, but their direct impact on mitochondrial function remains poorly understood. In this study, we investigated the effects of commonly prescribed antipsychotics on bioenergetic pathways in cultured neurons. We examined the impact of risperidone, aripiprazole, amisulpride, and clozapine on gene expression, mitochondrial bioenergetic profile, and targeted metabolomics after 24-h treatment, using RNA-seq, Seahorse XF24 Flux Analyser, and gas chromatography-mass spectrometry (GC-MS), respectively. Risperidone treatment reduced the expression of genes involved in oxidative phosphorylation, the tricarboxylic acid cycle, and glycolysis pathways, and it showed a tendency to decrease basal mitochondrial respiration. Aripiprazole led to dose-dependent reductions in various mitochondrial function parameters without significantly affecting gene expression. Aripiprazole, amisulpride and clozapine treatment showed an effect on the tricarboxylic acid cycle metabolism, leading to more abundant metabolite levels. Antipsychotic drug effects on mitochondrial function in SCZ are multifaceted. While some drugs have greater effects on gene expression, others appear to exert their effects through enzymatic post-translational or allosteric modification of enzymatic activity. Understanding these effects is crucial for optimising treatment strategies for SCZ. Novel therapeutic interventions targeting energy metabolism by post-transcriptional pathways might be more effective as these can more directly and efficiently regulate energy production.
Collapse
Affiliation(s)
- Bruna Panizzutti
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Chiara C Bortolasci
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Briana Spolding
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Srisaiyini Kidnapillai
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Timothy Connor
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Sheree D Martin
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Trang T T Truong
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Zoe S J Liu
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Laura Gray
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Greg M Kowalski
- Metabolic Research Unit, School of Medicine, Institute for Physical Activity and Nutrition, Waurn Ponds, Geelong, VIC, Australia
| | - Sean L McGee
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Jee Hyun Kim
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Michael Berk
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
- Barwon Health, University Hospital Geelong, Geelong, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- Orygen, The National Centre for Excellence in Youth Mental Health, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Ken Walder
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia.
| |
Collapse
|
13
|
Widmaier M, Kaiser A, Baup S, Wenz D, Pierzchala K, Xiao Y, Huang Z, Jiang Y, Xin L. Fast 3D 31P B 1 + mapping with a weighted stack of spiral trajectory at 7 Tesla. ARXIV 2024:arXiv:2406.18426v1. [PMID: 38979490 PMCID: PMC11230352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Purpose Phosphorus Magnetic Resonance Spectroscopy (31P MRS) enables non-invasive assessment of energy metabolism, yet its application is hindered by sensitivity limitations. To overcome this, often high magnetic fields are used, leading to challenges such as spatialB 1 + inhomogeneity and therefore the need for accurate flip angle determination in accelerated acquisitions with short repetition timesT R ) . In response to these challenges, we propose a novel shortT R and look-up table-based Double-Angle Method for fast 3D 31PB 1 + mapping (fDAM). Methods Our method incorporates 3D weighted stack of spiral gradient echo acquisitions and a frequency-selective pulse to enable efficientB 1 + mapping based on the phosphocreatine signal at 7T. Protocols were optimised using simulations and validated through phantom experiments. The method was validated in phantom experiments and skeletal muscle applications using a birdcage 1H/31P volume coil. Results The results of fDAM were compared to the classical DAM (cDAM). A good correlation (r=0.94) was obtained between the twoB 1 + maps. A 3D 31PB 1 + mapping in the human calf muscle was achieved in about 10 min using a birdcage volume coil, with a 20% extended coverage relative to that of the cDAM (24 min). fDAM also enabled the first full brain coverage 31P 3DB 1 + mapping in approx. 10 min using a 1 Tx/ 32 Rx coil. Conclusion fDAM is an efficient method for 31P 3DB 1 + mapping, showing promise for future applications in rapid 31P MRSI.
Collapse
Affiliation(s)
- Mark Widmaier
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of functional and metabolic imaging, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Antonia Kaiser
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Salome Baup
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Daniel Wenz
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Katarzyna Pierzchala
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ying Xiao
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of functional and metabolic imaging, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Zhiwei Huang
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yun Jiang
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lijing Xin
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Physics, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
14
|
Zhu Z, Cheng Y, Han X, Wang T, Zhang H, Yao Q, Chen F, Gu L, Yang D, Chen L, Zhao Y. 20( S)-Protopanaxadiol Exerts Antidepressive Effects in Chronic Corticosterone-Induced Rodent Animal Models as an Activator of Brain-Type Creatine Kinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10376-10390. [PMID: 38661058 DOI: 10.1021/acs.jafc.4c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
20(S)-Protopanaxadiol (PPD) is one of the bioactive ingredients in ginseng and possesses neuroprotective properties. Brain-type creatine kinase (CK-BB) is an enzyme involved in brain energy homeostasis via the phosphocreatine-creatine kinase system. We previously identified PPD as directly bound to CK-BB and activated its activity in vitro. In this study, we explored the antidepressive effects of PPD that target CK-BB. First, we conducted time course studies on brain CK-BB, behaviors, and hippocampal structural plasticity responses to corticosterone (CORT) administration. Five weeks of CORT injection reduced CK-BB activity and protein levels and induced depression-like behaviors and hippocampal structural plasticity impairment. Next, a CK inhibitor and an adeno-associated virus-targeting CKB were used to diminish CK-BB activity or its expression in the brain. The loss of CK-BB in the brain led to depressive behaviors and morphological damage to spines in the hippocampus. Then, a polyclonal antibody against PPD was used to determine the distribution of PPD in the brain tissues. PPD was detected in the hippocampus and cortex and observed in astrocytes, neurons, and vascular endotheliocytes. Finally, different PPD doses were used in the chronic CORT-induced depression model. Treatment with a high dose of PPD significantly increased the activity and expression of CK-BB after long-term CORT injection. In addition, PPD alleviated the damage to depressive-like behaviors and structural plasticity induced by repeated CORT injection. Overall, our study revealed the critical role of CK-BB in mediating structural plasticity in CORT-induced depression and identified CK-BB as a therapeutic target for PPD, allowing us to treat stress-related mood disorders.
Collapse
Affiliation(s)
- Zhu Zhu
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yao Cheng
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xu Han
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tiantian Wang
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hantao Zhang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Yao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feiyan Chen
- Research and Innovation Center, College of Traditional Chinese Medicine, Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ling Gu
- Research and Innovation Center, College of Traditional Chinese Medicine, Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dongqing Yang
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lin Chen
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yunan Zhao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
15
|
Zhang X, Valeri J, Eladawi MA, Gisabella B, Garrett MR, Vallender EJ, McCullumsmith R, Pantazopoulos H, O’Donovan SM. Differentially Altered Metabolic Pathways in the Amygdala of Subjects with Schizophrenia, Bipolar Disorder and Major Depressive Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.17.24305854. [PMID: 38699334 PMCID: PMC11065019 DOI: 10.1101/2024.04.17.24305854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background and hypothesis A growing number of studies implicate a key role for metabolic processes in psychiatric disorders. Recent studies suggest that ketogenic diet may be therapeutically effective for subgroups of people with schizophrenia (SCZ), bipolar disorder (BPD) and possibly major depressive disorder (MDD). Despite this promise, there is currently limited information regarding brain energy metabolism pathways across these disorders, limiting our understanding of how brain metabolic pathways are altered and who may benefit from ketogenic diets. We conducted gene expression profiling on the amygdala, a key region involved in in the regulation of mood and appetitive behaviors, to test the hypothesis that amygdala metabolic pathways are differentially altered between these disorders. Study Design We used a cohort of subjects diagnosed with SCZ, BPD or MDD, and non-psychiatrically ill control subjects (n=15/group), together with our bioinformatic 3-pod analysis consisting of full transcriptome pathway analysis, targeted pathway analysis, leading-edge gene analysis and iLINCS perturbagen analysis. Study Results We identified differential expression of metabolic pathways in each disorder. Subjects with SCZ displayed downregulation of mitochondrial respiration and nucleotide metabolism pathways. In comparison, we observed upregulation of mitochondrial respiration pathways in subjects with MDD, while subjects with BPD displayed enrichment of pathways involved in carbohydrate metabolism. Several pathways associated with brain metabolism including immune system processes and calcium ion transport were also differentially altered between diagnosis groups. Conclusion Our findings suggest metabolic pathways are differentially altered in the amygdala in these disorders, which may impact approaches for therapeutic strategies.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA
| | - Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | | | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Michael R. Garrett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
| | - Eric J Vallender
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Robert McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH
- Promedica Neuroscience Institute, Toledo, OH
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | | |
Collapse
|
16
|
Zhao Y, Bhosale AA, Zhang X. Multimodal surface coils for low field MR imaging. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.14.24305802. [PMID: 38699318 PMCID: PMC11065021 DOI: 10.1101/2024.04.14.24305802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Low field MRI is safer and more cost effective than the high field MRI. One of the inherent problems of low field MRI is its low signal-to-noise ratio or sensitivity. In this work, we introduce a multimodal surface coil technique for signal excitation and reception to improve the RF magnetic field (B 1 ) efficiency and potentially improve MR sensitivity. The proposed multimodal surface coil consists of multiple identical resonators that are electromagnetically coupled to form a multimodal resonator. The field distribution of its lowest frequency mode is suitable for MR imaging applications. The prototype multimodal surface coils are built, and the performance is investigated and validated through numerical simulation, standard RF measurements and tests, and comparison with the conventional surface coil at low fields. Our results show that the B 1 efficiency of the multimodal surface coil outperforms that of the conventional surface coil which is known to offer the highest B 1 efficiency among all coil categories, i.e., volume coil, half-volume coil and surface coil. In addition, in low-field MRI, the required low-frequency coils often use large value capacitance to achieve the low resonant frequency which makes frequency tuning difficult. The proposed multimodal surface coil can be conveniently tuned to the required low frequency for low-field MRI with significantly reduced capacitance value, demonstrating excellent low-frequency operation capability over the conventional surface coil.
