1
|
Zeng X, Wu H, Xu Y, Liu H, Xie B, Liu H. Analysis of suitable site candidates for Mars human habitat and life-support technologies based on in situ water resource utilization. LIFE SCIENCES IN SPACE RESEARCH 2025; 45:91-106. [PMID: 40280647 DOI: 10.1016/j.lssr.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/16/2025] [Accepted: 02/01/2025] [Indexed: 04/29/2025]
Abstract
Human mission to Mars endowed with multiplex challenges has attracted global attentions in the space field. Life support technology is one of the key technologies for deep space exploration, which distinguishes human missions from unhuman ones. Among the life support materials for human space flight, water accounts for the largest weight. Realizing water recycling and in situ water resource utilization (ISWRU) is of great significance for reducing the dependence of human spacecraft on ground supply and for establishing sustainable Mars human habitats. Therefore, this review begins with the summarization of the existence forms and distribution of water on Mars in view of the water source for future human Mars exploration missions and the construction of Mars habitats. Then, suitable Mars human landing and habitat sites are discussed on the basis of convenient ISWRU. Finally, typical Mars habitat design concepts, bioregenerative life support technologies and potential Mars water extraction and purification technologies are also introduced, which we consider to be vital to Mars habitats with ISWRU capability.
Collapse
Affiliation(s)
- Xi Zeng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Hang Wu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yinuo Xu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Hui Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Beizhen Xie
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, China.
| | - Hong Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China; Hangzhou International Innovation Institute of Beihang university, Hangzhou 311115, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
2
|
Freissinet C, Glavin DP, Archer PD, Teinturier S, Buch A, Szopa C, Lewis JMT, Williams AJ, Navarro-Gonzalez R, Dworkin JP, Franz HB, Millan M, Eigenbrode JL, Summons RE, House CH, Williams RH, Steele A, McIntosh O, Gómez F, Prats B, Malespin CA, Mahaffy PR. Long-chain alkanes preserved in a Martian mudstone. Proc Natl Acad Sci U S A 2025; 122:e2420580122. [PMID: 40127274 PMCID: PMC12002291 DOI: 10.1073/pnas.2420580122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/03/2025] [Indexed: 03/26/2025] Open
Abstract
Organic molecules preserved in ancient Martian rocks provide a critical record of the past habitability of Mars and could be chemical biosignatures. Experiments conducted by the Sample Analysis at Mars instrument onboard the Curiosity rover have previously reported several classes of indigenous chlorinated and sulfur-containing organic compounds in Gale crater sedimentary rocks, with chemical structures of up to six carbons. Here, we report the detection of decane (C10H22), undecane (C11H24), and dodecane (C12H26) at the tens of pmol level, released from the Cumberland drilled mudstone sample, using a modified SAM analytical procedure optimized for the detection of larger organic molecules. Laboratory experiments support the hypothesis that the alkanes detected were originally preserved in the mudstone as long-chain carboxylic acids. The origin of these molecules remains uncertain, as they could be derived from either abiotic or biological sources.
