1
|
Li X, Kempf S, Delgado Lagos F, Ukan Ü, Popp R, Hu J, Frömel T, Günther S, Weigert A, Fleming I. A regulatory loop involving the cytochrome P450-soluble epoxide hydrolase axis and TGF-β signaling. iScience 2024; 27:110938. [PMID: 39398242 PMCID: PMC11466655 DOI: 10.1016/j.isci.2024.110938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Fatty acid metabolites, produced by cytochrome P450 enzymes and soluble epoxide hydrolase (sEH), regulate inflammation. Here, we report that the transforming growth factor β (TGF-β)-induced polarization of macrophages to a pro-resolving phenotype requires Alk5 and Smad2 activation to increase sEH expression and activity. Macrophages lacking sEH showed impaired repolarization, reduced phagocytosis, and maintained a pro-inflammatory gene expression profile. 11,12-Epoxyeicosatrienoic acid (EET) was one altered metabolite in sEH-/- macrophages and mimicked the effect of sEH deletion on gene expression. Notably, 11,12-EET also reduced Alk5 expression, inhibiting TGF-β-induced Smad2 phosphorylation by triggering the cytosolic translocation of the E3 ligase Smurf2. These findings suggest that sEH expression is controlled by TGF-β and that sEH activity, which lowers 11,12-EET levels and promotes TGF-β signaling by metabolizing 11,12-EET to prevent Alk5 degradation. Thus, an autocrine loop between sEH/11,12-EET and TGF-β1 regulates macrophage function.
Collapse
Affiliation(s)
- Xiaoming Li
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Sebastian Kempf
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Fredy Delgado Lagos
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Ürün Ukan
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Rüdiger Popp
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Jiong Hu
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
- Department of Embryology and Histology, School of Basic Medicine, Tongi Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Timo Frömel
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Andreas Weigert
- Goethe University, Institute of Biochemistry I, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Sule RO, Morisseau C, Yang J, Hammock BD, Gomes AV. Triazine herbicide prometryn alters epoxide hydrolase activity and increases cytochrome P450 metabolites in murine livers via lipidomic profiling. Sci Rep 2024; 14:19135. [PMID: 39160161 PMCID: PMC11333623 DOI: 10.1038/s41598-024-69557-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
Oxylipins are a group of bioactive fatty acid metabolites generated via enzymatic oxygenation. They are notably involved in inflammation, pain, vascular tone, hemostasis, thrombosis, immunity, and coagulation. Oxylipins have become the focus of therapeutic intervention since they are implicated in many conditions, such as nonalcoholic fatty liver disease, cardiovascular disease, and aging. The liver plays a crucial role in lipid metabolism and distribution throughout the organism. Long-term exposure to pesticides is suspected to contribute to hepatic carcinogenesis via notable disruption of lipid metabolism. Prometryn is a methylthio-s-triazine herbicide used to control the growth of annual broadleaf and grass weeds in many cultivated plants. The amounts of prometryn documented in the environment, mainly waters, soil and plants used for human and domestic consumption are significantly high. Previous research revealed that prometryn decreased liver development during zebrafish embryogenesis. To understand the mechanisms by which prometryn could induce hepatotoxicity, the effect of prometryn (185 mg/kg every 48 h for seven days) was investigated on hepatic and plasma oxylipin levels in mice. Using an unbiased LC-MS/MS-based lipidomics approach, prometryn was found to alter oxylipins metabolites that are mainly derived from cytochrome P450 (CYP) and lipoxygenase (LOX) in both mice liver and plasma. Lipidomic analysis revealed that the hepatotoxic effects of prometryn are associated with increased epoxide hydrolase (EH) products, increased sEH and mEH enzymatic activities, and induction of oxidative stress. Furthermore, 9-HODE and 13-HODE levels were significantly increased in prometryn treated mice liver, suggesting increased levels of oxidation products. Together, these results support that sEH may be an important component of pesticide-induced liver toxicity.
Collapse
Affiliation(s)
- Rasheed O Sule
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
- Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| | - Jun Yang
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
- Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
- Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
3
|
Kulkarni R, Mehta R, Goswami SK, Hammock BD, Morisseau C, Hwang SH, Mallappa O, Azeemuddin MM, Rafiq M, S N M. Neuroprotective effect of herbal extracts inhibiting soluble epoxide hydrolase (sEH) and cyclooxygenase (COX) against chemotherapy-induced cognitive impairment in mice. Biochem Biophys Res Commun 2023; 667:64-72. [PMID: 37209564 PMCID: PMC10849156 DOI: 10.1016/j.bbrc.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/22/2023]
Abstract
Chemotherapy-induced cognitive impairment (CICI) is a novel clinical condition characterized by memory, learning, and motor function deficits. Oxidative stress and inflammation are potential factors contributing to chemotherapy's adverse effects on the brain. Inhibition of soluble epoxide hydrolase (sEH) has been proven effective in neuroinflammation and reversal of memory impairment. The research aims to evaluate the memory protective effect of sEH inhibitor and dual inhibitor of sEH and COX and compare its impact with herbal extracts with known nootropic activity in an animal model of CICI. In vitro sEH, the inhibitory activity of hydroalcoholic extracts of Sizygium aromaticum, Nigella sativa, and Mesua ferrea was tested on murine and human sEH enzyme as per the protocol, and IC50 was determined. Cyclophosphamide (50 mg/kg), methotrexate (5 mg/kg), and fluorouracil (5 mg/kg) combination (CMF) were administered intraperitoneally to induce CICI. The known herbal sEH inhibitor, Lepidium meyenii and the dual inhibitor of COX and sEH (PTUPB) were tested for their protective effect in the CICI model. The herbal formulation with known nootropic activity viz Bacopa monnieri and commercial formulation (Mentat) were also used to compare the efficacy in the CICI model. Behavioral parameter such as cognitive function was assessed by Morris Water Maze besides investigating oxidative stress (GSH and LPO) and inflammatory (TNFα, IL-6, BDNF and COX-2) markers in the brain. CMF-induced CICI, which was associated with increased oxidative stress and inflammation in the brain. However, treatment with PTUPB or herbal extracts inhibiting sEH preserved spatial memory via ameliorating oxidative stress and inflammation. S. aromaticum and N. sativa inhibited COX2, but M. Ferrea did not affect COX2 activity. Lepidium meyenii was the least effective, and mentat showed superior activity over Bacopa monnieri in preserving memory. Compared to untreated animals, the mice treated with PTUPB or hydroalcoholic extracts showed a discernible improvement in cognitive function in CICI.
Collapse
Affiliation(s)
- Rachana Kulkarni
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Richa Mehta
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Sumanta Kumar Goswami
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Sung Hee Hwang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Onkaramurthy Mallappa
- Discovery Sciences Group, R&D Centre, Himalaya Wellness Company, Makali, Bengaluru, 562162, India
| | | | - Mohamed Rafiq
- Discovery Sciences Group, R&D Centre, Himalaya Wellness Company, Makali, Bengaluru, 562162, India
| | - Manjula S N
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| |
Collapse
|
4
|
Vázquez J, Ginex T, Herrero A, Morisseau C, Hammock BD, Luque FJ. Screening and Biological Evaluation of Soluble Epoxide Hydrolase Inhibitors: Assessing the Role of Hydrophobicity in the Pharmacophore-Guided Search of Novel Hits. J Chem Inf Model 2023; 63:3209-3225. [PMID: 37141492 PMCID: PMC10207366 DOI: 10.1021/acs.jcim.3c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Indexed: 05/06/2023]
Abstract
The human soluble epoxide hydrolase (sEH) is a bifunctional enzyme that modulates the levels of regulatory epoxy lipids. The hydrolase activity is carried out by a catalytic triad located at the center of a wide L-shaped binding site, which contains two hydrophobic subpockets at both sides. On the basis of these structural features, it can be assumed that desolvation is a major factor in determining the maximal achievable affinity that can be attained for this pocket. Accordingly, hydrophobic descriptors may be better suited to the search of novel hits targeting this enzyme. This study examines the suitability of quantum mechanically derived hydrophobic descriptors in the discovery of novel sEH inhibitors. To this end, three-dimensional quantitative structure-activity relationship (3D-QSAR) pharmacophores were generated by combining electrostatic and steric or alternatively hydrophobic and hydrogen-bond parameters in conjunction with a tailored list of 76 known sEH inhibitors. The pharmacophore models were then validated by using two external sets chosen (i) to rank the potency of four distinct series of compounds and (ii) to discriminate actives from decoys, using in both cases datasets taken from the literature. Finally, a prospective study was performed including a virtual screening of two chemical libraries to identify new potential hits, which were subsequently experimentally tested for their inhibitory activity on human, rat, and mouse sEH. The use of hydrophobic-based descriptors led to the identification of six compounds as inhibitors of the human enzyme with IC50 < 20 nM, including two with IC50 values of 0.4 and 0.7 nM. The results support the use of hydrophobic descriptors as a valuable tool in the search of novel scaffolds that encode a proper hydrophilic/hydrophobic distribution complementary to the target's binding site.
Collapse
Affiliation(s)
- Javier Vázquez
- Departament
de Nutrició, Ciències de l′Alimentació
i Gastronomia, Facultat de Farmàcia i Ciències de l′Alimentació, Institut de Biomedicina (IBUB), Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- Pharmacelera,
Parc Científic de Barcelona (PCB), Baldiri Reixac 4-8, 08028 Barcelona, Spain
| | - Tiziana Ginex
- Departament
de Nutrició, Ciències de l′Alimentació
i Gastronomia, Facultat de Farmàcia i Ciències de l′Alimentació, Institut de Biomedicina (IBUB), Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| | - Albert Herrero
- Pharmacelera,
Parc Científic de Barcelona (PCB), Baldiri Reixac 4-8, 08028 Barcelona, Spain
| | - Christophe Morisseau
- Department
of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Bruce D. Hammock
- Department
of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - F. Javier Luque
- Departament
de Nutrició, Ciències de l′Alimentació
i Gastronomia, Facultat de Farmàcia i Ciències de l′Alimentació, Institut de Biomecidina (IBUB) and Institut de Química
Teòrica i Computacional (IQTCUB), Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
5
|
Codony S, Pont C, Griñán-Ferré C, Di Pede-Mattatelli A, Calvó-Tusell C, Feixas F, Osuna S, Jarné-Ferrer J, Naldi M, Bartolini M, Loza MI, Brea J, Pérez B, Bartra C, Sanfeliu C, Juárez-Jiménez J, Morisseau C, Hammock BD, Pallàs M, Vázquez S, Muñoz-Torrero D. Discovery and In Vivo Proof of Concept of a Highly Potent Dual Inhibitor of Soluble Epoxide Hydrolase and Acetylcholinesterase for the Treatment of Alzheimer's Disease. J Med Chem 2022; 65:4909-4925. [PMID: 35271276 PMCID: PMC8958510 DOI: 10.1021/acs.jmedchem.1c02150] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
With innumerable clinical failures of target-specific drug candidates for multifactorial diseases, such as Alzheimer's disease (AD), which remains inefficiently treated, the advent of multitarget drug discovery has brought a new breath of hope. Here, we disclose a class of 6-chlorotacrine (huprine)-TPPU hybrids as dual inhibitors of the enzymes soluble epoxide hydrolase (sEH) and acetylcholinesterase (AChE), a multitarget profile to provide cumulative effects against neuroinflammation and memory impairment. Computational studies confirmed the gorge-wide occupancy of both enzymes, from the main site to a secondary site, including a so far non-described AChE cryptic pocket. The lead compound displayed in vitro dual nanomolar potencies, adequate brain permeability, aqueous solubility, human microsomal stability, lack of neurotoxicity, and it rescued memory, synaptic plasticity, and neuroinflammation in an AD mouse model, after low dose chronic oral administration.