Collapse
|
17
|
Zhao Y, Bhosale AA, Zhang X. Coupled stack-up volume RF coils for low-field MR imaging. ARXIV 2023:arXiv:2311.09430v1. [PMID: 38013888 PMCID: PMC10680881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The advent of low field open magnetic resonance imaging (MRI) systems has greatly expanded the accessibility of MRI technology to meet a wide range of patient needs. However, the inherent challenges of low-field MRI, such as limited signal-to-noise ratios and limited availability of dedicated RF coil, have prompted the need for innovative coil designs that can improve imaging quality and diagnostic capabilities. In response to these challenges, we introduce the coupled stack-up volume coil, a novel RF coil design that addresses the shortcomings of conventional birdcage in the context of low field open MRI. The proposed coupled stack-up volume coil design utilizes a unique architecture that optimizes both transmit/receive efficiency and RF field homogeneity and offers the advantage of a simple design and construction, making it a practical and feasible solution for low field MRI applications. This paper presents a comprehensive exploration of the theoretical framework, design considerations, and experimental validation of this innovative coil design. Through rigorous analysis and empirical testing, we demonstrate the superior performance of the coupled stack-up volume coil in achieving improved transmit/receive efficiency and more uniform magnetic field distribution compared to traditional birdcage coils.
Collapse
Affiliation(s)
- Yunkun Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Aditya A Bhosale
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
- Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
18
|
Widmaier M, Lim SI, Wenz D, Xin L. Fast in vivo assay of creatine kinase activity in the human brain by 31 P magnetic resonance fingerprinting. NMR IN BIOMEDICINE 2023; 36:e4998. [PMID: 37424110 DOI: 10.1002/nbm.4998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
A new and efficient magnetisation transfer 31 P magnetic resonance fingerprinting (MT-31 P-MRF) approach is introduced to measure the creatine kinase metabolic ratek CK between phosphocreatine (PCr) and adenosine triphosphate (ATP) in human brain. The MRF framework is extended to overcome challenges in conventional 31 P measurement methods in the human brain, enabling reduced acquisition time and specific absorption rate (SAR). To address the challenge of creating and matching large multiparametric dictionaries in an MRF scheme, a nested iteration interpolation method (NIIM) is introduced. As the number of parameters to estimate increases, the size of the dictionary grows exponentially. NIIM can reduce the computational load by breaking dictionary matching into subsolutions of linear computational order. MT-31 P-MRF combined with NIIM providesT 1 PCr ,T 1 ATP andk CK estimates in good agreement with those obtained by the exchange kinetics by band inversion transfer (EBIT) method and literature values. Furthermore, the test-retest reproducibility results showed that MT-31 P-MRF achieves a similar or better coefficient of variation (<12%) forT 1 ATP andk CK measurements in 4 min 15 s, than EBIT with 17 min 4 s scan time, enabling a fourfold reduction in scan time. We conclude that MT-31 P-MRF in combination with NIIM is a fast, accurate, and reproducible approach for in vivok CK assays in the human brain, which enables the potential to investigate energy metabolism in a clinical setting.
Collapse
Affiliation(s)
- Mark Widmaier
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Laboratory for Functional and Metabolic Imaging, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
- Animal Imaging and Technology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Song-I Lim
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Laboratory for Functional and Metabolic Imaging, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
- Animal Imaging and Technology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Daniel Wenz
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Lijing Xin
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Stein A, Zhu C, Du F, Öngür D. Magnetic Resonance Spectroscopy Studies of Brain Energy Metabolism in Schizophrenia: Progression from Prodrome to Chronic Psychosis. Curr Psychiatry Rep 2023; 25:659-669. [PMID: 37812338 DOI: 10.1007/s11920-023-01457-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE OF REVIEW Schizophrenia (SZ) is a debilitating mental illness; existing treatments are partially effective and associated with significant side effect burden, largely due to our limited understanding of disease mechanisms and the trajectory of disease progression. Accumulating evidence suggests that metabolic changes associated with glucose metabolism, mitochondrial dysfunction, and redox imbalance play an important role in the pathophysiology of schizophrenia. However, the molecular mechanisms associated with these abnormalities in the brains of schizophrenia patients and the ways in which they change over time remain unclear. This paper aims to review the current literature on molecular mechanisms and in vivo magnetic resonance spectroscopy (MRS) studies of impaired energy metabolism in patients at clinical high risk for psychosis, with first-episode SZ, and with chronic SZ. Our review covers research related to high-energy phosphate metabolism, lactate, intracellular pH, redox ratio, and the antioxidant glutathione. RECENT FINDINGS Both first-episode and chronic SZ patients display a significant reduction in creatine kinase reaction activity and redox (NAD + /NADH) ratio in the prefrontal cortex. Chronic, but not first-episode, SZ patients also show a trend toward increased lactate levels and decreased pH value. These findings suggest a progressive shift from oxidative phosphorylation to glycolysis for energy production over the course of SZ, which is associated with redox imbalance and mitochondrial dysfunction. Accumulating evidence indicates that aberrant brain energy metabolism associated with mitochondrial dysfunction and redox imbalance plays a critical role in SZ and will be a promising target for future treatments.
Collapse
Affiliation(s)
- Abigail Stein
- Psychotic Disorders Division, McLean Hospital, Belmont, 02478, USA
- McLean Imaging Center, McLean Hospital, Belmont, 02478, USA
| | - Chenyanwen Zhu
- Psychotic Disorders Division, McLean Hospital, Belmont, 02478, USA
- McLean Imaging Center, McLean Hospital, Belmont, 02478, USA
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Belmont, 02478, USA.
- McLean Imaging Center, McLean Hospital, Belmont, 02478, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, 02478, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
20
|
Caddye E, Pineau J, Reyniers J, Ronen I, Colasanti A. Lactate: A Theranostic Biomarker for Metabolic Psychiatry? Antioxidants (Basel) 2023; 12:1656. [PMID: 37759960 PMCID: PMC10526106 DOI: 10.3390/antiox12091656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Alterations in neurometabolism and mitochondria are implicated in the pathophysiology of psychiatric conditions such as mood disorders and schizophrenia. Thus, developing objective biomarkers related to brain mitochondrial function is crucial for the development of interventions, such as central nervous system penetrating agents that target brain health. Lactate, a major circulatory fuel source that can be produced and utilized by the brain and body, is presented as a theranostic biomarker for neurometabolic dysfunction in psychiatric conditions. This concept is based on three key properties of lactate that make it an intriguing metabolic intermediate with implications for this field: Firstly, the lactate response to various stimuli, including physiological or psychological stress, represents a quantifiable and dynamic marker that reflects metabolic and mitochondrial health. Second, lactate concentration in the brain is tightly regulated according to the sleep-wake cycle, the dysregulation of which is implicated in both metabolic and mood disorders. Third, lactate universally integrates arousal behaviours, pH, cellular metabolism, redox states, oxidative stress, and inflammation, and can signal and encode this information via intra- and extracellular pathways in the brain. In this review, we expand on the above properties of lactate and discuss the methodological developments and rationale for the use of functional magnetic resonance spectroscopy for in vivo monitoring of brain lactate. We conclude that accurate and dynamic assessment of brain lactate responses might contribute to the development of novel and personalized therapies that improve mitochondrial health in psychiatric disorders and other conditions associated with neurometabolic dysfunction.
Collapse
Affiliation(s)
- Edward Caddye
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| | - Julien Pineau
- Independent Researcher, Florianópolis 88062-300, Brazil
| | - Joshua Reyniers
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- School of Life Sciences, University of Sussex, Falmer BN1 9RR, UK
| | - Itamar Ronen
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| | - Alessandro Colasanti
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| |
Collapse
|
21
|
Skupienski R, Steullet P, Do KQ, Xin L. Developmental changes in cerebral NAD and neuroenergetics of an antioxidant compromised mouse model of schizophrenia. Transl Psychiatry 2023; 13:275. [PMID: 37543592 PMCID: PMC10404265 DOI: 10.1038/s41398-023-02568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023] Open
Abstract
Defects in essential metabolic regulation for energy supply, increased oxidative stress promoting excitatory/inhibitory imbalance and phospholipid membrane dysfunction have been implicated in the pathophysiology of schizophrenia (SZ). The knowledge about the developmental trajectory of these key pathophysiological components and their interplay is important to develop new preventive and treatment strategies. However, this assertion is so far limited. To investigate the developmental regulations of these key components in the brain, we assessed, for the first time, in vivo redox state from the oxidized (NAD+) and reduced (NADH) form of Nicotinamide Adenine Dinucleotide (NAD), energy and membrane metabolites, inhibitory and excitatory neurotransmitters by 31P and 1H MRS during the neurodevelopment of an SZ animal model with genetically compromised glutathione synthesis (gclm-KO mice). When compared to age-matched wild type (WT), an increase in NAD+/NADH redox ratio was found in gclm-KO mice until early adulthood, followed by a decrease in full adults as observed in patients. Especially, in early postnatal life (P20, corresponding to childhood), levels of several metabolites were altered in gclm-KO mice, including NAD+, NAD+/NADH, ATP, and glutamine + glutamate, suggesting an interactive compensation for redox dysregulation between NAD, energy metabolism, and neurotransmission. The identified temporal neurometabolic regulations under deficits in redox regulation provide insights into preventive treatment targets for at-risk individuals, and other neurodevelopmental disorders involving oxidative stress and energetic dysfunction.