Collapse
Affiliation(s)
- Caroline Freissinet
- Laboratoire Atmosphères et Observations Spatiales, Université Versailles St Quentin Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt78280, France
| | - Daniel P. Glavin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | | | - Samuel Teinturier
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
- Goddard Earth Sciences Technology and Research, Universities Space Research Association, Columbia, MD21046
| | - Arnaud Buch
- Laboratoire de Génie des Procédés et Matériaux, CentraleSupelec, Gif-sur-Yvette91192, France
| | - Cyril Szopa
- Laboratoire Atmosphères et Observations Spatiales, Université Versailles St Quentin Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt78280, France
| | - James M. T. Lewis
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
- Department of Physics and Astronomy, Howard University, Washington, DC20059
- Center for Research and Exploration in Space Science and Technology, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | - Amy J. Williams
- Department of Geological Sciences, University of Florida, Gainesville, FL32611
| | - Rafael Navarro-Gonzalez
- Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico City04510, Mexico
| | - Jason P. Dworkin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | - Heather. B. Franz
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | - Maëva Millan
- Laboratoire Atmosphères et Observations Spatiales, Université Versailles St Quentin Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt78280, France
| | | | - R. E. Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Christopher H. House
- Department of Geosciences and Earth and Environment Systems Science Institute, University Park, PA16802
| | - Ross H. Williams
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
- Department of Physics and Astronomy, Howard University, Washington, DC20059
- Center for Research and Exploration in Space Science and Technology, University of Maryland, College Park, MD20742
| | - Andrew Steele
- Earth and Planetary Laboratory, Carnegie Science Institution, Washington, DC20015
| | - Ophélie McIntosh
- Laboratoire Atmosphères et Observations Spatiales, Université Versailles St Quentin Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt78280, France
| | - Felipe Gómez
- Centro de Astrobiología (Instituto Nacional de Técnica Aeroespacial and Consejo Superior de Investigaciones Científicas), Madrid28850, Spain
| | - Benito Prats
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | - Charles A. Malespin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | - Paul R. Mahaffy
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| |
Collapse
|
3
|
McSween HY, Hamilton VE, Farley KA. Perspectives on Mars Sample Return: A critical resource for planetary science and exploration. Proc Natl Acad Sci U S A 2025; 122:e2404248121. [PMID: 39761404 PMCID: PMC11745396 DOI: 10.1073/pnas.2404248121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Mars Sample Return (MSR) has been the highest flagship mission priority in the last two Planetary Decadal Surveys of the National Academies of Science, Engineering, and Medicine (hereafter, "the National Academies") and was the highest priority flagship for Mars in the Decadal Survey that preceded them. This inspirational and challenging campaign, like the Apollo program's returned lunar samples, will potentially revolutionize our understanding of Mars and help inform how other planets are explored. MSR's technological advances will keep the NASA and European Space Agency at the forefront of planetary exploration, and data on returned samples will fill knowledge gaps for future human exploration. Investigations of the ancient rocks collected in and around Jezero crater, as well as samples of the regolith and atmosphere, will be fundamentally different in scope, depth, and certainty from what is achievable with spaceborne observations. Returned Mars samples can address critical science issues including the discovery and characterization of ancient extraterrestrial life, prebiotic organic chemistry, the history of habitable planetary environments, planetary geological, geochemical, and geophysical evolution, orbital dynamics of bodies in the early Solar System, and the formation and evolution of atmospheres.
Collapse
Affiliation(s)
- Harry Y. McSween
- Department of Earth, Environmental, and Planetary Sciences, University of Tennessee, Knoxville, TN37996-1526
| | - Victoria E. Hamilton
- Solar System Science and Exploration Division, Southwest Research Institute, Boulder, CO80302
| | - Kenneth A. Farley
- Division of Earth and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
4
|
Sephton MA, Steele A, Westall F, Schubotz F. Organic matter and biomarkers: Why are samples required? Proc Natl Acad Sci U S A 2025; 122:e2404256121. [PMID: 39761399 PMCID: PMC11745315 DOI: 10.1073/pnas.2404256121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
The search for evidence of past prebiotic or biotic activity on Mars will be enhanced by the return of samples to Earth laboratories. While impressive analytical feats have been accomplished by in situ missions on the red planet, accessing the capabilities of Earth's global laboratories will present a step change in data acquisition. Highly diagnostic markers of past life are biomarkers, organic molecules whose architecture can be attributed to once living organisms. Similar organic molecular structures can also be used to identify the prebiotic steps that preceded any emergence of life. The style of modification or degradation of such organic structures indicates their agents of change, including oxidants, radiation, heating, water, and pressure. For biomarker analysis, sample return provides enhanced opportunities for sample preparation and analyte isolation. The augmentation of biomarker data with spatial information provides the opportunity for confirmatory data but is a multistep and multitechnique process best achieved here on Earth. Efficient use of returned samples will benefit from lessons learned on Earth's ancient records and meteorites from Mars. The next decade is a time when analytical capabilities can be improved as we prepare for the delivery of carefully selected and collected extraterrestrial samples containing potential evidence of the development or even emergence of past life on Mars.
