1
|
Wang S, Wu R, Chen Q, Liu T, Li L. Exosomes derived from TNF-α-treated bone marrow mesenchymal stem cells ameliorate myocardial infarction injury in mice. Organogenesis 2024; 20:2356341. [PMID: 38766777 PMCID: PMC11110693 DOI: 10.1080/15476278.2024.2356341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
Exosomes derived from bone marrow mesenchymal stem cells (BMSCs) exhibit considerable therapeutic potential for myocardial regeneration. In our investigation, we delved into their impact on various aspects of myocardial infarction (MI), including cardiac function, tissue damage, inflammation, and macrophage polarization in a murine model. We meticulously isolated the exosomes from TNF-α-treated BMSCs and evaluated their therapeutic efficacy in a mouse MI model induced by coronary artery ligation surgery. Our comprehensive analysis, incorporating ultrasound, serum assessment, Western blot, and qRT-PCR, revealed that exosomes from TNF-α-treated BMSCs demonstrated significant therapeutic potential in reducing MI-induced injury. Treatment with these exosomes resulted in improved cardiac function, reduced infarct area, and increased left ventricular wall thickness in MI mice. On a mechanistic level, exosome treatment fostered M2 macrophage polarization while concurrently suppressing M1 polarization. Hence, exosomes derived from TNF-α-treated BMSCs emerge as a promising therapeutic strategy for alleviating MI injury in a mouse model.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Cardiovascular Medicine, Hebei Medical University of Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, China
| | - Rubin Wu
- Department of Cardiovascular Medicine, Hebei Medical University of Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, China
| | - Qincong Chen
- Department of Cardiovascular Medicine, Hebei Medical University of Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, China
| | - Tao Liu
- Department of Cardiovascular Medicine, Hebei Medical University Second Hospital, Shijiazhuang, Hebei, China
| | - Liu Li
- Department of Cardiovascular Medicine, Hebei Medical University First Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Abhirami N, Ayyappan JP. Cardioprotective effect of Robinin ameliorates Endoplasmic Reticulum Stress and Apoptosis in H9c2 cells. Cell Biochem Biophys 2024; 82:3681-3694. [PMID: 39095567 DOI: 10.1007/s12013-024-01456-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Robinin is one of the glycosyloxyflavones that has been less explored for its therapeutic application, especially in the field of CVD. Herein, we explored the cardioprotective efficacy of Robinin by using H2O2 and Doxorubicin (DOX) - treated H9c2 cells as an in vitro model. H2O2 and DOX treatment resulted in severe cellular damage to the cardiomyocytes, which was followed by apoptosis. Apoptosis and nuclear morphology were analysed through Hoechst 33342 and AO/EB staining. qPCR was employed to detect the expression of apoptosis as well as ERS-related markers. Reactive oxygen species (ROS) generation was observed using DCFH-DA staining and FACS analysis. Signaling pathways involved were analysed using Western blot. Robinin pre-treatment considerably decreased the apoptotic rate by boosting the endogenous anti-oxidative activity and lowering the activity of Malonaldehyde and Lactate dehydrogenase enzyme. Robinin also inhibited the generation of ROS. Robinin reduced the expression of ERS-associated genes and proteins, thereby decreasing apoptosis-related proteins. Upon comparing the cardioprotective effect of Robinin with a known cardioprotective agent Dexrazoxane (DEX) it was revealed that DEX has more cardioprotective effect against DOX than H2O2-induced stress, while Robinin showed a significant protective effect against both H2O2 and DOX induced stress.
Collapse
Affiliation(s)
- N Abhirami
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Kariavattom campus, Thiruvananthapuram, 695034, Kerala, India
| | - Janeesh Plakkal Ayyappan
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Kariavattom campus, Thiruvananthapuram, 695034, Kerala, India.
- Centre for Advanced Cancer Research, Department of Biochemistry, University of Kerala, Kariavattom campus, Thiruvananthapuram, 695034, Kerala, India.
| |
Collapse
|
3
|
Chung S, Sung HJ. In situ Reprogramming as a Pro-Angiogenic Inducer to Rescue Ischemic Tissues. Pulse (Basel) 2024; 12:58-65. [PMID: 39022557 PMCID: PMC11249613 DOI: 10.1159/000538075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/25/2024] [Indexed: 07/20/2024] Open
Abstract
Background Enhanced regenerative therapeutic strategies are required to treat intractable ischemic heart disease. Summary Since the discovery of putative endothelial progenitor cells (EPCs) in 1997, many studies have focused on their extraction, ex vivo processing, and autotransplantation under ischemic conditions. Nonetheless, numerous randomized clinical trials involving thousands of patients have yielded only marginal treatment effects, highlighting the need for advances regarding insufficient dosage and complex ex vivo processing. The prevailing paradigm of cellular differentiation highlights the potential of direct cellular reprogramming, which paves the way for in situ reprogramming. In situ reprogramming holds the promise of significantly enhancing current therapeutic strategies, yet its success hinges on the precise targeting of candidate cells for reprogramming. In this context, the spleen emerges as a pivotal "in situ reprogramming hub," owing to its dual function as both a principal site for nanoparticle distribution and a significant reservoir of putative EPCs. The in situ reprogramming of splenic EPCs offers a potential solution to overcome critical challenges, including the aforementioned insufficient dosage and complex ex vivo processing. Key Messages This review explores the latest advancements in EPC therapy and in situ reprogramming, spotlighting a pioneering study that integrates those two strategies with a specific focus on the spleen. Such an innovative approach will potentially herald a new era of regenerative therapy for ischemic heart disease.
Collapse
Affiliation(s)
- Seyong Chung
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hak-Joon Sung
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Bachamanda Somesh D, Klose K, Maring JA, Kunkel D, Jürchott K, Protze SI, Klein O, Nebrich G, Becker M, Krüger U, Nazari-Shafti TZ, Falk V, Kurtz A, Gossen M, Stamm C. Cardiomyocyte precursors generated by direct reprogramming and molecular beacon selection attenuate ventricular remodeling after experimental myocardial infarction. Stem Cell Res Ther 2023; 14:296. [PMID: 37840130 PMCID: PMC10577947 DOI: 10.1186/s13287-023-03519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/25/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Direct cardiac reprogramming is currently being investigated for the generation of cells with a true cardiomyocyte (CM) phenotype. Based on the original approach of cardiac transcription factor-induced reprogramming of fibroblasts into CM-like cells, various modifications of that strategy have been developed. However, they uniformly suffer from poor reprogramming efficacy and a lack of translational tools for target cell expansion and purification. Therefore, our group has developed a unique approach to generate proliferative cells with a pre-CM phenotype that can be expanded in vitro to yield substantial cell doses. METHODS Cardiac fibroblasts were reprogrammed toward CM fate using lentiviral transduction of cardiac transcriptions factors (GATA4, MEF2C, TBX5, and MYOCD). The resulting cellular phenotype was analyzed by RNA sequencing and immunocytology. Live target cells were purified based on intracellular CM marker expression using molecular beacon technology and fluorescence-activated cell sorting. CM commitment was assessed using 5-azacytidine-based differentiation assays and the therapeutic effect was evaluated in a mouse model of acute myocardial infarction using echocardiography and histology. The cellular secretome was analyzed using mass spectrometry. RESULTS We found that proliferative CM precursor-like cells were part of the phenotype spectrum arising during direct reprogramming of fibroblasts toward CMs. These induced CM precursors (iCMPs) expressed CPC- and CM-specific proteins and were selectable via hairpin-shaped oligonucleotide hybridization probes targeting Myh6/7-mRNA-expressing cells. After purification, iCMPs were capable of extensive expansion, with preserved phenotype when under ascorbic acid supplementation, and gave rise to CM-like cells with organized sarcomeres in differentiation assays. When transplanted into infarcted mouse hearts, iCMPs prevented CM loss, attenuated fibrotic scarring, and preserved ventricular function, which can in part be attributed to their substantial secretion of factors with documented beneficial effect on cardiac repair. CONCLUSIONS Fibroblast reprogramming combined with molecular beacon-based cell selection yields an iCMP-like cell population with cardioprotective potential. Further studies are needed to elucidate mechanism-of-action and translational potential.
Collapse
Affiliation(s)
- Dipthi Bachamanda Somesh
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
| | - Kristin Klose
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
| | - Janita A Maring
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, 13353, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Désirée Kunkel
- Cytometry Core Facility, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Karsten Jürchott
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Institute for Medical Immunology, 13353, Berlin, Germany
| | - Stephanie I Protze
- University Health Network, McEwen Stem Cell Institute, Toronto, ON, M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Oliver Klein
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Imaging Mass Spectrometry Core Unit, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Grit Nebrich
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Imaging Mass Spectrometry Core Unit, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Matthias Becker
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Ulrike Krüger
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Institute for Medical Immunology, 13353, Berlin, Germany
| | - Timo Z Nazari-Shafti
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- German Centre for Cardiovascular Research, Partner Site Berlin, 10785, Berlin, Germany
| | - Volkmar Falk
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- German Centre for Cardiovascular Research, Partner Site Berlin, 10785, Berlin, Germany
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Andreas Kurtz
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Manfred Gossen
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, 13353, Berlin, Germany
| | - Christof Stamm
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies, 13353, Berlin, Germany.
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- German Centre for Cardiovascular Research, Partner Site Berlin, 10785, Berlin, Germany.
| |
Collapse
|
5
|
Soni SS, D'Elia AM, Rodell CB. Control of the post-infarct immune microenvironment through biotherapeutic and biomaterial-based approaches. Drug Deliv Transl Res 2023; 13:1983-2014. [PMID: 36763330 PMCID: PMC9913034 DOI: 10.1007/s13346-023-01290-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 02/11/2023]
Abstract
Ischemic heart failure (IHF) is a leading cause of morbidity and mortality worldwide, for which heart transplantation remains the only definitive treatment. IHF manifests from myocardial infarction (MI) that initiates tissue remodeling processes, mediated by mechanical changes in the tissue (loss of contractility, softening of the myocardium) that are interdependent with cellular mechanisms (cardiomyocyte death, inflammatory response). The early remodeling phase is characterized by robust inflammation that is necessary for tissue debridement and the initiation of repair processes. While later transition toward an immunoregenerative function is desirable, functional reorientation from an inflammatory to reparatory environment is often lacking, trapping the heart in a chronically inflamed state that perpetuates cardiomyocyte death, ventricular dilatation, excess fibrosis, and progressive IHF. Therapies can redirect the immune microenvironment, including biotherapeutic and biomaterial-based approaches. In this review, we outline these existing approaches, with a particular focus on the immunomodulatory effects of therapeutics (small molecule drugs, biomolecules, and cell or cell-derived products). Cardioprotective strategies, often focusing on immunosuppression, have shown promise in pre-clinical and clinical trials. However, immunoregenerative therapies are emerging that often benefit from exacerbating early inflammation. Biomaterials can be used to enhance these therapies as a result of their intrinsic immunomodulatory properties, parallel mechanisms of action (e.g., mechanical restraint), or by enabling cell or tissue-targeted delivery. We further discuss translatability and the continued progress of technologies and procedures that contribute to the bench-to-bedside development of these critically needed treatments.
Collapse
Affiliation(s)
- Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Raposo L, Cerqueira RJ, Leite S, Moreira-Costa L, Laundos TL, Miranda JO, Mendes-Ferreira P, Coelho JA, Gomes RN, Pinto-do-Ó P, Nascimento DS, Lourenço AP, Cardim N, Leite-Moreira A. Human-umbilical cord matrix mesenchymal cells improved left ventricular contractility independently of infarct size in swine myocardial infarction with reperfusion. Front Cardiovasc Med 2023; 10:1186574. [PMID: 37342444 PMCID: PMC10277821 DOI: 10.3389/fcvm.2023.1186574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 06/22/2023] Open
Abstract
Background Human umbilical cord matrix-mesenchymal stromal cells (hUCM-MSC) have demonstrated beneficial effects in experimental acute myocardial infarction (AMI). Reperfusion injury hampers myocardial recovery in a clinical setting and its management is an unmet need. We investigated the efficacy of intracoronary (IC) delivery of xenogeneic hUCM-MSC as reperfusion-adjuvant therapy in a translational model of AMI in swine. Methods In a placebo-controlled trial, pot-belied pigs were randomly assigned to a sham-control group (vehicle-injection; n = 8), AMI + vehicle (n = 12) or AMI + IC-injection (n = 11) of 5 × 105 hUCM-MSC/Kg, within 30 min of reperfusion. AMI was created percutaneously by balloon occlusion of the mid-LAD. Left-ventricular function was blindly evaluated at 8-weeks by invasive pressure-volume loop analysis (primary endpoint). Mechanistic readouts included histology, strength-length relationship in skinned cardiomyocytes and gene expression analysis by RNA-sequencing. Results As compared to vehicle, hUCM-MSC enhanced systolic function as shown by higher ejection fraction (65 ± 6% vs. 43 ± 4%; p = 0.0048), cardiac index (4.1 ± 0.4 vs. 3.1 ± 0.2 L/min/m2; p = 0.0378), preload recruitable stroke work (75 ± 13 vs. 36 ± 4 mmHg; p = 0.0256) and end-systolic elastance (2.8 ± 0.7 vs. 2.1 ± 0.4 mmHg*m2/ml; p = 0.0663). Infarct size was non-significantly lower in cell-treated animals (13.7 ± 2.2% vs. 15.9 ± 2.7%; Δ = -2.2%; p = 0.23), as was interstitial fibrosis and cardiomyocyte hypertrophy in the remote myocardium. Sarcomere active tension improved, and genes related to extracellular matrix remodelling (including MMP9, TIMP1 and PAI1), collagen fibril organization and glycosaminoglycan biosynthesis were downregulated in animals treated with hUCM-MSC. Conclusion Intracoronary transfer of xenogeneic hUCM-MSC shortly after reperfusion improved left-ventricular systolic function, which could not be explained by the observed extent of infarct size reduction alone. Combined contributions of favourable modification of myocardial interstitial fibrosis, matrix remodelling and enhanced cardiomyocyte contractility in the remote myocardium may provide mechanistic insight for the biological effect.