Collapse
Affiliation(s)
- Sandra Codony
- Laboratory
of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy
and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Caterina Pont
- Laboratory
of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy
and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Christian Griñán-Ferré
- Pharmacology
Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry,
Faculty of Pharmacy and Food Sciences, and Institute of Neurosciences, University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Ania Di Pede-Mattatelli
- Department
of Pharmacy and Pharmaceutical Technology and Physical Chemistry,
Faculty of Pharmacy and Food Sciences, and Institute of Theoretical
and Computational Chemistry (IQTCUB), University
of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Carla Calvó-Tusell
- CompBioLab
Group, Departament de Química and Institut de Química
Computacional i Catàlisi (IQCC), Universitat de Girona, C/ Maria Aurèlia Capmany 69, E-17003 Girona, Spain
| | - Ferran Feixas
- CompBioLab
Group, Departament de Química and Institut de Química
Computacional i Catàlisi (IQCC), Universitat de Girona, C/ Maria Aurèlia Capmany 69, E-17003 Girona, Spain
| | - Sílvia Osuna
- CompBioLab
Group, Departament de Química and Institut de Química
Computacional i Catàlisi (IQCC), Universitat de Girona, C/ Maria Aurèlia Capmany 69, E-17003 Girona, Spain,Institució
Catalana de Recerca i Estudis Avançats (ICREA), E-08010 Barcelona, Spain
| | - Júlia Jarné-Ferrer
- Pharmacology
Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry,
Faculty of Pharmacy and Food Sciences, and Institute of Neurosciences, University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Marina Naldi
- Department
of Pharmacy and Biotechnology, University
of Bologna, Via Belmeloro, 6, I-40126 Bologna, Italy
| | - Manuela Bartolini
- Department
of Pharmacy and Biotechnology, University
of Bologna, Via Belmeloro, 6, I-40126 Bologna, Italy
| | - María Isabel Loza
- BioFarma
Research Group, Centro Singular de Investigación en Medicina
Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Av. de Barcelona s/n, E-15782 Santiago de Compostela, Spain
| | - José Brea
- BioFarma
Research Group, Centro Singular de Investigación en Medicina
Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Av. de Barcelona s/n, E-15782 Santiago de Compostela, Spain
| | - Belén Pérez
- Department
of Pharmacology, Therapeutics and Toxicology, Autonomous University of Barcelona, E-08193 Bellaterra, Spain
| | - Clara Bartra
- Institute
of Biomedical Research of Barcelona, CSIC and Institut d’Investigacions
Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló, 149, E-08036 Barcelona, Spain
| | - Coral Sanfeliu
- Institute
of Biomedical Research of Barcelona, CSIC and Institut d’Investigacions
Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló, 149, E-08036 Barcelona, Spain
| | - Jordi Juárez-Jiménez
- Department
of Pharmacy and Pharmaceutical Technology and Physical Chemistry,
Faculty of Pharmacy and Food Sciences, and Institute of Theoretical
and Computational Chemistry (IQTCUB), University
of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Christophe Morisseau
- Department
of Entomology and Nematology and Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Bruce D. Hammock
- Department
of Entomology and Nematology and Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Mercè Pallàs
- Pharmacology
Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry,
Faculty of Pharmacy and Food Sciences, and Institute of Neurosciences, University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Santiago Vázquez
- Laboratory
of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy
and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain,. Phone: (+34) 934024533
| | - Diego Muñoz-Torrero
- Laboratory
of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy
and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain,. Phone: (+34) 934024533
| |
Collapse
|
6
|
Patel S, Gururani R, Jain S, Tripathi N, Paliwal S, Paliwal S, Paliwal S, Sharma S. Repurposing of digoxin in pain and inflammation: An evidence-based study. Drug Dev Res 2022; 83:1097-1110. [PMID: 35315525 DOI: 10.1002/ddr.21935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/09/2022] [Accepted: 02/25/2022] [Indexed: 11/06/2022]
Abstract
In recent years, the drug repositioning strategy has gained considerable attention in the drug discovery process that involves establishing new therapeutic uses of already known drugs. In line with this, we have identified digoxin a cardiac glycoside, as a potent inhibitor of soluble epoxide hydrolase (sEH) enzyme employing in silico high throughput screening protocols and further confirmed using in vitro cell-free sEH inhibitory assay and in vivo preclinical studies in rodents for its repurposing in hyperalgesia, inflammation, and related disorders. Oral administration of digoxin at dose 0.2 mg/kg significantly reduced (p < .0001) the allodynia in mice induced by using hot plate (3.6 ± 1.9) and tail-flick test (7.58 ± 0.9). In addition, digoxin at a dose of 0.2 mg/kg showed marked reduction (94%, p < .0001) in acetic acid-induced abdominal contraction in rats. Further, digoxin also demonstrated antipyretic activity (37.04 ± 0.2, p < .0001) and showed notable reduction (0.60 ± 0.06) in carrageenan-induced paw edema in rats. Also, the histopathological evaluation revealed that digoxin treatment attenuated the edema, neutrophil infiltration, and alveolar septal thickening in lung tissue. These findings are novel and highlight the newer insights towards repurposing digoxin as a new lead in the treatment of hyperalgesia, inflammation, and related disorders.
Collapse
Affiliation(s)
- Saraswati Patel
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Ritika Gururani
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Neetika Tripathi
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swati Paliwal
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Shailendra Paliwal
- Department of Pharmacy, LLRM Medical College, Meerut, Uttar Pradesh, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
7
|
El-Sherbeni AA, Bhatti R, Isse FA, El-Kadi AOS. Identifying simultaneous matrix metalloproteinases/soluble epoxide hydrolase inhibitors. Mol Cell Biochem 2022; 477:877-884. [PMID: 35067781 DOI: 10.1007/s11010-021-04337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022]
Abstract
Matrix metalloproteinase (MMP) and soluble epoxide hydrolase (sEH) have completely unrelated biological functions; however, their dysregulation produce similar effects on biological systems. Based on the similarity in the reported structural requirements for their inhibition, the current study aimed to identify a simultaneous inhibitor for MMP and sEH. Six compounds were identified as potential simultaneous MMP/sEH inhibitors and tested for their capacity to inhibit MMP and sEH. Inhibition of MMP and sEH activity using their endogenous and exogenous substrates was measured by liquid chromatography/mass spectrometry, spectrophotometry, and zymography. Two compounds, CTK8G1143 and ONO-4817, were identified to inhibit both MMP and sEH activity. CTK8G1143 and ONO-4817 inhibited the recombinant human sEH activity by an average of 67.4% and 55.2%, respectively. The IC50 values for CTK8G1143 and ONO-4817 to inhibit recombinant human sEH were 5.2 and 3.5 µM, respectively, whereas their maximal inhibition values were 71.4% and 42.8%, respectively. Also, MMP and sEH activity of human cardiomyocytes were simultaneously inhibited by CTK8G1143 and ONO-4817. Regarding other compounds, they showed either MMP or sEH inhibitory activity but not both. In conclusion, these two simultaneous inhibitors of MMP and sEH could provide a promising intervention for the prevention and control of several diseases, especially cardiovascular diseases.
Collapse
Affiliation(s)
- Ahmed A El-Sherbeni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Rabia Bhatti
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Fadumo A Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
8
|
Singh N, Vik A, Lybrand DB, Morisseau C, Hammock BD. New Alkoxy- Analogues of Epoxyeicosatrienoic Acids Attenuate Cisplatin Nephrotoxicity In Vitro via Reduction of Mitochondrial Dysfunction, Oxidative Stress, Mitogen-Activated Protein Kinase Signaling, and Caspase Activation. Chem Res Toxicol 2021; 34:2579-2591. [PMID: 34817988 PMCID: PMC8853703 DOI: 10.1021/acs.chemrestox.1c00347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The usage of cisplatin, a highly potent chemotherapeutic, is limited by its severe nephrotoxicity. Arachidonic acid (ARA)-derived epoxyeicosatrienoic acids (EETs) and soluble epoxide hydrolase (sEH) inhibitors were shown to ameliorate this dose-limiting side effect, but both approaches have some pharmacological limitations. Analogues of EETs are an alternative avenue with unique benefits, but the current series of analogues face concerns regarding their structure and mimetic functionality. Hence, in this study, regioisomeric mixtures of four new ARA alkyl ethers were synthesized, characterized, and assessed as EET analogues against the concentration- and time-dependent toxicities of cisplatin in porcine proximal tubular epithelial cells. All four ether groups displayed bioisostere activity, ranging from marginal for methoxy- (1), good for n-propoxy- (4), and excellent for ethoxy- (2) and i-propoxy- (3). Compounds 2 and 3 displayed cytoprotective effects comparable to that of an EET regioisomeric mixture (5) against high, acute cisplatin exposures but were more potent against low to moderate, chronic exposures. Compounds 2 and 3 (and 5) acted through stabilization of the mitochondrial transmembrane potential and attenuation of reactive oxygen species, leading to reduced phosphorylation of mitogen-activated protein kinases p38 and JNK and decreased activation of caspase-9 and caspase-3. This study demonstrates that alkoxy- groups are potent and more metabolically stable bioisostere alternatives to the epoxide within EETs that enable sEH-independent activity. It also illustrates the potential of ether-based mimics of EETs and other epoxy fatty acids as promising nephroprotective agents to tackle the clinically relevant side effect of cisplatin without compromising its antineoplastic function.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/chemical synthesis
- 8,11,14-Eicosatrienoic Acid/chemistry
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Animals
- Antineoplastic Agents/toxicity
- Caspase 3/metabolism
- Caspase 9/metabolism
- Cells, Cultured
- Cisplatin/antagonists & inhibitors
- Cisplatin/toxicity
- Dose-Response Relationship, Drug
- Epithelial Cells/drug effects
- Humans
- Kidney Tubules, Proximal/drug effects
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Structure
- Oxidative Stress/drug effects
- Signal Transduction/drug effects
- Swine
Collapse
Affiliation(s)
- Nalin Singh
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Anders Vik
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - Daniel B. Lybrand
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| |
Collapse
|
9
|
Martín-López J, Codony S, Bartra C, Morisseau C, Loza MI, Sanfeliu C, Hammock BD, Brea J, Vázquez S. 2-(Piperidin-4-yl)acetamides as Potent Inhibitors of Soluble Epoxide Hydrolase with Anti-Inflammatory Activity. Pharmaceuticals (Basel) 2021; 14:ph14121323. [PMID: 34959721 PMCID: PMC8703317 DOI: 10.3390/ph14121323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
The pharmacological inhibition of soluble epoxide hydrolase (sEH) has been suggested as a potential therapy for the treatment of pain and inflammatory diseases through the stabilization of endogenous epoxyeicosatrienoic acids. Numerous potent sEH inhibitors (sEHI) have been developed, however many contain highly lipophilic substituents limiting their availability. Recently, a new series of benzohomoadamantane-based ureas endowed with potent inhibitory activity for the human and murine sEH was reported. However, their very low microsomal stability prevented further development. Herein, a new series of benzohomoadamantane-based amides were synthetized, fully characterized, and evaluated as sEHI. Most of these amides were endowed with excellent inhibitory potencies. A selected compound displayed anti-inflammatory effects with higher effectiveness than the reference sEHI, TPPU.
Collapse
Affiliation(s)
- Juan Martín-López
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l′Alimentació, Universitat de Barcelona, Avinguda Joan XXIII 27–31, 08028 Barcelona, Spain; (J.M.-L.); (S.C.)
- Institute of Biomedicine (IBUB), Universitat de Barcelona, Avinguda Joan XXIII 27–31, 08028 Barcelona, Spain
| | - Sandra Codony
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l′Alimentació, Universitat de Barcelona, Avinguda Joan XXIII 27–31, 08028 Barcelona, Spain; (J.M.-L.); (S.C.)
- Institute of Biomedicine (IBUB), Universitat de Barcelona, Avinguda Joan XXIII 27–31, 08028 Barcelona, Spain
| | - Clara Bartra
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), CSIC and IDIBAPS, C/Roselló 161, 08036 Barcelona, Spain; (C.B.); (C.S.)
| | - Christophe Morisseau
- Department of Entomology and Nematology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA; (C.M.); (B.D.H.)
- Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - María Isabel Loza
- Drug Screening Platform/Biofarma Research Group, CIMUS Research Center, Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
| | - Coral Sanfeliu
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), CSIC and IDIBAPS, C/Roselló 161, 08036 Barcelona, Spain; (C.B.); (C.S.)
| | - Bruce D. Hammock
- Department of Entomology and Nematology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA; (C.M.); (B.D.H.)
- Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - José Brea
- Drug Screening Platform/Biofarma Research Group, CIMUS Research Center, Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
- Correspondence: (J.B.); (S.V.); Tel.: +34-881-815-459 (J.B.); +34-934-024-533 (S.V.)
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l′Alimentació, Universitat de Barcelona, Avinguda Joan XXIII 27–31, 08028 Barcelona, Spain; (J.M.-L.); (S.C.)
- Institute of Biomedicine (IBUB), Universitat de Barcelona, Avinguda Joan XXIII 27–31, 08028 Barcelona, Spain
- Correspondence: (J.B.); (S.V.); Tel.: +34-881-815-459 (J.B.); +34-934-024-533 (S.V.)
| |
Collapse
|
10
|
Koike S, Hsu MF, Bettaieb A, Chu B, Matsumoto N, Morisseau C, Havel PJ, Huising MO, Hammock BD, Haj FG. Genetic deficiency or pharmacological inhibition of soluble epoxide hydrolase ameliorates high fat diet-induced pancreatic β-cell dysfunction and loss. Free Radic Biol Med 2021; 172:48-57. [PMID: 34038767 PMCID: PMC9901526 DOI: 10.1016/j.freeradbiomed.2021.05.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023]
Abstract
Pancreatic β-cells are crucial regulators of systemic glucose homeostasis, and their dysfunction and loss are central features in type 2 diabetes. Interventions that rectify β-cell dysfunction and loss are essential to combat this deadly malady. In the current study, we sought to delineate the role of soluble epoxide hydrolase (sEH) in β-cells under diet-induced metabolic stress. The expression of sEH was upregulated in murine and macaque diabetes models and islets of diabetic human patients. We postulated that hyperglycemia-induced elevation in sEH leads to a reduction in its substrates, epoxyeicosatrienoic acids (EETs), and attenuates the function of β-cells. Genetic deficiency of sEH potentiated glucose-stimulated insulin secretion in mice, likely in a cell-autonomous manner, contributing to better systemic glucose control. Consistent with this observation, genetic and pharmacological inactivation of sEH and the treatment with EETs exhibited insulinotropic effects in isolated murine islets ex vivo. Additionally, sEH deficiency enhanced glucose sensing and metabolism with elevated ATP and cAMP concentrations. This phenotype was associated with attenuated oxidative stress and diminished β-cell death in sEH deficient islets. Moreover, pharmacological inhibition of sEH in vivo mitigated, albeit partly, high fat diet-induced β-cell loss and dedifferentiation. The current observations provide new insights into the role of sEH in β-cells and information that may be leveraged for the development of a mechanism-based intervention to rectify β-cell dysfunction and loss.
Collapse
Affiliation(s)
- Shinichiro Koike
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA
| | - Ming-Fo Hsu
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA
| | - Bryan Chu
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA
| | - Naoki Matsumoto
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA; Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA
| | - Peter J Havel
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Mark O Huising
- Department of Neurobiology & Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA; Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA, 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA; Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA; Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
11
|
Gautheron J, Morisseau C, Chung WK, Zammouri J, Auclair M, Baujat G, Capel E, Moulin C, Wang Y, Yang J, Hammock BD, Cerame B, Phan F, Fève B, Vigouroux C, Andreelli F, Jeru I. EPHX1 mutations cause a lipoatrophic diabetes syndrome due to impaired epoxide hydrolysis and increased cellular senescence. eLife 2021; 10:68445. [PMID: 34342583 PMCID: PMC8331186 DOI: 10.7554/elife.68445] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Epoxide hydrolases (EHs) regulate cellular homeostasis through hydrolysis of epoxides to less-reactive diols. The first discovered EH was EPHX1, also known as mEH. EH functions remain partly unknown, and no pathogenic variants have been reported in humans. We identified two de novo variants located in EPHX1 catalytic site in patients with a lipoatrophic diabetes characterized by loss of adipose tissue, insulin resistance, and multiple organ dysfunction. Functional analyses revealed that these variants led to the protein aggregation within the endoplasmic reticulum and to a loss of its hydrolysis activity. CRISPR-Cas9-mediated EPHX1 knockout (KO) abolished adipocyte differentiation and decreased insulin response. This KO also promoted oxidative stress and cellular senescence, an observation confirmed in patient-derived fibroblasts. Metreleptin therapy had a beneficial effect in one patient. This translational study highlights the importance of epoxide regulation for adipocyte function and provides new insights into the physiological roles of EHs in humans.