Collapse
Affiliation(s)
- Radek Skupienski
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Switzerland
| | - Lijing Xin
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
22
|
Selvaggi P, Jauhar S, Kotoula V, Pepper F, Veronese M, Santangelo B, Zelaya F, Turkheimer FE, Mehta MA, Howes OD. Reduced cortical cerebral blood flow in antipsychotic-free first-episode psychosis and relationship to treatment response. Psychol Med 2023; 53:5235-5245. [PMID: 36004510 PMCID: PMC10476071 DOI: 10.1017/s0033291722002288] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Altered cerebral blood flow (CBF) has been found in people at risk for psychosis, with first-episode psychosis (FEP) and with chronic schizophrenia (SCZ). Studies using arterial spin labelling (ASL) have shown reduction of cortical CBF and increased subcortical CBF in SCZ. Previous studies have investigated CBF using ASL in FEP, reporting increased CBF in striatum and reduced CBF in frontal cortex. However, as these people were taking antipsychotics, it is unclear whether these changes are related to the disorder or antipsychotic treatment and how they relate to treatment response. METHODS We examined CBF in FEP free from antipsychotic medication (N = 21), compared to healthy controls (N = 22). Both absolute and relative-to-global CBF were assessed. We also investigated the association between baseline CBF and treatment response in a partially nested follow-up study (N = 14). RESULTS There was significantly lower absolute CBF in frontal cortex (Cohen's d = 0.84, p = 0.009) and no differences in striatum or hippocampus. Whole brain voxel-wise analysis revealed widespread cortical reductions in absolute CBF in large cortical clusters that encompassed occipital, parietal and frontal cortices (Threshold-Free Cluster Enhancement (TFCE)-corrected <0.05). No differences were found in relative-to-global CBF in the selected region of interests and in voxel-wise analysis. Relative-to-global frontal CBF was correlated with percentage change in total Positive and Negative Syndrome Scale after antipsychotic treatment (r = 0.67, p = 0.008). CONCLUSIONS These results show lower cortical absolute perfusion in FEP prior to starting antipsychotic treatment and suggest relative-to-global frontal CBF as assessed with magnetic resonance imaging could potentially serve as a biomarker for antipsychotic response.
Collapse
Affiliation(s)
- Pierluigi Selvaggi
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Early Intervention Psychosis Clinical Academic Group, South London & Maudsley NHS Foundation Trust, London, UK
| | - Vasileia Kotoula
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fiona Pepper
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Barbara Santangelo
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E. Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mitul A. Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Oliver D. Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
23
|
Dwir D, Khadimallah I, Xin L, Rahman M, Du F, Öngür D, Do KQ. Redox and Immune Signaling in Schizophrenia: New Therapeutic Potential. Int J Neuropsychopharmacol 2023; 26:309-321. [PMID: 36975001 PMCID: PMC10229853 DOI: 10.1093/ijnp/pyad012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/27/2023] [Indexed: 03/29/2023] Open
Abstract
Redox biology and immune signaling play major roles in the body, including in brain function. A rapidly growing literature also suggests that redox and immune abnormalities are implicated in neuropsychiatric conditions such as schizophrenia (SZ), bipolar disorder, autism, and epilepsy. In this article we review this literature, its implications for the pathophysiology of SZ, and the potential for development of novel treatment interventions targeting redox and immune signaling. Redox biology and immune signaling in the brain are complex and not fully understood; in addition, there are discrepancies in the literature, especially in patient-oriented studies. Nevertheless, it is clear that abnormalities arise in SZ from an interaction between genetic and environmental factors during sensitive periods of brain development, and these abnormalities disrupt local circuits and long-range connectivity. Interventions that correct these abnormalities may be effective in normalizing brain function in psychotic disorders, especially in early phases of illness.
Collapse
Affiliation(s)
- Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| | - Lijing Xin
- Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Meredith Rahman
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| |
Collapse
|
24
|
Lee EE, Adamowicz DH, Frangou S. An NIMH Workshop on Non-Affective Psychosis in Midlife and Beyond: Research Agenda on Phenomenology, Clinical Trajectories, Underlying Mechanisms, and Intervention Targets. Am J Geriatr Psychiatry 2023; 31:353-365. [PMID: 36858928 PMCID: PMC10990076 DOI: 10.1016/j.jagp.2023.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
We present a review of the state of the research in the phenomenology, clinical trajectories, biological mechanisms, aging biomarkers, and treatments for middle-aged and older people with schizophrenia (PwS) discussed at the NIMH sponsored workshop "Non-affective Psychosis in Midlife and Beyond." The growing population of PwS has specific clinical needs that require tailored and mechanistically derived interventions. Differentiating between the effects of aging and disease progression is a key challenge of studying older PwS. This review of the workshop highlights the recent findings in this understudied clinical population and the critical gaps in knowledge and consensus for research priorities. This review showcases the major challenges and opportunities for research to advance clinical care for this growing and understudied population.
Collapse
Affiliation(s)
- Ellen E Lee
- Department of Psychiatry (EEL, DA), University of California San Diego, La Jolla, CA; Sam and Rose Stein Institute for Research on Aging (EEL, DA), University of California San Diego, La Jolla, CA; Desert-Pacific Mental Illness Research Education and Clinical Center, Veterans Affairs San Diego Healthcare System (EEL), San Diego, CA.
| | - David H Adamowicz
- Department of Psychiatry (EEL, DA), University of California San Diego, La Jolla, CA; Sam and Rose Stein Institute for Research on Aging (EEL, DA), University of California San Diego, La Jolla, CA
| | - Sophia Frangou
- Department of Psychiatry (SF), University of British Columbia, Vancouver, British Columbia, Canada; Icahn School of Medicine at Mount Sinai (SF), New York, NY
| |
Collapse
|
25
|
Li H, Li H, Zhu Z, Xiong X, Huang Y, Feng Y, Li Z, Wu K, Wu F. Association of serum homocysteine levels with intestinal flora and cognitive function in schizophrenia. J Psychiatr Res 2023; 159:258-265. [PMID: 36773527 DOI: 10.1016/j.jpsychires.2023.01.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/28/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
Some studies have indicated that elevated homocysteine (Hcy) levels and intestinal flora may be involved in schizophrenia (SZ) cognition pathophysiology. This study was the first to investigate the association among Hcy, intestinal flora and schizophrenia cognition. Here, 140 individuals were divided into two groups: SZ patients (N = 68) and healthy controls (HCs, N = 72). Participant data on serum Hcy levels, intestinal flora and cognitive function evaluation using the MATRICS Consensus Cognitive Battery (MCCB) were collected. Clinical symptoms of patients were evaluated using the Positive and Negative Syndrome Scale. Serum Hcy levels and the incidence of hyperhomocysteinaemia were considerably increased in SZ patients compared with HCs. Hcy levels were significantly negatively associated with verbal learning index scores (r = -0.425, p < 0.001) but positively associated with Eubacterium (r = 0.32, p = 0.007), Lactobacillus (r = 0.32, p = 0.008), Corynebacterium (r = 0.26, p = 0.035), Mogibacterium (r = 0.31, p = 0.01), and Bulleidia (r = 0.31, p = 0.01) in SZ patients. Our findings suggest that serum Hcy levels are associated with cognitive function and intestinal flora in SZ patients. However, the mechanism of the interaction between Hcy and intestinal flora and its effects on cognitive function in SZ patients requires further investigation.
Collapse
Affiliation(s)
- Hehua Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hanqiu Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhimin Zhu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Xiong
- The Second People's Hospital of Guizhou Province, Guiyang City, Guizhou Province, China
| | - Yuanyuan Huang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yangdong Feng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| |
Collapse
|
26
|
Altered distribution and localization of organellar Na +/H + exchangers in postmortem schizophrenia dorsolateral prefrontal cortex. Transl Psychiatry 2023; 13:34. [PMID: 36732328 PMCID: PMC9895429 DOI: 10.1038/s41398-023-02336-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia is a complex and multifactorial disorder associated with altered neurotransmission as well as numerous signaling pathway and protein trafficking disruptions. The pH of intracellular organelles involved in protein trafficking is tightly regulated and impacts their functioning. The SLC9A family of Na+/H+ exchangers (NHEs) plays a fundamental role in cellular and intracellular pH homeostasis. Four organellar NHE isoforms (NHE6-NHE9) are targeted to intracellular organelles involved in protein trafficking. Increased interactions between organellar NHEs and receptor of activated protein C kinase 1 (RACK1) can lead to redistribution of NHEs to the plasma membrane and hyperacidification of target organelles. Given their role in organelle pH regulation, altered expression and/or localization of organellar NHEs could be an underlying cellular mechanism contributing to abnormal intracellular trafficking and disrupted neurotransmitter systems in schizophrenia. We thus characterized organellar NHE expression, co-immunoprecipitation with RACK1, and Triton X-114 (TX-114) phase partitioning in dorsolateral prefrontal cortex of 25 schizophrenia and 25 comparison subjects by Western blot analysis. In schizophrenia after controlling for subject age at time of death, postmortem interval, tissue pH, and sex, there was significantly decreased total expression of NHE8, decreased co-immunoprecipitation of NHE8 (64%) and NHE9 (56%) with RACK1, and increased TX-114 detergent phase partitioning of NHE6 (283%), NHE9 (75%), and RACK1 (367%). Importantly, none of these dependent measures was significantly impacted when comparing those in the schizophrenia group on antipsychotics to those off of antipsychotics for at least 6 weeks at their time of death and none of these same proteins were affected in rats chronically treated with haloperidol. In summary, we characterized organellar NHE expression and distribution in schizophrenia DLPFC and identified abnormalities that could represent a novel mechanism contributing to disruptions in protein trafficking and neurotransmission in schizophrenia.
