1
|
Liu Q, Zhao Y, Yang J, Xiao F, Wang X. Study on the physiological mechanism and transcriptional regulatory network of early fruit development in Gleditsia sinensis Lam. (Fabaceae). BMC PLANT BIOLOGY 2024; 24:1213. [PMID: 39701956 DOI: 10.1186/s12870-024-05895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Gleditsia sinensis Lam. (Fabaceae) is a medicinal legume characterized by its spines and pods, which are rich in saponins, polysaccharides, and various specialized metabolites with potential medicinal and industrial applications. The low fruit set rate in artificially cultivated economic forests significantly impedes its development and utilization. A comprehensive understanding of the cellular events, physiological and biochemical processes, and molecular regulatory mechanisms underlying fruit initiation and early fruit development is essential for enhancing yield. However, such information for G. sinensis remains largely unexplored. RESULTS In this study, we identified that the early fruit development process in G. sinensis can be categorized into three distinct stages: pollination, the critical period of fertilization, and the initial fruit development followed by subsequent growth. The dynamic changes in non-structural carbohydrates and endogenous plant hormones within the ovary were found to play a significant role during fruit set and the early stages of fruit development. Additionally, the high activity of gibberellin, cytokinin, and sucrose-metabolizing enzymes in the ovary was conducive to early fruit development. Furthermore, we generated high-resolution spatiotemporal gene expression profiles in the ovary from the stage of efflorescence to early fruit development. Comparative transcriptomics and weighted gene co-expression network analysis revealed specific genes and gene modules predominant at distinct developmental stages, thereby highlighting unique genetic programming. Overall, we identified the potential regulatory network governing fruit initiation and subsequent development, as well as the sets of candidate genes involved, based on the aforementioned results. CONCLUSIONS The results offer a valuable reference and resource for the application of exogenous substances, such as hormones and sugars, during critical fruit development periods, and for the development of molecular tools aimed at improving yield.
Collapse
Affiliation(s)
- Qiao Liu
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Forest Cultivation in Plant Mountainous of Guizhou Province, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Yang Zhao
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Forest Cultivation in Plant Mountainous of Guizhou Province, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Ju Yang
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Forest Cultivation in Plant Mountainous of Guizhou Province, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Feng Xiao
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Forest Cultivation in Plant Mountainous of Guizhou Province, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Xiurong Wang
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China.
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
2
|
Avidan O, Martins MCM, Feil R, Lohse M, Giorgi FM, Schlereth A, Lunn JE, Stitt M. Direct and indirect responses of the Arabidopsis transcriptome to an induced increase in trehalose 6-phosphate. PLANT PHYSIOLOGY 2024; 196:409-431. [PMID: 38593032 PMCID: PMC11376379 DOI: 10.1093/plphys/kiae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Trehalose 6-phosphate (Tre6P) is an essential signal metabolite that regulates the level of sucrose, linking growth and development to the metabolic status. We hypothesized that Tre6P plays a role in mediating the regulation of gene expression by sucrose. To test this, we performed transcriptomic profiling on Arabidopsis (Arabidopsis thaliana) plants that expressed a bacterial TREHALOSE 6-PHOSPHATE SYNTHASE (TPS) under the control of an ethanol-inducible promoter. Induction led to a 4-fold rise in Tre6P levels, a concomitant decrease in sucrose, significant changes (FDR ≤ 0.05) of over 13,000 transcripts, and 2-fold or larger changes of over 5,000 transcripts. Comparison with nine published responses to sugar availability allowed some of these changes to be linked to the rise in Tre6P, while others were probably due to lower sucrose or other indirect effects. Changes linked to Tre6P included repression of photosynthesis-related gene expression and induction of many growth-related processes including ribosome biogenesis. About 500 starvation-related genes are known to be induced by SUCROSE-NON-FERMENTING-1-RELATED KINASE 1 (SnRK1). They were largely repressed by Tre6P in a manner consistent with SnRK1 inhibition by Tre6P. SnRK1 also represses many genes that are involved in biosynthesis and growth. These responded to Tre6P in a more complex manner, pointing toward Tre6P interacting with other C-signaling pathways. Additionally, elevated Tre6P modified the expression of genes encoding regulatory subunits of the SnRK1 complex and TPS class II and FCS-LIKE ZINC FINGER proteins that are thought to modulate SnRK1 function and genes involved in circadian, TARGET OF RAPAMYCIN, light, abscisic acid, and other hormone signaling.