Collapse
Affiliation(s)
- Jeremie Gautheron
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, United States
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, United States.,Deparment of Medicine, Columbia University Irving Medical Center, New York, United States
| | - Jamila Zammouri
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Martine Auclair
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Genevieve Baujat
- Service de Génétique Clinique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Emilie Capel
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Celia Moulin
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Yuxin Wang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, United States
| | - Jun Yang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, United States
| | - Barbara Cerame
- Goryeb Children's Hospital, Atlantic Health Systems, Morristown Memorial Hospital, Morristown, United States
| | - Franck Phan
- Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Service de Diabétologie-Métabolisme, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France.,Sorbonne Université-Inserm UMRS_1269, Paris, France
| | - Bruno Fève
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Centre National de Référence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service de Diabétologie et Endocrinologie de la Reproduction, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Corinne Vigouroux
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Centre National de Référence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service de Diabétologie et Endocrinologie de la Reproduction, Hôpital Saint-Antoine, AP-HP, Paris, France.,Laboratoire commun de Biologie et Génétique Moléculaires, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Fabrizio Andreelli
- Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Service de Diabétologie-Métabolisme, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France.,Sorbonne Université-Inserm UMRS_1269, Paris, France
| | - Isabelle Jeru
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Laboratoire commun de Biologie et Génétique Moléculaires, Hôpital Saint-Antoine, AP-HP, Paris, France
| |
Collapse
|
12
|
Wu T, Xi X, Chen Y, Jiang C, Zhang Q, Dai G, Bai Y, Zhang W, Ni T, Zou J, Ju W, Xu M. Absolute protein assay for the simultaneous quantification of two epoxide hydrolases in rats by mass spectrometry-based targeted proteomics. J Sep Sci 2021; 44:2754-2763. [PMID: 34008891 DOI: 10.1002/jssc.202100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/30/2021] [Accepted: 05/16/2021] [Indexed: 11/07/2022]
Abstract
Epoxide hydrolases catalyze the hydrolysis of both exogenous and endogenous epoxides to the corresponding vicinal diols by adding water. Microsomal and soluble epoxide hydrolase are two main mammalian enzymes that have been intensely characterized. The purpose of this investigation was to develop and validate a proteomics assay allowing the simultaneous quantification of microsomal and soluble epoxide hydrolase in rats. Protein quantification was realized through targeted proteomics using liquid chromatography with tandem mass spectrometry for the determination of trypsin-specific surrogate peptides after digestion. Stable isotope-labeled peptides were used as the internal standards. The chromatography of the surrogate peptides was performed on an Agilent SB C18 column (100 mm × 4.6 mm, 1.8 µm) with gradient elution. Acetonitrile containing 0.1% formic acid and 0.1% formic acid aqueous solution were used as mobile phases. A multiple reaction monitoring method in a positive ionization mode was used for the simultaneous detection of the peptides. The method was validated concerning the specificity, linearity, within-day and between-day accuracy and precision, matrix effect, stability, and digestion efficiency. The developed assay was successfully used to quantify the protein levels of microsomal and soluble epoxide hydrolase in rat liver, kidney, and heart S9 samples.
Collapse
Affiliation(s)
- Ting Wu
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Xiaoyun Xi
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Ying Chen
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Chao Jiang
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Qian Zhang
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Guoliang Dai
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Yongtao Bai
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, P. R. China
| | - Weidong Zhang
- Department of Pharmacy, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, P. R. China
| | - Ting Ni
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Jiandong Zou
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Wenzheng Ju
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Meijuan Xu
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
13
|
Activity of sEH and Oxidant Status during Systemic Bovine Coliform Mastitis. Antioxidants (Basel) 2021; 10:antiox10050812. [PMID: 34065244 PMCID: PMC8161397 DOI: 10.3390/antiox10050812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/31/2022] Open
Abstract
Bovine coliform mastitis presents treatment challenges because of systemic inflammation and oxidative stress. Soluble epoxide hydrolase (sEH) is a promising therapeutic target in conditions characterized by inflammation and oxidative stress but has not been evaluated in cattle. We compared sEH activity and oxidant status in healthy Holstein dairy cows to those with systemic coliform mastitis (n = 5/group) using complementary approaches. First, the activity of sEH on [3H]-trans-diphenyl-propene oxide (tDPPO) was assessed ex vivo using tissue homogenates (mammary, liver, and kidney). Second, the concentrations of sEH substrates and metabolites in plasma, milk, and urine were determined as an index of in vivo sEH activity. Oxidant status was assessed in serum and milk. Data were analyzed by non-parametric methods. Metabolism of tDPPO was greater in mammary tissues from cows with coliform mastitis compared to controls. In contrast, ratios of sEH substrates and metabolites predicted lower sEH activity in cows with coliform mastitis than controls. Milk oxidant status showed greater prooxidant levels in coliform mastitis cows. Cows with coliform mastitis exhibit increased sEH activity in mammary tissue; at the same time, milk oxidant status is increased. Future studies should characterize sEH activity and oxidant status patterns and explore therapies targeting sEH during coliform mastitis.
Collapse
|
14
|
Morisseau C, Kodani SD, Kamita SG, Yang J, Lee KSS, Hammock BD. Relative Importance of Soluble and Microsomal Epoxide Hydrolases for the Hydrolysis of Epoxy-Fatty Acids in Human Tissues. Int J Mol Sci 2021; 22:ijms22094993. [PMID: 34066758 PMCID: PMC8125816 DOI: 10.3390/ijms22094993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/03/2023] Open
Abstract
Epoxy-fatty acids (EpFAs) are endogenous lipid mediators that have a large breadth of biological activities, including the regulation of blood pressure, inflammation, angiogenesis, and pain perception. For the past 20 years, soluble epoxide hydrolase (sEH) has been recognized as the primary enzyme for degrading EpFAs in vivo. The sEH converts EpFAs to the generally less biologically active 1,2-diols, which are quickly eliminated from the body. Thus, inhibitors of sEH are being developed as potential drug therapeutics for various diseases including neuropathic pain. Recent findings suggest that other epoxide hydrolases (EHs) such as microsomal epoxide hydrolase (mEH) and epoxide hydrolase-3 (EH3) can contribute significantly to the in vivo metabolism of EpFAs. In this study, we used two complementary approaches to probe the relative importance of sEH, mEH, and EH3 in 15 human tissue extracts: hydrolysis of 14,15-EET and 13,14-EDP using selective inhibitors and protein quantification. The sEH hydrolyzed the majority of EpFAs in all of the tissues investigated, mEH hydrolyzed a significant portion of EpFAs in several tissues, whereas no significant role in EpFAs metabolism was observed for EH3. Our findings indicate that residual mEH activity could limit the therapeutic efficacy of sEH inhibition in certain organs.
Collapse
|
15
|
Codony S, Calvó-Tusell C, Valverde E, Osuna S, Morisseau C, Loza MI, Brea J, Pérez C, Rodríguez-Franco MI, Pizarro-Delgado J, Corpas R, Griñán-Ferré C, Pallàs M, Sanfeliu C, Vázquez-Carrera M, Hammock BD, Feixas F, Vázquez S. From the Design to the In Vivo Evaluation of Benzohomoadamantane-Derived Soluble Epoxide Hydrolase Inhibitors for the Treatment of Acute Pancreatitis. J Med Chem 2021; 64:5429-5446. [PMID: 33945278 PMCID: PMC8634379 DOI: 10.1021/acs.jmedchem.0c01601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
The
pharmacological inhibition of soluble epoxide hydrolase (sEH)
is efficient for the treatment of inflammatory and pain-related diseases.
Numerous potent sEH inhibitors (sEHIs) present adamantyl or phenyl
moieties, such as the clinical candidates AR9281 or EC5026. Herein,
in a new series of sEHIs, these hydrophobic moieties have been merged
in a benzohomoadamantane scaffold. Most of the new sEHIs have excellent
inhibitory activities against sEH. Molecular dynamics simulations
suggested that the addition of an aromatic ring into the adamantane
scaffold produced conformational rearrangements in the enzyme to stabilize
the aromatic ring of the benzohomoadamantane core. A screening cascade
permitted us to select a candidate for an in vivo efficacy study in a murine model of cerulein-induced acute pancreatitis.
The administration of 22 improved the health status of
the animals and reduced pancreatic damage, demonstrating that the
benzohomoadamantane unit is a promising scaffold for the design of
novel sEHIs.
Collapse
Affiliation(s)
- Sandra Codony
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona 08028, Spain
| | - Carla Calvó-Tusell
- CompBioLab Group, Departament de Química and Institut de Química Computacional i Catàlisi (IQCC), Universitat de Girona, C/ Maria Aurèlia Capmany 69, Girona 17003, Spain
| | - Elena Valverde
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona 08028, Spain
| | - Sílvia Osuna
- CompBioLab Group, Departament de Química and Institut de Química Computacional i Catàlisi (IQCC), Universitat de Girona, C/ Maria Aurèlia Capmany 69, Girona 17003, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Christophe Morisseau
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis 95616, California, United States
| | - M Isabel Loza
- Drug Screening Platform/Biofarma Research Group, CIMUS Research Center. Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
| | - José Brea
- Drug Screening Platform/Biofarma Research Group, CIMUS Research Center. Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
| | - Concepción Pérez
- Institute of Medicinal Chemistry, Spanish National Research Council (CSIC), C/Juan de la Cierva 3, Madrid 28006, Spain
| | - María Isabel Rodríguez-Franco
- Institute of Medicinal Chemistry, Spanish National Research Council (CSIC), C/Juan de la Cierva 3, Madrid 28006, Spain
| | - Javier Pizarro-Delgado
- Pharmacology Section. Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, Barcelona 08028, Spain.,Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid 28029, Spain.,Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat 08950, Spain
| | - Rubén Corpas
- Institute of Biomedical Research of Barcelona (IIBB), CSIC and IDIBAPS, Barcelona 08036, Spain.,CIBER Epidemiology and Public Health (CIBERESP)-Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Christian Griñán-Ferré
- Pharmacology Section. Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institut de Neurociències, University of Barcelona, Av. Joan XXIII, 27-31, Barcelona 08028, Spain
| | - Mercè Pallàs
- Pharmacology Section. Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institut de Neurociències, University of Barcelona, Av. Joan XXIII, 27-31, Barcelona 08028, Spain
| | - Coral Sanfeliu
- Institute of Biomedical Research of Barcelona (IIBB), CSIC and IDIBAPS, Barcelona 08036, Spain.,CIBER Epidemiology and Public Health (CIBERESP)-Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Manuel Vázquez-Carrera
- Pharmacology Section. Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, Barcelona 08028, Spain.,Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid 28029, Spain.,Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat 08950, Spain
| | - Bruce D Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis 95616, California, United States
| | - Ferran Feixas
- CompBioLab Group, Departament de Química and Institut de Química Computacional i Catàlisi (IQCC), Universitat de Girona, C/ Maria Aurèlia Capmany 69, Girona 17003, Spain
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona 08028, Spain
| |
Collapse
|
16
|
Tiwari S, Yang J, Morisseau C, Durbin-Johnson B, Hammock BD, Gomes AV. Ibuprofen alters epoxide hydrolase activity and epoxy-oxylipin metabolites associated with different metabolic pathways in murine livers. Sci Rep 2021; 11:7042. [PMID: 33782432 PMCID: PMC8007717 DOI: 10.1038/s41598-021-86284-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/11/2021] [Indexed: 11/09/2022] Open
Abstract
Over the last decade oxylipins have become more recognized for their involvement in several diseases. Non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen are known to inhibit cyclooxygenase (COX) enzymes, but how NSAIDs affect oxylipins, in addition to COX products, in animal tissues is not well understood. Oxylipins in livers from male and female mice treated with 100 mg/kg/day of ibuprofen for 7 days were investigated. The results showed that ibuprofen treated male livers contained 7 times more altered oxylipins than ibuprofen treated female livers. In male and female livers some prostaglandins were altered, while diols, hydroxy fatty acids and epoxides were significantly altered in male livers. Some soluble epoxide hydrolase (sEH) products, such as 9,10-DiHODE were found to be decreased, while sEH substrates (such as 9(10)-EpODE and 5(6)-EpETrE) were found to be increased in male livers treated with ibuprofen, but not in ibuprofen treated female livers. The enzymatic activities of sEH and microsomal epoxide hydrolase (mEH) were elevated by ibuprofen in both males and females. Analyzing the influence of sex on the effect of ibuprofen on oxylipins and COX products showed that approximately 27% of oxylipins detected were influenced by sex. The results reveal that ibuprofen disturbs not only the COX pathway, but also the CYP450 and lipoxygenase pathways in male mice, suggesting that ibuprofen is likely to generate sex related differences in biologically active oxylipins. Increased sEH activity after ibuprofen treatment is likely to be one of the mechanisms by which the liver reduces the higher levels of EpODEs and EpETrEs.
Collapse
Affiliation(s)
- Shuchita Tiwari
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, 95616, USA
| | - Jun Yang
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| | | | - Bruce D Hammock
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, 95616, USA. .,Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.
| |
Collapse
|
17
|
Hammock B, McReynolds CB, Wagner K, Buckpitt A, Cortes-Puch I, Croston G, Lee KSS, Yang J, Schmidt WK, Hwang SH. Movement to the Clinic of Soluble Epoxide Hydrolase Inhibitor EC5026 as an Analgesic for Neuropathic Pain and for Use as a Nonaddictive Opioid Alternative. J Med Chem 2021; 64:1856-1872. [PMID: 33550801 PMCID: PMC7917437 DOI: 10.1021/acs.jmedchem.0c01886] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Indexed: 12/12/2022]
Abstract
This report describes the development of an orally active analgesic that resolves inflammation and neuropathic pain without the addictive potential of opioids. EC5026 acts on the cytochrome P450 branch of the arachidonate cascade to stabilize epoxides of polyunsaturated fatty acids (EpFA), which are natural mediators that reduce pain, resolve inflammation, and maintain normal blood pressure. EC5026 is a slow-tight binding transition-state mimic that inhibits the soluble epoxide hydrolase (sEH) at picomolar concentrations. The sEH rapidly degrades EpFA; thus, inhibiting sEH increases EpFA in vivo and confers beneficial effects. This mechanism addresses disease states by shifting endoplasmic reticulum stress from promoting cellular senescence and inflammation toward cell survival and homeostasis. We describe the synthesis and optimization of EC5026 and its development through human Phase 1a trials with no drug-related adverse events. Additionally, we outline fundamental work leading to discovery of the analgesic and inflammation-resolving CYP450 branch of the arachidonate cascade.