Collapse
Affiliation(s)
- Mark A. Sephton
- Department of Earth Science and Engineering, South Kensington Campus, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Andrew Steele
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC20015
| | | | - Florence Schubotz
- Center for Marine Environmental Sciences, University of Bremen, 28359Bremen, Germany
| |
Collapse
|
5
|
Tribbett PD, Yarnall YY, Hudson RL, Gerakines PA, Materese CK. Radiation-Driven Destruction of Thiophene and Methyl-Substituted Thiophenes. ASTROBIOLOGY 2024; 24:1085-1095. [PMID: 39435679 DOI: 10.1089/ast.2024.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Thiophene and two derivatives (2-methylthiophene and 3-methylthiophene) have been detected on the surface of Mars with the Sample Analysis at Mars instrument suite onboard NASA's Curiosity rover. Thiophene could serve as a secondary chemical biosignature since the secondary biosynthesis of thiophene is considered an important production pathway. However, it is critical to understand the abiotic formation and destruction of thiophene and its derivatives since these pathways could affect the molecules' stabilities on planetary surfaces over geological timescales. Here, we present the radiolytic destruction kinetics of thiophene, 2-methylthiophene, and 3-methylthiophene as single-component ices and when diluted in water ice at low temperatures. Using infrared spectroscopy, we determined the destruction rate constants and extrapolated our radiolytic half-lives to the surface of Mars, assuming the measured and modeled surface dose rates. We found that our rate constants strongly depend on temperature and presence of water ice. Based on our determined radiolytic half-life for thiophene under conditions most similar to those of thiophene groups in Martian macromolecules, we expect thiophene to be stable on the surface for significantly longer than the Martian surface exposure age of sites in Gale crater where thiophenes have been detected.
Collapse
Affiliation(s)
- Patrick D Tribbett
- Center for Space Science and Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
- Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Research and Exploration in Space Science and Technology, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Yukiko Y Yarnall
- Center for Space Science and Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
- Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Research and Exploration in Space Science and Technology, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Reggie L Hudson
- Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Perry A Gerakines
- Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | | |
Collapse
|
6
|
Scheller EL, Bosak T, McCubbin FM, Williford K, Siljeström S, Jakubek RS, Eckley SA, Morris RV, Bykov SV, Kizovski T, Asher S, Berger E, Bower DM, Cardarelli EL, Ehlmann BL, Fornaro T, Fox A, Haney N, Hand K, Roppel R, Sharma S, Steele A, Uckert K, Yanchilina AG, Beyssac O, Farley KA, Henneke J, Heirwegh C, Pedersen DAK, Liu Y, Schmidt ME, Sephton M, Shuster D, Weiss BP. Inorganic interpretation of luminescent materials encountered by the Perseverance rover on Mars. SCIENCE ADVANCES 2024; 10:eadm8241. [PMID: 39321302 PMCID: PMC11423895 DOI: 10.1126/sciadv.adm8241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/16/2024] [Indexed: 09/27/2024]
Abstract
A major objective of the Mars 2020 mission is to sample rocks in Jezero crater that may preserve organic matter for later return to Earth. Using an ultraviolet Raman and luminescence spectrometer, the Perseverance rover detected luminescence signals with maximal intensities at 330 to 350 nanometers and 270 to 290 nanometers that were initially reported as consistent with organics. Here, we test the alternative hypothesis that the 330- to 350-nanometer and 270- to 290-nanometer luminescence signals trace Ce3+ in phosphate and silicate defects, respectively. By comparing the distributions of luminescence signals with the rover detections of x-ray fluorescence from P2O5 and Si-bearing materials, we show that, while an organic origin is not excluded, the observed luminescence can be explained by purely inorganic materials. These findings highlight the importance of eventual laboratory analyses to detect and characterize organic compounds in the returned samples.