Collapse
Affiliation(s)
- Luís Raposo
- Cardiology Department, Hospital de Santa Cruz - Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
- Centro Cardiovascular, Hospital da Luz – Lisboa, Luz Saúde, Lisbon, Portugal
- Nova Medical School, Lisbon, Portugal
| | - Rui J. Cerqueira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Cardiothoracic Surgery, Hospital Universitário de São João, Porto, Portugal
| | - Sara Leite
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Anta Family Health Unit, Espinho/Gaia Healthcare Centre, Espinho, Portugal
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Liliana Moreira-Costa
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Tiago L. Laundos
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- I3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Joana O. Miranda
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Pedro Mendes-Ferreira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERM, Université Paris-Saclay, Paris, France
| | - João Almeida Coelho
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rita N. Gomes
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- I3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Perpétua Pinto-do-Ó
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- I3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Diana S. Nascimento
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- I3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - André P. Lourenço
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Anesthesiology, Hospital Universitário de São João, Porto, Portugal
| | - Nuno Cardim
- Centro Cardiovascular, Hospital da Luz – Lisboa, Luz Saúde, Lisbon, Portugal
- Nova Medical School, Lisbon, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Cardiothoracic Surgery, Hospital Universitário de São João, Porto, Portugal
| |
Collapse
|
7
|
Chang W, Li P. Bone marrow mesenchymal stromal cell-derived small extracellular vesicles: A novel therapeutic agent in ischemic heart diseases. Front Pharmacol 2023; 13:1098634. [PMID: 36686710 PMCID: PMC9849567 DOI: 10.3389/fphar.2022.1098634] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Myocardial injury is a major pathological factor that causes death in patients with heart diseases. In recent years, mesenchymal stromal cells (MSCs) have been generally used in treating many diseases in animal models and clinical trials. mesenchymal stromal cells have the ability to differentiate into osteocytes, adipocytes and chondrocytes. Thus, these cells are considered suitable for cardiac injury repair. However, mechanistic studies have shown that the secretomes of mesenchymal stromal cells, mainly small extracellular vesicles (sEVs), have better therapeutic effects than mesenchymal stromal cells themselves. In addition, small extracellular vesicles have easier quality control characteristics and better safety profiles. Therefore, mesenchymal stromal cell-small extracellular vesicles are emerging as novel therapeutic agents for damaged myocardial treatment. To date, many clinical trials and preclinical experimental results have demonstrated the beneficial effects of bone marrow-derived mesenchymal stromal cells (BMMSCs) and bone marrow-derived mesenchymal stromal cells-small extracellular vesicles on ischemic heart disease. However, the validation of therapeutic efficacy and the use of tissue engineering methods require an exacting scientific rigor and robustness. This review summarizes the current knowledge of bone marrow-derived mesenchymal stromal cells- or bone marrow-derived mesenchymal stromal cells-small extracellular vesicle-based therapy for cardiac injury and discusses critical scientific issues in the development of these therapeutic strategies.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Fisher E, Eccleston C. [Psychological aspects of pain prevention : German version]. Schmerz 2023; 37:47-54. [PMID: 35551473 PMCID: PMC9099056 DOI: 10.1007/s00482-022-00651-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2022] [Indexed: 02/03/2023]
Abstract
How to prevent the onset, maintenance, or exacerbation of pain is a major focus of clinical pain science. Pain prevention can be distinctly organised into primary, secondary, and tertiary prevention. Primary prevention describes avoiding hurt or pain, secondary prevention describes reducing pain when pain is unavoidable, and tertiary prevention describes preventing or reducing ongoing negative consequences such as high functional disability or distress due to chronic pain. Each poses separate challenges where unique psychological factors will play a role. In this short review article, we highlight psychological factors important to primary, secondary, and tertiary prevention and provide direction for the field. We present 2 case studies on secondary prevention in children and adolescents and tertiary prevention in adults with chronic pain. Finally, we provide research directions for progression in this field, highlighting the importance of clear theoretical direction, the identification of risk factors for those most likely to develop pain, and the importance of treatment.
Collapse
Affiliation(s)
- Emma Fisher
- Department for Health, Centre for Pain Research, University of Bath, BA2 7AY, Bath, Großbritannien
- Cochrane Pain, Palliative and Supportive Care Review Group, Oxford, Großbritannien
| | - Christopher Eccleston
- Department for Health, Centre for Pain Research, University of Bath, BA2 7AY, Bath, Großbritannien.
- Department of Experimental Clinical and Health Psychology, Ghent University, Gent, Belgien.
| |
Collapse
|
9
|
Tekieli Ł, Szot W, Kwiecień E, Mazurek A, Borkowska E, Czyż Ł, Dąbrowski M, Kozynacka A, Skubera M, Podolec P, Majka M, Kostkiewicz M, Musiałek P. Single-photon emission computed tomography as a fundamental tool in evaluation of myocardial reparation and regeneration therapies. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2022; 18:326-339. [PMID: 36967839 PMCID: PMC10031666 DOI: 10.5114/aic.2023.124403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/14/2022] [Indexed: 01/26/2023] Open
Abstract
Despite unquestionable progress in interventional and pharmacologic therapies of ischemic heart disease, the number of patients with chronic ischemic heart failure is increasing and the prognosis remains poor. Repair/restoration of functional myocardium through progenitor cell-mediated (PCs) healing and renovation of injured myocardium is one of the pivotal directions in biomedical research. PCs release numerous pro-angiogenic and anti-apoptotic factors. Moreover, they have self-renewal capability and may differentiate into specialized cells that include endothelial cells and cardiomyocytes. Uptake and homing of PCs in the zone(s) of ischaemic injury (i.e., their effective transplantation to the target zone) is an essential pre-requisite for any potential therapeutic effect; thus effective cell tracking is fundamental in pre-clinical and early clinical studies. Another crucial requirement in rigorous research is quantification of the infarct zone, including the amount of non-perfused and hypo-perfused myocardium. Quantitative and reproducible evaluation of global and regional myocardial contractility and left ventricular remodeling is particularly relevant in clinical studies. Using SPECT, our earlier work has addressed several critical questions in cardiac regenerative medicine including optimizing transcoronary cell delivery, determination of the zone(s) of myocardial cell uptake, and late functional improvement in relation to the magnitude of cell uptake. Here, we review the role of single-photon emission computed tomography (SPECT), a technique that offers high-sensitivity, quantitative cell tracking on top of its ability to evaluate myocardial perfusion and function on both cross-sectional and longitudinal bases. SPECT, with its direct relevance to routine clinical practice, is a fundamental tool in evaluation of myocardial reparation and regeneration therapies.
Collapse
Affiliation(s)
- Łukasz Tekieli
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Jagiellonian University, Krakow, Poland
- Department of Interventional Cardiology, John Paul II Hospital, Jagiellonian University, Krakow, Poland
| | - Wojciech Szot
- Department of Radiology, John Paul II Hospital, Krakow, Poland
| | - Ewa Kwiecień
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Jagiellonian University, Krakow, Poland
| | - Adam Mazurek
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Jagiellonian University, Krakow, Poland
| | - Eliza Borkowska
- Department of Radiology, John Paul II Hospital, Krakow, Poland
| | - Łukasz Czyż
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Jagiellonian University, Krakow, Poland
| | - Maciej Dąbrowski
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Anna Kozynacka
- Department of Coronary Artery Disease and Heart Failure, John Paul II Hospital, Jagiellonian University, Krakow, Poland
| | - Maciej Skubera
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Jagiellonian University, Krakow, Poland
| | - Piotr Podolec
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Jagiellonian University, Krakow, Poland
| | - Marcin Majka
- Department of Transplantation, Jagiellonian University, Krakow, Poland
| | | | - Piotr Musiałek
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Jagiellonian University, Krakow, Poland
| |
Collapse
|
10
|
Attar A, Monabati A, Montaseri M, Vosough M, Hosseini SA, Kojouri J, Abdi-Ardekani A, Izadpanah P, Azarpira N, Pouladfar G, Ramzi M. Transplantation of mesenchymal stem cells for prevention of acute myocardial infarction induced heart failure: study protocol of a phase III randomized clinical trial (Prevent-TAHA8). Trials 2022; 23:632. [PMID: 35927674 PMCID: PMC9351242 DOI: 10.1186/s13063-022-06594-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Background Results from recent clinical trials on bone marrow mononuclear cell (BM-MNC) transplantation show that this intervention can help reduce the incidence of heart failure (HF) after acute myocardial infarction (AMI). However, no study has evaluated the effect of the transplantation of mesenchymal stem cells (MSCs) on a clinical endpoint such as HF. Methods This single-blinded, randomized, multicenter trial aims to establish whether the intracoronary infusion of umbilical cord-derived Wharton’s jelly MSCs (WJ-MSCs) helps prevent HF development after AMI. The study will enroll 390 patients 3 to 7 days following AMI. Only patients aged below 65 years with impaired LV function (LVEF < 40%) will be included. They will be randomized (2:1 ratio) to either receive standard care or a single intracoronary infusion of 107 WJ-MSCs. The primary outcome of this study is the assessment of HF development during long-term follow-up (3 years). Discussion Data will be collected until Nov 2024. Thereafter, the analysis will be conducted. Results are expected to be ready by Dec 2024. We will prepare and submit the related manuscript following the CONSORT guidelines. This study will help determine whether or not the infusion of intracoronary WJ-MSCs in patients with AMI will reduce the incidence of AMI-induced HF. Trial registration ClinicalTrials.gov NCT05043610, Registered on 14 September 2021 - retrospectively registered. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06594-1.
Collapse
Affiliation(s)
- Armin Attar
- Department of Cardiovascular Medicine, TAHA Clinical Trial Group, Shiraz University of Medical Sciences, Zand Street, Shiraz, 71344-1864, Iran.
| | - Ahmad Monabati
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Montaseri
- Department of Cardiovascular Medicine, TAHA Clinical Trial Group, Shiraz University of Medical Sciences, Zand Street, Shiraz, 71344-1864, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyed Ali Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Kojouri
- Department of Cardiovascular Medicine, TAHA Clinical Trial Group, Shiraz University of Medical Sciences, Zand Street, Shiraz, 71344-1864, Iran
| | - Alireza Abdi-Ardekani
- Department of Cardiovascular Medicine, TAHA Clinical Trial Group, Shiraz University of Medical Sciences, Zand Street, Shiraz, 71344-1864, Iran
| | - Peyman Izadpanah
- Department of Cardiovascular Medicine, TAHA Clinical Trial Group, Shiraz University of Medical Sciences, Zand Street, Shiraz, 71344-1864, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Pouladfar
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mani Ramzi
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Attar A, Hosseinpour A, Hosseinpour H, Kazemi A. Major cardiovascular events after bone marrow mononuclear cell transplantation following acute myocardial infarction: an updated post-BAMI meta-analysis of randomized controlled trials. BMC Cardiovasc Disord 2022; 22:259. [PMID: 35681123 PMCID: PMC9185901 DOI: 10.1186/s12872-022-02701-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background The effect of bone marrow-derived mononuclear cells (BM-MNCs) after acute myocardial infarction (AMI) on myocardial function indices such as left ventricular ejection fraction has been widely studied. However, the effect of this intervention on major adverse cardiovascular events (MACE) was not the principal purpose of most investigations and its role is unclear. The aim of this study was to investigate the possible long-term clinical efficacy of BM-MNCs on MACE after AMI. Methods A comprehensive search was conducted through electronic databases for potentially eligible randomized trials investigating the impact of BM-MNC therapy following acute MI on clinical outcomes. Risk of bias of the eligible studies was assessed using the Cochrane Collaboration’s tool. The effect of treatment was displayed by risk ratio (RR) and its 95% confidence interval (CI) using random-effects model. Results Initial database searching found 1540 records and 23 clinical trials with a total of 2286 participants eligible for meta-analysis. Injection of BM-MNCs was associated with lower risk of composite end points of hospitalization for congestive heart failure (CHF), re-infarction, and cardiac-related mortality (91/1191 vs. 111/812, RR = 0.643, 95% CI = 0.489 to 0.845, p = 0.002). This effect was derived from both reduction of CHF (47/1220 vs. 62/841, RR = 0.568, 95% CI = 0.382 to 0.844, p = 0.005) and re-infarction rate (23/1159 vs. 30/775, RR = 0.583, 95% CI = 0.343 to 0.991, p = 0.046), but not cardiac-related mortality (28/1290 vs. 31/871, RR = 0.722, 95% CI = 0.436 to 1.197, p = 0.207). Conclusion This is the first meta-analysis focused on the cardiovascular outcomes of stem cell therapy after AMI and it revealed that transplantation of BM-MNCs may reduce composite endpoint of hospitalization for CHF, re-infarction, and cardiac related mortality driven mainly by reducing reinfarction and hospitalization for heart failure rates but not cardiovascular mortality. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02701-x.