Collapse
Affiliation(s)
- Bruce
D. Hammock
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - Cindy B. McReynolds
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - Karen Wagner
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - Alan Buckpitt
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - Irene Cortes-Puch
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - Glenn Croston
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | | | - Jun Yang
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - William K. Schmidt
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - Sung Hee Hwang
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| |
Collapse
|
18
|
Soluble Epoxide Hydrolase Hepatic Deficiency Ameliorates Alcohol-Associated Liver Disease. Cell Mol Gastroenterol Hepatol 2020; 11:815-830. [PMID: 33068774 PMCID: PMC7851189 DOI: 10.1016/j.jcmgh.2020.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Alcohol-associated liver disease (ALD) is a significant cause of liver-related morbidity and mortality worldwide and with limited therapies. Soluble epoxide hydrolase (sEH; Ephx2) is a largely cytosolic enzyme that is highly expressed in the liver and is implicated in hepatic function, but its role in ALD is mostly unexplored. METHODS To decipher the role of hepatic sEH in ALD, we generated mice with liver-specific sEH disruption (Alb-Cre; Ephx2fl/fl). Alb-Cre; Ephx2fl/fl and control (Ephx2fl/fl) mice were subjected to an ethanol challenge using the chronic plus binge model of ALD and hepatic injury, inflammation, and steatosis were evaluated under pair-fed and ethanol-fed states. In addition, we investigated the capacity of pharmacologic inhibition of sEH in the chronic plus binge mouse model. RESULTS We observed an increase of hepatic sEH in mice upon ethanol consumption, suggesting that dysregulated hepatic sEH expression might be involved in ALD. Alb-Cre; Ephx2fl/fl mice presented efficient deletion of hepatic sEH with corresponding attenuation in sEH activity and alteration in the lipid epoxide/diol ratio. Consistently, hepatic sEH deficiency ameliorated ethanol-induced hepatic injury, inflammation, and steatosis. In addition, targeted metabolomics identified lipid mediators that were impacted significantly by hepatic sEH deficiency. Moreover, hepatic sEH deficiency was associated with a significant attenuation of ethanol-induced hepatic endoplasmic reticulum and oxidative stress. Notably, pharmacologic inhibition of sEH recapitulated the effects of hepatic sEH deficiency and abrogated injury, inflammation, and steatosis caused by ethanol feeding. CONCLUSIONS These findings elucidated a role for sEH in ALD and validated a pharmacologic inhibitor of this enzyme in a preclinical mouse model as a potential therapeutic approach.
Collapse
|
19
|
Codony S, Pujol E, Pizarro J, Feixas F, Valverde E, Loza MI, Brea JM, Saez E, Oyarzabal J, Pineda-Lucena A, Pérez B, Pérez C, Rodríguez-Franco MI, Leiva R, Osuna S, Morisseau C, Hammock BD, Vázquez-Carrera M, Vázquez S. 2-Oxaadamant-1-yl Ureas as Soluble Epoxide Hydrolase Inhibitors: In Vivo Evaluation in a Murine Model of Acute Pancreatitis. J Med Chem 2020; 63:9237-9257. [PMID: 32787085 PMCID: PMC7755424 DOI: 10.1021/acs.jmedchem.0c00310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In vivo pharmacological inhibition of soluble epoxide hydrolase (sEH) reduces inflammatory diseases, including acute pancreatitis (AP). Adamantyl ureas are very potent sEH inhibitors, but the lipophilicity and metabolism of the adamantane group compromise their overall usefulness. Herein, we report that the replacement of a methylene unit of the adamantane group by an oxygen atom increases the solubility, permeability, and stability of three series of urea-based sEH inhibitors. Most of these oxa-analogues are nanomolar inhibitors of both the human and murine sEH. Molecular dynamics simulations rationalize the molecular basis for their activity and suggest that the presence of the oxygen atom on the adamantane scaffold results in active site rearrangements to establish a weak hydrogen bond. The 2-oxaadamantane 22, which has a good solubility, microsomal stability, and selectivity for sEH, was selected for further in vitro and in vivo studies in models of cerulein-induced AP. Both in prophylactic and treatment studies, 22 diminished the overexpression of inflammatory and endoplasmic reticulum stress markers induced by cerulein and reduced the pancreatic damage.
Collapse
Affiliation(s)
- Sandra Codony
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Eugènia Pujol
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Javier Pizarro
- Pharmacology, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Ferran Feixas
- CompBioLab Group, Departament de Química and Institut de Química Computacional i Catàlisi (IQCC), Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Elena Valverde
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
- Pharmacology, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - M. Isabel Loza
- Drug Screening Platform/Biofarma Research Group, CIMUS Research Center. University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - José M. Brea
- Drug Screening Platform/Biofarma Research Group, CIMUS Research Center. University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Elena Saez
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Antonio Pineda-Lucena
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Belén Pérez
- Department of Pharmacology, Therapeutics and Toxicology, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Concepción Pérez
- Institute of Medicinal Chemistry, Spanish National Research Council (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - María Isabel Rodríguez-Franco
- Institute of Medicinal Chemistry, Spanish National Research Council (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Rosana Leiva
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Sílvia Osuna
- CompBioLab Group, Departament de Química and Institut de Química Computacional i Catàlisi (IQCC), Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Christophe Morisseau
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Bruce D. Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Manuel Vázquez-Carrera
- Pharmacology, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| |
Collapse
|
20
|
Shihadih DS, Harris TR, Kodani SD, Hwang SH, Lee KSS, Mavangira V, Hamamoto B, Guedes A, Hammock BD, Morisseau C. Selection of Potent Inhibitors of Soluble Epoxide Hydrolase for Usage in Veterinary Medicine. Front Vet Sci 2020; 7:580. [PMID: 33005645 PMCID: PMC7479175 DOI: 10.3389/fvets.2020.00580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
The veterinary pharmacopeia available to treat pain and inflammation is limited in number, target of action and efficacy. Inhibitors of soluble epoxide hydrolase (sEH) are a new class of anti-inflammatory, pro-resolving and analgesic drugs being tested in humans that have demonstrated efficacy in laboratory animals. They block the hydrolysis, and thus, increase endogenous concentrations of analgesic and anti-inflammatory signaling molecules called epoxy-fatty acids. Here, we screened a library of 2,300 inhibitors of the sEH human against partially purified feline, canine and equine hepatic sEH to identify inhibitors that are broadly potent among species. Six very potent sEH inhibitors (IC50 < 1 nM for each enzyme tested) were identified. Their microsomal stability was then measured in hepatic extracts from cat, dog and horse, as well as their solubility in solvents suitable for the formulation of drugs. The trans-4-{4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy}-benzoic acid (t-TUCB, 1,728) appears to be the best compromise between stability and potency across species. Thus, it was selected for further testing in veterinary clinical trials of pain and inflammation in animals.
Collapse
Affiliation(s)
- Diyala S. Shihadih
- Department of Entomology and Nematology, U.C. Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Todd R. Harris
- Department of Entomology and Nematology, U.C. Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Sean D. Kodani
- Department of Entomology and Nematology, U.C. Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Sung-Hee Hwang
- Department of Entomology and Nematology, U.C. Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Kin Sing Stephen Lee
- Department of Entomology and Nematology, U.C. Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
- Department of Pharmacology and Toxicology and Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Vengai Mavangira
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Briana Hamamoto
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Alonso Guedes
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, United States
| | - Bruce D. Hammock
- Department of Entomology and Nematology, U.C. Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology, U.C. Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| |
Collapse
|
21
|
Li Y, Ou X, Guo Z, Zong M, Lou W. Using multiple site-directed modification of epoxide hydrolase to significantly improve its enantioselectivity in hydrolysis of rac-glycidyl phenyl ether. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Han KH, Kim B, Ji SC, Kang HG, Cheong HI, Cho JY, Ha IS. Mechanism of Chronic Kidney Disease Progression and Novel Biomarkers: A Metabolomic Analysis of Experimental Glomerulonephritis. Metabolites 2020; 10:E169. [PMID: 32344531 PMCID: PMC7240957 DOI: 10.3390/metabo10040169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/12/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
While a complex network of cellular and molecular events is known to be involved in the pathophysiological mechanism of chronic kidney disease (CKD), the divergence point between reversal and progression and the event that triggers CKD progression are still unknown. To understand the different mechanisms between reversible and irreversible kidney disease and to search for urinary biomarkers that can predict prognosis, a metabolomic analysis was applied to compare acute and chronic experimental glomerulonephritis (GN) models. Four metabolites, namely, epoxyoctadecenoic acid (EpOME), epoxyeicosatetraenoic acid (EpETE), α-linolenic acid (ALA), and hydroxyretinoic acid, were identified as predictive markers after comparing the chronic nephritis model with acute nephritis and control groups (false discovery rate adjusted p-value (q-value) < 0.05). Renal mRNA expression of cytochrome P450 and epoxide hydrolase was also identified as being involved in the production of epoxide metabolites from these polyunsaturated fatty acids (p < 0.05). These results suggested that the progression of chronic kidney disease is associated with abnormally activated epoxide hydrolase, leading to an increase in EpOME and EpETE as pro-inflammatory eicosanoids.
Collapse
Affiliation(s)
- Kyoung Hee Han
- Department of Pediatrics, Jeju National University School of Medicine, Aran 13gil 15, Jeju-si, Jeju 63241, Korea;
| | - Bora Kim
- Kidney Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (B.K.); (S.C.J.); (H.G.K.)
- Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Sang Chun Ji
- Kidney Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (B.K.); (S.C.J.); (H.G.K.)
- Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Hee Gyung Kang
- Kidney Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (B.K.); (S.C.J.); (H.G.K.)
- Department of Pediatrics, Seoul National University College of Medicine and Hospital, 103, Daehak-ro, Jongno-gu, Seoul 03080, Korea;
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University College of Medicine and Hospital, 103, Daehak-ro, Jongno-gu, Seoul 03080, Korea;
| | - Joo-Youn Cho
- Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Il-Soo Ha
- Kidney Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (B.K.); (S.C.J.); (H.G.K.)
- Department of Pediatrics, Seoul National University College of Medicine and Hospital, 103, Daehak-ro, Jongno-gu, Seoul 03080, Korea;
| |
Collapse
|
23
|
Barnych B, Singh N, Negrel S, Zhang Y, Magis D, Roux C, Hua X, Ding Z, Morisseau C, Tantillo DJ, Siegel JB, Hammock BD. Development of potent inhibitors of the human microsomal epoxide hydrolase. Eur J Med Chem 2020; 193:112206. [PMID: 32203787 DOI: 10.1016/j.ejmech.2020.112206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 11/15/2022]
Abstract
Microsomal epoxide hydrolase (mEH) hydrolyzes a wide range of epoxide containing molecules. Although involved in the metabolism of xenobiotics, recent studies associate mEH with the onset and development of certain disease conditions. This phenomenon is partially attributed to the significant role mEH plays in hydrolyzing endogenous lipid mediators, suggesting more complex and extensive physiological functions. In order to obtain pharmacological tools to further study the biology and therapeutic potential of this enzyme target, we describe the development of highly potent 2-alkylthio acetamide inhibitors of the human mEH with IC50 values in the low nanomolar range. These are around 2 orders of magnitude more potent than previously obtained primary amine, amide and urea-based mEH inhibitors. Experimental assay results and rationalization of binding through docking calculations of inhibitors to a mEH homology model indicate that an amide connected to an alkyl side chain and a benzyl-thio function as key pharmacophore units.
Collapse
Affiliation(s)
- Bogdan Barnych
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Nalin Singh
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Sophie Negrel
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Yue Zhang
- Department of Chemistry, University of California Davis, Davis, CA, 95616, United States
| | - Damien Magis
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Capucine Roux
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Xiude Hua
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States; College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhewen Ding
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California Davis, Davis, CA, 95616, United States
| | - Justin B Siegel
- Department of Chemistry, University of California Davis, Davis, CA, 95616, United States; Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, 95616, United States; Genome Center, University of California Davis, Davis, CA, 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States.
| |
Collapse
|
24
|
Complex interrelationships between nitro-alkene-dependent inhibition of soluble epoxide hydrolase, inflammation and tumor growth. Redox Biol 2019; 29:101405. [PMID: 31926628 PMCID: PMC6928308 DOI: 10.1016/j.redox.2019.101405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/25/2019] [Accepted: 12/07/2019] [Indexed: 01/22/2023] Open
Abstract
Nitro-oleate (10-nitro-octadec-9-enoic acid), which inhibits soluble epoxide hydrolase (sEH) by covalently adducting to C521, increases the abundance of epoxyeicosatrienoic acids (EETs) that can be health promoting, for example by lowering blood pressure or their anti-inflammatory actions. However, perhaps consistent with their impact on angiogenesis, increases in EETs may exacerbate progression of some cancers. To assess this, Lewis lung carcinoma (LLc1) cells were exposed to oleate or nitro-oleate, with the latter inhibiting the hydrolase and increasing their proliferation and migration in vitro. The enhanced proliferation induced by nitro-oleate was EET-dependent, being attenuated by the ETT-receptor antagonist 14,15-EE-5(Z)-E. LLc1 cells were engineered to stably overexpress wild-type or C521S sEH, with the latter exhibiting resistance to nitro-oleate-dependent hydrolase inhibition and the associated stimulation of tumor growth in vitro or in vivo. Nitro-oleate also increased migration in endothelial cells isolated from wild-type (WT) mice, but not those from C521S sEH knock-in (KI) transgenic mice genetically modified to render the hydrolase electrophile-resistant. These observations were consistent with nitro-oleate promoting cancer progression, and so the impact of this electrophile was examined in vivo again, but this time comparing growth of LLc1 cells expressing constitutive levels of wild-type hydrolase when implanted into WT or KI mice. Nitro-oleate inhibited tumor sEH (P < 0.05), with a trend for elevated plasma 11(12)-EET/DHET and 8(9)EET/DHET (dihydroxyeicosatrienoic acid) ratios when administered to WT, but not KI, mice. Although in vitro studies with LLc1 cells supported a role for nitro-oleate in cancer cell proliferation, it failed to significantly stimulate tumor growth in WT mice implanted with the same LLc1 cells in vivo, perhaps due to its well-established anti-inflammatory actions. Indeed, pro-inflammatory cytokines were significantly down-regulated in nitro-oleate treated WT mice, potentially countering any impact of the concomitant inhibition of sEH.