Collapse
Affiliation(s)
- Omri Avidan
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Marina C M Martins
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Marc Lohse
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Federico M Giorgi
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Armin Schlereth
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
3
|
Tang J, Chen Y, Huang C, Li C, Feng Y, Wang H, Ding C, Li N, Wang L, Zeng J, Yang Y, Hao X, Wang X. Uncovering the complex regulatory network of spring bud sprouting in tea plants: insights from metabolic, hormonal, and oxidative stress pathways. FRONTIERS IN PLANT SCIENCE 2023; 14:1263606. [PMID: 37936941 PMCID: PMC10627156 DOI: 10.3389/fpls.2023.1263606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/26/2023] [Indexed: 11/09/2023]
Abstract
The sprouting process of tea buds is an essential determinant of tea quality and taste, thus profoundly impacting the tea industry. Buds spring sprouting is also a crucial biological process adapting to external environment for tea plants and regulated by complex transcriptional and metabolic networks. This study aimed to investigate the molecular basis of bud sprouting in tea plants firstly based on the comparisons of metabolic and transcriptional profiles of buds at different developmental stages. Results notably highlighted several essential processes involved in bud sprouting regulation, including the interaction of plant hormones, glucose metabolism, and reactive oxygen species scavenging. Particularly prior to bud sprouting, the accumulation of soluble sugar reserves and moderate oxidative stress may have served as crucial components facilitating the transition from dormancy to active growth in buds. Following the onset of sprouting, zeatin served as the central component in a multifaceted regulatory mechanism of plant hormones that activates a range of growth-related factors, ultimately leading to the promotion of bud growth. This process was accompanied by significant carbohydrate consumption. Moreover, related key genes and metabolites were further verified during the entire overwintering bud development or sprouting processes. A schematic diagram involving the regulatory mechanism of bud sprouting was ultimately proposed, which provides fundamental insights into the complex interactions involved in tea buds.
Collapse
Affiliation(s)
- Junwei Tang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yao Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Chao Huang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Congcong Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yue Feng
- Zhejiang Provincial Seed Management Station, Hangzhou, China
| | - Haoqian Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Changqing Ding
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Nana Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Lu Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianming Zeng
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yajun Yang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xinyuan Hao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xinchao Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
4
|
Considine MJ, Foyer CH. Metabolic regulation of quiescence in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1132-1148. [PMID: 36994639 PMCID: PMC10952390 DOI: 10.1111/tpj.16216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 05/31/2023]
Abstract
Quiescence is a crucial survival attribute in which cell division is repressed in a reversible manner. Although quiescence has long been viewed as an inactive state, recent studies have shown that it is an actively monitored process that is influenced by environmental stimuli. Here, we provide a perspective of the quiescent state and discuss how this process is tuned by energy, nutrient and oxygen status, and the pathways that sense and transmit these signals. We not only highlight the governance of canonical regulators and signalling mechanisms that respond to changes in nutrient and energy status, but also consider the central significance of mitochondrial functions and cues as key regulators of nuclear gene expression. Furthermore, we discuss how reactive oxygen species and the associated redox processes, which are intrinsically linked to energy carbohydrate metabolism, also play a key role in the orchestration of quiescence.