Collapse
Affiliation(s)
- Eva L. Scheller
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tanja Bosak
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Francis M. McCubbin
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX 77058, USA
| | | | | | | | | | - Richard V. Morris
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Sergei V. Bykov
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Tanya Kizovski
- Department of Earth Sciences, Brock University, St. Catharines, ON, Canada
| | - Sanford Asher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Eve Berger
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Dina M. Bower
- Department of Astronomy, University of Maryland, College Park, MD 20742, USA
| | - Emily L. Cardarelli
- Department of Earth, Planetary and Space Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bethany L. Ehlmann
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Teresa Fornaro
- Astrophysical Observatory of Arcetri, INAF, Florence, Italy
| | - Allison Fox
- Jacobs, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Nikole Haney
- Jacobs, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Kevin Hand
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91011, USA
| | - Ryan Roppel
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sunanda Sharma
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91011, USA
| | - Andrew Steele
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| | - Kyle Uckert
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91011, USA
| | | | - Olivier Beyssac
- Institut de Minéralogie de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, Muséum National d’Histoire Naturelle, Paris, France
| | - Kenneth A. Farley
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Chris Heirwegh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91011, USA
| | | | - Yang Liu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91011, USA
| | - Mariek E. Schmidt
- Department of Earth Sciences, Brock University, St. Catharines, ON, Canada
| | - Mark Sephton
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - David Shuster
- Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720, USA
| | - Benjamin P. Weiss
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Ams MR, McAuliffe JR, Semenick RS, Zeller M. Self-Replication Without Hydrogen-Bonds: An Exobiotic Design. Chemistry 2024; 30:e202401446. [PMID: 38958604 DOI: 10.1002/chem.202401446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Life on Earth uses DNA as the central template for self-replication, genetic encoding, and information transfer. However, there are no physical laws precluding life's existence elsewhere in space, and alternative life forms may not need DNA. In the search for exobiology, knowing what to look for as a biosignature remains a challenge - especially if it is not from the obvious list of biologic building blocks. Clues from chemicals recently discovered on Mars and in the Taurus Molecular Cloud 1 (TMC-1), show that intriguing organic compounds exist beyond Earth, which could provide a starting point for unconventional exobiotic designs. Here we present a new potential self-replicating system with structural similarities to recently discovered compounds on Mars and TMC-1. Rather than using DNA's hydrogen-bonding motif for reliable base-paring, our design employs sulfur-nitrogen interactions to selectively template unique benzothiadiazole units in sequence. We synthesized and studied two versions of this system, one reversible and the other irreversible, and found experimental evidence of self-replication in d-chloroform solvent. These results are part of a larger pursuit in our lab for developing a basis for a potential exobiological system using starting blocks closely related to these cosmic compounds.
Collapse
Affiliation(s)
- Mark R Ams
- Department of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM, 87801, USA
| | - Joseph R McAuliffe
- Department of Chemistry, Allegheny College, 520 North Main Street, Meadville, PA, 16335, USA
| | - Raina S Semenick
- Department of Chemistry, Allegheny College, 520 North Main Street, Meadville, PA, 16335, USA
| | - Matt Zeller
- X-ray Crystallography, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| |
Collapse
|
8
|
Abrahamsson V, Henderson BL, Friedman A, Gross J, Prothmann J, Davila AF, Williams AJ, Lin Y, Kanik I, Zhong F. Supercritical CO 2 and Subcritical H 2O Analysis Instrument: Automated Lipid Analysis for In Situ Planetary Life Detection. Anal Chem 2024; 96:13389-13397. [PMID: 39120043 DOI: 10.1021/acs.analchem.4c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The search for extraterrestrial extant or extinct life in our Solar System will require highly capable instrumentation and methods for detecting low concentrations of biosignatures. This paper introduces the Supercritical CO2 and Subcritical H2O Analysis (SCHAN) instrument, a portable and automated system that integrates supercritical fluid extraction (SFE), supercritical fluid chromatography (SFC), and subcritical water extraction coupled with liquid chromatography. The instrument is compact and weighs 6.3 kg, making it suitable for spaceflight missions to planetary bodies. Traditional techniques, such as gas chromatography-mass spectrometry (MS), face challenges with involatile and thermally labile analytes, necessitating derivatization. The SCHAN instrument, however, eliminates the need for derivatization and cosolvents by utilizing neat supercritical CO2 with water as an additive. This SFE-SFC-MS method gives efficient lipid biosignature separations with median detection limits of 10 pg/g (ppt) for fatty acids and 50 pg/g (ppt) for sterols. Several free fatty acids and cholesterol were among the detected peaks in biologically lean samples from the Atacama Desert, demonstrating the instrument's potential for in situ life detection missions. The SCHAN instrument addresses the challenges of conventional systems, offering a compact, portable, and spaceflight-compatible tool for the analysis of organics for future astrobiology-focused missions.