Collapse
|
27
|
Yu Z, Ueno K, Funayama R, Sakai M, Nariai N, Kojima K, Kikuchi Y, Li X, Ono C, Kanatani J, Ono J, Iwamoto K, Hashimoto K, Kinoshita K, Nakayama K, Nagasaki M, Tomita H. Sex-Specific Differences in the Transcriptome of the Human Dorsolateral Prefrontal Cortex in Schizophrenia. Mol Neurobiol 2023; 60:1083-1098. [PMID: 36414910 DOI: 10.1007/s12035-022-03109-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022]
Abstract
Schizophrenia presents clinical and biological differences between males and females. This study investigated transcriptional profiles in the dorsolateral prefrontal cortex (DLPFC) using postmortem data from the largest RNA-sequencing (RNA-seq) database on schizophrenic cases and controls. Data for 154 male and 113 female controls and 160 male and 93 female schizophrenic cases were obtained from the CommonMind Consortium. In the RNA-seq database, the principal component analysis showed that sex effects were small in schizophrenia. After we analyzed the impact of sex-specific differences on gene expression, the female group showed more significantly changed genes compared with the male group. Based on the gene ontology analysis, the female sex-specific genes that changed were overrepresented in the mitochondrion, ATP (phosphocreatine and adenosine triphosphate)-, and metal ion-binding relevant biological processes. An ingenuity pathway analysis revealed that the differentially expressed genes related to schizophrenia in the female group were involved in midbrain dopaminergic and γ-aminobutyric acid (GABA)-ergic neurons and microglia. We used methylated DNA-binding domain-sequencing analyses and microarray to investigate the DNA methylation that potentially impacts the sex differences in gene transcription using a maternal immune activation (MIA) murine model. Among the sex-specific positional genes related to schizophrenia in the PFC of female offspring from MIA, the changes in the methylation and transcriptional expression of loci ACSBG1 were validated in the females with schizophrenia in independent postmortem samples by real-time PCR and pyrosequencing. Our results reveal potential genetic risks in the DLPFC for the sex-dependent prevalence and symptomology of schizophrenia.
Collapse
Affiliation(s)
- Zhiqian Yu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan.
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.
| | - Kazuko Ueno
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Mai Sakai
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Naoki Nariai
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kaname Kojima
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yoshie Kikuchi
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Xue Li
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Chiaki Ono
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Junpei Kanatani
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Jiro Ono
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Center for Forensic Mental Health, Chiba University, Chiba, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masao Nagasaki
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Disaster Psychiatry, International Research Institute for Disaster Science, Tohoku University, Sendai, Japan
| |
Collapse
|
28
|
Omori NE, Malys MK, Woo G, Mansor L. Exploring the role of ketone bodies in the diagnosis and treatment of psychiatric disorders. Front Psychiatry 2023; 14:1142682. [PMID: 37139329 PMCID: PMC10149735 DOI: 10.3389/fpsyt.2023.1142682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
In recent times, advances in the field of metabolomics have shed greater light on the role of metabolic disturbances in neuropsychiatric conditions. The following review explores the role of ketone bodies and ketosis in both the diagnosis and treatment of three major psychiatric disorders: major depressive disorder, anxiety disorders, and schizophrenia. Distinction is made between the potential therapeutic effects of the ketogenic diet and exogenous ketone preparations, as exogenous ketones in particular offer a standardized, reproducible manner for inducing ketosis. Compelling associations between symptoms of mental distress and dysregulation in central nervous system ketone metabolism have been demonstrated in preclinical studies with putative neuroprotective effects of ketone bodies being elucidated, including effects on inflammasomes and the promotion of neurogenesis in the central nervous system. Despite emerging pre-clinical data, clinical research on ketone body effectiveness as a treatment option for psychiatric disorders remains lacking. This gap in understanding warrants further investigating, especially considering that safe and acceptable ways of inducing ketosis are readily available.
Collapse
Affiliation(s)
- Naomi Elyse Omori
- Health Via Modern Nutrition Inc. (H.V.M.N.), San Francisco, CA, United States
- *Correspondence: Naomi Elyse Omori,
| | - Mantas Kazimieras Malys
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, United Kingdom
| | - Geoffrey Woo
- Health Via Modern Nutrition Inc. (H.V.M.N.), San Francisco, CA, United States
| | - Latt Mansor
- Health Via Modern Nutrition Inc. (H.V.M.N.), San Francisco, CA, United States
| |
Collapse
|
29
|
Evaluation of mRNA expression level of the ATP synthase membrane subunit c locus 1 (ATP5G1) gene in patients with schizophrenia. Biochem Biophys Rep 2022; 30:101234. [PMID: 35243015 PMCID: PMC8861135 DOI: 10.1016/j.bbrep.2022.101234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 01/25/2023] Open
Abstract
Background Schizophrenia is a serious, complex mental disorder. The impairment of oxidative phosphorylation has a detrimental consequence on CNS function. Different ATP synthase subunits have been involved in the pathological process of various neurodegenerative disorders. Our goal was to evaluate the mRNA expression level of the ATP synthase membrane subunit c locus 1 (ATP5G1, also named ATP5MC1) gene in patients with schizophrenia. Methods Determination of the expression levels of ATP5G1 in plasma and peripheral blood mononuclear cells (PBMCs) were performed by real-time PCR in 90 controls and 90 patients with schizophrenia. Results Patients had significantly decreased ATP5G1 mRNA expression levels in both plasma and PBMCs compared to controls. The receiver operating characteristic curve was applied to detect a cut-off value of ATP5G1 expression in plasma and PBMCs. The ATP5G1 relative expression in PBMCs had better performance with a cut-off value ≤ 21 (AUC = 0.892, P < 0.001), sensitivity of 94.44%, and specificity of 72.22% in discriminating between schizophrenic patients. ATP5G1 expression in PBMCs was an independent predictor in schizophrenia. Conclusion This study revealed a down-regulation of ATP5G1 expression in schizophrenia, precisely expression in PBMCs. That might give insight into the role of ATP5G1 gene in the pathogenesis of schizophrenia. This study revealed a down-regulation of ATP5G1 expression in schizophrenia, precisely expression in PBMCs, which was found as an independent risk factor. This might give insight into the role of the ATP5G1 gene in the pathogenesis of schizophrenia. Further studies are needed to evaluate the role of ATP5G1 in schizophrenia and their impact on ATP production in these patients.
Collapse
|
30
|
Khan MM. Disrupted leptin-fatty acid biosynthesis is an early manifestation of metabolic abnormalities in schizophrenia. World J Psychiatry 2022; 12:827-842. [PMID: 35978970 PMCID: PMC9258274 DOI: 10.5498/wjp.v12.i6.827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/03/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Insulin resistance (IR) and impaired energy expenditure (IEE) are irreparable metabolic comorbidities in schizophrenia. Although mechanism(s) underlying IR and IEE remains unclear, leptin and fatty acid signaling, which has profound influence on insulin secretion/sensitivity, glucose metabolism and energy expenditure, could be disrupted. However, no association of plasma leptin with erythrocyte membrane fatty acids, body mass index (BMI), and psychotic symptoms in the same cohort of untreated patients with first-episode psychosis (FEP) or medicated patients with chronic schizophrenia (CSZ) is presented before. These studies are crucial for deciphering the role of leptin and fatty acids in the development of IR and IEE in schizophrenia. AIM To determine the association between plasma leptin, erythrocyte membrane fatty acids, particularly, saturated fatty acids (SFAs), BMI and psychotic symptoms in patients with FEP and CSZ. METHODS In this study, twenty-two drug naive patients with FEP, twenty-one CSZ patients treated with atypical antipsychotic drugs, and fourteen healthy control (CNT) subjects were analyzed. Plasma leptin was measured using sandwich mode enzyme-linked immunosorbent assay. Erythrocyte membrane SFAs were measured using ultrathin capillary gas chromatography. BMI was calculated by using the formula: weight (kg)/height (m2). Psychiatric symptoms were evaluated at baseline using brief psychiatric rating scale (BPRS), and positive and negative syndrome scale (PANSS). The total BPRS scores, positive and negative symptom scores (PANSS-PSS and PANSS-NSS, respectively) were recorded. Pearson correlation coefficient (r) analyses were performed to find the nature and strength of association between plasma leptin, PANSS scores, BMI and SFAs, particularly, palmitic acid (PA). RESULTS In patients with FEP, plasma leptin not BMI was significantly lower (P = 0.034), whereas, erythrocyte membrane SFAs were significantly higher (P < 0.005) compared to the CNT subjects. Further, plasma leptin showed negative correlation with erythrocyte membrane SFAs-PA (r = -0.4972, P = 0.001), PANSS-PSS (r = -0.4034, P = 0.028), and PANSS-NSS (r = -0.3487, P = 0.048). However, erythrocyte membrane SFAs-PA showed positive correlation with PANSS-PSS (r = 0.5844, P = 0.0034) and PANSS-NSS (r = 0.5380, P = 0.008). In CSZ patients, plasma leptin, BMI, and erythrocyte membrane SFAs, all were significantly higher (P < 0.05) compared to the CNT subjects. Plasma leptin showed positive correlation with BMI (r = 0.312, P = 0.032) but not with PANSS scores or erythrocyte membrane SFAs-PA. However, erythrocyte membrane SFAs-PA showed positive correlation with PANSS-NSS only (r = 0.4729, P = 0.031). Similar changes in the plasma leptin and erythrocyte membrane SFAs have also been reported in individuals at ultra-high risk of developing psychosis; therefore, the above findings suggest that leptin-fatty acid biosynthesis could be disrupted before the onset of psychosis in schizophrenia. CONCLUSION Disrupted leptin-fatty acid biosynthesis/signaling could be an early manifestation of metabolic comorbidities in schizophrenia. Large-scale studies are warranted to validate the above findings.