Collapse
Affiliation(s)
- Armin Attar
- Department of Cardiovascular Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Alireza Hosseinpour
- Department of Cardiovascular Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Asma Kazemi
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Shazly T, Smith A, Uline MJ, Spinale FG. Therapeutic payload delivery to the myocardium: Evolving strategies and obstacles. JTCVS OPEN 2022; 10:185-194. [PMID: 36004211 PMCID: PMC9390211 DOI: 10.1016/j.xjon.2022.04.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Key Words
- BMC, bone marrow cell
- HF, heart failure
- ID, intracoronary delivery
- IMD, intramyocardial delivery
- IPD, intrapericardial delivery
- LV, left ventricle
- MI, myocardial infarct
- MSC, mesenchymal stem cell
- TED, transendocardial delivery
- bFGF, basic fibroblast growth factor
- biomaterial
- cardiac
- injection
- local delivery
- myocardium
- payload
Collapse
Affiliation(s)
- Tarek Shazly
- College of Engineering and Computing, School of Medicine, University of South Carolina, Columbia, SC
| | - Arianna Smith
- College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, Fla
| | - Mark J. Uline
- College of Engineering and Computing, School of Medicine, University of South Carolina, Columbia, SC
| | - Francis G. Spinale
- College of Engineering and Computing, School of Medicine, University of South Carolina, Columbia, SC
- Cardiovascular Translational Research Center, School of Medicine, University of South Carolina, Columbia, SC
- Columbia VA Health Care System, Columbia, SC
| |
Collapse
|
13
|
Wu Y, Zhang H, Wang S, Li L, Wang R, Jiang S. Human umbilical cord-derived stem cell sheets improve left ventricular function in rat models of ischemic heart failure. Eur J Pharmacol 2022; 925:174994. [PMID: 35513020 DOI: 10.1016/j.ejphar.2022.174994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) are among the most promising cell therapy sources used to treat ischemic heart disease. Cell sheet engineering has been used to transplant stem cells and improve their therapeutic effectiveness. We aimed to evaluate the effectiveness of UC-MSC sheets in the treatment of chronic ischemic heart failure. METHODS AND RESULTS Flow cytometric analysis showed that UC-MSCs were positive for CD73, CD90, and CD105. UC-MSC sheets were produced from UC-MSCs using temperature-responsive culture dishes. Afterward, these sheets were transplanted onto the epicardial surface at the infarct heart in rat models of chronic ischemic heart failure. At four weeks after the transplantation, echocardiography analysis revealed that the cardiac function of the UC-MSC sheets group was significantly better than that of the suspension and myocardial infarction (MI) only groups. Furthermore, histological examinations revealed that the left ventricular remodeling was attenuated compared with the suspension and MI-only groups. In the UC-MSC slice group, the neovascular den and cell size in the infarct margin region were was significantly improved than in the suspension and MI-only groups. Also, the UC-MSC sheets inhibited the PI3K/AKT/mTOR signaling pathway in chronic ischemic heart failure. CONCLUSIONS UC-MSC sheets can maintain cardiac function and attenuate ventricular remodeling in chronic ischemic heart failure, indicating that this strategy would be a promising therapeutic option in the clinical scenario.
Collapse
Affiliation(s)
- Yuanbin Wu
- Medical School of Chinese PLA, Beijing, 100853, China; Division of Adult Cardiac Surgery, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Huajun Zhang
- Division of Adult Cardiac Surgery, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shuling Wang
- Division of Adult Cardiac Surgery, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Libing Li
- Division of Adult Cardiac Surgery, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Rong Wang
- Division of Adult Cardiac Surgery, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Shengli Jiang
- Division of Adult Cardiac Surgery, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
14
|
Liu J, Chen HB, Sun WZ, Jin XX, Zhang W, Yang YB, Li YR, Chen XL, Hou JB. Comparison of protective effects of alprostadil with Salvia miltiorrhiza against myocardial ischemia-reperfusion injury in rats. Rev Port Cardiol 2022; 41:197-205. [DOI: 10.1016/j.repc.2021.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/15/2020] [Accepted: 02/12/2021] [Indexed: 10/19/2022] Open
|
15
|
Nasiri Boroujeni S, Chehelcheraghi F, Khaksarian M, Sedighi M, Ghorbanzadeh V, Nazari A. Applying Vasopressin-Pre-Conditioned Human Adipose Mesenchymal Stem Cells Improves Heart Condition after Transplantation into Infarcted Myocardium. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2022; 11:207-222. [PMID: 37605740 PMCID: PMC10440004 DOI: 10.22088/ijmcm.bums.11.3.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 08/23/2023]
Abstract
Transplantation of H-AdMSCs may improve heart function after MI. AVP is a neurohypophyseal hormone that reduces cardiovascular damage. This study investigated the role of AVP preconditioning in the survival of MSCs and their effect on myocardial repair in the MI rats. H-AMSCs were isolated and incubated for 3 days. The expression of oxytocin and vasopressin receptors was evaluated by Real-time-PCR. Forty male Wistar rats were divided into 4 groups: control, sham, ASC and AVP-ASC. Ischemia was established by ligation of LAD coronary artery. Electrocardiography, fibrosis, angiogenesis, and apoptosis in myocardium were determined after 7 days. Results showed that preconditioned MSCs significantly increased cardiac function when compared with group that received non-preconditioned MSCs. This was associated with significantly reduced fibrosis, increased vascular density, and decreased resident myocyte apoptosis. Results indicate that AVP preconditioned MSCs can be consider a novel approach to management of MI.
Collapse
Affiliation(s)
| | - Farzaneh Chehelcheraghi
- Department of Anatomical Sciences, School of Medicine, Lorestan University of Medical Sciences, Khoramabad, Iran.
| | - Mojtaba Khaksarian
- Department of Physiology, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Mehrnoosh Sedighi
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khoramabad, Iran.
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Vajihe Ghorbanzadeh
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khoramabad, Iran.
| | - Afshin Nazari
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khoramabad, Iran.
| |
Collapse
|
16
|
Attar A, Bahmanzadegan Jahromi F, Kavousi S, Monabati A, Kazemi A. Mesenchymal stem cell transplantation after acute myocardial infarction: a meta-analysis of clinical trials. Stem Cell Res Ther 2021; 12:600. [PMID: 34876213 PMCID: PMC8650261 DOI: 10.1186/s13287-021-02667-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/18/2021] [Indexed: 12/17/2022] Open
Abstract
Background Trials investigating the role of mesenchymal stem cells (MSCs) in increasing ejection fraction (LVEF) after acute myocardial infarction (AMI) have raised some controversies. This study was conducted to find whether transplantation of MSCs after AMI can help improve myocardial performance indices or clinical outcomes. Methods Randomized trials which evaluated transplantation of MSCs after AMI were enrolled. The primary outcome was LVEF change. We also assessed the role of cell origin, cell number, transplantation time interval after AMI, and route of cell delivery on the primary outcome. Results Thirteen trials including 956 patients (468 and 488 in the intervention and control arms) were enrolled. After excluding the biased data, LVEF was significantly increased compared to the baseline among those who received MSC (WMD = 3.78%, 95% CI: 2.14 to 5.42, p < 0.001, I2 = 90.2%) with more pronounced effect if the transplantation occurred within the first week after AMI (MD = 5.74%, 95%CI: 4.297 to 7.183; I2 = 79.2% p < 0.001). The efficacy of trans-endocardial injection was similar to that of intracoronary infusion (4% [95%CI: 2.741 to 5.259, p < 0.001] vs. 3.565% [95%CI: 1.912 to 5.218, p < 0.001], respectively). MSC doses of lower and higher than 107 cells did not improve LVEF differently (5.24% [95%CI: 2.06 to 8.82, p = 0.001] vs. 3.19% [95%CI: 0.17 to 6.12, p = 0.04], respectively).
Conclusion Transplantation of MSCs after AMI significantly increases LVEF, showing a higher efficacy if done in the first week. Further clinical studies should be conducted to investigate long-term clinical outcomes such as heart failure and cardiovascular mortality. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02667-1.
Collapse
Affiliation(s)
- Armin Attar
- Department of Cardiovascular Medicine, TAHA Clinical Trial Group, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, Iran.
| | | | - Shahin Kavousi
- Students' Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Monabati
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Kazemi
- Nutrition Research Center, Shiraz University of Medical Sciences, PO Box 71645-111, Shiraz, Iran.
| |
Collapse
|
17
|
Yu J, Zhang RF, Mao YL, Zhang H. Efficacy and Safety of mesenchymal stem cell therapy in patients with acute myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Curr Stem Cell Res Ther 2021; 17:793-807. [PMID: 34397334 DOI: 10.2174/1574888x16666210816111031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES The adjuvant treatment of stem cell therapy for acute myocardial infarction (AMI) has been studied in multiple clinical trials, but many questions remain to be addressed, such as efficacy, safety, identification of the optimal cell type, tractable route of delivery, transplant dosage, and transplant timing. The current meta-analysis aimed to explore the issues of mesenchymal stem cells (MSCs) transplantation in patients with AMI based on published randomized controlled trials (RCTs) and guide the design of subsequent clinical trials of MSCs therapy for AMI. METHODS The Cochrane Library, PubMed, EMBASE databases were searched for relevant clinical trials from January 1, 2000, to January 23, 2021. Results from RCTs involving MSCs transplantation for the treatment of AMI were identified. According to the Cochrane systematic review method, the literature quality, including studies, was evaluated and valid data was extracted. RevMan 5.3 and Stata 15.1 software were used for Meta-analysis. RESULTS After a literature search and detailed evaluation, 9 randomized controlled trials enrolling 460 patients were included in the quantitative analysis. Pooled analyses indicated that MSCs therapy was associated with a significantly greater improvement in overall left ventricular ejection fraction (LVEF), and the effect was maintained for up to 24 months. No significant difference in favor of MSCs treatment in left ventricular (LV) volume and in the risk of rehospitalization as a result of heart failure (HF) was noted, compared with the controls. For transplantation dose, the LVEF of patients accepting a MSCs dose of 107-108 cells was significantly increased by 2.62% (95% CI 1.54 to 3.70; P < 0.00001; I2 =0%), but this increase was insignificant in the subgroup that accepted an MSCs dose of < 107 cells (1.65% in LVEF, 95% CI, 0.03 to 3.27; P =0.05; I2 =75%) or >108 cells (4.65% in LVEF, 95% CI, -4.55 to 13.48; P =0.32; I2 =95%), compared with the controls. For transplantation timing, a significant improvement of LVEF of 3.18% was achieved in the group of patients accepting a MSCs infusion within 2 to 14 days Percutaneous coronary intervention (PCI) (95% CI, 2.89 to 3.47; P <0.00001; I2 = 0). There was no association between MSCs therapy and major adverse events. CONCLUSION Results from our systematic review suggest that MSCs therapy for patients with AMI appears to be safe and might induce a significant increase in LVEF with a limited impact on LV volume and rehospitalization caused by HF. The effect was maintained for up to 24 months. MSCs dose of 107-108 cells was more likely to achieve better clinical endpoints than <107 or >108 cells. The optimal time window for cell transplantation might be within 2-14 days after PCI. This meta-analysis was registered with PROSPERO, number CRD 42021241104.