Collapse
|
25
|
Abis G, Pacheco-Gómez R, Bui TTT, Conte MR. Isothermal Titration Calorimetry Enables Rapid Characterization of Enzyme Kinetics and Inhibition for the Human Soluble Epoxide Hydrolase. Anal Chem 2019; 91:14865-14872. [PMID: 31660733 PMCID: PMC7041903 DOI: 10.1021/acs.analchem.9b01847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Isothermal titration
calorimetry (ITC) is conventionally used to
acquire thermodynamic data for biological interactions. In recent
years, ITC has emerged as a powerful tool to characterize enzyme kinetics.
In this study, we have adapted a single-injection method (SIM) to
study the kinetics of human soluble epoxide hydrolase (hsEH), an enzyme
involved in cardiovascular homeostasis, hypertension, nociception,
and insulin sensitivity through the metabolism of epoxy-fatty acids
(EpFAs). In the SIM method, the rate of reaction is determined by
monitoring the thermal power, while the substrate is being depleted,
overcoming the need for synthetic substrates and reducing postreaction
processing. Our results show that ITC enables the detailed, rapid,
and reproducible characterization of the hsEH-mediated hydrolysis
of several natural EpFA substrates. Furthermore, we have applied a
variant of the single-injection ITC method for the detailed description
of enzyme inhibition, proving the power of this approach in the rapid
screening and discovery of new hsEH inhibitors using the enzyme’s
physiological substrates. The methods described herein will enable
further studies on EpFAs’ metabolism and biology, as well as
drug discovery investigations to identify and characterize hsEH inhibitors.
This also promises to provide a general approach for the characterization
of lipid catalysis, given the challenges that lipid metabolism studies
pose to traditional spectroscopic techniques.
Collapse
Affiliation(s)
- Giancarlo Abis
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences , King's College London , London , SE1 1UL , United Kingdom
| | - Raúl Pacheco-Gómez
- Malvern Panalytical Ltd , Enigma Business Park, Grovewood Road , Malvern , WR14 1XZ , United Kingdom
| | - Tam T T Bui
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences , King's College London , London , SE1 1UL , United Kingdom.,Centre for Biomolecular Spectroscopy , King's College London , London , SE1 1UL , United Kingdom
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences , King's College London , London , SE1 1UL , United Kingdom.,Centre for Biomolecular Spectroscopy , King's College London , London , SE1 1UL , United Kingdom
| |
Collapse
|
26
|
Jones RD, Liao J, Tong X, Xu D, Sun L, Li H, Yang GY. Epoxy-Oxylipins and Soluble Epoxide Hydrolase Metabolic Pathway as Targets for NSAID-Induced Gastroenteropathy and Inflammation-Associated Carcinogenesis. Front Pharmacol 2019; 10:731. [PMID: 31293429 PMCID: PMC6603234 DOI: 10.3389/fphar.2019.00731] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) including epoxide-modified ω-3 and ω-6 fatty acids are made via oxidation to create highly polarized carbon-oxygen bonds crucial to their function as signaling molecules. A critical PUFA, arachidonic acid (ARA), is metabolized to a diverse set of lipids signaling molecules through cyclooxygenase (COX), lipoxygenase (LOX), cytochrome P450 epoxygenase, or cytochrome P450 hydroxylase; however, the majority of ARA is metabolized into anti-inflammatory epoxides via cytochrome P450 enzymes. These short-lived epoxide lipids are rapidly metabolized or inactivated by the soluble epoxide hydrolase (sEH) into diol-containing products. sEH inhibition or knockout has been a practical approach to study the biology of the epoxide lipids, and has been shown to effectively treat inflammatory conditions in the preclinical models including gastrointestinal ulcers and colitis by shifting oxylipins to epoxide profiles, inhibiting inflammatory cell infiltration and activation, and enhancing epithelial cell defense via increased mucin production, thus providing further evidence for the role of sEH as a pro-inflammatory protein. Non-steroidal anti-inflammatory drugs (NSAIDs) with COX-inhibitor activity are among the most commonly used analgesics and have demonstrated applications in the management of cardiovascular disease and intriguingly cancer. Major side effects of NSAIDs however are gastrointestinal ulcers which frequently precludes their long-term application. In this review, we hope to bridge the gap between NSAID toxicity and sEH-mediated metabolic pathways to focus on the role of epoxy fatty acid metabolic pathway of PUFAs in NSAIDS-ulcer formation and healing as well as inflammation-related carcinogenesis. Specifically we address the potential application of sEH inhibition to enhance ulcer healing at the site of inflammation via their activity on altered lipid signaling, mitochondrial function, and diminished reactive oxygen species, and further discuss the significance of dual COX and sEH inhibitor in anti-inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Ryan D Jones
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jie Liao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Xin Tong
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Dandan Xu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Leyu Sun
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Haonan Li
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Guang-Yu Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
27
|
Yamanashi H, Boeglin WE, Morisseau C, Davis RW, Sulikowski GA, Hammock BD, Brash AR. Catalytic activities of mammalian epoxide hydrolases with cis and trans fatty acid epoxides relevant to skin barrier function. J Lipid Res 2018; 59:684-695. [PMID: 29459481 PMCID: PMC5880498 DOI: 10.1194/jlr.m082701] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/05/2018] [Indexed: 11/20/2022] Open
Abstract
Lipoxygenase (LOX)-catalyzed oxidation of the essential fatty acid, linoleate, represents a vital step in construction of the mammalian epidermal permeability barrier. Analysis of epidermal lipids indicates that linoleate is converted to a trihydroxy derivative by hydrolysis of an epoxy-hydroxy precursor. We evaluated different epoxide hydrolase (EH) enzymes in the hydrolysis of skin-relevant fatty acid epoxides and compared the products to those of acid-catalyzed hydrolysis. In the absence of enzyme, exposure to pH 5 or pH 6 at 37°C for 30 min hydrolyzed fatty acid allylic epoxyalcohols to four trihydroxy products. By contrast, human soluble EH [sEH (EPHX2)] and human or murine epoxide hydrolase-3 [EH3 (EPHX3)] hydrolyzed cis or trans allylic epoxides to single diastereomers, identical to the major isomers detected in epidermis. Microsomal EH [mEH (EPHX1)] was inactive with these substrates. At low substrate concentrations (<10 μM), EPHX2 hydrolyzed 14,15-epoxyeicosatrienoic acid (EET) at twice the rate of the epidermal epoxyalcohol, 9R,10R-trans-epoxy-11E-13R-hydroxy-octadecenoic acid, whereas human or murine EPHX3 hydrolyzed the allylic epoxyalcohol at 31-fold and 39-fold higher rates, respectively. These data implicate the activities of EPHX2 and EPHX3 in production of the linoleate triols detected as end products of the 12R-LOX pathway in the epidermis and implicate their functioning in formation of the mammalian water permeability barrier.
Collapse
Affiliation(s)
- Haruto Yamanashi
- Departments of Pharmacology Vanderbilt University School of Medicine, Nashville, TN 37232; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - William E Boeglin
- Departments of Pharmacology Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Christophe Morisseau
- Department of Entomology and Nematology and Comprehensive Cancer Research Center, University of California, Davis, Davis, CA 95616
| | - Robert W Davis
- Chemistry and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Gary A Sulikowski
- Chemistry and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Bruce D Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Research Center, University of California, Davis, Davis, CA 95616
| | - Alan R Brash
- Departments of Pharmacology Vanderbilt University School of Medicine, Nashville, TN 37232.
| |
Collapse
|
28
|
Burmistrov V, Morisseau C, Harris TR, Butov G, Hammock BD. Effects of adamantane alterations on soluble epoxide hydrolase inhibition potency, physical properties and metabolic stability. Bioorg Chem 2017; 76:510-527. [PMID: 29310082 DOI: 10.1016/j.bioorg.2017.12.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 12/24/2022]
Abstract
Adamantyl groups are widely used in medicinal chemistry. However, metabolism limits their usage. Herein, we report the first systematic study of adamantyl ureas and diureas bearing substituents in bridgehead positions of adamantane and/or spacers between urea groups and adamantane group, and tested their effects on soluble epoxide hydrolase inhibitor potency and metabolic stability. Interestingly, the effect on activity against human and murine sEH varied in opposite ways with each new methyl group introduced into the molecule. Compounds with three methyl substituents in adamantane were very poor inhibitors of murine sEH while still very potent against human sEH. In addition, diureas with terminal groups bigger than sEH catalytic tunnel diameter were still good inhibitors suggesting that the active site of sEH opens to capture the substrate or inhibitor molecule. The introduction of one methyl group leads to 4-fold increase in potency without noticeable loss of metabolic stability compared to the unsubstituted adamantane. However, introduction of two or three methyl groups leads to 8-fold and 98-fold decrease in stability in human liver microsomes for the corresponding compounds.
Collapse
Affiliation(s)
- Vladimir Burmistrov
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA; Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (branch) Volgograd State Technical University, Volzhsky, Russia
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| | - Todd R Harris
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| | - Gennady Butov
- Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (branch) Volgograd State Technical University, Volzhsky, Russia
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
29
|
Effects of dronedarone, amiodarone and their active metabolites on sequential metabolism of arachidonic acid to epoxyeicosatrienoic and dihydroxyeicosatrienoic acids. Biochem Pharmacol 2017; 146:188-198. [DOI: 10.1016/j.bcp.2017.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/22/2017] [Indexed: 12/23/2022]
|
30
|
Toselli F, Fredenwall M, Svensson P, Li XQ, Johansson A, Weidolf L, Hayes MA. Oxetane Substrates of Human Microsomal Epoxide Hydrolase. Drug Metab Dispos 2017; 45:966-973. [PMID: 28600384 DOI: 10.1124/dmd.117.076489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/05/2017] [Indexed: 11/22/2022] Open
Abstract
Oxetanyl building blocks are increasingly used in drug discovery because of the improved drug-like properties they confer on drug candidates, yet little is currently known about their biotransformation. A series of oxetane-containing analogs was studied and we provide the first direct evidence of oxetane hydrolysis by human recombinant microsomal epoxide hydrolase (mEH). Incubations with human liver fractions and hepatocytes were performed with and without inhibitors of cytochrome P450 (P450), mEH and soluble epoxide hydrolase (sEH). Reaction dependence on NADPH was investigated in subcellular fractions. A full kinetic characterization of oxetane hydrolysis is presented, in both human liver microsomes and human recombinant mEH. In human liver fractions and hepatocytes, hydrolysis by mEH was the only oxetane ring-opening metabolic route, with no contribution from sEH or from cytochrome P450-catalyzed oxidation. Minimally altering the structural elements in the immediate vicinity of the oxetane can greatly modulate the efficiency of hydrolytic ring cleavage. In particular, higher pKa in the vicinity of the oxetane and an increased distance between the oxetane ring and the benzylic nitrogen improve reaction rate, which is further enhanced by the presence of methyl groups near or on the oxetane. This work defines oxetanes as the first nonepoxide class of substrates for human mEH, which was previously known to catalyze the hydrolytic ring opening of electrophilic and potentially toxic epoxide-containing drugs, drug metabolites, and exogenous organochemicals. These findings will be of value for the development of biologically active oxetanes and may be exploited for the biocatalytic generation of enantiomerically pure oxetanes and diols.
Collapse
Affiliation(s)
- Francesca Toselli
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca, Mölndal, Sweden (F.T., M.F., X.-Q.L., A.J., L.W., M.A.H.); and Integrative Research Laboratories, Arvid Wallgrens Backe 20, Gothenburg, Sweden (P.S.)
| | - Marlene Fredenwall
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca, Mölndal, Sweden (F.T., M.F., X.-Q.L., A.J., L.W., M.A.H.); and Integrative Research Laboratories, Arvid Wallgrens Backe 20, Gothenburg, Sweden (P.S.)
| | - Peder Svensson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca, Mölndal, Sweden (F.T., M.F., X.-Q.L., A.J., L.W., M.A.H.); and Integrative Research Laboratories, Arvid Wallgrens Backe 20, Gothenburg, Sweden (P.S.)
| | - Xue-Qing Li
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca, Mölndal, Sweden (F.T., M.F., X.-Q.L., A.J., L.W., M.A.H.); and Integrative Research Laboratories, Arvid Wallgrens Backe 20, Gothenburg, Sweden (P.S.)
| | - Anders Johansson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca, Mölndal, Sweden (F.T., M.F., X.-Q.L., A.J., L.W., M.A.H.); and Integrative Research Laboratories, Arvid Wallgrens Backe 20, Gothenburg, Sweden (P.S.)
| | - Lars Weidolf
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca, Mölndal, Sweden (F.T., M.F., X.-Q.L., A.J., L.W., M.A.H.); and Integrative Research Laboratories, Arvid Wallgrens Backe 20, Gothenburg, Sweden (P.S.)
| | - Martin A Hayes
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca, Mölndal, Sweden (F.T., M.F., X.-Q.L., A.J., L.W., M.A.H.); and Integrative Research Laboratories, Arvid Wallgrens Backe 20, Gothenburg, Sweden (P.S.)
| |
Collapse
|
31
|
Wagner K, Gilda J, Yang J, Wan D, Morisseau C, Gomes AV, Hammock BD. Soluble epoxide hydrolase inhibition alleviates neuropathy in Akita (Ins2 Akita) mice. Behav Brain Res 2017; 326:69-76. [PMID: 28259677 DOI: 10.1016/j.bbr.2017.02.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/26/2017] [Accepted: 02/28/2017] [Indexed: 12/11/2022]
Abstract
The soluble epoxide hydrolase (sEH) is a regulatory enzyme responsible for the metabolism of bioactive lipid epoxides of both omega-6 and omega-3 long chain polyunsaturated fatty acids. These natural epoxides mediate cell signaling in several physiological functions including blocking inflammation, high blood pressure and both inflammatory and neuropathic pain. Inhibition of the sEH maintains the level of endogenous bioactive epoxy-fatty acids (EpFA) and allows them to exert their generally beneficial effects. The Akita (Ins2Akita or Ins2C96Y) mice represent a maturity-onset of diabetes of the young (MODY) model in lean, functionally unimpaired animals, with a sexually dimorphic disease phenotype. This allowed for a test of male and female mice in a battery of functional and nociceptive assays to probe the role of sEH in this system. The results demonstrate that inhibiting the sEH is analgesic in diabetic neuropathy and this occurs in a sexually dimorphic manner. Interestingly, sEH activity is also sexually dimorphic in the Akita model, and moreover correlates with disease status particularly in the hearts of male mice. In addition, in vivo levels of oxidized lipid metabolites also correlate with increased sEH expression and the pathogenesis of disease in this model. Thus, sEH is a target to effectively block diabetic neuropathic pain but also demonstrates a potential role in mitigating the progression of this disease.