Collapse
Affiliation(s)
- Mohammad M Khan
- Laboratory of Translational Neurology and Molecular Psychiatry, Department of Biotechnology, Era's Lucknow Medical College and Hospital, and Faculty of Science, Era University, Lucknow 226003, India
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
31
|
Henkel ND, Wu X, O'Donovan SM, Devine EA, Jiron JM, Rowland LM, Sarnyai Z, Ramsey AJ, Wen Z, Hahn MK, McCullumsmith RE. Schizophrenia: a disorder of broken brain bioenergetics. Mol Psychiatry 2022; 27:2393-2404. [PMID: 35264726 DOI: 10.1038/s41380-022-01494-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
A substantial and diverse body of literature suggests that the pathophysiology of schizophrenia is related to deficits of bioenergetic function. While antipsychotics are an effective therapy for the management of positive psychotic symptoms, they are not efficacious for the complete schizophrenia symptom profile, such as the negative and cognitive symptoms. In this review, we discuss the relationship between dysfunction of various metabolic pathways across different brain regions in relation to schizophrenia. We contend that several bioenergetic subprocesses are affected across the brain and such deficits are a core feature of the illness. We provide an overview of central perturbations of insulin signaling, glycolysis, pentose-phosphate pathway, tricarboxylic acid cycle, and oxidative phosphorylation in schizophrenia. Importantly, we discuss pharmacologic and nonpharmacologic interventions that target these pathways and how such interventions may be exploited to improve the symptoms of schizophrenia.
Collapse
Affiliation(s)
- Nicholas D Henkel
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| | - Xiajoun Wu
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sinead M O'Donovan
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Emily A Devine
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jessica M Jiron
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zoltan Sarnyai
- Laboratory of Psychiatric Neuroscience, Australian Institute for Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Amy J Ramsey
- Department of Pharmacology and Toxicology, Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Margaret K Hahn
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robert E McCullumsmith
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| |
Collapse
|
32
|
Cuenod M, Steullet P, Cabungcal JH, Dwir D, Khadimallah I, Klauser P, Conus P, Do KQ. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry 2022; 27:1886-1897. [PMID: 34759358 PMCID: PMC9126811 DOI: 10.1038/s41380-021-01374-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
A growing body of evidence has emerged demonstrating a pathological link between oxidative stress and schizophrenia. This evidence identifies oxidative stress as a convergence point or "central hub" for schizophrenia genetic and environmental risk factors. Here we review the existing experimental and translational research pinpointing the complex dynamics of oxidative stress mechanisms and their modulation in relation to schizophrenia pathophysiology. We focus on evidence supporting the crucial role of either redox dysregulation, N-methyl-D-aspartate receptor hypofunction, neuroinflammation or mitochondria bioenergetics dysfunction, initiating "vicious circles" centered on oxidative stress during neurodevelopment. These processes would amplify one another in positive feed-forward loops, leading to persistent impairments of the maturation and function of local parvalbumin-GABAergic neurons microcircuits and myelinated fibers of long-range macrocircuitry. This is at the basis of neural circuit synchronization impairments and cognitive, emotional, social and sensory deficits characteristic of schizophrenia. Potential therapeutic approaches that aim at breaking these different vicious circles represent promising strategies for timely and safe interventions. In order to improve early detection and increase the signal-to-noise ratio for adjunctive trials of antioxidant, anti-inflammatory and NMDAR modulator drugs, a reverse translation of validated circuitry approach is needed. The above presented processes allow to identify mechanism based biomarkers guiding stratification of homogenous patients groups and target engagement required for successful clinical trials, paving the way towards precision medicine in psychiatry.
Collapse
Affiliation(s)
- Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland.
| |
Collapse
|
33
|
Ni P, Wang H, Cai J, Ran J, Jiang Y, Zhao L, Wei J, Ni R, Wang Y, Ma X, Wang Q, Guo W, Li T. Generation and characterization of human-derived iPSC lines from one pair of dizygotic twins discordant for schizophrenia. Stem Cell Res 2022; 60:102710. [PMID: 35182860 DOI: 10.1016/j.scr.2022.102710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/13/2022] [Indexed: 02/08/2023] Open
Abstract
Schizophrenia (SCZ) is a debilitating neurodevelopmental disorder with a high heritability. In this study, peripheral blood mononuclear cells (PBMCs) were donated by a pair of dizygotic twins. The female was clinically diagnosed as SCZ by Diagnostic and Statistical Manual of Mental Disorders IV (DSM-IV) criteria, and her unaffected male sibling was healthy control. Induced pluripotent stem cells (iPSCs) were established using Episomal vectors carrying reprograming factors OCT4, SOX2, NANOG, LIN28, c-MYC, KLF4, and SV40LT. These lines with normal karyotype highly expressed pluripotency markers and are capable to differentiate into derivatives of three germ layers. Both lines are negative of mycoplasma.
Collapse
Affiliation(s)
- Peiyan Ni
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huiyao Wang
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jia Cai
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junzhe Ran
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youhui Jiang
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liansheng Zhao
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinxue Wei
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rongjun Ni
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yingcheng Wang
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaohong Ma
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wang
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanjun Guo
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
34
|
Sami MB, Liddle P. Neurobiology of Psychosis and Schizophrenia 2021: Nottingham Meeting. Schizophr Bull 2022; 48:289-291. [PMID: 35064266 PMCID: PMC8886577 DOI: 10.1093/schbul/sbab152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Musa Basseer Sami
- Institute of Mental Health, University of Nottingham, Nottingham,UK
- Nottinghamshire Healthcare, NHS Foundation Trust, Nottingham, UK
- To whom correspondence should be addressed; Institute of Mental Health, University of Nottingham, Nottingham, UK; tel: +44 115 823 1294, e-mail:
| | - Peter Liddle
- Institute of Mental Health, University of Nottingham, Nottingham,UK
| |
Collapse
|
35
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
36
|
The role of mitochondria in the pathophysiology of schizophrenia: A critical review of the evidence focusing on mitochondrial complex one. Neurosci Biobehav Rev 2021; 132:449-464. [PMID: 34864002 DOI: 10.1016/j.neubiorev.2021.11.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022]
Abstract
There has been increasing interest in the role of mitochondrial dysfunction in the pathophysiology of schizophrenia. Mitochondrial complex one (MCI) dysfunction may represent a mechanism linking bioenergetic impairment with the alterations in dopamine signalling, glutamatergic dysfunction, and oxidative stress found in the disorder. New lines of evidence from novel approaches make it timely to review evidence for mitochondrial involvement in schizophrenia, with a specific focus on MCI. The most consistent findings in schizophrenia relative to controls are reductions in expression of MCI subunits in post-mortem brain tissue (Cohen's d> 0.8); reductions in MCI function in post-mortem brains (d> 0.7); and reductions in neural glucose utilisation (d= 0.3 to 0.6). Antipsychotics may affect glucose utilisation, and, at least in vitro, affect MC1. The findings overall are consistent with MCI dysfunction in schizophrenia, but also highlight the need for in vivo studies to determine the link between MCI dysfunction and symptoms in patients. If new imaging tools confirm MCI dysfunction in the disease, this could pave the way for new treatments targeting this enzyme.
Collapse
|
37
|
Decreased Brain pH and Pathophysiology in Schizophrenia. Int J Mol Sci 2021; 22:ijms22168358. [PMID: 34445065 PMCID: PMC8395078 DOI: 10.3390/ijms22168358] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
Postmortem studies reveal that the brain pH in schizophrenia patients is lower than normal. The exact cause of this low pH is unclear, but increased lactate levels due to abnormal energy metabolism appear to be involved. Schizophrenia patients display distinct changes in mitochondria number, morphology, and function, and such changes promote anaerobic glycolysis, elevating lactate levels. pH can affect neuronal activity as H+ binds to numerous proteins in the nervous system and alters the structure and function of the bound proteins. There is growing evidence of pH change associated with cognition, emotion, and psychotic behaviors. Brain has delicate pH regulatory mechanisms to maintain normal pH in neurons/glia and extracellular fluid, and a change in these mechanisms can affect, or be affected by, neuronal activities associated with schizophrenia. In this review, we discuss the current understanding of the cause and effect of decreased brain pH in schizophrenia based on postmortem human brains, animal models, and cellular studies. The topic includes the factors causing decreased brain pH in schizophrenia, mitochondria dysfunction leading to altered energy metabolism, and pH effects on the pathophysiology of schizophrenia. We also review the acid/base transporters regulating pH in the nervous system and discuss the potential contribution of the major transporters, sodium hydrogen exchangers (NHEs), and sodium-coupled bicarbonate transporters (NCBTs), to schizophrenia.