Collapse
Affiliation(s)
- Michael J. Considine
- The UWA Institute of Agriculture and the School of Molecular SciencesThe University of Western AustraliaPerthWestern Australia6009Australia
- The Department of Primary Industries and Regional DevelopmentPerthWestern Australia6000Australia
| | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonB15 2TTUK
| |
Collapse
|
5
|
Photosynthetic acclimation to changing environments. Biochem Soc Trans 2023; 51:473-486. [PMID: 36892145 DOI: 10.1042/bst20211245] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 03/10/2023]
Abstract
Plants are exposed to environments that fluctuate of timescales varying from seconds to months. Leaves that develop in one set of conditions optimise their metabolism to the conditions experienced, in a process called developmental acclimation. However, when plants experience a sustained change in conditions, existing leaves will also acclimate dynamically to the new conditions. Typically this process takes several days. In this review, we discuss this dynamic acclimation process, focussing on the responses of the photosynthetic apparatus to light and temperature. We briefly discuss the principal changes occurring in the chloroplast, before examining what is known, and not known, about the sensing and signalling processes that underlie acclimation, identifying likely regulators of acclimation.
Collapse
|
6
|
Sarkar AK, Sadhukhan S. Imperative role of trehalose metabolism and trehalose-6-phosphate signaling on salt stress responses in plants. PHYSIOLOGIA PLANTARUM 2022; 174:e13647. [PMID: 35141895 DOI: 10.1111/ppl.13647] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 05/04/2023]
Abstract
Sugar transport and distribution have a direct impact on the growth and development of plants. Many sugars significantly influence salt stress response. The sensing of salt stress signals triggers a wide array of complicated network transduction pathways in plants. Trehalose and its intermediate compounds effectively modulate salt response and salt tolerance. Sugars such as trehalose and its derivatives not only serve as metabolic resources and structural components of cells in plants but also exhibit hormone-like regulating properties. Trehalose has an important physiological role in improving plant tolerance against salinity stresses in different plants. Plants finely adjust their cytoplasmic compatible solute pool to cope with high salinity. Salt stress induces a variety of structural, anatomical, molecular, biochemical, and physiological changes in plants, all of which have a detrimental influence on plant growth and development. This review highlights the recent developments in understanding trehalose and trehalose-6-phosphate signaling processes in plants, especially their impacts on plants growing in salty environments.
Collapse
Affiliation(s)
- Anup Kumar Sarkar
- Department of Botany, Dukhulal Nibaran Chandra College, Murshidabad, West Bengal, India
- Plant Molecular Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, India
| | - Sanjoy Sadhukhan
- Plant Molecular Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, India
| |
Collapse
|
7
|
Overdominance at the Gene Expression Level Plays a Critical Role in the Hybrid Root Growth of Brassica napus. Int J Mol Sci 2021; 22:ijms22179246. [PMID: 34502153 PMCID: PMC8431428 DOI: 10.3390/ijms22179246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 01/12/2023] Open
Abstract
Despite heterosis contributing to genetic improvements in crops, root growth heterosis in rapeseed plants is poorly understood at the molecular level. The current study was performed to discover key differentially expressed genes (DEGs) related to heterosis in two hybrids with contrasting root growth performance (FO; high hybrid and FV; low hybrid) based on analysis of the root heterosis effect. Based on comparative transcriptomic analysis, we believe that the overdominance at the gene expression level plays a critical role in hybrid roots’ early biomass heterosis. Our findings imply that a considerable increase in up-regulation of gene expression underpins heterosis. In the FO hybrid, high expression of DEGs overdominant in the starch/sucrose and galactose metabolic pathways revealed a link between hybrid vigor and root growth. DEGs linked to auxin, cytokinin, brassinosteroids, ethylene, and abscisic acid were also specified, showing that these hormones may enhance mechanisms of root growth and the development in the FO hybrid. Moreover, transcription factors such as MYB, ERF, bHLH, NAC, bZIP, and WRKY are thought to control downstream genes involved in root growth. Overall, this is the first study to provide a better understanding related to the regulation of the molecular mechanism of heterosis, which assists in rapeseed growth and yield improvement.