Collapse
Affiliation(s)
- Jiang Yu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Run-Feng Zhang
- Department of Cardiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang 621000, Sichuan, China
| | - Yi-Li Mao
- Department of Cardiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang 621000, Sichuan, China
| | - Heng Zhang
- Department of Cardiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang 621000, Sichuan, China
| |
Collapse
|
18
|
Diaz-Navarro R, Urrútia G, Cleland JG, Poloni D, Villagran F, Acosta-Dighero R, Bangdiwala SI, Rada G, Madrid E. Stem cell therapy for dilated cardiomyopathy. Cochrane Database Syst Rev 2021; 7:CD013433. [PMID: 34286511 PMCID: PMC8406792 DOI: 10.1002/14651858.cd013433.pub2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Stem cell therapy (SCT) has been proposed as an alternative treatment for dilated cardiomyopathy (DCM), nonetheless its effectiveness remains debatable. OBJECTIVES To assess the effectiveness and safety of SCT in adults with non-ischaemic DCM. SEARCH METHODS We searched CENTRAL in the Cochrane Library, MEDLINE, and Embase for relevant trials in November 2020. We also searched two clinical trials registers in May 2020. SELECTION CRITERIA Eligible studies were randomized controlled trials (RCT) comparing stem/progenitor cells with no cells in adults with non-ischaemic DCM. We included co-interventions such as the administration of stem cell mobilizing agents. Studies were classified and analysed into three categories according to the comparison intervention, which consisted of no intervention/placebo, cell mobilization with cytokines, or a different mode of SCT. The first two comparisons (no cells in the control group) served to assess the efficacy of SCT while the third (different mode of SCT) served to complement the review with information about safety and other information of potential utility for a better understanding of the effects of SCT. DATA COLLECTION AND ANALYSIS Two review authors independently screened all references for eligibility, assessed trial quality, and extracted data. We undertook a quantitative evaluation of data using random-effects meta-analyses. We evaluated heterogeneity using the I² statistic. We could not explore potential effect modifiers through subgroup analyses as they were deemed uninformative due to the scarce number of trials available. We assessed the certainty of the evidence using the GRADE approach. We created summary of findings tables using GRADEpro GDT. We focused our summary of findings on all-cause mortality, safety, health-related quality of life (HRQoL), performance status, and major adverse cardiovascular events. MAIN RESULTS We included 13 RCTs involving 762 participants (452 cell therapy and 310 controls). Only one study was at low risk of bias in all domains. There were many shortcomings in the publications that did not allow a precise assessment of the risk of bias in many domains. Due to the nature of the intervention, the main source of potential bias was lack of blinding of participants (performance bias). Frequently, the format of the continuous data available was not ideal for use in the meta-analysis and forced us to seek strategies for transforming data in a usable format. We are uncertain whether SCT reduces all-cause mortality in people with DCM compared to no intervention/placebo (mean follow-up 12 months) (risk ratio (RR) 0.84, 95% confidence interval (CI) 0.54 to 1.31; I² = 0%; studies = 7, participants = 361; very low-certainty evidence). We are uncertain whether SCT increases the risk of procedural complications associated with cells injection in people with DCM (data could not be pooled; studies = 7; participants = 361; very low-certainty evidence). We are uncertain whether SCT improves HRQoL (standardized mean difference (SMD) 0.62, 95% CI 0.01 to 1.23; I² = 72%; studies = 5, participants = 272; very low-certainty evidence) and functional capacity (6-minute walk test) (mean difference (MD) 70.12 m, 95% CI -5.28 to 145.51; I² = 87%; studies = 5, participants = 230; very low-certainty evidence). SCT may result in a slight functional class (New York Heart Association) improvement (data could not be pooled; studies = 6, participants = 398; low-certainty evidence). None of the included studies reported major adverse cardiovascular events as defined in our protocol. SCT may not increase the risk of ventricular arrhythmia (data could not be pooled; studies = 8, participants = 504; low-certainty evidence). When comparing SCT to cell mobilization with granulocyte-colony stimulating factor (G-CSF), we are uncertain whether SCT reduces all-cause mortality (RR 0.46, 95% CI 0.16 to 1.31; I² = 39%; studies = 3, participants = 195; very low-certainty evidence). We are uncertain whether SCT increases the risk of procedural complications associated with cells injection (studies = 1, participants = 60; very low-certainty evidence). SCT may not improve HRQoL (MD 4.61 points, 95% CI -5.62 to 14.83; studies = 1, participants = 22; low-certainty evidence). SCT may improve functional capacity (6-minute walk test) (MD 140.14 m, 95% CI 119.51 to 160.77; I² = 0%; studies = 2, participants = 155; low-certainty evidence). None of the included studies reported MACE as defined in our protocol or ventricular arrhythmia. The most commonly reported outcomes across studies were based on physiological measures of cardiac function where there were some beneficial effects suggesting potential benefits of SCT in people with non-ischaemic DCM. However, it is unclear if this intermediate effects translates into clinical benefits for these patients. With regard to specific aspects related to the modality of cell therapy and its delivery, uncertainties remain as subgroup analyses could not be performed as planned, making it necessary to wait for the publication of several studies that are currently in progress before any firm conclusion can be reached. AUTHORS' CONCLUSIONS We are uncertain whether SCT in people with DCM reduces the risk of all-cause mortality and procedural complications, improves HRQoL, and performance status (exercise capacity). SCT may improve functional class (NYHA), compared to usual care (no cells). Similarly, when compared to G-CSF, we are also uncertain whether SCT in people with DCM reduces the risk of all-cause mortality although some studies within this comparison observed a favourable effect that should be interpreted with caution. SCT may not improve HRQoL but may improve to some extent performance status (exercise capacity). Very low-quality evidence reflects uncertainty regarding procedural complications. These suggested beneficial effects of SCT, although uncertain due to the very low certainty of the evidence, are accompanied by favourable effects on some physiological measures of cardiac function. Presently, the most effective mode of administration of SCT and the population that could benefit the most is unclear. Therefore, it seems reasonable that use of SCT in people with DCM is limited to clinical research settings. Results of ongoing studies are likely to modify these conclusions.
Collapse
Affiliation(s)
- Rienzi Diaz-Navarro
- Department of Internal Medicine, School of Medicine, Universidad de Valparaiso, Vina del Mar, Chile
| | - Gerard Urrútia
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - John Gf Cleland
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniel Poloni
- Department of Internal Medicine, School of Medicine, Universidad de Valparaiso, Vina del Mar, Chile
| | - Francisco Villagran
- Department of Internal Medicine, School of Medicine, Universidad de Valparaiso, Vina del Mar, Chile
| | - Roberto Acosta-Dighero
- Cochrane Chile Associate Centre, Universidad de Valparaíso, Valparaíso, Chile
- School of Physiotherapy, Faculty of Health Sciences, Universidad San Sebastian, Santiago, Chile
| | - Shrikant I Bangdiwala
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Gabriel Rada
- Department of Internal Medicine and Evidence-Based Healthcare Program, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eva Madrid
- Interdisciplinary Centre for Health Studies CIESAL, Universidad de Valparaíso, Viña del Mar, Chile
- Cochrane Chile Associate Centre, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
19
|
Ostovaneh MR, Makkar RR, Ambale-Venkatesh B, Ascheim D, Chakravarty T, Henry TD, Kowalchuk G, Aguirre FV, Kereiakes DJ, Povsic TJ, Schatz R, Traverse JH, Pogoda J, Smith RD, Marbán L, Marbán E, Lima JAC. Effect of cardiosphere-derived cells on segmental myocardial function after myocardial infarction: ALLSTAR randomised clinical trial. Open Heart 2021; 8:e001614. [PMID: 34233913 PMCID: PMC8264869 DOI: 10.1136/openhrt-2021-001614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Most cell therapy trials failed to show an improvement in global left ventricular (LV) function measures after myocardial infarction (MI). Myocardial segments are heterogeneously impacted by MI. Global LV function indices are not able to detect the small treatment effects on segmental myocardial function which may have prognostic implications for cardiac events. We aimed to test the efficacy of allogeneic cardiosphere-derived cells (CDCs) for improving regional myocardial function and contractility. METHODS In this exploratory analysis of a randomised clinical trial, 142 patients with post-MI with LVEF <45% and 15% or greater LV scar size were randomised in 2:1 ratio to receive intracoronary infusion of allogenic CDCs or placebo, respectively. Change in segmental myocardial circumferential strain (Ecc) by MRI from baseline to 6 months was compared between CDCs and placebo groups. RESULTS In total, 124 patients completed the 6-month follow-up (mean (SD) age 54.3 (10.8) and 108 (87.1%) men). Segmental Ecc improvement was significantly greater in patients receiving CDC (-0.5% (4.0)) compared with placebo (0.2% (3.7), p=0.05). The greatest benefit for improvement in segmental Ecc was observed in segments containing scar tissue (change in segmental Ecc of -0.7% (3.5) in patients receiving CDC vs 0.04% (3.7) in the placebo group, p=0.04). CONCLUSIONS In patients with post-MI LV dysfunction, CDC administration resulted in improved segmental myocardial function. Our findings highlight the importance of segmental myocardial function indices as an endpoint in future clinical trials of patients with post-MI. TRIAL REGISTRATION NUMBER NCT01458405.
Collapse
Affiliation(s)
- Mohammad R Ostovaneh
- Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Medicine, Penn State Milton S Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Raj R Makkar
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angles, California, USA
| | | | | | - Tarun Chakravarty
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angles, California, USA
| | | | - Glen Kowalchuk
- Sanger Heart and Vascular Institute, Charlotte, North Carolina, USA
| | | | | | - Thomas J Povsic
- Duke Clinical Research Institute and Duke Medicine, Durham, North Carolina, USA
| | | | - Jay H Traverse
- Minneapolis Heart Institute Foundation, Minneapolis, Minnesota, USA
| | - Janice Pogoda
- Cipher Biostatistics and Reporting, Reno, Nevada, USA
| | | | - Linda Marbán
- Capricor Therapeutics Inc, Los Angles, California, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angles, California, USA
| | - Joao A C Lima
- Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Sato T, Wakao S, Kushida Y, Tatsumi K, Kitada M, Abe T, Niizuma K, Tominaga T, Kushimoto S, Dezawa M. A Novel Type of Stem Cells Double-Positive for SSEA-3 and CD45 in Human Peripheral Blood. Cell Transplant 2021; 29:963689720923574. [PMID: 32525407 PMCID: PMC7586270 DOI: 10.1177/0963689720923574] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Peripheral blood (PB) contains several types of stem/progenitor cells, including hematopoietic stem and endothelial progenitor cells. We identified a population positive for both the pluripotent surface marker SSEA-3 and leukocyte common antigen CD45 that comprises 0.04% ± 0.003% of the mononuclear cells in human PB. The average size of the SSEA-3(+)/CD45(+) cells was 10.1 ± 0.3 µm and ∼22% were positive for CD105, a mesenchymal marker; ∼85% were positive for CD19, a B cell marker; and ∼94% were positive for HLA-DR, a major histocompatibility complex class II molecule relevant to antigen presentation. These SSEA-3(+)/CD45(+) cells expressed the pluripotency markers Nanog, Oct3/4, and Sox2, as well as sphingosine-1-phosphate (S1P) receptor 2, and migrated toward S1P, although their adherence and proliferative activities in vitro were low. They expressed NeuN at 7 d, Pax7 and desmin at 7 d, and alpha-fetoprotein and cytokeratin-19 at 3 d when supplied to mouse damaged tissues of the brain, skeletal muscle and liver, respectively, suggesting the ability to spontaneously differentiate into triploblastic lineages compatible to the tissue microenvironment. Multilineage-differentiating stress enduring (Muse) cells, identified as SSEA-3(+) in tissues such as the bone marrow and organ connective tissues, express pluripotency markers, migrate to sites of damage via the S1P-S1P receptor 2 system, and differentiate spontaneously into tissue-compatible cells after homing to the damaged tissue where they participate in tissue repair. After the onset of acute myocardial infarction and stroke, patients are reported to have an increase in the number of SSEA-3(+) cells in the PB. The SSEA-3(+)/CD45(+) cells in the PB showed similarity to tissue-Muse cells, although with difference in surface marker expression and cellular properties. Thus, these findings suggest that human PB contains a subset of cells that are distinct from known stem/progenitor cells, and that CD45(+)-mononuclear cells in the PB comprise a novel subpopulation of cells that express pluripotency markers.
Collapse
Affiliation(s)
- Tetsuya Sato
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuki Tatsumi
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Regenerative Medicine Division, Life Science Institute, Inc., Tokyo, Japan
| | - Masaaki Kitada
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takatsugu Abe
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeki Kushimoto
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
21
|
Cardiac Cell Therapy: Insights into the Mechanisms of Tissue Repair. Int J Mol Sci 2021; 22:ijms22031201. [PMID: 33530466 PMCID: PMC7865339 DOI: 10.3390/ijms22031201] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell-based cardiac therapies have been extensively studied in recent years. However, the efficacy of cell delivery, engraftment, and differentiation post-transplant remain continuous challenges and represent opportunities to further refine our current strategies. Despite limited long-term cardiac retention, stem cell treatment leads to sustained cardiac benefit following myocardial infarction (MI). This review summarizes the current knowledge on stem cell based cardiac immunomodulation by highlighting the cellular and molecular mechanisms of different immune responses to mesenchymal stem cells (MSCs) and their secretory factors. This review also addresses the clinical evidence in the field.
Collapse
|
22
|
Hoeeg C, Dolatshahi-Pirouz A, Follin B. Injectable Hydrogels for Improving Cardiac Cell Therapy-In Vivo Evidence and Translational Challenges. Gels 2021; 7:gels7010007. [PMID: 33499287 PMCID: PMC7859914 DOI: 10.3390/gels7010007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Cell therapy has the potential to regenerate cardiac tissue and treat a variety of cardiac diseases which are currently without effective treatment. This novel approach to treatment has demonstrated clinical efficiency, despite low retention of the cell products in the heart. It has been shown that improving retention often leads to improved functional outcome. A feasible method of improving cell graft retention is administration of injectable hydrogels. Over the last decade, a variety of injectable hydrogels have been investigated preclinically for their potential to improve the effects of cardiac cell therapy. These hydrogels are created with different polymers, properties, and additional functional motifs and differ in their approaches for encapsulating different cell types. Only one combinational therapy has been tested in a clinical randomized controlled trial. In this review, the latest research on the potential of injectable hydrogels for delivery of cell therapy is discussed, together with potential roadblocks for clinical translation and recommendations for future explorations to facilitate future translation.