Collapse
Affiliation(s)
- Victor Abrahamsson
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Bryana L Henderson
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Adam Friedman
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Johannes Gross
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Jens Prothmann
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Alfonso F Davila
- NASA Ames Research Center, Moffett Field ,California 94035-1000, United States
| | - Amy J Williams
- University of Florida, Gainesville ,Florida 32611-7011, United States
| | - Ying Lin
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Isik Kanik
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Fang Zhong
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| |
Collapse
|
9
|
Rodriguez LE, Weber JM, Barge LM. Evaluating Pigments as a Biosignature: Abiotic/Prebiotic Synthesis of Pigments and Pigment Mimics in Planetary Environments. ASTROBIOLOGY 2024; 24:767-782. [PMID: 38768415 DOI: 10.1089/ast.2023.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Pigments serve a multitude of functions in biology including light harvesting for photosynthesis, radiation protection, membrane support, and defense. The ubiquity of pigments-especially within extremophiles found in high-radiation, high-salinity, and dry environments-and their detectability via mission-ready techniques have elevated these molecules as promising targets in the search for evidence of life elsewhere. Moreover, the detection of pigments has been proposed as a "smoking gun" for extraterrestrial life as it has been suggested that these molecules cannot be generated abiotically. However, while pigments may hold promise as a biosignature, current understanding of their possible prebiotic origins remains understudied and uncertain. Better understanding of the abiotic synthesis of pigments is critical for evaluating the biogenicity of any pigment detected during missions, including by the Mars Perseverance rover or from returned samples. Compounding this uncertainty is the broad definition of pigment as it includes any compound capable of absorbing visible light and by itself does not specify a particular chemical motif. While not experimentally verified, there are promising prebiotic routes for generating pigments including hemes, chlorophylls, and carotenoids. Herein, we review the biochemistry of pigments, the inherent assumptions made when searching for these molecules in the field, their abiotic synthesis in industry and prebiotic reactions, prebiotically relevant molecules that can mimic their spectral signatures, and implications/recommendations for future work.
Collapse
Affiliation(s)
- Laura E Rodriguez
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
10
|
Alberini A, Fornaro T, García-Florentino C, Biczysko M, Poblacion I, Aramendia J, Madariaga JM, Poggiali G, Vicente-Retortillo Á, Benison KC, Siljeström S, Biancalani S, Lorenz C, Cloutis EA, Applin DM, Gómez F, Steele A, Wiens RC, Hand KP, Brucato JR. Investigating the stability of aromatic carboxylic acids in hydrated magnesium sulfate under UV irradiation to assist detection of organics on Mars. Sci Rep 2024; 14:15945. [PMID: 38987581 PMCID: PMC11237158 DOI: 10.1038/s41598-024-66669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
The Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument onboard the Mars 2020 Perseverance rover detected so far some of the most intense fluorescence signals in association with sulfates analyzing abraded patches of rocks at Jezero crater, Mars. To assess the plausibility of an organic origin of these signals, it is key to understand if organics can survive exposure to ambient Martian UV after exposure by the Perseverance abrasion tool and prior to analysis by SHERLOC. In this work, we investigated the stability of organo-sulfate assemblages under Martian-like UV irradiation and we observed that the spectroscopic features of phthalic and mellitic acid embedded into hydrated magnesium sulfate do not change for UV exposures corresponding to at least 48 Martian sols and, thus, should still be detectable in fluorescence when the SHERLOC analysis takes place, thanks to the photoprotective properties of magnesium sulfate. In addition, different photoproduct bands diagnostic of the parent carboxylic acid molecules could be observed. The photoprotective behavior of hydrated magnesium sulfate corroborates the hypothesis that sulfates might have played a key role in the preservation of organics on Mars, and that the fluorescence signals detected by SHERLOC in association with sulfates could potentially arise from organic compounds.
Collapse
Affiliation(s)
- Andrew Alberini
- INAF- Astrophysical Observatory of Arcetri, L.go E. Fermi 5, 50125, Firenze, Italy.