Collapse
|
8
|
Yu B, Xiang D, Mahfuz H, Patterson N, Bing D. Understanding Starch Metabolism in Pea Seeds towards Tailoring Functionality for Value-Added Utilization. Int J Mol Sci 2021; 22:8972. [PMID: 34445676 PMCID: PMC8396644 DOI: 10.3390/ijms22168972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Starch is the most abundant storage carbohydrate and a major component in pea seeds, accounting for about 50% of dry seed weight. As a by-product of pea protein processing, current uses for pea starch are limited to low-value, commodity markets. The globally growing demand for pea protein poses a great challenge for the pea fractionation industry to develop new markets for starch valorization. However, there exist gaps in our understanding of the genetic mechanism underlying starch metabolism, and its relationship with physicochemical and functional properties, which is a prerequisite for targeted tailoring functionality and innovative applications of starch. This review outlines the understanding of starch metabolism with a particular focus on peas and highlights the knowledge of pea starch granule structure and its relationship with functional properties, and industrial applications. Using the currently available pea genetics and genomics knowledge and breakthroughs in omics technologies, we discuss the perspectives and possible avenues to advance our understanding of starch metabolism in peas at an unprecedented level, to ultimately enable the molecular design of multi-functional native pea starch and to create value-added utilization.
Collapse
Affiliation(s)
- Bianyun Yu
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
| | - Daoquan Xiang
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
| | - Humaira Mahfuz
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
- Department of Biology, Faculty of Science, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Nii Patterson
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
| | - Dengjin Bing
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C and E Trail, Lacombe, AB T4L 1W1, Canada;
| |
Collapse
|
9
|
Liu Z, Shi Y, Xue Y, Wang X, Huang Z, Xue J, Zhang X. Non-structural carbohydrates coordinate tree peony flowering both as energy substrates and as sugar signaling triggers, with the bracts playing an essential role. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:80-88. [PMID: 33341082 DOI: 10.1016/j.plaphy.2020.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/12/2020] [Indexed: 05/15/2023]
Abstract
The natural fluorescence of tree peony is short. Forcing culture, mainly by defoliation and gibberellin (GA) treatment, is frequently used for its industrial production. We previously found forcing culture to be coordinated by non-structural carbohydrates (NSCs). Herein, we further revealed the specific role of NSCs during this process. We observed that both defoliation and GA treatment increased the photosynthesis in the bracts, and defoliation had a greater effect on NSC assimilation. We further determined the NSC content and PsSWEETs expression in the bracts, and the results indicated that GA may contribute more to NSC allocation by inducing PsSWEET7. Furthermore, we determined the trehalose-6-phosphate (T6P) content and sugar signaling-related gene (PsTPS1, PsSnRK1, and PsHXK1) expression in both the petals and bracts and found that both defoliation and GA treatment induced T6P levels as well as PsTPS1 expression in both tissues. This indicated that the sugar signaling pathway may also be involved in NSC-coordinated tree peony flowering. In particular, PsSnRK1 was more rapidly induced in the bracts (as an energy shortage response) in the control plants and was completely prohibited by defoliation and GA treatment, indicating the key role of the bracts in sugar signaling. In conclusion, NSCs induced tree peony flowering both as an energy substrate and sugar signaling trigger, with the bracts playing an essential role. These results may provide further evidence on the mechanism of NSC-coordinated flower opening in tree peony under forcing culture conditions, which may also provide a foundation for improving this technology.
Collapse
Affiliation(s)
- Zhiyong Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Yantong Shi
- Beijing Agricultural Technology Extension Station, Beijing, 100029, China.
| | - Yuqian Xue
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Xiaoping Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Zhen Huang
- Zaozhuang Vocational College, Shandong, 277800, China.