Collapse
Affiliation(s)
- Karen Wagner
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Jennifer Gilda
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, CA 95616, United States
| | - Jun Yang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Debin Wan
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, CA 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States.
| |
Collapse
|
32
|
Integrating multi-omics biomarkers and postprandial metabolism to develop personalized treatment for anorexia nervosa. Prostaglandins Other Lipid Mediat 2017; 132:69-76. [PMID: 28232135 DOI: 10.1016/j.prostaglandins.2017.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/26/2017] [Accepted: 02/02/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Anorexia Nervosa (AN) is a serious mental illness characterized by emaciation, an intense fear of gaining weight despite being underweight, and distorted body image. Few treatments reverse the core symptoms in AN such as profound aversion to food and food avoidance. Consequently, AN has a chronic and relapsing course and the highest mortality rate of any psychiatric illness. A more complete understanding of the disease pathogenesis is needed in order to develop better treatments and improve AN outcome. The pathogenesis and psychopathophysiology of AN can be better elucidated by combining longitudinal phenotyping with multiple "omics" techniques, including genomics, proteomics, lipidomics, and metabolomics. DESIGN This paper summarizes the key findings of a series of interrelated studies including new experimental data and previously published data, and describes our current initiatives and future directions. RESULTS Exon sequencing data was analyzed in 1205 AN and 1948 controls. Targeted metabolomics, lipidomics, and proteomics data were collected in two independent convenience samples consisting of 75 subjects with eating disorders and 61 sex- and age-matched healthy controls. Study participants were female and the mean age was 22.9 (4.9 [SD]) years. Epoxide hydrolase 2 (EPHX2) genetic variations were significantly associated with AN risk, and epoxide hydrolase (sEH) activity was elevated in AN compared to controls. The polyunsaturated fatty acids (PUFAs) and eicosanoids data revealed that cytochrome P450 pathway was implicated in AN, and AN displayed a dysregulated postprandial metabolism of PUFAs and sEH-dependent eicosanoids. IMPLICATION AND CURRENT INITIATIVES Collectively, our data suggest that dietary factors may contribute to the burden of EPHX2-associated AN susceptibility and affect disease outcome. We are implementing new investigations using a longitudinal study design in order to validate and develop an EPHX2 multi-omics biomarker system. We will test whether sEH-associated postprandial metabolism increases AN risk and affects treatment outcome through an ω-6 rich breakfast challenge. Participants will include 100 ill AN patients, 100 recovered AN patients, and 100 age- and race-matched healthy women. These data will allow us to investigate 1) how genetic and dietary factors independently and synergistically contribute to AN risk and progression, and 2) if clinical severity and treatment response in AN are affected by sEH activity and eicosanoid dysregulation. Results of our study will 1) identify clinically relevant biomarkers, 2) unravel mechanistic functions of sEH, and 3) delineate contributory roles of dietary PUFAs and cytochrome P450 pathway eicosanoids for the purpose of developing novel AN treatments and improving disease prognosis.
Collapse
|
33
|
Guedes A, Galuppo L, Hood D, Hwang SH, Morisseau C, Hammock BD. Soluble epoxide hydrolase activity and pharmacologic inhibition in horses with chronic severe laminitis. Equine Vet J 2016; 49:345-351. [PMID: 27338788 DOI: 10.1111/evj.12603] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/21/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND The roles of soluble epoxide hydrolase and lipid mediators in inflammatory and neuropathic pain could be relevant in laminitis pain management. OBJECTIVES To determine soluble epoxide hydrolase (sEH) activity in the digital laminae, sEH inhibitor potency in vitro, and efficacy of a sEH inhibitor as an adjunct analgesic therapy in chronic laminitic horses. STUDY DESIGN In vitro experiments and clinical case series. METHODS sEH activity was measured in digital laminae from euthanised healthy and laminitic horses (n = 5-6/group). Potency of 7 synthetic sEH inhibitors was determined in vitro using equine liver cytosol. One of them (t-TUCB; 0.1 mg/kg bwt i.v. every 24 h) was selected based on potency and stability, and used as adjunct therapy in 10 horses with severe chronic laminitis (Obel grades 2, one horse; 3-4, nine horses). Daily assessments of forelimb lifts, pain scores, physiologic and laboratory examinations were performed before (baseline) and during t-TUCB treatment. Data are presented as mean ± s.d. and 95% confidence intervals (CI). RESULTS sEH activity in the digital laminae from laminitic horses (0.9±0.6 nmol/min/mg; 95% CI 0.16-1.55 nmol/min/mg) was significantly greater (P = 0.01) than in healthy horses (0.17±0.09 nmol/min/mg; CI 0.07-0.26 nmol/min/mg). t-TUCB as an adjunct analgesic up to 10 days (4.3±3 days) in laminitic horses was associated with significant reduction in forelimb lifts (36±22%; 95% CI 9-64%) and in pain scores (18±23%; 95% CI 2-35%) compared with baseline (P = 0.04). One horse developed gas colic and another corneal vascularisation in a blind eye during treatment. No other significant changes were observed. MAIN LIMITATIONS Absence of control group and evaluator blinding in case series. CONCLUSIONS sEH activity is significantly higher in the digital laminae of actively laminitic compared with healthy horses, and use of a potent inhibitor of equine sEH as adjunct analgesic therapy appears to decrease signs of pathologic pain in laminitic horses.
Collapse
Affiliation(s)
- A Guedes
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, USA.,Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, USA
| | - L Galuppo
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, USA
| | - D Hood
- The Hoof Diagnostic and Rehabilitation Clinic, Bryan, Texas, USA
| | - S H Hwang
- Department Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, USA
| | - C Morisseau
- Department Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, USA
| | - B D Hammock
- Department Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, USA
| |
Collapse
|
34
|
Goswami SK, Inamdar MN, Dethe SM, Gururaj GM, Jamwal R, Bhaskar A, Mundkinajeddu D, Agarwal A. Erectogenic and Aphrodisiac Property of Moringa oleifera: Involvement of Soluble Epoxide Hydrolase Enzyme. Phytother Res 2016; 30:1119-27. [PMID: 27020843 DOI: 10.1002/ptr.5614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 01/12/2016] [Accepted: 02/28/2016] [Indexed: 12/20/2022]
Abstract
Soluble epoxide hydrolase (sEH) inhibitors have been reported to improve penile erection; therefore, sEH could be useful for management of erectile dysfunction. Methanolic and aqueous extracts of 30 Indian medicinal plants were screened for their sEH inhibition potential. Fifteen extracts showed >50% inhibition when screened at 50 µg/mL in sEH inhibition assay. Methanolic extract of Moringa oleifera Lam. (Moringaceae) seeds (MEMO) was most potent with IC50 1.7 ± 0.1 µg/mL and was selected for in vitro studies on isolated rat corpus cavernosum smooth muscle and in vivo sexual behaviour studies on healthy and diabetic rats. Rats were divided into five groups, each containing six animals and treated orally with either water, vehicle (1% Tween-20), MEMO (45 and 90 mg/kg/day for 21 days), and standard drug, sildenafil (5 mg/kg/day for 7 days). An equal number of female rats were used, and the effect of MEMO and sildenafil was compared with that of vehicle. MEMO significantly relaxed isolated rat corpus cavernosum smooth muscle at 0.1-100 µg/mL in vitro and significantly increased (p < 0.05) sexual activity, intracavernous pressure/mean arterial pressure in normal and diabetic rats. The increase in erectile function of rats by MEMO could be because of its sEH inhibitory activity. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | | | - Shekhar M Dethe
- R&D Centre, Natural Remedies Pvt. Ltd., Plot No. 5B, Veerasandra Industrial Area, Bangalore, 560100, India
| | - Giligar M Gururaj
- R&D Centre, Natural Remedies Pvt. Ltd., Plot No. 5B, Veerasandra Industrial Area, Bangalore, 560100, India
| | - Rohitash Jamwal
- R&D Centre, Natural Remedies Pvt. Ltd., Plot No. 5B, Veerasandra Industrial Area, Bangalore, 560100, India
| | - Anirban Bhaskar
- R&D Centre, Natural Remedies Pvt. Ltd., Plot No. 5B, Veerasandra Industrial Area, Bangalore, 560100, India
| | - Deepak Mundkinajeddu
- R&D Centre, Natural Remedies Pvt. Ltd., Plot No. 5B, Veerasandra Industrial Area, Bangalore, 560100, India
| | - Amit Agarwal
- R&D Centre, Natural Remedies Pvt. Ltd., Plot No. 5B, Veerasandra Industrial Area, Bangalore, 560100, India
| |
Collapse
|
35
|
Althurwi HN, Tse MMY, Abdelhamid G, Zordoky BNM, Hammock BD, El-Kadi AOS. Soluble epoxide hydrolase inhibitor, TUPS, protects against isoprenaline-induced cardiac hypertrophy. Br J Pharmacol 2015; 168:1794-807. [PMID: 23176298 DOI: 10.1111/bph.12066] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/12/2012] [Accepted: 11/13/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE We have previously shown that isoprenaline-induced cardiac hypertrophy causes significant changes in the expression of cytochromes P450 (CYP) and soluble epoxide hydrolase (sEH) genes. Therefore, it is important to examine whether the inhibition of sEH by 1-(1-methanesulfonyl-piperidin-4-yl)-3-(4-trifluoromethoxy-phenyl)-urea (TUPS) will protect against isoprenaline-induced cardiac hypertrophy. EXPERIMENTAL APPROACH Male Sprague-Dawley rats were treated with TUPS (0.65 mg kg(-1) day(-1), p.o.), isoprenaline (5 mg kg(-1) day(-1), i.p.) or the combination of both. In vitro H9c2 cells were treated with isoprenaline (100 μM) in the presence and absence of either TUPS (1 μM) or 11,12 EET (1 μM). The expression of hypertrophic, fibrotic markers and different CYP genes were determined by real-time PCR. KEY RESULTS Isoprenaline significantly induced the hypertrophic, fibrotic markers as well as the heart to body weight ratio, which was significantly reversed by TUPS. Isoprenaline also caused an induction of CYP1A1, CYP1B1, CYP2B1, CYP2B2, CYP4A3 and CYP4F4 gene expression and TUPS significantly inhibited this isoprenaline-mediated effect. Moreover, isoprenaline significantly reduced 5,6-, 8,9-, 11,12- and 14,15-EET and increased their corresponding 8,9-, 11,12- and 14,15-dihydroxyeicosatrienoic acid (DHET) and the 20-HETE metabolites. TUPS abolished these isoprenaline-mediated changes in arachidonic acid (AA) metabolites. In H9c2 cells, isoprenaline caused a significant induction of ANP, BNP and EPHX2 mRNA levels. Both TUPS and 11,12-EET significantly decreased this isoprenaline-mediated induction of ANP, BNP and EPHX2. CONCLUSIONS AND IMPLICATIONS TUPS partially protects against isoprenaline-induced cardiac hypertrophy, which confirms the role of sEH and CYP enzymes in the development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Hassan N Althurwi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Kodani SD, Hammock BD. The 2014 Bernard B. Brodie award lecture-epoxide hydrolases: drug metabolism to therapeutics for chronic pain. Drug Metab Dispos 2015; 43:788-802. [PMID: 25762541 PMCID: PMC4407705 DOI: 10.1124/dmd.115.063339] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/11/2015] [Indexed: 12/24/2022] Open
Abstract
Dr. Bernard Brodie's legacy is built on fundamental discoveries in pharmacology and drug metabolism that were then translated to the clinic to improve patient care. Similarly, the development of a novel class of therapeutics termed the soluble epoxide hydrolase (sEH) inhibitors was originally spurred by fundamental research exploring the biochemistry and physiology of the sEH. Here, we present an overview of the history and current state of research on epoxide hydrolases, specifically focusing on sEHs. In doing so, we start with the translational project studying the metabolism of the insect juvenile hormone mimic R-20458 [(E)-6,7-epoxy-1-(4-ethylphenoxy)-3,7-dimethyl-2-octene], which led to the identification of the mammalian sEH. Further investigation of this enzyme and its substrates, including the epoxyeicosatrienoic acids, led to insight into mechanisms of inflammation, chronic and neuropathic pain, angiogenesis, and other physiologic processes. This basic knowledge in turn led to the development of potent inhibitors of the sEH that are promising therapeutics for pain, hypertension, chronic obstructive pulmonary disorder, arthritis, and other disorders.