Collapse
|
38
|
Bustillo JR, Mayer EG, Upston J, Jones T, Garcia C, Sheriff S, Maudsley A, Tohen M, Gasparovic C, Lenroot R. Increased Glutamate Plus Glutamine in the Right Middle Cingulate in Early Schizophrenia but Not in Bipolar Psychosis: A Whole Brain 1H-MRS Study. Front Psychiatry 2021; 12:660850. [PMID: 34163382 PMCID: PMC8215955 DOI: 10.3389/fpsyt.2021.660850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/19/2021] [Indexed: 01/11/2023] Open
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) studies have examined glutamatergic abnormalities in schizophrenia and bipolar-I disorders, mostly in single voxels. Though the critical nodes remain unknown, schizophrenia and bipolar-I involve brain networks with broad abnormalities. To provide insight on the biochemical differences that may underlie these networks, the combined glutamine and glutamate signal (Glx) and other metabolites were examined in patients in early psychosis with whole brain 1H-MRS imaging (1H-MRSI). Data were acquired in young schizophrenia subjects (N = 48), bipolar-I subjects (N = 21) and healthy controls (N = 51). Group contrasts for Glx, as well as for N-acetyl aspartate, choline, myo-inositol and creatine, from all voxels that met spectral quality criteria were analyzed in standardized brain space, followed by cluster-corrected level alpha-value (CCLAV ≤ 0.05) analysis. Schizophrenia subjects had higher Glx in the right middle cingulate gyrus (19 voxels, CCLAV = 0.05) than bipolar-I subjects. Healthy controls had intermediate Glx values, though not significant. Schizophrenia subjects also had higher N-acetyl aspartate (three clusters, left occipital, left frontal, right frontal), choline (two clusters, left and right frontal) and myo-inositol (one cluster, left frontal) than bipolar-I, with healthy controls having intermediate values. These increases were likely accounted for by antipsychotic medication effects in the schizophrenia subgroup for N-acetyl aspartate and choline. Likewise, creatine was increased in two clusters in treated vs. antipsychotic-naïve schizophrenia, supporting a medication effect. Conversely, the increments in Glx in right cingulate were not driven by antipsychotic medication exposure. We conclude that increments in Glx in the cingulate may be critical to the pathophysiology of schizophrenia and are consistent with the NMDA hypo-function model. This model however may be more specific to schizophrenia than to psychosis in general. Postmortem and neuromodulation schizophrenia studies focusing on right cingulate, may provide critical mechanistic and therapeutic advancements, respectively.
Collapse
Affiliation(s)
- Juan R. Bustillo
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Elizabeth G. Mayer
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Joel Upston
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, United States
| | - Thomas Jones
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Crystal Garcia
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Sulaiman Sheriff
- Department of Radiology, University of Miami, Miami, FL, United States
| | - Andrew Maudsley
- Department of Radiology, University of Miami, Miami, FL, United States
| | - Mauricio Tohen
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | | | - Rhoshel Lenroot
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
39
|
Song X, Chen X, Yuksel C, Yuan J, Pizzagalli DA, Forester B, Öngür D, Du F. Bioenergetics and abnormal functional connectivity in psychotic disorders. Mol Psychiatry 2021; 26:2483-2492. [PMID: 33398087 PMCID: PMC8254819 DOI: 10.1038/s41380-020-00993-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 12/22/2022]
Abstract
Psychotic Disorders such as schizophrenia (SZ) and bipolar disorder (BD) are characterized by abnormal functional connectivity (FC) within neural networks such as the default mode network (DMN), as well as attenuated anticorrelation between DMN and task-positive networks (TPN). Bioenergetic processes are critical for synaptic connectivity and are also abnormal in psychotic disorders. We therefore examined the association between brain energy metabolism and FC in psychotic disorders. 31P magnetization transfer spectroscopy from medial prefrontal cortex (MPFC) and whole-brain fMRI data were collected from demographically matched groups of SZ, BD, and healthy control (HC) subjects. The creatine kinase (CK) reaction flux calculated from spectroscopy was used as an index of regional energy production rate. FC maps were generated with MPFC as the seed region. Compared to HC, SZ showed significantly lower CK flux, while both BD and SZ patients showed decreased anticorrelation between MPFC and TPN. CK flux was significantly correlated with FC between MPFC and other DMN nodes in HC. This positive correlation was reduced modestly in BD and strongly in SZ. CK flux was negatively correlated with the anticorrelation between MPFC and TPN in HC, but this relationship was not observed in BD or SZ. These results indicate that MPFC energy metabolism rates are associated with stronger FC within networks and stronger anticorrelation between networks in HC. However, this association is decreased in SZ and BD, where bioenergetic and FC abnormalities are evident. This pattern may suggest that impairment in energy production in psychotic disorders underlies the impaired neural connectivity.
Collapse
Affiliation(s)
- Xiaopeng Song
- Psychotic Disorders Division, McLean Hospital, 02478, USA,McLean Imaging Center, McLean Hospital, 02478, USA,Harvard Medical School, Boston, Massachusetts, 02115, USA,These authors contributed equally to this work
| | - Xi Chen
- Psychotic Disorders Division, McLean Hospital, 02478, USA,McLean Imaging Center, McLean Hospital, 02478, USA,Harvard Medical School, Boston, Massachusetts, 02115, USA,These authors contributed equally to this work
| | - Cagri Yuksel
- Psychotic Disorders Division, McLean Hospital, 02478, USA,Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Junliang Yuan
- McLean Imaging Center, McLean Hospital, 02478, USA,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Diego A. Pizzagalli
- McLean Imaging Center, McLean Hospital, 02478, USA,Harvard Medical School, Boston, Massachusetts, 02115, USA,Center for Depression, Anxiety and Stress Research, McLean Hospital, 02478, USA
| | - Brent Forester
- Harvard Medical School, Boston, Massachusetts, 02115, USA,Division of Geriatric Psychiatry, McLean Hospital, 02478, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, 02478, USA,McLean Imaging Center, McLean Hospital, 02478, USA,Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, 02478, USA. .,McLean Imaging Center, McLean Hospital, Belmont, MA, 02478, USA. .,Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
40
|
Vlaikou AM, Nussbaumer M, Komini C, Lambrianidou A, Konidaris C, Trangas T, Filiou MD. Exploring the crosstalk of glycolysis and mitochondrial metabolism in psychiatric disorders and brain tumours. Eur J Neurosci 2021; 53:3002-3018. [PMID: 33226682 DOI: 10.1111/ejn.15057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/13/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022]
Abstract
Dysfunction of metabolic pathways characterises a plethora of common pathologies and has emerged as an underlying hallmark of disease phenotypes. Here, we focus on psychiatric disorders and brain tumours and explore changes in the interplay between glycolysis and mitochondrial energy metabolism in the brain. We discuss alterations in glycolysis versus core mitochondrial metabolic pathways, such as the tricarboxylic acid cycle and oxidative phosphorylation, in major psychiatric disorders and brain tumours. We investigate potential common patterns of altered mitochondrial metabolism in different brain regions and sample types and explore how changes in mitochondrial number, shape and morphology affect disease-related manifestations. We also highlight the potential of pharmacologically targeting mitochondria to achieve therapeutic effects.
Collapse
Affiliation(s)
- Angeliki-Maria Vlaikou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Markus Nussbaumer
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Chrysoula Komini
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Andromachi Lambrianidou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Constantinos Konidaris
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Theoni Trangas
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Michaela D Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| |
Collapse
|
41
|
Ermakov EA, Dmitrieva EM, Parshukova DA, Kazantseva DV, Vasilieva AR, Smirnova LP. Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8881770. [PMID: 33552387 PMCID: PMC7847339 DOI: 10.1155/2021/8881770] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/15/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Schizophrenia is recognized to be a highly heterogeneous disease at various levels, from genetics to clinical manifestations and treatment sensitivity. This heterogeneity is also reflected in the variety of oxidative stress-related mechanisms contributing to the phenotypic realization and manifestation of schizophrenia. At the molecular level, these mechanisms are supposed to include genetic causes that increase the susceptibility of individuals to oxidative stress and lead to gene expression dysregulation caused by abnormal regulation of redox-sensitive transcriptional factors, noncoding RNAs, and epigenetic mechanisms favored by environmental insults. These changes form the basis of the prooxidant state and lead to altered redox signaling related to glutathione deficiency and impaired expression and function of redox-sensitive transcriptional factors (Nrf2, NF-κB, FoxO, etc.). At the cellular level, these changes lead to mitochondrial dysfunction and metabolic abnormalities that contribute to aberrant neuronal development, abnormal myelination, neurotransmitter anomalies, and dysfunction of parvalbumin-positive interneurons. Immune dysfunction also contributes to redox imbalance. At the whole-organism level, all these mechanisms ultimately contribute to the manifestation and development of schizophrenia. In this review, we consider oxidative stress-related mechanisms and new treatment perspectives associated with the correction of redox imbalance in schizophrenia. We suggest that not only antioxidants but also redox-regulated transcription factor-targeting drugs (including Nrf2 and FoxO activators or NF-κB inhibitors) have great promise in schizophrenia. But it is necessary to develop the stratification criteria of schizophrenia patients based on oxidative stress-related markers for the administration of redox-correcting treatment.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena M. Dmitrieva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | - Daria A. Parshukova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | | | | | - Liudmila P. Smirnova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| |
Collapse
|
42
|
Yuksel C, Chen X, Chouinard VA, Nickerson LD, Gardner M, Cohen T, Öngür D, Du F. Abnormal Brain Bioenergetics in First-Episode Psychosis. SCHIZOPHRENIA BULLETIN OPEN 2021; 2:sgaa073. [PMID: 33554120 PMCID: PMC7848946 DOI: 10.1093/schizbullopen/sgaa073] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Converging evidence indicates impaired brain energy metabolism in schizophrenia and other psychotic disorders. Creatine kinase (CK) is pivotal in providing adenosine triphosphate in the cell and maintaining its levels when energy demand is increased. However, the activity of CK has not been investigated in patients with first-episode schizophrenia spectrum disorders. METHODS Using in vivo phosphorus magnetization transfer spectroscopy, we measured CK first-order forward rate constant (k f ) in the frontal lobe, in patients with first-episode psychosis (FEP; n = 16) and healthy controls (n = 34), at rest. RESULTS CK k f was significantly reduced in FEP compared to healthy controls. There were no differences in other energy metabolism-related measures, including phosphocreatine (PCr) or ATP, between groups. We also found increase in glycerol-3-phosphorylcholine, a putative membrane breakdown product, in patients. CONCLUSIONS The results of this study indicate that brain bioenergetic abnormalities are already present early in the course of schizophrenia spectrum disorders. Future research is needed to identify the relationship of reduced CK k f with psychotic symptoms and to test treatment alternatives targeting this pathway. Increased glycerol-3-phosphorylcholine is consistent with earlier studies in medication-naïve patients and later studies in first-episode schizophrenia, and suggest enhanced synaptic pruning.