| | - Jingqi Xue
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Xiuxin Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
10
|
Omari Alzahrani F. Metabolic engineering of osmoprotectants to elucidate the mechanism(s) of salt stress tolerance in crop plants. PLANTA 2021; 253:24. [PMID: 33403449 DOI: 10.1007/s00425-020-03550-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/22/2020] [Indexed: 05/08/2023]
Abstract
Previous studies on engineering osmoprotectant metabolic pathway genes focused on the performance of transgenic plants under salt stress conditions rather than elucidating the underlying mechanism(s), and hence, the mechanism(s) remain(s) unclear. Salt stress negatively impacts agricultural crop yields. Hence, to meet future food demands, it is essential to generate salt stress-resistant varieties. Although traditional breeding has improved salt tolerance in several crops, this approach remains inadequate due to the low genetic diversity of certain important crop cultivars. Genetic engineering is used to introduce preferred gene(s) from any genetic reserve or to modify the expression of the existing gene(s) responsible for salt stress response or tolerance, thereby leading to improved salt tolerance in plants. Although plants naturally produce osmoprotectants as an adaptive mechanism for salt stress tolerance, they offer only partial protection. Recently, progress has been made in the identification and characterization of genes involved in the biosynthetic pathways of osmoprotectants. Exogenous application of these osmoprotectants, and genetic engineering of enzymes in their biosynthetic pathways, have been reported to enhance salt tolerance in different plants. However, no clear mechanistic model exists to explain how osmoprotectant accumulation in transgenic plants confers salt tolerance. This review critically examines the results obtained thus far for elucidating the underlying mechanisms of osmoprotectants for improved salt tolerance, and thus, crop yield stability under salt stress conditions, through the genetic engineering of trehalose, glycinebetaine, and proline metabolic pathway genes.
Collapse
Affiliation(s)
- Fatima Omari Alzahrani
- Department of Biology, Faculty of Science, Albaha Province, Albaha University, Albaha, 65527, Saudi Arabia.
| |
Collapse
|
11
|
O'Leary B, Plaxton WC. Multifaceted functions of post-translational enzyme modifications in the control of plant glycolysis. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:28-37. [PMID: 32200227 DOI: 10.1016/j.pbi.2020.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Glycolysis is a central feature of metabolism and its regulation plays important roles during plant developmental and stress responses. Recent advances in proteomics and mass spectrometry have documented extensive and dynamic post-translational modifications (PTMs) of most glycolytic enzymes in diverse plant tissues. Protein PTMs represent fundamental regulatory events that integrate signalling and gene expression with cellular metabolic networks, and can regulate glycolytic enzyme activity, localization, protein:protein interactions, moonlighting functions, and turnover. Serine/threonine phosphorylation and redox PTMs of cysteine thiol groups appear to be the most prevalent forms of reversible covalent modification involved in plant glycolytic control. Additional PTMs including monoubiquitination also have important functions. However, the molecular functions and mechanisms of most glycolytic enzyme PTMs remain unknown, and represent important objectives for future studies.
Collapse
Affiliation(s)
- Brendan O'Leary
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Australia
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, Ontario K7L3N6, Canada.
| |
Collapse
|
12
|
Schemberger MO, Stroka MA, Reis L, de Souza Los KK, de Araujo GAT, Sfeir MZT, Galvão CW, Etto RM, Baptistão ARG, Ayub RA. Transcriptome profiling of non-climacteric 'yellow' melon during ripening: insights on sugar metabolism. BMC Genomics 2020; 21:262. [PMID: 32228445 PMCID: PMC7106763 DOI: 10.1186/s12864-020-6667-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The non-climacteric 'Yellow' melon (Cucumis melo, inodorus group) is an economically important crop and its quality is mainly determined by the sugar content. Thus, knowledge of sugar metabolism and its related pathways can contribute to the development of new field management and post-harvest practices, making it possible to deliver better quality fruits to consumers. RESULTS The RNA-seq associated with RT-qPCR analyses of four maturation stages were performed to identify important enzymes and pathways that are involved in the ripening profile of non-climacteric 'Yellow' melon fruit focusing on sugar metabolism. We identified 895 genes 10 days after pollination (DAP)-biased and 909 genes 40 DAP-biased. The KEGG pathway enrichment analysis of these differentially expressed (DE) genes revealed that 'hormone signal transduction', 'carbon metabolism', 'sucrose metabolism', 'protein processing in endoplasmic reticulum' and 'spliceosome' were the most differentially regulated processes occurring during melon development. In the sucrose metabolism, five DE genes are up-regulated and 12 are down-regulated during fruit ripening. CONCLUSIONS The results demonstrated important enzymes in the sugar pathway that are responsible for the sucrose content and maturation profile in non-climacteric 'Yellow' melon. New DE genes were first detected for melon in this study such as invertase inhibitor LIKE 3 (CmINH3), trehalose phosphate phosphatase (CmTPP1) and trehalose phosphate synthases (CmTPS5, CmTPS7, CmTPS9). Furthermore, the results of the protein-protein network interaction demonstrated general characteristics of the transcriptome of young and full-ripe melon and provide new perspectives for the understanding of ripening.