Collapse
Affiliation(s)
- Cecilie Hoeeg
- Cardiology Stem Cell Centre, Rigshospitalet, Henrik Harpestrengs Vej 4C, 2100 Copenhagen, Denmark;
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Dentistry—Regenerative Biomaterials, Philips van Leydenlaan 25, 6525EX Nijmegen, The Netherlands
| | - Bjarke Follin
- Cardiology Stem Cell Centre, Rigshospitalet, Henrik Harpestrengs Vej 4C, 2100 Copenhagen, Denmark;
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
23
|
Hess A, Thackeray JT, Wollert KC, Bengel FM. Radionuclide Image-Guided Repair of the Heart. JACC Cardiovasc Imaging 2020; 13:2415-2429. [DOI: 10.1016/j.jcmg.2019.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/23/2019] [Accepted: 11/05/2019] [Indexed: 01/12/2023]
|
24
|
Stapleton L, Zhu Y, Woo YPJ, Appel E. Engineered biomaterials for heart disease. Curr Opin Biotechnol 2020; 66:246-254. [PMID: 33011453 DOI: 10.1016/j.copbio.2020.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/16/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022]
Abstract
Ischemic heart disease is the most common type of heart disease, responsible for roughly 10 million deaths worldwide annually. While standard clinical interventions have resulted in improved patient outcomes, access to small diameter vessels required for cardiovascular interventions, and long-term patient mortality rates associated with eventual heart failure, remain critical challenges. In this current opinion piece we discuss novel methodologies for the advancement of vascular grafts, cardiac patches, and injectable drug delivery depot technologies as they relate to treatment of ischemic heart disease, including bilayered conduits, acellular bioactive extracellular matrix (ECM) scaffolds, and protease-responsive hydrogel delivery platforms. We address the motivation for innovation and current limitations in the field of engineered biomaterials for myocardial ischemia therapeutics and interventions.
Collapse
Affiliation(s)
- Lyndsay Stapleton
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yuanjia Zhu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Yi-Ping Joseph Woo
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA.
| | - Eric Appel
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Noda T, Nishigaki K, Minatoguchi S. Safety and Efficacy of Human Muse Cell-Based Product for Acute Myocardial Infarction in a First-in-Human Trial. Circ J 2020; 84:1189-1192. [PMID: 32522904 DOI: 10.1253/circj.cj-20-0307] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Because ST-elevation myocardial infarction (STEMI) extensively damages the heart, regenerative therapy with pluripotent stem cells such as multilineage-differentiating stress enduring (Muse) cells is required. METHODS AND RESULTS In a first-in-human study, 3 STEMI patients with a left ventricular ejection fraction (LVEF) ≤45% after successful percutaneous coronary intervention received intravenously 1.5×107cells of a human Muse cell-based product, CL2020. The safety and efficacy on LVEF and wall motion score index (WMSI) were evaluated for 12 weeks. No adverse drug reaction was noted. LVEF and WMSI were markedly improved. CONCLUSIONS The first-in-human intravenous administration of CL2020 was safe and markedly improved LV function in STEMI patients.
Collapse
Affiliation(s)
| | | | - Shinya Minatoguchi
- Gifu Municipal Hospital
- Department of Circulatory and Respiratory Advanced Medicine, Gifu University Graduate School of Medicine
| |
Collapse
|
26
|
Wei J, Hollabaugh C, Miller J, Geiger PC, Flynn BC. Molecular Cardioprotection and the Role of Exosomes: The Future Is Not Far Away. J Cardiothorac Vasc Anesth 2020; 35:780-785. [PMID: 32571657 DOI: 10.1053/j.jvca.2020.05.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 01/20/2023]
Abstract
Heart disease is the leading cause of death in men and women in the United States. During the past several decades, research into the role of specific intracellular mediators, called exosomes, has advanced the understanding of molecular cardioprotection. Exosomes and the micro-RNAs within them may be potential targets for the development of genetically engineered or biosimilar medications for patients in heart failure or with ischemic cardiac disease. This review discusses anesthetic implications of exosome production and the future micro-RNA applications for cardioprotection.
Collapse
Affiliation(s)
- Johnny Wei
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS
| | | | - Joshua Miller
- University of Kansas Medical Center, Kansas City, KS
| | - Paige C Geiger
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| | - Brigid C Flynn
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS.
| |
Collapse
|
27
|
Xin TY, Yu TT, Yang RL. DNA methylation and demethylation link the properties of mesenchymal stem cells: Regeneration and immunomodulation. World J Stem Cells 2020; 12:351-358. [PMID: 32547683 PMCID: PMC7280864 DOI: 10.4252/wjsc.v12.i5.351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/27/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a heterogeneous population that can be isolated from various tissues, including bone marrow, adipose tissue, umbilical cord blood, and craniofacial tissue. MSCs have attracted increasingly more attention over the years due to their regenerative capacity and function in immunomodulation. The foundation of tissue regeneration is the potential of cells to differentiate into multiple cell lineages and give rise to multiple tissue types. In addition,the immunoregulatory function of MSCs has provided insights into therapeutic treatments for immune-mediated diseases. DNA methylation and demethylation are important epigenetic mechanisms that have been shown to modulate embryonic stem cell maintenance, proliferation, differentiation and apoptosis by activating or suppressing a number of genes. In most studies, DNA hypermethylation is associated with gene suppression, while hypomethylation or demethylation is associated with gene activation. The dynamic balance of DNA methylation and demethylation is required for normal mammalian development and inhibits the onset of abnormal phenotypes. However, the exact role of DNA methylation and demethylation in MSC-based tissue regeneration and immunomodulation requires further investigation. In this review, we discuss how DNA methylation and demethylation function in multi-lineage cell differentiation and immunomodulation of MSCs based on previously published work. Furthermore, we discuss the implications of the role of DNA methylation and demethylation in MSCs for the treatment of metabolic or immune-related diseases.
Collapse
Affiliation(s)
- Tian-Yi Xin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Ting-Ting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Rui-Li Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China.
| |
Collapse
|
28
|
Abstract
Ischemic heart disease (IHD) is one of the most common cardiovascular diseases and is the leading cause of death worldwide. Stem cell therapy is a promising strategy to promote cardiac regeneration and myocardial function recovery. Recently, the generation of human induced pluripotent cells (hiPSCs) and their differentiation into cardiomyocytes and vascular cells offer an unprecedented opportunity for the IHD treatment. This review briefly summarizes hiPSCs and their differentiation, and presents the recent advances in hiPSC injection, engineered cardiac patch fabrication, and the application of hiPSC derived extracellular vesicle. Current challenges and further perspectives are also discussed to understand current risks and concerns, identify potential solutions, and direct future clinical trials and applications.
Collapse
|
29
|
Yang L, Zhu J, Zhang C, Wang J, Yue F, Jia X, Liu H. Stem cell-derived extracellular vesicles for myocardial infarction: a meta-analysis of controlled animal studies. Aging (Albany NY) 2020; 11:1129-1150. [PMID: 30792374 PMCID: PMC6402509 DOI: 10.18632/aging.101814] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 02/01/2019] [Indexed: 12/15/2022]
Abstract
Aims Stem cell-derived extracellular vesicles (EVs) have emerged as a promising therapy for myocardial infarction, but its effects remain incompletely understood. We aim to systematically review the efficacy of EVs on myocardial infarction in both small and large animals. Methods On April 5, 2018, we searched the PubMed, Embase and Web of Science databases using variations of “myocardial infarction” and “extracellular vesicle”. Controlled studies about the treatment effects of stem cell-derived EVs in myocardial infarction animal model were included. Meta-regression analysis was used to reveal the factors affecting the EVs treatments. Results Of 1210 studies retrieved, 24 were eligible for meta-analysis. EVs injection was associated with the improvements of left ventricular ejection fraction (12.65%), fractional shortening (7.54%) and the reduction of infarct size/area at risk (-15.55%). Meta-regression analysis did not reveal the association between treatment efficacy and type of stem cell, ligation-to-injection interval, route of delivery, dosage of delivery or follow-up period (all P values > 0.05). The median quality score of eligible studies was only 1, indicating potential risks of bias. Conclusion Stem cell-derived EVs improve cardiac function and reduce infarct size in myocardial infarction animals, but current pool-up study reveals no associations between common factors and treatment effects.
Collapse
Affiliation(s)
- Lihong Yang
- Department of Cardiac Function Evaluation, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Department of Cardiology, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Jialu Zhu
- Department of Cardiology, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Cong Zhang
- Department of Electrocardiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Juntao Wang
- Department of Cardiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Fengyang Yue
- Department of Cardiology, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Xingtai Jia
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongzhi Liu
- Department of Cardiology, Zhengzhou University People's Hospital, Zhengzhou, Henan, China.,Department of Cardiology, Fuwai Central China Hospital, Zhengzhou, Henan, China.,Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
30
|
Turner D, Rieger AC, Balkan W, Hare JM. Clinical-based Cell Therapies for Heart Disease-Current and Future State. Rambam Maimonides Med J 2020; 11:RMMJ.10401. [PMID: 32374254 PMCID: PMC7202446 DOI: 10.5041/rmmj.10401] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Patients have an ongoing unmet need for effective therapies that reverse the cellular and functional damage associated with heart damage and disease. The discovery that ~1%-2% of adult cardiomyocytes turn over per year provided the impetus for treatments that stimulate endogenous repair mechanisms that augment this rate. Preclinical and clinical studies provide evidence that cell-based therapy meets these therapeutic criteria. Recent and ongoing studies are focused on determining which cell type(s) works best for specific patient population(s) and the mechanism(s) by which these cells promote repair. Here we review clinical and preclinical stem cell studies and anticipate future directions of regenerative medicine for heart disease.
Collapse
Affiliation(s)
- Darren Turner
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Angela C. Rieger
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joshua M. Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
31
|
The Effects of Granulocyte Colony-Stimulating Factor in Patients with a Large Anterior Wall Acute Myocardial Infarction to Prevent Left Ventricular Remodeling: A 10-Year Follow-Up of the RIGENERA Study. J Clin Med 2020; 9:jcm9041214. [PMID: 32340315 PMCID: PMC7230316 DOI: 10.3390/jcm9041214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background: the RIGENERA trial assessed the efficacy of granulocyte-colony stimulating factor (G-CSF) in the improvement of clinical outcomes in patients with severe acute myocardial infarction. However, there is no evidence available regarding the long-term safety and efficacy of this treatment. Methods: in order to evaluate the long-term effects on the incidence of major adverse events, on the symptom burden, on the quality of life and the mean life expectancy and on the left ventricular (LV) function, we performed a clinical and echocardiographic evaluation together with an assessment using the Minnesota Living with Heart Failure Questionnaire (MLHFQ) and the Seattle Heart Failure Model (SHFM) at 10-years follow-up, in the patients cohorts enrolled in the RIGENERA trial. Results: thirty-two patients were eligible for the prospective clinical and echocardiography analyses. A significant reduction in adverse LV remodeling was observed in G-CSF group compared to controls, 9% vs. 48% (p = 0.030). The New York Heart Association (NYHA) functional class was lower in G-CSF group vs. controls (p = 0.040), with lower burden of symptoms and higher quality of life (p = 0.049). The mean life expectancy was significantly higher in G-CSF group compared to controls (15 ± 4 years vs. 12 ± 4 years, p = 0.046. No difference was found in the incidence of major adverse events. Conclusions: this longest available follow-up on G-CSF treatment in patients with severe acute myocardial infarction (AMI) showed that this treatment was safe and associated with a reduction of adverse LV remodeling and higher quality of life, in comparison with standard-of-care treatment.
Collapse
|
32
|
Vagnozzi RJ, Sargent MA, Molkentin JD. Cardiac Cell Therapy Rejuvenates the Infarcted Rodent Heart via Direct Injection but Not by Vascular Infusion. Circulation 2020; 141:1037-1039. [PMID: 32202933 DOI: 10.1161/circulationaha.119.044686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ronald J Vagnozzi
- Department of Pediatrics (R.J.V., M.A.S., J.D.M.), Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH
| | - Michelle A Sargent
- Department of Pediatrics (R.J.V., M.A.S., J.D.M.), Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH
| | - Jeffery D Molkentin
- Department of Pediatrics (R.J.V., M.A.S., J.D.M.), Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH.,Howard Hughes Medical Institute (J.D.M.), Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH
| |
Collapse
|
33
|
Fine B, Vunjak-Novakovic G. Heart regeneration in mouse and human: A bioengineering perspective. CURRENT OPINION IN PHYSIOLOGY 2020; 14:56-63. [PMID: 32095673 DOI: 10.1016/j.cophys.2020.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this short review, we draw parallels and stress differences between heart regeneration in mice and human, from a bioengineering perspective. As the prevailing dogma that the adult heart is completely post-mitotic is starting to change, there are multiple opportunities for augmenting the limited but definitive turnover of cardiomyocytes, to the extent necessary developing clinically relevant modalities for enhancing heart repair. We discuss some of the most promising among these new directions: mobilization of paracrine signaling by therapeutic cells, cell-free therapy of the heart using extracellular vesicles, and direct reprograming of endogenous cells. These new directions share the cell-free, mechanistic approach to heart repair that could be translated into the clinic faster and safer than the traditional cell therapies.