Collapse
Affiliation(s)
- Cagri Yuksel
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| | - Xi Chen
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| | | | | | | | | | - Dost Öngür
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| | - Fei Du
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
43
|
Cuenoud B, Ipek Ö, Shevlyakova M, Beaumont M, Cunnane SC, Gruetter R, Xin L. Brain NAD Is Associated With ATP Energy Production and Membrane Phospholipid Turnover in Humans. Front Aging Neurosci 2020; 12:609517. [PMID: 33390929 PMCID: PMC7772416 DOI: 10.3389/fnagi.2020.609517] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
The brain requires a large amount of energy, mostly derived from the metabolism of glucose, which decreases substantially with age and neurological diseases. While mounting evidence in model organisms illustrates the central role of brain nicotinamide adenine dinucleotide (NAD) for maintaining energy homeostasis, similar data are sparse in humans. This study explores the correlations between brain NAD, energy production and membrane phospholipid metabolism by 31-phosphorous magnetic resonance spectroscopy (31P-MRS) across 50 healthy participants including a young (mean age 27.1-year-old) and middle-aged (mean age 56.4-year-old) group. The analysis revealed that brain NAD level and NAD+/NADH redox ratio were positively associated with ATP level and the rate of energy production, respectively. Moreover, a metabolic network linking NAD with membrane phospholipid metabolism, energy production, and aging was identified. An inverted trend between age and NAD level was detected. These results pave the way for the use of 31P-MRS as a powerful non-invasive tool to support the development of new therapeutic interventions targeting NAD associated phospho-metabolic pathways in brain aging and neurological diseases.
Collapse
Affiliation(s)
| | - Özlem Ipek
- School of Biomedical Imaging & Imaging Sciences, King's College London, London, United Kingdom
| | - Maya Shevlyakova
- Clinical Development Unit, Nestlé Research Center, Lausanne, Switzerland
| | - Maurice Beaumont
- Clinical Development Unit, Nestlé Research Center, Lausanne, Switzerland
| | - Stephen C Cunnane
- Department of Medicine, Université de Sherbrooke and Research Center on Aging, Sherbrooke, QC, Canada
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lijing Xin
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
44
|
iPSC-derived homogeneous populations of developing schizophrenia cortical interneurons have compromised mitochondrial function. Mol Psychiatry 2020; 25:2873-2888. [PMID: 31019265 PMCID: PMC6813882 DOI: 10.1038/s41380-019-0423-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/23/2019] [Accepted: 04/03/2019] [Indexed: 02/05/2023]
Abstract
Schizophrenia (SCZ) is a neurodevelopmental disorder. Thus, studying pathogenetic mechanisms underlying SCZ requires studying the development of brain cells. Cortical interneurons (cINs) are consistently observed to be abnormal in SCZ postmortem brains. These abnormalities may explain altered gamma oscillation and cognitive function in patients with SCZ. Of note, currently used antipsychotic drugs ameliorate psychosis, but they are not very effective in reversing cognitive deficits. Characterizing mechanisms of SCZ pathogenesis, especially related to cognitive deficits, may lead to improved treatments. We generated homogeneous populations of developing cINs from 15 healthy control (HC) iPSC lines and 15 SCZ iPSC lines. SCZ cINs, but not SCZ glutamatergic neurons, show dysregulated Oxidative Phosphorylation (OxPhos) related gene expression, accompanied by compromised mitochondrial function. The OxPhos deficit in cINs could be reversed by Alpha Lipoic Acid/Acetyl-L-Carnitine (ALA/ALC) but not by other chemicals previously identified as increasing mitochondrial function. The restoration of mitochondrial function by ALA/ALC was accompanied by a reversal of arborization deficits in SCZ cINs. OxPhos abnormality, even in the absence of any circuit environment with other neuronal subtypes, appears to be an intrinsic deficit in SCZ cINs.
Collapse
|
45
|
Shivakumar V, Rajasekaran A, Subbanna M, Kalmady SV, Venugopal D, Agrawal R, Amaresha AC, Agarwal SM, Joseph B, Narayanaswamy JC, Debnath M, Venkatasubramanian G, Gangadhar BN. Leukocyte mitochondrial DNA copy number in schizophrenia. Asian J Psychiatr 2020; 53:102193. [PMID: 32585632 DOI: 10.1016/j.ajp.2020.102193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/02/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Schizophrenia is a complex neuropsychiatric disorder with significant genetic predisposition. In a subset of schizophrenia patients, mitochondrial dysfunction could be explained by the genomic defects like mitochondrial DNA Copy Number Variations, which are considered as a sensitive index of cellular oxidative stress. Given the high energy demands for neuronal functions, altered Mitochondrial DNA copy number (mtDNAcn) and consequent impaired mitochondrial physiology would significantly influence schizophrenia pathogenesis. In this context, we have made an attempt to study mitochondrial dysfunction in schizophrenia by assessing mtDNAcn in antipsychotic-naïve/free schizophrenia patients. METHOD mtDNAcn was measured in 90 antipsychotic-naïve / free schizophrenia (SCZ) patients and 147 Healthy Controls (HC). The relative mtDNAcn was determined by quantitative real-time polymerase chain reaction (qPCR) using TaqMan® multiplex assay method. RESULT A statistically significant difference between groups [t = 5.22, P < 0.001] was observed, with significantly lower mtDNAcn in SCZ compared to HC. The group differences persisted even after controlling for age and sex [F (4, 232) = 22.68, P < 0.001, η2 = 0.09]. CONCLUSION Lower mtDNAcn in SCZ compared to HC suggests that mtDNAcn may hold potential to serve as an important proxy marker of mitochondrial function in antipsychotic-naïve/free SCZ patients.
Collapse
Affiliation(s)
- Venkataram Shivakumar
- Department of Integrative Medicine, National Institute of Mental Health and Neuro Sciences, Bengaluru, India; Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India.
| | - Ashwini Rajasekaran
- Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India; Department of Human Genetics, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Manjula Subbanna
- Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India; Department of Human Genetics, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Sunil Vasu Kalmady
- Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India; Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Deepthi Venugopal
- Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India; Department of Human Genetics, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Rimjhim Agrawal
- Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India; Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Anekal C Amaresha
- Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India; Department of Sociology and Social Work, CHRIST (Deemed to be University), Bangalore, India
| | - Sri Mahavir Agarwal
- Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India; Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Boban Joseph
- Department of Psychiatric Social Work, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Janardhanan C Narayanaswamy
- Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India; Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India; Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Bangalore N Gangadhar
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| |
Collapse
|
46
|
Glutamatergic hypo-function in the left superior and middle temporal gyri in early schizophrenia: a data-driven three-dimensional proton spectroscopic imaging study. Neuropsychopharmacology 2020; 45:1851-1859. [PMID: 32403117 PMCID: PMC7608301 DOI: 10.1038/s41386-020-0707-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 12/26/2022]
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) studies have examined glutamatergic abnormalities in schizophrenia, mostly in single voxels. Though the critical brain nodes remain unknown, schizophrenia involves networks with broad abnormalities. Hence, glutamine plus glutamate (Glx) and other metabolites were examined with whole-brain 1H-MRS, in early schizophrenia. Three dimensional 1H-MRS was acquired in young schizophrenia subjects (N = 36, 19 antipsychotic-naïve and 17 antipsychotic-treated) and healthy controls (HC, N = 29). Glx (as well as N-acetylaspartate, choline, myo-inositol and creatine) group contrasts from all individual voxels that met spectral quality, were analyzed in common brain space, followed by cluster-corrected level alpha-value (CCLAV ≤ 0.05). Schizophrenia subjects had lower Glx in the left superior (STG) and middle temporal gyri (16 voxels, CCLAV = 0.04) and increased creatine in two clusters involving left temporal, parietal and occipital regions (32, and 18 voxels, CCLAV = 0.02 and 0.04, respectively). Antipsychotic-treated and naïve patients (vs HC) had similar Glx reductions (8/16 vs 10/16 voxels respectively, but CCLAV's > 0.05). However, creatine was higher in antipsychotic-treated vs HC's in a larger left hemisphere cluster (100 voxels, CCLAV = 0.01). Also in treated patients, choline was increased in left middle frontal gyrus (18 voxels, CCLAV = 0.04). Finally in antipsychotic-naive patients, NAA was reduced in right frontal gyri (19 voxels, CCLAV = 0.05) and myo-inositol was reduced in the left cerebellum (34 voxels, CCLAV = 0.02). We conclude that data-driven spectroscopic brain examination supports that reductions in Glx in the left STG may be critical to the pathophysiology of schizophrenia. Postmortem and neuromodulation schizophrenia studies focusing on left STG, may provide critical mechanistic and therapeutic advancements, respectively.