Collapse
Affiliation(s)
- Michelle Orane Schemberger
- Laboratório de Biotecnologia Aplicada a Fruticultura, Departamento de Fitotecnia e Fitossanidade, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Marília Aparecida Stroka
- Laboratório de Biotecnologia Aplicada a Fruticultura, Departamento de Fitotecnia e Fitossanidade, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Letícia Reis
- Laboratório de Biotecnologia Aplicada a Fruticultura, Departamento de Fitotecnia e Fitossanidade, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Kamila Karoline de Souza Los
- Laboratório de Biotecnologia Aplicada a Fruticultura, Departamento de Fitotecnia e Fitossanidade, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Gillize Aparecida Telles de Araujo
- Laboratório de Biotecnologia Aplicada a Fruticultura, Departamento de Fitotecnia e Fitossanidade, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Michelle Zibetti Tadra Sfeir
- Departamento de Bioquímica, Centro Politécnico, Universidade Federal do Paraná, Jd. Das Américas, Caixa-Postal 19071, Curitiba, Paraná, 81531-990, Brazil
| | - Carolina Weigert Galvão
- Laboratório de Biologia Molecular Microbiana, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Rafael Mazer Etto
- Laboratório de Biologia Molecular Microbiana, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Amanda Regina Godoy Baptistão
- Laboratório de Biotecnologia Aplicada a Fruticultura, Departamento de Fitotecnia e Fitossanidade, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Ricardo Antonio Ayub
- Laboratório de Biotecnologia Aplicada a Fruticultura, Departamento de Fitotecnia e Fitossanidade, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil.
| |
Collapse
|
13
|
Phan TLCHB, Delorge I, Avonce N, Van Dijck P. Functional Characterization of Class I Trehalose Biosynthesis Genes in Physcomitrella patens. FRONTIERS IN PLANT SCIENCE 2020; 10:1694. [PMID: 32038675 PMCID: PMC6984353 DOI: 10.3389/fpls.2019.01694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
The function of trehalose metabolism in plants during growth and development has been extensively studied, mostly in the eudicot Arabidopsis thaliana. So far, however, not much is known about trehalose metabolism in the moss Physcomitrella patens. Here, we show that in P. patens, two active trehalose-6-phosphate synthase enzymes exist, PpTPS1 and PpTPS2. Expression of both enzymes in Saccharomyces cerevisiae can complement the glucose-growth defect of the yeast tps1∆ mutant. Truncation of N-terminal extension in PpTPS1 and PpTPS2 resulted in higher TPS activity and high trehalose levels, upon expression in yeast. Physcomitrella knockout plants were generated and analyzed in various conditions to functionally characterize these proteins. tps1∆ and tps2∆ knockouts displayed a lower amount of caulonema filaments and were significantly reduced in size of gametophores as compared to the wild type. These phenotypes were more pronounced in the tps1∆ tps2∆ mutant. Caulonema formation is induced by factors such as high energy and auxins. Only high amounts of supplied energy were able to induce caulonema filaments in the tps1∆ tps2∆ mutant. Furthermore, this mutant was less sensitive to auxins as NAA-induced caulonema development was arrested in the tps1∆ tps2∆ mutant. In contrast, formation of caulonema filaments is repressed by cytokinins. This effect was more severe in the tps1∆ and tps1∆ tps2∆ mutants. Our results demonstrate that PpTPS1 and PpTPS2 are essential for sensing and signaling sugars and plant hormones to monitor the balance between caulonema and chloronema development.