Collapse
Affiliation(s)
- Sean D Kodani
- Department of Entomology and Nematology, Comprehensive Cancer Center, University of California, Davis, California
| | - Bruce D Hammock
- Department of Entomology and Nematology, Comprehensive Cancer Center, University of California, Davis, California
| |
Collapse
|
37
|
Xu J, Morisseau C, Yang J, Mamatha DM, Hammock BD. Epoxide hydrolase activities and epoxy fatty acids in the mosquito Culex quinquefasciatus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 59:41-9. [PMID: 25686802 PMCID: PMC4387068 DOI: 10.1016/j.ibmb.2015.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/05/2015] [Accepted: 02/05/2015] [Indexed: 05/27/2023]
Abstract
Culex mosquitoes have emerged as important model organisms for mosquito biology, and are disease vectors for multiple mosquito-borne pathogens, including West Nile virus. We characterized epoxide hydrolase activities in the mosquito Culex quinquefasciatus, which suggested multiple forms of epoxide hydrolases were present. We found EH activities on epoxy eicosatrienoic acids (EETs). EETs and other eicosanoids are well-established lipid signaling molecules in vertebrates. We showed EETs can be synthesized in vitro from arachidonic acids by mosquito lysate, and EETs were also detected in vivo both in larvae and adult mosquitoes by LC-MS/MS. The EH activities on EETs can be induced by blood feeding, and the highest activity was observed in the midgut of female mosquitoes. The enzyme activities on EETs can be inhibited by urea-based inhibitors designed for mammalian soluble epoxide hydrolases (sEH). The sEH inhibitors have been shown to play diverse biological roles in mammalian systems, and they can be useful tools to study the function of EETs in mosquitoes. Besides juvenile hormone metabolism and detoxification, insect epoxide hydrolases may also play a role in regulating lipid signaling molecules, such as EETs and other epoxy fatty acids, synthesized in vivo or obtained from blood feeding by female mosquitoes.
Collapse
Affiliation(s)
- Jiawen Xu
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Christophe Morisseau
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Jun Yang
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Dadala M Mamatha
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
38
|
Ono E, Dutile S, Kazani S, Wechsler ME, Yang J, Hammock BD, Douda DN, Tabet Y, Khaddaj-Mallat R, Sirois M, Sirois C, Rizcallah E, Rousseau E, Martin R, Sutherland ER, Castro M, Jarjour NN, Israel E, Levy BD. Lipoxin generation is related to soluble epoxide hydrolase activity in severe asthma. Am J Respir Crit Care Med 2014; 190:886-97. [PMID: 25162465 DOI: 10.1164/rccm.201403-0544oc] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RATIONALE Severe asthma is characterized by airway inflammatory responses associated with aberrant metabolism of arachidonic acid. Lipoxins (LX) are arachidonate-derived pro-resolving mediators that are decreased in severe asthma, yet mechanisms for defective LX biosynthesis and a means to increase LXs in severe asthma remain to be established. OBJECTIVES To determine if oxidative stress and soluble epoxide hydrolase (sEH) activity are linked to decreased LX biosynthesis in severe asthma. METHODS Aliquots of blood, sputum, and bronchoalveolar lavage fluid were obtained from asthma subjects for mediator determination. Select samples were exposed to t-butyl-hydroperoxide or sEH inhibitor (sEHI) before activation. Peripheral blood leukocyte-platelet aggregates were monitored by flow cytometry, and bronchial contraction was determined with cytokine-treated human lung sections. MEASUREMENTS AND MAIN RESULTS 8-Isoprostane levels in sputum supernatants were inversely related to LXA4 in severe asthma (r = -0.55; P = 0.03) and t-butyl-hydroperoxide decreased LXA4 and 15-epi-LXA4 biosynthesis by peripheral blood leukocytes. LXA4 and 15-epi-LXA4 levels were inversely related to sEH activity in sputum supernatants and sEHIs significantly increased 14,15-epoxy-eicosatrienoic acid and 15-epi-LXA4 generation by severe asthma whole blood and bronchoalveolar lavage fluid cells. The abundance of peripheral blood leukocyte-platelet aggregates was related to asthma severity. In a concentration-dependent manner, LXs significantly inhibited platelet-activating factor-induced increases in leukocyte-platelet aggregates (70.8% inhibition [LXA4 100 nM], 78.3% inhibition [15-epi-LXA4 100 nM]) and 15-epi-LXA4 markedly inhibited tumor necrosis factor-α-induced increases in bronchial contraction. CONCLUSIONS LX levels were decreased by oxidative stress and sEH activity. Inhibitors of sEH increased LXs that mediated antiphlogistic actions, suggesting a new therapeutic approach for severe asthma. Clinical trial registered with www.clinicaltrials.gov (NCT 00595114).
Collapse
Affiliation(s)
- Emiko Ono
- 1 Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Xu J, Morisseau C, Hammock BD. Expression and characterization of an epoxide hydrolase from Anopheles gambiae with high activity on epoxy fatty acids. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 54:42-52. [PMID: 25173592 PMCID: PMC4252830 DOI: 10.1016/j.ibmb.2014.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 08/08/2014] [Accepted: 08/15/2014] [Indexed: 05/27/2023]
Abstract
In insects, epoxide hydrolases (EHs) play critical roles in the metabolism of xenobiotic epoxides from the food resources and in the regulation of endogenous chemical mediators, such as juvenile hormones. Using the baculovirus expression system, we expressed and characterized an epoxide hydrolase from Anopheles gambiae (AgEH) that is distinct in evolutionary history from insect juvenile hormone epoxide hydrolases (JHEHs). We partially purified the enzyme by ion exchange chromatography and isoelectric focusing. The experimentally determined molecular weight and pI were estimated to be 35 kD and 6.3 respectively, different than the theoretical ones. The AgEH had the greatest activity on long chain epoxy fatty acids such as 14,15-epoxyeicosatrienoic acids (14,15-EET) and 9,10-epoxy-12Z-octadecenoic acids (9,10-EpOME or leukotoxin) among the substrates evaluated. Juvenile hormone III, a terpenoid insect growth regulator, was the next best substrate tested. The AgEH showed kinetics comparable to the mammalian soluble epoxide hydrolases, and the activity could be inhibited by AUDA [12-(3-adamantan-1-yl-ureido) dodecanoic acid], a urea-based inhibitor designed to inhibit the mammalian soluble epoxide hydrolases. The rabbit serum generated against the soluble epoxide hydrolase of Mus musculus can both cross-react with natural and denatured forms of the AgEH, suggesting immunologically they are similar. The study suggests there are mammalian sEH homologs in insects, and epoxy fatty acids may be important chemical mediators in insects.
Collapse
Affiliation(s)
- Jiawen Xu
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
40
|
Zha W, Edin ML, Vendrov KC, Schuck RN, Lih FB, Jat JL, Bradbury JA, DeGraff LM, Hua K, Tomer KB, Falck JR, Zeldin DC, Lee CR. Functional characterization of cytochrome P450-derived epoxyeicosatrienoic acids in adipogenesis and obesity. J Lipid Res 2014; 55:2124-36. [PMID: 25114171 PMCID: PMC4174005 DOI: 10.1194/jlr.m053199] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Indexed: 12/23/2022] Open
Abstract
Adipogenesis plays a critical role in the initiation and progression of obesity. Although cytochrome P450 (CYP)-derived epoxyeicosatrienoic acids (EETs) have emerged as a potential therapeutic target for cardiometabolic disease, the functional contribution of EETs to adipogenesis and the pathogenesis of obesity remain poorly understood. Our studies demonstrated that induction of adipogenesis in differentiated 3T3-L1 cells (in vitro) and obesity-associated adipose expansion in high-fat diet (HFD)-fed mice (in vivo) significantly dysregulate the CYP epoxygenase pathway and evoke a marked suppression of adipose-derived EET levels. Subsequent in vitro experiments demonstrated that exogenous EET analog administration elicits potent anti-adipogenic effects via inhibition of the early phase of adipogenesis. Furthermore, EET analog administration to mice significantly mitigated HFD-induced weight gain, adipose tissue expansion, pro-adipogenic gene expression, and glucose intolerance. Collectively, these findings suggest that suppression of EET bioavailability in adipose tissue is a key pathological consequence of obesity, and strategies that promote the protective effects of EETs in adipose tissue offer enormous therapeutic potential for obesity and its downstream pathological consequences.
Collapse
Affiliation(s)
- Weibin Zha
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC
| | - Matthew L. Edin
- Laboratory of Respiratory Biology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Kimberly C. Vendrov
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC
| | - Robert N. Schuck
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC
| | - Fred B. Lih
- Laboratory of Respiratory Biology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Jawahar Lal Jat
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - J. Alyce Bradbury
- Laboratory of Respiratory Biology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Laura M. DeGraff
- Laboratory of Respiratory Biology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Kunjie Hua
- UNC Nutrition Obesity Research Center, University of North Carolina, Chapel Hill, NC
| | - Kenneth B. Tomer
- Laboratory of Respiratory Biology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - John R. Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Darryl C. Zeldin
- Laboratory of Respiratory Biology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Craig R. Lee
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
41
|
Anwar-Mohamed A, Elshenawy OH, El-Sherbeni AA, Abdelrady M, El-Kadi AO. Acute arsenic treatment alters arachidonic acid and its associated metabolite levels in the brain of C57Bl/6 mice. Can J Physiol Pharmacol 2014; 92:693-702. [DOI: 10.1139/cjpp-2014-0136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The toxic effects of arsenic on the whole brain, as well as the discrete regions, has been previously reported for mice. We investigated the effects of acute arsenite (As(III)) on brain levels of arachidonic acid (AA) and its associated metabolites generated through cytochrome P450 (CYP), cyclooxygenase (COX), and lipoxygenase (LOX) pathways. Our results demonstrated that acute As(III) treatment (12.5 mg·(kg body mass)−1) decreases cytosolic phospholipase A2 (cPLA2) with a subsequent decrease in its catalytic activity and brain AA levels. In addition, As(III) differentially altered CYP epoxygenases and CYP ω-hydroxylases, but it did not affect brain Ephx2 mRNA or sEH catalytic activity levels. As(III)-mediated effects on Cyps caused an increase in brain 5,6-epoxyeicosatrienoic acid (5,6-EET) and 16/17-hydroxyeicosatetreinoic acid (16/17-HETE) levels, and a decrease in 18- and 20-HETE levels. Furthermore, As(III) increased cyclooxygenase-2 (COX-2) mRNA while decreasing prostaglandins F2α (PGF2α) and PGJ2. As(III) also increased brain 5-lipoxygenase (5-LOX) and 15-LOX mRNA, but decreased 12-LOX mRNA. These changes in LOX mRNA were associated with a decrease in 8/12-HETE levels only. In conclusion, this is the first demonstration that As(III) decreases AA levels coinciding with alterations to EET, HETE, and PG levels, which affects brain development and neurochemistry.
Collapse
Affiliation(s)
- Anwar Anwar-Mohamed
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Osama H. Elshenawy
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Ahmed A. El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Mohamed Abdelrady
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Ayman O.S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
42
|
Acute mercury toxicity modulates cytochrome P450, soluble epoxide hydrolase and their associated arachidonic acid metabolites in C57Bl/6 mouse heart. Toxicol Lett 2014; 226:53-62. [DOI: 10.1016/j.toxlet.2014.01.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 02/06/2023]
|
43
|
Nandety RS, Kamita SG, Hammock BD, Falk BW. Sequencing and de novo assembly of the transcriptome of the glassy-winged sharpshooter (Homalodisca vitripennis). PLoS One 2013; 8:e81681. [PMID: 24339955 PMCID: PMC3858241 DOI: 10.1371/journal.pone.0081681] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/15/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The glassy-winged sharpshooter Homalodisca vitripennis (Hemiptera: Cicadellidae), is a xylem-feeding leafhopper and important vector of the bacterium Xylella fastidiosa; the causal agent of Pierce's disease of grapevines. The functional complexity of the transcriptome of H. vitripennis has not been elucidated thus far. It is a necessary blueprint for an understanding of the development of H. vitripennis and for designing efficient biorational control strategies including those based on RNA interference. RESULTS Here we elucidate and explore the transcriptome of adult H. vitripennis using high-throughput paired end deep sequencing and de novo assembly. A total of 32,803,656 paired-end reads were obtained with an average transcript length of 624 nucleotides. We assembled 32.9 Mb of the transcriptome of H. vitripennis that spanned across 47,265 loci and 52,708 transcripts. Comparison of our non-redundant database showed that 45% of the deduced proteins of H. vitripennis exhibit identity (e-value ≤1(-5)) with known proteins. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript isoform. In order to gain insight into the molecular basis of key regulatory genes of H. vitripennis, we characterized predicted proteins involved in the metabolism of juvenile hormone, and biogenesis of small RNAs (Dicer and Piwi sequences) from the transcriptomic sequences. Analysis of transposable element sequences of H. vitripennis indicated that the genome is less expanded in comparison to many other insects with approximately 1% of the transcriptome carrying transposable elements. CONCLUSIONS Our data significantly enhance the molecular resources available for future study and control of this economically important hemipteran. This transcriptional information not only provides a more nuanced understanding of the underlying biological and physiological mechanisms that govern H. vitripennis, but may also lead to the identification of novel targets for biorationally designed control strategies.