Collapse
|
47
|
Bryll A, Krzyściak W, Karcz P, Śmierciak N, Kozicz T, Skrzypek J, Szwajca M, Pilecki M, Popiela TJ. The Relationship between the Level of Anterior Cingulate Cortex Metabolites, Brain-Periphery Redox Imbalance, and the Clinical State of Patients with Schizophrenia and Personality Disorders. Biomolecules 2020; 10:E1272. [PMID: 32899276 PMCID: PMC7565827 DOI: 10.3390/biom10091272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 08/28/2020] [Indexed: 01/10/2023] Open
Abstract
Schizophrenia is a complex mental disorder whose course varies with periods of deterioration and symptomatic improvement without diagnosis and treatment specific for the disease. So far, it has not been possible to clearly define what kinds of functional and structural changes are responsible for the onset or recurrence of acute psychotic decompensation in the course of schizophrenia, and to what extent personality disorders may precede the appearance of the appropriate symptoms. The work combines magnetic resonance spectroscopy imaging with clinical evaluation and laboratory tests to determine the likely pathway of schizophrenia development by identifying peripheral cerebral biomarkers compared to personality disorders. The relationship between the level of metabolites in the brain, the clinical status of patients according to International Statistical Classification of Diseases and Related Health Problems, 10th Revision ICD-10, duration of untreated psychosis (DUP), and biochemical indices related to redox balance (malondialdehyde), the efficiency of antioxidant systems (FRAP), and bioenergetic metabolism of mitochondria, were investigated. There was a reduction in the level of brain N-acetyl-aspartate and glutamate in the anterior cingulate gyrus of patients with schisophrenia compared to the other groups that seems more to reflect a biological etiopathological factor of psychosis. Decreased activity of brain metabolites correlated with increased peripheral oxidative stress (increased malondialdehyde MDA) associated with decreased efficiency of antioxidant systems (FRAP) and the breakdown of clinical symptoms in patients with schizophrenia in the course of psychotic decompensation compared to other groups. The period of untreated psychosis correlated negatively with glucose value in the brain of people with schizophrenia, and positively with choline level. The demonstrated differences between two psychiatric units, such as schizophrenia and personality disorders in relation to healthy people, may be used to improve the diagnosis and prognosis of schizophrenia compared to other heterogenous psychopathology in the future. The collapse of clinical symptoms of patients with schizophrenia in the course of psychotic decompensation may be associated with the occurrence of specific schizotypes, the determination of which is possible by determining common relationships between changes in metabolic activity of particular brain structures and peripheral parameters, which may be an important biological etiopathological factor of psychosis. Markers of peripheral redox imbalance associated with disturbed bioenergy metabolism in the brain may provide specific biological factors of psychosis however, they need to be confirmed in further studies.
Collapse
Affiliation(s)
- Amira Bryll
- Department of Radiology, Jagiellonian University Medical College, Kopernika 19, 31-501 Krakow, Poland;
| | - Wirginia Krzyściak
- Department of Medical Diagnostics, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Paulina Karcz
- Department of Electroradiology, Jagiellonian University Medical College, Michałowskiego 12, 31-126 Krakow, Poland;
| | - Natalia Śmierciak
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University, Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (M.P.)
| | - Tamas Kozicz
- Department of Clinical Genomics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Justyna Skrzypek
- Department of Medical Diagnostics, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Marta Szwajca
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University, Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (M.P.)
| | - Maciej Pilecki
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University, Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (M.P.)
| | - Tadeusz J. Popiela
- Department of Radiology, Jagiellonian University Medical College, Kopernika 19, 31-501 Krakow, Poland;
| |
Collapse
|
48
|
Pruett BS, Meador-Woodruff JH. Evidence for altered energy metabolism, increased lactate, and decreased pH in schizophrenia brain: A focused review and meta-analysis of human postmortem and magnetic resonance spectroscopy studies. Schizophr Res 2020; 223:29-42. [PMID: 32958361 DOI: 10.1016/j.schres.2020.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/21/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Though the pathophysiology of schizophrenia remains poorly understood, altered brain energy metabolism is increasingly implicated. Here, we conduct meta-analyses of the available human studies measuring lactate or pH in schizophrenia brain and discuss the accumulating evidence for increased lactate and decreased pH in schizophrenia brain and evidence linking these to negative and cognitive symptom severity. Meta-analysis of six postmortem studies revealed a significant increase in lactate in schizophrenia brain while meta-analysis of 14 magnetic resonance spectroscopy studies did not reveal a significant change in brain pH in schizophrenia. However, only five of these studies were likely sufficiently powered to detect differences in brain pH, and meta-analysis of these five studies found a nonsignificant decrease in pH in schizophrenia brain. Next, we discuss evidence for altered brain energy metabolism in schizophrenia and how this may underlie a buildup of lactate and decreased pH. This alteration, similar to the Warburg effect extensively described in cancer biology, involves diminished tricarboxylic acid cycle and oxidative phosphorylation along with a shift toward increased reliance on glycolysis for energy production. We then explore the role that mitochondrial dysfunction, oxidative stress, and hypoxia-related changes in gene expression likely play in this shift in brain energy metabolism and address the functional consequences of lowered brain pH in schizophrenia including alterations in neurotransmitter regulation, mRNA stability, and overall patterns of gene expression. Finally, we discuss how altered energy metabolism in schizophrenia brain may serve as an effective target in the treatment of this illness.
Collapse
Affiliation(s)
- Brandon S Pruett
- University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | | |
Collapse
|
49
|
Kraeuter AK, Phillips R, Sarnyai Z. The Gut Microbiome in Psychosis From Mice to Men: A Systematic Review of Preclinical and Clinical Studies. Front Psychiatry 2020; 11:799. [PMID: 32903683 PMCID: PMC7438757 DOI: 10.3389/fpsyt.2020.00799] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
The gut microbiome is rapidly becoming the focus of interest as a possible factor involved in the pathophysiology of neuropsychiatric disorders. Recent understanding of the pathophysiology of schizophrenia emphasizes the role of systemic components, including immune/inflammatory and metabolic processes, which are influenced by and interacting with the gut microbiome. Here we systematically review the current literature on the gut microbiome in schizophrenia-spectrum disorders and in their animal models. We found that the gut microbiome is altered in psychosis compared to healthy controls. Furthermore, we identified potential factors related to psychosis, which may contribute to the gut microbiome alterations. However, further research is needed to establish the disease-specificity and potential causal relationships between changes of the microbiome and disease pathophysiology. This can open up the possibility of. manipulating the gut microbiome for improved symptom control and for the development of novel therapeutic approaches in schizophrenia and related psychotic disorders.
Collapse
Affiliation(s)
- Ann-Katrin Kraeuter
- Laboratory of Psychiatric Neuroscience, Centre for Molecular Therapeutics, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- Faculty of Health and Life Sciences, Psychology, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Riana Phillips
- Laboratory of Psychiatric Neuroscience, Centre for Molecular Therapeutics, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Zoltán Sarnyai
- Laboratory of Psychiatric Neuroscience, Centre for Molecular Therapeutics, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
50
|
Ketogenic therapy in neurodegenerative and psychiatric disorders: From mice to men. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109913. [PMID: 32151695 DOI: 10.1016/j.pnpbp.2020.109913] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/11/2020] [Accepted: 03/05/2020] [Indexed: 01/31/2023]
Abstract
Ketogenic diet is a low carbohydrate and high fat diet that has been used for over 100 years in the management of childhood refractory epilepsy. More recently, ketogenic diet has been investigated for a number of metabolic, neurodegenerative and neurodevelopmental disorders. In this comprehensive review, we critically examine the potential therapeutic benefits of ketogenic diet and ketogenic agents on neurodegenerative and psychiatric disorders in humans and translationally valid animal models. The preclinical literature provides strong support for the efficacy of ketogenic diet in a variety of diverse animal models of neuropsychiatric disorders. However, the evidence from clinical studies, while encouraging, particularly in Alzheimer's disease, psychotic and autism spectrum disorders, is limited to case studies and small pilot trials. Firm conclusion on the efficacy of ketogenic diet in psychiatric disorders cannot be drawn due to the lack of randomised, controlled clinical trials. The potential mechanisms of action of ketogenic therapy in these disorders with diverse pathophysiology may include energy metabolism, oxidative stress and immune/inflammatory processes. In conclusion, while ketogenic diet and ketogenic substances hold promise pre-clinically in a variety of neurodegenerative and psychiatric disorders, further studies, particularly randomised controlled clinical trials, are warranted to better understand their clinical efficacy and potential side effects.
Collapse
|