Collapse
Affiliation(s)
- Tran Le Cong Huyen Bao Phan
- VIB-KU Leuven Center for Microbiology, VIB, Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- Department of Biology, College of Natural Sciences, Cantho University, Cantho, Vietnam
| | - Ines Delorge
- VIB-KU Leuven Center for Microbiology, VIB, Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Nelson Avonce
- VIB-KU Leuven Center for Microbiology, VIB, Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, VIB, Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Damalanka VC, Wildman SA, Janetka JW. Piperidine carbamate peptidomimetic inhibitors of the serine proteases HGFA, matriptase and hepsin. MEDCHEMCOMM 2019; 10:1646-1655. [PMID: 31803403 DOI: 10.1039/c9md00234k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022]
Abstract
Matriptase and hepsin are type II transmembrane serine proteases (TTSPs). Along with related S1 trypsin like serine protease HGFA (hepatocyte growth factor activator), their unregulated proteolytic activity has been associated with cancer including tumor progression and metastasis. These three proteases have two substrates in common, hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP), the ligands for MET and recepteur d'origine nantais (RON) receptor tyrosine kinases. Mechanism-based tetrapeptide and benzamidine inhibitors of these proteases have been shown to block HGF/MET and MSP/RON cancer cell signaling. Herein, we have rationally designed a new class of peptidomimetic hybrid small molecule piperidine carbamate dipeptide inhibitors comparable in potency to much larger tetrapeptides. We have identified multiple compounds which have potent activity against matriptase and hepsin and with excellent selectivity over the off-target serine proteases factor Xa and thrombin.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , St. Louis , Missouri , USA . ; Tel: +314 362 0509
| | - Scott A Wildman
- University of Wisconsin Carbone Cancer Center , Drug Development Core , University of Wisconsin-Madison , Madison , Wisconsin , USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , St. Louis , Missouri , USA . ; Tel: +314 362 0509
| |
Collapse
|
15
|
Stein O, Granot D. An Overview of Sucrose Synthases in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:95. [PMID: 30800137 PMCID: PMC6375876 DOI: 10.3389/fpls.2019.00095] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/21/2019] [Indexed: 05/04/2023]
Abstract
Sucrose is the end product of photosynthesis and the primary sugar transported in the phloem of most plants. Sucrose synthase (SuSy) is a glycosyl transferase enzyme that plays a key role in sugar metabolism, primarily in sink tissues. SuSy catalyzes the reversible cleavage of sucrose into fructose and either uridine diphosphate glucose (UDP-G) or adenosine diphosphate glucose (ADP-G). The products of sucrose cleavage by SuSy are available for many metabolic pathways, such as energy production, primary-metabolite production, and the synthesis of complex carbohydrates. SuSy proteins are usually homotetramers with an average monomeric molecular weight of about 90 kD (about 800 amino acids long). Plant SuSy isozymes are mainly located in the cytosol or adjacent to plasma membrane, but some SuSy proteins are found in the cell wall, vacuoles, and mitochondria. Plant SUS gene families are usually small, containing between four to seven genes, with distinct exon-intron structures. Plant SUS genes are divided into three separate clades, which are present in both monocots and dicots. A comprehensive phylogenetic analysis indicates that a first SUS duplication event may have occurred before the divergence of the gymnosperms and angiosperms and a second duplication event probably occurred in a common angiosperm ancestor, leading to the existence of all three clades in both monocots and dicots. Plants with reduced SuSy activity have been shown to have reduced growth, reduced starch, cellulose or callose synthesis, reduced tolerance to anaerobic-stress conditions and altered shoot apical meristem function and leaf morphology. Plants overexpressing SUS have shown increased growth, increased xylem area and xylem cell-wall width, and increased cellulose and starch contents, making SUS high-potential candidate genes for the improvement of agricultural traits in crop plants. This review summarizes the current knowledge regarding plant SuSy, including newly discovered possible developmental roles for SuSy in meristem functioning that involve sugar and hormonal signaling.
Collapse
Affiliation(s)
| | - David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|