Collapse
Affiliation(s)
- Barry Fine
- Department of Medicine, Engineering Columbia University, New York NY 10032
| | - Gordana Vunjak-Novakovic
- Department of Medicine, Engineering Columbia University, New York NY 10032.,Department of Biomedical Engineering Columbia University, New York NY 10032
| |
Collapse
|
34
|
In Vivo MRI Tracking of Mesenchymal Stromal Cells Labeled with Ultrasmall Paramagnetic Iron Oxide Particles after Intramyocardial Transplantation in Patients with Chronic Ischemic Heart Disease. Stem Cells Int 2019; 2019:2754927. [PMID: 31814830 PMCID: PMC6877937 DOI: 10.1155/2019/2754927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 09/28/2019] [Indexed: 01/17/2023] Open
Abstract
Background While regenerative stem cell therapy for ischemic heart disease has moved into phase 3 studies, little is still known about retention and migration of cell posttransplantation. In human studies, the ability to track transplanted cells has been limited to labeling with radioisotopes and tracking using nuclear imaging. This method is limited by low resolution and short half-lives of available radioisotopes. Longitudinal tracking using magnetic resonance imaging (MRI) of myocardial injected cells labeled with iron oxide nanoparticles has shown promising results in numerous preclinical studies but has yet to be evaluated in human studies. We aimed to evaluate MRI tracking of mesenchymal stromal cells (MSCs) labeled with ultrasmall paramagnetic iron oxide (USPIO) nanoparticles after intramyocardial transplantation in patients with ischemic heart disease (IHD). Methods Five no-option patients with chronic symptomatic IHD underwent NOGA-guided intramyocardial transplantation of USPIO-labeled MSCs. Serial MRI scans were performed to track labeled cells both visually and using semiautomated T2∗ relaxation time analysis. For safety, we followed symptoms, quality of life, and myocardial function for 6 months. Results USPIO-labeled MSCs were tracked for up to 14 days after transplantation at injection sites both visually and using semiautomated regional T2∗ relaxation time analysis. Labeling of MSCs did not impair long-term safety of treatment. Conclusion This was a first-in-man clinical experience aimed at evaluating the utility of MRI tracking of USPIO-labeled bone marrow-derived autologous MSCs after intramyocardial injection in patients with chronic IHD. The treatment was safe, and cells were detectable at injection sites up to 14 days after transplantation. Further studies are needed to clarify if MSCs migrate out of the injection area into other areas of the myocardium or if injected cells are washed out into the peripheral circulation. The trial is registered with ClinicalTrials.gov NCT03651791.
Collapse
|
35
|
Jiang T, Zhang L, Ding M, Li M. Protective Effect Of Vasicine Against Myocardial Infarction In Rats Via Modulation Of Oxidative Stress, Inflammation, And The PI3K/Akt Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3773-3784. [PMID: 31802850 PMCID: PMC6827513 DOI: 10.2147/dddt.s220396] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
Abstract
Background Myocardial infarction is the leading cause of damage to the heart and is classified as a major cause of death related to cardiovascular disease. In the present study, we intended to investigate the protective effect of vasicine (VAS) against myocardial infarction in rats, and its mechanism. Methods Myocardial infarction was induced by isoproterenol (ISO, 100 mg/kg) at an interval of 24 h for 2 days. Different doses of VAS (2.5, 5, and 10 mg/kg body weight) were administered to the rats. The effect of VAS on oxidative stress markers such as, myocardial necrosis, myocardial ability and infarct volume, inflammatory cytokines, membrane-bound myocardial enzymes, and histopathological changes was investigated. Western blot analysis was also conducted to analyze the effect of VAS on autophagy (PI3K/Akt) and apoptosis (Bcl-2, Bax, and caspase-3). The number of apoptotic cells in the different groups was also identified using TUNEL. Results Results suggested that VAS causes reduction in myocardial necrosis by reduction of elevated LDH, CK-MB, and TnT levels. It also causes augmentation of left ventricular systolic pressure (LVSP) and myocardial contractility as determined in terms of +dp/dtmax and –dp/dtmax. Furthermore, VAS causes reduction of TNF-α and IL-6 levels. VAS also improved cardiac function via enhancing posterior wall thickness of the LV with concurrent increase in the mass of LV. In the present study, VAS caused activation of phosphorylated PI3K (p-PI3K) and phosphorylated Akt (p-Akt) in a dose-dependent manner. Furthermore, VAS suppressed apoptosis when tested on animals suffering from ISO-induced MI, by decreasing the expression of cleaved Caspase-3 and Bax while increasing the expression of Bcl-2. Conclusion In conclusion, vasicine has a protective effect against MI in vivo, through inhibiting oxidative stress, inflammation and excessive autophagy, to suppress apoptosis via activation of the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Tiechao Jiang
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.,Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun 130033, People's Republic of China
| | - Lirong Zhang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Mei Ding
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.,Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun 130033, People's Republic of China
| | - Min Li
- Department of Clinical Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| |
Collapse
|
36
|
Xu J, Xiong Y, Li Q, Hu M, Huang P, Xu J, Tian X, Jin C, Liu J, Qian L, Yang Y. Optimization of Timing and Times for Administration of Atorvastatin-Pretreated Mesenchymal Stem Cells in a Preclinical Model of Acute Myocardial Infarction. Stem Cells Transl Med 2019; 8:1068-1083. [PMID: 31245934 PMCID: PMC6766601 DOI: 10.1002/sctm.19-0013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/25/2019] [Indexed: 12/14/2022] Open
Abstract
Our previous studies showed that the combination of atorvastatin (ATV) and single injection of ATV-pretreated mesenchymal stem cells (MSCs) (ATV -MSCs) at 1 week post-acute myocardial infarction (AMI) promoted MSC recruitment and survival. This study aimed to investigate whether the combinatorial therapy of intensive ATV with multiple injections of ATV -MSCs has greater efficacy at different stages to better define the optimal strategy for MSC therapy in AMI. In order to determine the optimal time window for MSC treatment, we first assessed stromal cell-derived factor-1 (SDF-1) dynamic expression and inflammation. Next, we compared MSC recruitment and differentiation, cardiac function, infarct size, and angiogenesis among animal groups with single, dual, and triple injections of ATV -MSCs at early (Early1, Early2, Early3), mid-term (Mid1, Mid2, Mid3), and late (Late1, Late2, Late3) stages. Compared with AMI control, intensive ATV significantly augmented SDF-1 expression 1.5∼2.6-fold in peri-infarcted region with inhibited inflammation. ATV -MSCs implantation with ATV administration further enhanced MSC recruitment rate by 3.9%∼24.0%, improved left ventricular ejection fraction (LVEF) by 2.0%∼16.2%, and reduced infarct size in all groups 6 weeks post-AMI with most prominent improvement in mid groups and still effective in late groups. Mechanistically, ATV -MSCs remarkably suppressed inflammation and apoptosis while increasing angiogenesis. Furthermore, triple injections of ATV -MSCs were much more effective than single administration during early and mid-term stages of AMI with the best effects in Mid3 group. We conclude that the optimal strategy is multiple injections of ATV -MSCs combined with intensive ATV administration at mid-term stage of AMI. The translational potential of this strategy is clinically promising. Stem Cells Translational Medicine 2019;8:1068-1083.
Collapse
Affiliation(s)
- Jun Xu
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
- McAllister Heart Institute, University of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
| | - Yu‐Yan Xiong
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Qing Li
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Meng‐Jin Hu
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Pei‐Sen Huang
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
- McAllister Heart Institute, University of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
| | - Jun‐Yan Xu
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Xia‐Qiu Tian
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Chen Jin
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Jian‐Dong Liu
- McAllister Heart Institute, University of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
| | - Li Qian
- McAllister Heart Institute, University of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
| | - Yue‐Jin Yang
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| |
Collapse
|
37
|
Pattar SS, Fatehi Hassanabad A, Fedak PWM. Application of Bioengineered Materials in the Surgical Management of Heart Failure. Front Cardiovasc Med 2019; 6:123. [PMID: 31482096 PMCID: PMC6710326 DOI: 10.3389/fcvm.2019.00123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/06/2019] [Indexed: 01/01/2023] Open
Abstract
The epicardial surface of the heart is readily accessible during cardiac surgery and presents an opportunity for therapeutic intervention for cardiac repair and regeneration. As an important anatomic niche for endogenous mechanisms of repair, targeting the epicardium using decellularized extracellular matrix (ECM) bioscaffold therapy may provide the necessary environmental cues to promote functional recovery. Following ischemic injury to the heart caused by myocardial infarction (MI), epicardium derived progenitor cells (EPDCs) become activated and migrate to the site of injury. EPDC differentiation has been shown to contribute to endothelial cell, cardiac fibroblast, cardiomyocyte, and vascular smooth muscle cell populations. Post-MI, it is largely the activation of cardiac fibroblasts and the resultant dysregulation of ECM turnover which leads to maladaptive structural cardiac remodeling and loss of cardiac function. Decellularized ECM bioscaffolds not only provide structural support, but have also been shown to act as a bioactive reservoir for growth factors, cytokines, and matricellular proteins capable of attenuating maladaptive cardiac remodeling. Targeting the epicardium post-MI using decellularized ECM bioscaffold therapy may provide the necessary bioinductive cues to promote differentiation toward a pro-regenerative phenotype and attenuate cardiac fibroblast activation. There is an opportunity to leverage the clinical benefits of this innovative technology with an aim to improve the prognosis of patients suffering from progressive heart failure. An enhanced understanding of the utility of decellularized ECM bioscaffolds in epicardial repair will facilitate their growth and transition into clinical practice. This review will provide a summary of decellularized ECM bioscaffolds being developed for epicardial infarct repair in coronary artery bypass graft (CABG) surgery.
Collapse
Affiliation(s)
- Simranjit S Pattar
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
38
|
Adenosine stress perfusion cardiac magnetic resonance imaging in patients undergoing intracoronary bone marrow cell transfer after ST-elevation myocardial infarction: the BOOST-2 perfusion substudy. Clin Res Cardiol 2019; 109:539-548. [PMID: 31401672 DOI: 10.1007/s00392-019-01537-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/02/2019] [Indexed: 10/26/2022]
Abstract
AIMS In the placebo-controlled, double-blind BOne marrOw transfer to enhance ST-elevation infarct regeneration (BOOST) 2 trial, intracoronary autologous bone marrow cell (BMC) transfer did not improve recovery of left ventricular ejection fraction (LVEF) at 6 months in patients with ST-elevation myocardial infarction (STEMI) and moderately reduced LVEF. Regional myocardial perfusion as determined by adenosine stress perfusion cardiac magnetic resonance imaging (S-CMR) may be more sensitive than global LVEF in detecting BMC treatment effects. Here, we sought to evaluate (i) the changes of myocardial perfusion in the infarct area over time (ii) the effects of BMC therapy on infarct perfusion, and (iii) the relation of infarct perfusion to LVEF recovery at 6 months. METHODS AND RESULTS In 51 patients from BOOST-2 (placebo, n = 10; BMC, n = 41), S-CMR was performed 5.1 ± 2.9 days after PCI (before placebo/BMC treatment) and after 6 months. Infarct perfusion improved from baseline to 6 months in the overall patient cohort as reflected by the semi-quantitative parameters, perfusion defect-infarct size ratio (change from 0.54 ± 0.20 to 0.43 ± 0.22; P = 0.006) and perfusion defect-upslope ratio (0.54 ± 0.23 to 0.68 ± 0.22; P < 0.001), irrespective of randomised treatment. Perfusion defect-upslope ratio at baseline correlated with LVEF recovery (r = 0.62; P < 0.001) after 6 months, with a threshold of 0.54 providing the best sensitivity (79%) and specificity (74%) (area under the curve, 0.79; 95% confidence interval, 0.67-0.92). CONCLUSION Infarct perfusion improves from baseline to 6 months and predicts LVEF recovery in STEMI patients undergoing early PCI. Intracoronary BMC therapy did not enhance infarct perfusion in the BOOST-2 trial.
Collapse
|
39
|
Könemann S, Sartori LV, Gross S, Hadlich S, Kühn JP, Samal R, Bahls M, Felix SB, Wenzel K. Cardioprotective effect of the secretome of Sca-1+ and Sca-1− cells in heart failure: not equal, but equally important? Cardiovasc Res 2019; 116:566-575. [DOI: 10.1093/cvr/cvz140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/29/2019] [Accepted: 05/16/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
Aims
Both progenitor and differentiated cells were previously shown to secrete cardioprotective substances, but so far there has been no direct comparison of the paracrine effects of the two cell types on heart failure. The study sought to compare the paracrine effect of selected progenitors and the corresponding non-progenitor mononuclear cardiac cells on the cardiac function of transgenic heart failure mice. In addition, we aimed to further enhance the paracrine effect of the cells via pretreatment with the heart failure mediator aldosterone.