- Department of Physics and Astronomy, University of Florence, Via Giovanni Sansone 1, Sesto Fiorentino, 50019, Florence, Italy.
| | - Teresa Fornaro
- INAF- Astrophysical Observatory of Arcetri, L.go E. Fermi 5, 50125, Firenze, Italy.
| | - Cristina García-Florentino
- INAF- Astrophysical Observatory of Arcetri, L.go E. Fermi 5, 50125, Firenze, Italy
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, 48080, Bilbao, Spain
| | - Malgorzata Biczysko
- College of Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Iratxe Poblacion
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, 48080, Bilbao, Spain
| | - Julene Aramendia
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, 48080, Bilbao, Spain
| | - Juan Manuel Madariaga
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, 48080, Bilbao, Spain
| | - Giovanni Poggiali
- INAF- Astrophysical Observatory of Arcetri, L.go E. Fermi 5, 50125, Firenze, Italy
- LESIA - Observatoire de Paris, CNRS, Université Paris Cité, Université PSL, Sorbonne Université, 5 Place Jules Janssen, 92190, Meudon, France
| | | | - Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, WV, USA
| | | | - Sole Biancalani
- INAF- Astrophysical Observatory of Arcetri, L.go E. Fermi 5, 50125, Firenze, Italy
- Department of Physics, University of Trento, Via Sommarive 14, 38123, Povo, Italy
- Italian Space Angency (ASI), Viale del Politecnico Snc, 00133, Rome, Italy
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121, Florence, Italy
| | - Christian Lorenz
- INAF- Astrophysical Observatory of Arcetri, L.go E. Fermi 5, 50125, Firenze, Italy
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Edward A Cloutis
- Centre for Terrestrial and Planetary Exploration, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Dan M Applin
- Centre for Terrestrial and Planetary Exploration, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Felipe Gómez
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejón de Ardoz, Spain
| | | | - Roger C Wiens
- Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA
| | - Kevin P Hand
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - John R Brucato
- INAF- Astrophysical Observatory of Arcetri, L.go E. Fermi 5, 50125, Firenze, Italy
| |
Collapse
|
11
|
Preston LJ, Jungblut AD, Montgomery W, Ballard CJ, Wilbraham J. The Preservation and Spectral Detection of Historic Museum Specimen Microbial Mat Biosignatures Within Martian Dust: Lessons Learned for Mars Exploration and Sample Return. ASTROBIOLOGY 2024; 24:684-697. [PMID: 38979614 DOI: 10.1089/ast.2023.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The key building blocks for life on Mars could be preserved within potentially habitable paleo-depositional settings with their detection possible by utilizing mid-infrared spectroscopy; however, a definite identification and confirmation of organic or even biological origin will require the samples to be returned to Earth. In the present study, Fourier-transform infrared (FTIR) spectroscopic techniques were used to characterize both mineralogical and organic materials within Mars dust simulant JSC Mars-1 and ancient Antarctic cyanobacterial microbial mats from 1901 to 1904 Discovery Expedition. When FTIR spectroscopy is applied to cyanobacterial microbial mat communities, the resulting spectra will reflect the average biochemical composition of the mats rather than taxa-specific spectral patterns of the individual organisms and can thus be considered as a total chemical analysis of the mat colony. This study also highlights the potential difficulties in the detection of these communities on Mars and which spectral biosignatures will be most detectable within geological substrates. Through the creation and analysis of a suite of dried microbial mat material and Martian dust simulant mixtures, the spectral signatures and wavenumber positions of CHx aliphatic hydrocarbons and the C-O and O-H bands of polysaccharides remained detectable and may be detectable within sample mixtures obtained through Mars Sample Return activities.