Collapse
Affiliation(s)
- Raja Sekhar Nandety
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Shizuo G. Kamita
- Department of Entomology and UC Davis Comprehensive Cancer Research Center, University of California Davis, Davis, California, United States of America
| | - Bruce D. Hammock
- Department of Entomology and UC Davis Comprehensive Cancer Research Center, University of California Davis, Davis, California, United States of America
| | - Bryce W. Falk
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
El-Sherbeni AA, El-Kadi AOS. Alterations in cytochrome P450-derived arachidonic acid metabolism during pressure overload-induced cardiac hypertrophy. Biochem Pharmacol 2013; 87:456-66. [PMID: 24300133 DOI: 10.1016/j.bcp.2013.11.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/21/2013] [Accepted: 11/22/2013] [Indexed: 01/01/2023]
Abstract
Cardiac hypertrophy is a major risk factor for many serious heart diseases. Recent data demonstrated the role of cytochrome P450 (CYP)-derived arachidonic acid (AA) metabolites in cardiovascular pathophysiology. In the current study our aim was to determine the aberrations in CYP-mediated AA metabolism in the heart during cardiac hypertrophy. Pressure overload cardiac hypertrophy was induced in Sprague Dawley rats using the descending aortic constriction procedure. Five weeks post-surgery, the cardiac levels of AA metabolites were determined in hypertrophied and normal hearts. In addition, the formation rate of AA metabolites, as well as, CYP expression in cardiac microsomal fraction was also determined. AA metabolites were measured by liquid chromatography-electrospray ionization-mass spectroscopy, whereas, the expression of CYPs was determined by Western blot analysis. Non-parametric analysis was performed to examine the association between metabolites formation and CYP expressions. Our results showed that 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs), and 5-, 12-, 15-, and 20-hydroxyeicosatetraenoic acids (HETEs) levels were increased, whereas, 19-HETE formation was decreased in hypertrophied hearts. The increase in EETs was linked to CYP2B2. On the other hand, CYP1B1 and CYP2J3 were involved in mid-chain HETE metabolism, whereas, CYP4A2/3 inhibition was involved in the decrease in 19-HETE formation in hypertrophied hearts. In conclusion, CYP1B1 played cardiotoxic role, whereas, CYP2B2, CYP2J3 and CYP4A2/3 played cardioprotective roles during pressure overload-induced cardiac hypertrophy. These CYP can be valid targets for the development of drugs to treat and prevent cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Ahmed A El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E1.
| |
Collapse
|
45
|
Kamita SG, Oshita GH, Wang P, Nandety RS, Morisseau C, Falk BW, Hammock BD. Characterization of Hovi-mEH1, a microsomal epoxide hydrolase from the glassy-winged sharpshooter Homalodisca vitripennis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 83:171-9. [PMID: 23704009 PMCID: PMC3846607 DOI: 10.1002/arch.21100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Epoxide hydrolase (EH) is an enzyme in the α/β-hydrolase fold superfamily that uses a water molecule to transform an epoxide to its corresponding diol. In insects, EHs metabolize among other things critical developmental hormones called juvenile hormones (JHs). EHs also play roles in the detoxification of toxic compounds that are found in the insect's diet or environment. In this study, a full-length cDNA encoding an epoxide hydrolase, Hovi-mEH1, was obtained from the xylem-feeding insect Homalodisca vitripennis. H. vitripennis, commonly known as the glassy-winged sharpshooter, is an economically important vector of plant pathogenic bacteria such as Xylella fastidiosa. Hovi-mEH1 hydrolyzed the general EH substrates cis-stilbene oxide and trans-diphenylpropene oxide with specific activities of 47.5 ± 6.2 and 1.3 ± 0.5 nmol of diol formed min⁻¹ mg⁻¹, respectively. Hovi-mEH1 metabolized JH III with a Vmax of 29.3 ± 1.6 nmol min⁻¹ mg⁻¹, kcat of 0.03 s⁻¹, and KM of 13.8 ± 2.0 μM. These Vmax and kcat values are similar to those of known JH metabolizing EHs from lepidopteran and coleopteran insects. Hovi-mEH1 showed 99.1% identity to one of three predicted EH-encoding sequences that were identified in the transcriptome of H. vitripennis. Of these three sequences only Hovi-mEH1 clustered with known JH metabolizing EHs. On the basis of biochemical, phylogenetic, and transcriptome analyses, we hypothesize that Hovi-mEH1 is a biologically relevant JH-metabolizing enzyme in H. vitripennis.
Collapse
Affiliation(s)
- Shizuo G. Kamita
- Department of Entomology and UC Davis Comprehensive Cancer Research Center, University of California, Davis, CA 95616, USA
| | - Grant H. Oshita
- Department of Entomology and UC Davis Comprehensive Cancer Research Center, University of California, Davis, CA 95616, USA
| | - Peng Wang
- Department of Entomology and UC Davis Comprehensive Cancer Research Center, University of California, Davis, CA 95616, USA
| | - Raja Sekhar Nandety
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Christophe Morisseau
- Department of Entomology and UC Davis Comprehensive Cancer Research Center, University of California, Davis, CA 95616, USA
| | - Bryce W. Falk
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Bruce D. Hammock
- Department of Entomology and UC Davis Comprehensive Cancer Research Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
46
|
Anwar-Mohamed A, El-Sherbeni A, Kim SH, Elshenawy OH, Althurwi HN, Zordoky BNM, El-Kadi AOS. Acute arsenic treatment alters cytochrome P450 expression and arachidonic acid metabolism in lung, liver and kidney of C57Bl/6 mice. Xenobiotica 2013; 43:719-29. [DOI: 10.3109/00498254.2012.754113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
Alsaad AMS, Zordoky BNM, El-Sherbeni AA, El-Kadi AOS. Chronic doxorubicin cardiotoxicity modulates cardiac cytochrome P450-mediated arachidonic acid metabolism in rats. Drug Metab Dispos 2012; 40:2126-35. [PMID: 22867862 DOI: 10.1124/dmd.112.046631] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Doxorubicin [(DOX) Adriamycin] is an effective anticancer agent whose major limiting side effect is cardiotoxicity. This cardiotoxicity is predicted only by the cumulative dose of DOX where the clinical situation involves chronic drug administration. Therefore, we investigate the effect of chronic DOX cardiotoxicity on expression of the cardiac cytochrome P450 (P450) enzymes and arachidonic acid (AA) metabolism in male Sprague-Dawley (SD) rats. The chronic toxicity was induced by multiple intraperitoneal injections for a cumulative dose of 15 mg/kg divided into six injections within 2 weeks. After 14 days of the last injection, the heart, liver, and kidney were harvested, and the expression of different genes was determined by real-time polymerase chain reaction. In addition, microsomal protein from the heart was prepared and incubated with AA. Thereafter, different AA metabolites were analyzed by liquid chromatography-electrospray ionization-mass spectrometry. The chronic DOX cardiotoxicity significantly induced gene expression of hypertrophic markers, apoptotic markers, CYP2E1, CYP4A3, CYP4F1, CYP4F5, and soluble epoxide hydrolase (sEH) enzyme, which was accompanied by an increase in the activity of P450 ω-hydroxylases and sEH. In addition, both the sEH inhibitor, trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid, and the ω-hydroxylase inhibitor, N-hydroxy-N'-(4-butyl-2-methylphenyl)-formamidine (HET0016), significantly prevented the DOX-mediated induction of the hypertrophic markers in the cardiac-derived H9c2 cells, which further confirms the role of these enzymes in DOX cardiotoxicity. Furthermore, gene expression of P450 and sEH was altered in an organ-specific manner. As a result, the chronic DOX administration leads to an imbalance between P450-mediated cardiotoxic and cardioprotective pathways. Therefore, P450 ω-hydroxylases and sEH might be considered as novel targets to prevent and/or treat DOX cardiotoxicity.
Collapse
Affiliation(s)
- Abdulaziz M S Alsaad
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
48
|
Ulu A, Appt S, Morisseau C, Hwang SH, Jones PD, Rose TE, Dong H, Lango J, Yang J, Tsai HJ, Miyabe C, Fortenbach C, Adams MR, Hammock BD. Pharmacokinetics and in vivo potency of soluble epoxide hydrolase inhibitors in cynomolgus monkeys. Br J Pharmacol 2012; 165:1401-12. [PMID: 21880036 DOI: 10.1111/j.1476-5381.2011.01641.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Soluble epoxide hydrolase inhibitors (sEHIs) possess anti-inflammatory, antiatherosclerotic, antihypertensive and analgesic properties. The pharmacokinetics (PK) and pharmacodynamics in terms of inhibitory potency of sEHIs were assessed in non-human primates (NHPs). Development of a sEHI for use in NHPs will facilitate investigations on the role of sEH in numerous chronic inflammatory conditions. EXPERIMENTAL APPROACH PK parameters of 11 sEHIs in cynomolgus monkeys were determined after oral dosing with 0.3 mg·kg(-1). Their physical properties and inhibitory potency in hepatic cytosol of cynomolgus monkeys were examined. Dose-dependent effects of the two inhibitors 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) and the related acetyl piperidine derivative, 1-trifluoromethoxyphenyl-3-(1-acetylpiperidin-4-yl) urea (TPAU), on natural blood eicosanoids, were determined. KEY RESULTS Among the inhibitors tested, TPPU and two 4-(cyclohexyloxy) benzoic acid urea sEHIs displayed high plasma concentrations (>10 × IC(50)), when dosed orally at 0.3 mg·kg(-1). Although the 4-(cyclohexyloxy) benzoic acid ureas were more potent against monkey sEH than piperidyl ureas (TPAU and TPPU), the latter compounds showed higher plasma concentrations and more drug-like properties. The C(max) increased with dose from 0.3 to 3 mg·kg(-1) for TPPU and from 0.1 to 3 mg·kg(-1) for TPAU, although it was not linear over this range of doses. As an indication of target engagement, ratios of linoleate epoxides to diols increased with TPPU administration. CONCLUSION AND IMPLICATIONS Our data indicate that TPPU is suitable for investigating sEH biology and the role of epoxide-containing lipids in modulating inflammatory diseases in NHPs.
Collapse
Affiliation(s)
- A Ulu
- Department of Entomology and Cancer Center, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Senouvo FY, Tabet Y, Morin C, Albadine R, Sirois C, Rousseau E. Improved bioavailability of epoxyeicosatrienoic acids reduces TP-receptor agonist-induced tension in human bronchi. Am J Physiol Lung Cell Mol Physiol 2011; 301:L675-82. [DOI: 10.1152/ajplung.00427.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epoxyeicosatrienoic acid (EET) and thromboxane A2are arachidonic acid derivatives. The former has initially been defined as an epithelium-derived hyperpolarizing factor displaying broncho-relaxing ( 4 ) and anti-inflammatory properties, as recently demonstrated ( 25 ), whereas thromboxane A2induces vaso- and bronchoconstriction upon binding to thromboxane-prostanoid (TP)-receptor. EETs, however, are quickly degraded by the soluble epoxide hydrolase (sEH) into inactive diol compounds ( 25 ). The aim of this study was to investigate the effects of 14,15-EET on TP-receptor activation in human bronchi. Tension measurements performed on native bronchi from various species, acutely treated with increasing 14,15-EET concentrations, revealed specific and concentration-dependent relationships as well as a decrease in the tension induced by 30 nM U-46619, used as a synthetic TP-receptor agonist. Interestingly, acute treatments with 3 μM N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide, an epoxygenase inhibitor, which minimizes endogenous production of EET, resulted in an increased reactivity to U-46619. Furthermore, we demonstrated that chronic treatments with trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB), a sEH inhibitor, reduced human bronchi reactivity to U-46619. During our tension measurements, we also observed that human bronchi generated small-amplitude contractions; these spontaneous activities were reduced upon acute 14,15-EET treatments in the presence of t-AUCB. Altogether, these data demonstrate that endogenous and exogenous 14,15-EET could interfere with the activation of TP-receptors as well as with spontaneous oscillations in human airway smooth muscle tissues.
Collapse
Affiliation(s)
| | - Yacine Tabet
- Le Bilarium, Department of Physiology and Biophysics,
| | | | | | - Chantal Sirois
- Service of Thoracic Surgery; Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric Rousseau
- Le Bilarium, Department of Physiology and Biophysics,
| |
Collapse
|
50
|
Schebb NH, Huby M, Morisseau C, Hwang SH, Hammock BD. Development of an online SPE-LC-MS-based assay using endogenous substrate for investigation of soluble epoxide hydrolase (sEH) inhibitors. Anal Bioanal Chem 2011; 400:1359-66. [PMID: 21479549 PMCID: PMC3081056 DOI: 10.1007/s00216-011-4861-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 02/02/2023]
Abstract
Soluble epoxide hydrolase (sEH) is a promising therapeutic target for the treatment of hypertension, pain, and inflammation-related diseases. In order to enable the development of sEH inhibitors (sEHIs), assays are needed for determination of their potency. Therefore, we developed a new method utilizing an epoxide of arachidonic acid (14(15)-EpETrE) as substrate. Incubation samples were directly injected without purification into an online solid phase extraction (SPE) liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS) setup allowing a total run time of only 108 s for a full gradient separation. Analytes were extracted from the matrix within 30 s by turbulent flow chromatography. Subsequently, a full gradient separation was carried out on a 50X2.1 mm RP-18 column filled with 1.7 μm core-shell particles. The analytes were detected with high sensitivity by ESI-MS-MS in SRM mode. The substrate 14(15)-EpETrE eluted at a stable retention time of 96 ± 1 s and its sEH hydrolysis product 14,15-DiHETrE at 63 ± 1 s with narrow peak width (full width at half maximum height: 1.5 ± 0.1 s). The analytical performance of the method was excellent, with a limit of detection of 2 fmol on column, a linear range of over three orders of magnitude, and a negligible carry-over of 0.1% for 14,15-DiHETrE. The enzyme assay was carried out in a 96-well plate format, and near perfect sigmoidal dose-response curves were obtained for 12 concentrations of each inhibitor in only 22 min, enabling precise determination of IC(50) values. In contrast with other approaches, this method enables quantitative evaluation of potent sEHIs with picomolar potencies because only 33 pmol L(-1) sEH were used in the reaction vessel. This was demonstrated by ranking ten compounds by their activity; in the fluorescence method all yielded IC(50) ≤ 1 nmol L(-1). Comparison of 13 inhibitors with IC(50) values >1 nmol L(-1) showed a good correlation with the fluorescence method (linear correlation coefficient 0.9, slope 0.95, Spearman's rho 0.9). For individual compounds, however, up to eightfold differences in potencies between this and the fluorescence method were obtained. Therefore, enzyme assays using natural substrate, as described here, are indispensable for reliable determination of structure-activity relationships for sEH inhibition.
Collapse
Affiliation(s)
- Nils Helge Schebb
- Department of Entomology and Cancer Research Center, University of California, One Shields Avenue, Davis, CA 95616–8584 USA
| | - Marion Huby
- Department of Entomology and Cancer Research Center, University of California, One Shields Avenue, Davis, CA 95616–8584 USA
| | - Christophe Morisseau
- Department of Entomology and Cancer Research Center, University of California, One Shields Avenue, Davis, CA 95616–8584 USA
| | - Sung Hee Hwang
- Department of Entomology and Cancer Research Center, University of California, One Shields Avenue, Davis, CA 95616–8584 USA
| | - Bruce D. Hammock
- Department of Entomology and Cancer Research Center, University of California, One Shields Avenue, Davis, CA 95616–8584 USA
| |
Collapse
|