Methods and results
Transgenic heart failure mice were injected with the supernatant of murine cardiac stem cell antigen-1 positive (Sca-1+) and negative (Sca-1−) cells with or without aldosterone pretreatment. Cardiac function was determined using small animal magnetic resonance imaging. In addition, heart failure markers were determined using enzyme-linked immunosorbent assay, RT–PCR, and bead-based multiplexing assay. While only the secretome of aldosterone pretreated Sca-1+ cells led to a significant improvement in cardiac function, N-terminal pro brain natriuretic peptide plasma levels were significantly lower and galectin-1 levels significantly higher in mice that were treated with either kind of secretome compared with untreated controls.
Conclusion
In this first direct comparison of the paracrine effects of progenitor cells and a heterogeneous population of mononuclear cardiac cells the supernatants of both cell types showed cardioprotective properties which might be of great relevance for endogenous repair. During heart failure raised aldosterone levels might further increase the paracrine effect of progenitor cells.
Collapse
Affiliation(s)
- Stephanie Könemann
- Department of Internal Medicine B, University Medicine Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Luiz V Sartori
- Department of Internal Medicine B, University Medicine Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany
| | - Stefan Gross
- Department of Internal Medicine B, University Medicine Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Stefan Hadlich
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany
| | - Jens-Peter Kühn
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany
| | - Rasmita Samal
- Department of Internal Medicine B, University Medicine Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Martin Bahls
- Department of Internal Medicine B, University Medicine Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Stephan B Felix
- Department of Internal Medicine B, University Medicine Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Kristin Wenzel
- Department of Internal Medicine B, University Medicine Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| |
Collapse
|
40
|
Wang Y, Xu F, Ma J, Shi J, Chen S, Liu Z, Liu J. Effect of stem cell transplantation on patients with ischemic heart failure: a systematic review and meta-analysis of randomized controlled trials. Stem Cell Res Ther 2019; 10:125. [PMID: 30999928 PMCID: PMC6472092 DOI: 10.1186/s13287-019-1214-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stem cell transplantation (SCT) has become a promising way to treat ischemic heart failure (IHF). We performed a large-scale meta-analysis of randomized clinical trials to investigate the efficacy and safety of SCT in IHF patients. Randomized controlled trials (RCTs) involving stem cell transplantation for the treatment of IHF were identified by searching the PubMed, EMBASE, SpringerLink, Web of Science, and Cochrane Systematic Review databases as well as from reviews and the reference lists of relevant articles. Fourteen eligible randomized controlled trials were included in this study, for a total of 669 IHF patients, of which 380 patients were treated with SCT. The weighted mean difference (WMD) was calculated for changes in the New York Heart Association (NYHA) class, left ventricular ejection fraction (LVEF), left ventricular end-diastolic and end-systolic volumes (LVEDV and LVESV), and Canadian Cardiovascular Society (CCS) angina grade using a fixed effects model, while relative risk (RR) was used for mortality. Compared with the control group, SCT significantly lowered the NYHA class (MD = − 0.73, 95% CI − 1.32 to − 0.14, P < 0.05), LVESV (MD = − 14.80, 95% CI − 20.88 to − 8.73, P < 0.05), and CCS grade (MD = − 0.81, 95% CI − 1.45 to − 0.17, P < 0.05). Additionally, SCT increased LVEF (MD = 6.55, 95% CI 5.93 to 7.16, P < 0.05). However, LVEDV (MD = − 0.33, 95% CI − 1.09 to 0.44, P > 0.05) and mortality (RR = 0.86, 95% CI 0.45 to 1.66, P > 0.05) did not differ between the two groups. This meta-analysis suggests that SCT may contribute to the improvement of LVEF, as well as the reduction of the NYHA class, CCS grade, and LVESV. In addition, SCT does not affect mortality.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Fen Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jingwei Ma
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Si Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Junwei Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
41
|
Kaita Y, Tarui T, Yoshino H, Matsuda T, Yamaguchi Y, Nakagawa T, Asahi M, Ii M. Sufficient therapeutic effect of cryopreserved frozen adipose-derived regenerative cells on burn wounds. Regen Ther 2019; 10:92-103. [PMID: 30766897 PMCID: PMC6360408 DOI: 10.1016/j.reth.2019.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/22/2018] [Accepted: 01/06/2019] [Indexed: 12/30/2022] Open
Abstract
Introduction The purpose of this study was to evaluate whether cryopreserved (frozen) adipose-derived regenerative cells (ADRCs) have a therapeutic effect on burn wound healing as well as freshly isolated (fresh) ADRCs. Methods Full thickness burns were created on dorsum of nude mice and burn wound was excised. The wound was covered by artificial dermis with; (i) fresh ADRCs, (ii) frozen ADRCs, and (iii) PBS (control). The assessment for wound healing was performed by morphological, histopathological and immunohistochemical analyses. Results In vivo analyses exhibited the significant therapeutic effect of frozen ADRCs on burn wound healing up to the similar or higher level of fresh ADRCs. There were significant differences of wound closure, epithelized tissue thickness, and neovascularization between the treatment groups and control group. Although there was no significant difference of therapeutic efficacy between fresh ADRC group and frozen ADRC group, frozen ADRCs improved burn wound healing process in dermal regeneration with increased great type I collagen synthesis compared with fresh ADRCs. Conclusions These findings indicate that frozen ADRCs allow us to apply not only quickly but also for multiple times, and the cryopreserved ADRCs could therefore be useful for the treatment of burn wounds in clinical settings. Frozen ADRCs had a therapeutic effect on burn wounds as well as fresh ADRCs. Frozen ADRCs promoted tissue regeneration by paracrine factors. Frozen ADRCs could be useful for the treatment of burn wounds in clinical setting.
Collapse
Key Words
- ADRCs, adipose-derived regenerative cells
- AdSCs, adipose-derived stem cells
- Burn
- CM, conditioned medium
- DAPI, 4′,6-diamidino-2-phenylindole
- DMEM-F12, Dulbecco's modified Eagle's medium supplemented with F12
- EGF, Epidermal growth factor
- FBS, Fetal bovine serum
- FGF2, Fibroblast growth factor 2
- GAPDH, Glyceraldehyde 3-phosphate dehydrogenase
- HGF, Hepatocyte growth factor
- IGF-1, Insulin-like growth factor-1
- ILB4, Isolectin B4
- MSC, Mesenchymal stem cell
- NHDF, Normal human dermal fibroblast
- NHEK, Normal human epithelial keratinocyte
- PBS, Phosphate-buffered saline
- PVDF, Poly vinylidene di-fluoride
- SDS-PAGE, Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- SVF, Stromal vascular fraction
- Stem cells
- VEGF, Vascular endothelial growth factor
- Wound healing
- qRT-PCR, Quantitative real-time reverse transcription polymerase chain reaction
Collapse
Affiliation(s)
- Yasuhiko Kaita
- Department of Trauma and Critical Care Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Takehiko Tarui
- Department of Trauma and Critical Care Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Hideaki Yoshino
- Division of Cardiology, Second Department of Internal Medicine, Kyorin University, School of Medicine, Tokyo, Japan
| | - Takeaki Matsuda
- Department of Trauma and Critical Care Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Yoshihiro Yamaguchi
- Department of Trauma and Critical Care Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Takatoshi Nakagawa
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Michio Asahi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Masaaki Ii
- Division of Research Animal Laboratory and Translational Medicine, Research and Development Center, Osaka Medical College, Osaka, Japan
| |
Collapse
|
42
|
Improvement in Left Ventricular Function with Intracoronary Mesenchymal Stem Cell Therapy in a Patient with Anterior Wall ST-Segment Elevation Myocardial Infarction. Cardiovasc Drugs Ther 2019; 32:329-338. [PMID: 29956042 PMCID: PMC6133167 DOI: 10.1007/s10557-018-6804-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background/Aims The progression and development of congestive heart failure is still considered a large problem despite the existence of revascularization therapies and optimal, state-of-the-art medical services. An acute myocardial infarction (AMI) is a major cause of congestive heart failure, so researchers are investigating techniques to complement primary percutaneous coronary intervention (PCI) or thrombolytic therapy to prevent congestive heart failure after AMI. Methods Twenty-six patients with successful PCI for acute ST-segment elevation anterior wall myocardial infarction were assigned to either a control group (n = 12) or a bone marrow mesenchymal stem cells (BM-MSC) group (n = 14). The control group received optimum post-infarction treatment, and the BMSC group received intracoronary delivery of autologous BMSC at 1 month after PCI with the optimum medical treatment. The primary endpoint was a left ventricular ejection fraction (LVEF) change from baseline to 4-month follow-up, as determined via myocardial single-photon emission computed tomography (SPECT). Results The global LVEF at baseline (determined 3.5 ± 1.5 days after PCI) was 35.4 ± 3.0% in the control group and 33.6 ± 4.7% in the BM-MSC group. BMSC transfer enhanced left ventricular systolic function primarily in anterior wall myocardial segments adjacent to the LAD infarcted area. Four months later, via SPECT, global LVEF had increased by 4.8 ± 1.9% in the control group and 8.8 ± 2.9% in the BM-MSC group (p = 0.031). The cell transfer did not increase the risk of adverse clinical events, in-stent restenosis, or proarrhythmic effects. The echocardiographic evaluation also revealed a significant increase in the LVEF value from baseline to the 4-month (9.0 ± 4.7 and 5.3 ± 2.6%, p = 0.023) and 12-month (9.9 ± 5.2% and 6.5 ± 2.7%, p = 0.048) follow-up in the BM-MSC group but not in the control group. Conclusions Intracoronary administration of autologous BM-MSC was tolerable and safe with significant improvement in LVEF at 4-month (SPECT and echocardiography result) and 12-month (echocardiography result only) follow-up in patients with anterior AMI.
Collapse
|
43
|
Gathier WA, van der Naald M, van Klarenbosch BR, Tuinenburg AE, Bemelmans JL, Neef K, Sluijter JP, van Slochteren FJ, Doevendans PA, Chamuleau SA. Lower retention after retrograde coronary venous infusion compared with intracoronary infusion of mesenchymal stromal cells in the infarcted porcine myocardium. BMJ OPEN SCIENCE 2019; 3:e000006. [PMID: 35047679 PMCID: PMC8647578 DOI: 10.1136/bmjos-2018-000006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Commonly used strategies for cell delivery to the heart are intramyocardial injection and intracoronary (IC) infusion, both having their advantages and disadvantages. Therefore, alternative strategies, such as retrograde coronary venous infusion (RCVI), are explored. The aim of this confirmatory study was to compare cardiac cell retention between RCVI and IC infusion. As a secondary end point, the procedural safety of RCVI is assessed. METHODS Four weeks after myocardial infarction, 12 pigs were randomised to receive mesenchymal stromal cells, labelled with Indium-111, via RCVI (n=6) or IC infusion (n=6). Four hours after cell administration, nuclear imaging was performed to determine the number of cells retained in the heart both in vivo and ex vivo. Procedure-related safety measures were reported. RESULTS Cardiac cell retention is significantly lower after RCVI compared with IC infusion (in vivo: RCVI: median 2.89% vs IC: median 13.74%, p=0.002, ex vivo: RCVI: median 2.55% vs IC: median 39.40%, p=0.002). RCVI led to development of pericardial fluid and haematomas on the frontal wall of the heart in three cases. Coronary venous dissection after RCVI was seen in three pigs, of which one also developed pericardial fluid and a haematoma. IC infusion led to no flow in one pig. CONCLUSION RCVI is significantly less efficient in delivering cells to the heart compared with IC infusion. RCVI led to more procedure-related safety issues than IC infusion, with multiple cases of venous dissection and development of haematomas and pericardial fluid collections.
Collapse
Affiliation(s)
- Wouter A Gathier
- Department of Cardiology, Universitair Medisch Centrum Utrecht, Utrecht, Netherlands
| | - Mira van der Naald
- Department of Cardiology, Universitair Medisch Centrum Utrecht, Utrecht, Netherlands
| | - Bas R van Klarenbosch
- Department of Cardiology, Universitair Medisch Centrum Utrecht, Utrecht, Netherlands
| | - Anton E Tuinenburg
- Department of Cardiology, Universitair Medisch Centrum Utrecht, Utrecht, Netherlands
| | - John Lm Bemelmans
- Department of Nuclear Medicine, Universitair Medisch Centrum Utrecht, Utrecht, Netherlands
| | - Klaus Neef
- Department of Cardiology, Universitair Medisch Centrum Utrecht, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, Netherlands
| | - Joost Pg Sluijter
- Regenerative Medicine Center Utrecht, Utrecht, Netherlands
- Department of Experimental Cardiology, Universitair Medisch Centrum Utrecht, Utrecht, Netherlands
- NL-HI (Dutch Heart Institute), Utrecht, Netherlands
| | | | - Pieter A Doevendans
- Department of Cardiology, Universitair Medisch Centrum Utrecht, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, Netherlands
- NL-HI (Dutch Heart Institute), Utrecht, Netherlands
- Central Military Hospital, Utrecht, Netherlands
| | - Steven Aj Chamuleau
- Department of Cardiology, Universitair Medisch Centrum Utrecht, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
44
|
Jargin SV. Scientific Papers and Patents on Substances with Unproven Effects. Part 2. RECENT PATENTS ON DRUG DELIVERY & FORMULATION 2019; 13:160-173. [PMID: 31424374 PMCID: PMC7011683 DOI: 10.2174/1872211313666190819124752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 12/03/2022]
Abstract
Several examples are discussed in this review, where substances without proven effects were proposed for practical use within the scope of evidence-based medicines. The following is discussed here: generalizations of the hormesis concept and its use in support of homeopathy; phytoestrogens and soy products potentially having feminizing effects; glycosaminoglycans for the treatment of osteoarthritis and possibilities of their replacement by diet modifications; flavonoids recommended for the treatment of chronic venous insufficiency and varicose veins; acetylcysteine as a mucolytic agent and its questionable efficiency especially by an oral intake; stem cells and cell therapies. In conclusion, placebo therapies can be beneficial and ethically justifiable but it is not a sufficient reason to publish biased information. Importantly, placebo must be devoid of adverse effects, otherwise, it is named pseudo-placebo. Therapeutic methods with unproven effects should be tested in high-quality research shielded from the funding bias. Some issues discussed in this review are not entirely clear, and the arguments provided here can initiate a constructive discussion.
Collapse
Affiliation(s)
- Sergei V. Jargin
- Peoples’ Friendship University of Russia, Clementovski per 6-82, Moscow115184, Russia
| |
Collapse
|
45
|
Narayanan DL, Phadke SR. Concepts, Utility and Limitations of Cord Blood Banking: What Clinicians Need to Know. Indian J Pediatr 2019; 86:44-48. [PMID: 29556970 DOI: 10.1007/s12098-018-2651-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/27/2018] [Indexed: 11/29/2022]
Abstract
Stem cell transplantation and cord blood banking have received much popularity among general public and medical professionals in the recent past. But information about the scientific aspects, its utility and limitations is incomplete amongst laypersons as well as many medical practitioners. Stem cells differ from all other types of cells in the human body because of their ability to multiply in order to self perpetuate and differentiate into specialized cells. Stems cells could be totipotent, multipotent, pluripotent, oligopotent or unipotent depending on the type of cells that can arise or differentiate from them. Umbilical cord blood serves as a potent source of hematopoeitic stem cells and is being used to treat various disorders like blood cancers, hemoglobinopathies and immunodeficiency disorders for which hematological stem cell transplantation is the standard of care. Cord blood can be collected at ease, without any major complications and has a lower incidence of graft vs. host reaction compared to bone marrow cells or peripheral blood cells. Both public and private banks have been established for collection and storage of umbilical cord blood. However, false claims and misleading commercial advertisements about the use of umbilical cord blood stem cells for the treatment of a variety of conditions ranging from neuromuscular disorders to cosmetic benefits are widespread and create unrealistic expectations in laypersons and clinicians. Many clinicians and laypersons are unaware of the limitations of cord blood banking, as in treating a genetic disorder by autologous cord blood transplant. Knowledge and awareness about the scientific indications of cord blood stem cell transplantation and realistic expectations about the utility of cord blood among medical practitioners are essential for providing accurate information to laypersons before they decide to preserve umbilical cord blood in private banks and thus prevent malpractice.
Collapse
Affiliation(s)
- Dhanya Lakshmi Narayanan
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, India
| | - Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India.
| |
Collapse
|
46
|
Rezaee N, Tafazzoli-Shadpour M, Haghighipour N. Effect of equiaxial cyclic strain on cardiomyogenic induction in mesenchymal stem cells. Prog Biomater 2018; 7:279-288. [PMID: 30367393 PMCID: PMC6304178 DOI: 10.1007/s40204-018-0102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022] Open
Abstract
Differentiation of stem cells and functionality of target cells are regulated by microenvironmental stimuli to which the cells are exposed. Chemical agents such as growth factors and physical parameters including mechanical loadings are among major stimuli. In this study, equiaxial cyclic strain with two amplitudes was applied on rat adipose-derived mesenchymal stem cells (rAMSCs) with or without 5-azacytidine. The mRNA expression of cardiac-related genes was investigated through RT-PCR (polymerase chain reaction) method. Moreover, morphological features and the actin structure of the cells were studied. Results were indications of significant increase in mRNA expression among four target genes, which marked the increase in two principal cardiac markers of GATA4 and α-cardiac actin, and lesser increase in two other genes (NKX2-5, βMHC) in all experimental groups treated chemically and/or mechanically. Such effect was maximal when both treatments were applied describing the synergistic effect of combined stimuli. All treatments caused significant increase in cell area and cell shape index. The well spreading of cells was accompanied by enhanced actin structure, especially among samples subjected to mechanical stimulus. Both effects were among required features for functional muscle cells such as cardiac cells. It was concluded that the cyclic equiaxial strain enhanced cardiomyogenic induction among rat adipose-derived mesenchymal stem cells and such effect was strengthened when it was accompanied by application of chemical factor. Results can be considered among strategies for cardiomyogenic differentiation and can be employed in cardiac tissue engineering for production of functional cardiomyocytes to repair of damaged myocardium.
Collapse
Affiliation(s)
- Nasim Rezaee
- Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran
| | - Mohammad Tafazzoli-Shadpour
- Cardiovascular Engineering Lab, Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran
| | - Nooshin Haghighipour
- National Cell Bank of Iran, Pasteur Institute of Iran, 69 Pasteur Ave, P.O. Box: 1316943551, Tehran, Iran
| |
Collapse
|
47
|
Lalu MM, Mazzarello S, Zlepnig J, Dong YYR, Montroy J, McIntyre L, Devereaux PJ, Stewart DJ, David Mazer C, Barron CC, McIsaac DI, Fergusson DA. Safety and Efficacy of Adult Stem Cell Therapy for Acute Myocardial Infarction and Ischemic Heart Failure (SafeCell Heart): A Systematic Review and Meta-Analysis. Stem Cells Transl Med 2018; 7:857-866. [PMID: 30255989 PMCID: PMC6265630 DOI: 10.1002/sctm.18-0120] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/02/2018] [Indexed: 12/25/2022] Open
Abstract
Preclinical and clinical evidence suggests that mesenchymal stem cells (MSCs) may be beneficial in treating both acute myocardial infarction (AMI) and ischemic heart failure (IHF). However, the safety profile and efficacy of MSC therapy is not well‐known. We conducted a systematic review of clinical trials that evaluated the safety or efficacy of MSCs for AMI or IHF. Embase, PubMed/Medline, and Cochrane Central Register of Controlled Trials were searched from inception to September 27, 2017. Studies that examined the use of MSCs administered to adults with AMI or IHF were eligible. The Cochrane risk of bias tool was used to assess bias of included studies. The primary outcome was safety assessed by adverse events and the secondary outcome was efficacy which was assessed by mortality and left ventricular ejection fraction (LVEF). A total of 668 citations were reviewed and 23 studies met eligibility criteria. Of these, 11 studies evaluated AMI and 12 studies evaluated IHF. There was no association between MSCs and acute adverse events. There was a significant improvement in overall LVEF in patients who received MSCs (SMD 0.73, 95% CI 0.24–1.21). No significant difference in mortality was noted (Peto OR 0.68, 95% CI 0.38–1.22). Results from our systematic review suggest that MSC therapy for ischemic heart disease appears to be safe. There is a need for a well‐designed adequately powered randomized control trial (with rigorous adverse event reporting and evaluations of cardiac function) to further establish a clear risk‐benefit profile of MSCs. Stem Cells Translational Medicine2018;7:857–866
Collapse
Affiliation(s)
- Manoj M Lalu
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.,Blueprint Translational Research Group, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Sasha Mazzarello
- Blueprint Translational Research Group, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Jennifer Zlepnig
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Joshua Montroy
- Blueprint Translational Research Group, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Lauralyn McIntyre
- Blueprint Translational Research Group, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Division of Critical Care, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - P J Devereaux
- Population Health Research Institute, David Braley Cardiac, Vascular, and Stroke Research Institute, Departments of Medicine and Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Duncan J Stewart
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - C David Mazer
- Department of Anesthesia, Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, Department of Physiology, Toronto, Ontario, Canada
| | - Carly C Barron
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Daniel I McIsaac
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.,Blueprint Translational Research Group, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Dean A Fergusson
- Blueprint Translational Research Group, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
48
|
Malandraki-Miller S, Lopez CA, Al-Siddiqi H, Carr CA. Changing Metabolism in Differentiating Cardiac Progenitor Cells-Can Stem Cells Become Metabolically Flexible Cardiomyocytes? Front Cardiovasc Med 2018; 5:119. [PMID: 30283788 PMCID: PMC6157401 DOI: 10.3389/fcvm.2018.00119] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
The heart is a metabolic omnivore and the adult heart selects the substrate best suited for each circumstance, with fatty acid oxidation preferred in order to fulfill the high energy demand of the contracting myocardium. The fetal heart exists in an hypoxic environment and obtains the bulk of its energy via glycolysis. After birth, the "fetal switch" to oxidative metabolism of glucose and fatty acids has been linked to the loss of the regenerative phenotype. Various stem cell types have been used in differentiation studies, but most are cultured in high glucose media. This does not change in the majority of cardiac differentiation protocols. Despite the fact that metabolic state affects marker expression and cellular function and activity, the substrate composition is currently being overlooked. In this review we discuss changes in cardiac metabolism during development, the various protocols used to differentiate progenitor cells to cardiomyocytes, what is known about stem cell metabolism and how consideration of metabolism can contribute toward maturation of stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
| | | | | | - Carolyn A. Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
49
|
Nguyen PK, Rhee JW, Wu JC. Adult Stem Cell Therapy and Heart Failure, 2000 to 2016: A Systematic Review. JAMA Cardiol 2018; 1:831-841. [PMID: 27557438 DOI: 10.1001/jamacardio.2016.2225] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Importance Stem cell therapy is a promising treatment strategy for patients with heart failure, which accounts for more than 10% of deaths in the United States annually. Despite more than a decade of research, further investigation is still needed to determine whether stem cell regenerative therapy is an effective treatment strategy and can be routinely implemented in clinical practice. Objective To describe the progress in cardiac stem cell regenerative therapy using adult stem cells and to highlight the merits and limitations of clinical trials performed to date. Evidence Review Information for this review was obtained through a search of PubMed and the Cochrane database for English-language studies published between January 1, 2000, and July 26, 2016. Twenty-nine randomized clinical trials and 7 systematic reviews and meta-analyses were included in this review. Findings Although adult stem cells were once believed to have the ability to create new heart tissue, preclinical studies suggest that these cells release cardioprotective paracrine factors that activate endogenous pathways, leading to myocardial repair. Subsequent randomized clinical trials, most of which used autologous bone marrow mononuclear cells, have found only a modest benefit in patients receiving stem cell therapy. The lack of a significant benefit may result from variations in trial methods, discrepancies in reporting, and an overreliance on surrogate end points. Conclusions and Relevance Although stem cell therapy for cardiovascular disease is not yet ready for routine clinical application, significant progress continues to be made. Physicians should be aware of the current status of this treatment so that they can better inform their patients who may be in search of alternative therapies.
Collapse
Affiliation(s)
- Patricia K Nguyen
- Stanford Cardiovascular Institute, Stanford University, Stanford, California2Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California3Veterans Affairs Palo Alto Health Care System, Stanford University, Stanford, California
| | - June-Wha Rhee
- Stanford Cardiovascular Institute, Stanford University, Stanford, California2Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, California2Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California4Department of Radiology, Stanford University, Stanford, California
| |
Collapse
|
50
|
Nguyen PK, Neofytou E, Rhee JW, Wu JC. Potential Strategies to Address the Major Clinical Barriers Facing Stem Cell Regenerative Therapy for Cardiovascular Disease: A Review. JAMA Cardiol 2018; 1:953-962. [PMID: 27579998 DOI: 10.1001/jamacardio.2016.2750] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Importance Although progress continues to be made in the field of stem cell regenerative medicine for the treatment of cardiovascular disease, significant barriers to clinical implementation still exist. Objectives To summarize the current barriers to the clinical implementation of stem cell therapy in patients with cardiovascular disease and to discuss potential strategies to overcome them. Evidence Review Information for this review was obtained through a search of PubMed and the Cochrane database for English-language studies published between January 1, 2000, and July 25, 2016. Ten randomized clinical trials and 8 systematic reviews were included. Findings One of the major clinical barriers facing the routine implementation of stem cell therapy in patients with cardiovascular disease is the limited and inconsistent benefit observed thus far. Reasons for this finding are unclear but may be owing to poor cell retention and survival, as suggested by numerous preclinical studies and a small number of human studies incorporating imaging to determine cell fate. Additional studies in humans using imaging to determine cell fate are needed to understand how these factors contribute to the limited efficacy of stem cell therapy. Treatment strategies to address poor cell retention and survival are under investigation and include the following: coadministration of immunosuppressive and prosurvival agents, delivery of cardioprotective factors packaged in exosomes rather than the cells themselves, and use of tissue-engineering strategies to provide structural support for cells. If larger grafts are achieved using these strategies, it will be imperative to carefully monitor for the potential risks of tumorigenicity, immunogenicity, and arrhythmogenicity. Conclusions and Relevance Despite important achievements to date, stem cell therapy is not yet ready for routine clinical implementation. Significant research is still needed to address the clinical barriers outlined herein before the next wave of large clinical trials is under way.
Collapse
Affiliation(s)
- Patricia K Nguyen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California2Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California3Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Evgenios Neofytou
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California2Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - June-Wha Rhee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California2Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California2Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California4Department of Radiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|