Collapse
Affiliation(s)
- Louisa J Preston
- Department of Space & Climate Physics, Mullard Space Science Laboratory, University College London, Dorking, United Kingdom
- Life Sciences Department, Natural History Museum, London, United Kingdom
| | - Anne D Jungblut
- Life Sciences Department, Natural History Museum, London, United Kingdom
| | - Wren Montgomery
- Life Sciences Department, Natural History Museum, London, United Kingdom
| | - Connor J Ballard
- Department of Space & Climate Physics, Mullard Space Science Laboratory, University College London, Dorking, United Kingdom
| | - Jo Wilbraham
- Life Sciences Department, Natural History Museum, London, United Kingdom
| |
Collapse
|
12
|
Sunuwar S, Haddad A, Acheson A, Manzanares CE. Synchronous Fluorescence as a Sensor of Trace Amounts of Polycyclic Aromatic Hydrocarbons. SENSORS (BASEL, SWITZERLAND) 2024; 24:3800. [PMID: 38931582 PMCID: PMC11207474 DOI: 10.3390/s24123800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Synchronous fluorescence spectroscopy (SFS) is a technique that involves the simultaneous detection of fluorescence excitation and emission at a constant wavelength difference. The spectrum yields bands that are narrower and less complex than the original excitation and emission bands. The SFS bands correspond uniquely to the fluorescing molecule. Our investigation focuses on evaluating the sensitivity of the SFS technique for the detection and quantitation of PAHs relevant to astrochemistry. Results are presented for naphthalene, anthracene, and pyrene in three different solvents: n-hexane, water, and ethanol. SF bands are obtained with a constant wavelength difference between the peak excitation and emission wavelength (Δλ = λex - λem) at a concentration ranging from 10-4 to 10-10 M. Limit of detection (LOD) and limit of quantitation (LOQ) calculations are based on integrated SF band areas at different concentrations. Spectra of 23 pg/g of anthracene, 16 pg/g, and 2.6 pg/g of pyrene are recorded using ethanol as the solvent. The PAHs exhibit detection limits in the fractions of parts-per-billion (ng/g) range. Through comparison with similar prior studies employing fluorescence emission, our findings reveal a better detectability limit, demonstrating the effectiveness and applicability of the SFS technique.
Collapse
Affiliation(s)
| | | | | | - Carlos E. Manzanares
- Department of Chemistry & Biochemistry, Baylor University, 101 Bagby Avenue, Baylor Sciences Building E-216, Waco, TX 76706, USA; (S.S.); (A.H.); (A.A.)
| |
Collapse
|
13
|
Fifer LM, Wong ML. Quantifying the Potential for Nitrate-Dependent Iron Oxidation on Early Mars: Implications for the Interpretation of Gale Crater Organics. ASTROBIOLOGY 2024; 24:590-603. [PMID: 38805190 DOI: 10.1089/ast.2023.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Geological evidence and atmospheric and climate models suggest habitable conditions occurred on early Mars, including in a lake in Gale crater. Instruments aboard the Curiosity rover measured organic compounds of unknown provenance in sedimentary mudstones at Gale crater. Additionally, Curiosity measured nitrates in Gale crater sediments, which suggests that nitrate-dependent Fe2+ oxidation (NDFO) may have been a viable metabolism for putative martian life. Here, we perform the first quantitative assessment of an NDFO community that could have existed in an ancient Gale crater lake and quantify the long-term preservation of biological necromass in lakebed mudstones. We find that an NDFO community would have the capacity to produce cell concentrations of up to 106 cells mL-1, which is comparable to microbes in Earth's oceans. However, only a concentration of <104 cells mL-1, due to organisms that inefficiently consume less than 10% of precipitating nitrate, would be consistent with the abundance of organics found at Gale. We also find that meteoritic sources of organics would likely be insufficient as a sole source for the Gale crater organics, which would require a separate source, such as abiotic hydrothermal or atmospheric production or possibly biological production from a slowly turning over chemotrophic community.
Collapse
Affiliation(s)
- Lucas M Fifer
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
- Astrobiology Program, University of Washington, Seattle, Washington, USA
| | - Michael L Wong
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
- NHFP Sagan Fellow, NASA Hubble Fellowship Program, Space Telescope Science Institute, Baltimore, Maryland, USA
- NASA Nexus for Exoplanet System Science, Virtual Planetary Laboratory Team, University of Washington, Seattle, Washington, USA
| |
Collapse
|
14
|
Christ O, Nestola F, Alvaro M. Open questions on carbonaceous matter in meteorites. Commun Chem 2024; 7:118. [PMID: 38811753 PMCID: PMC11137045 DOI: 10.1038/s42004-024-01200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Affiliation(s)
- Oliver Christ
- Department of Earth and Environmental Sciences, University of Pavia, 27100, Pavia, Italy.
| | - Fabrizio Nestola
- Department of Geosciences, University of Padua, 35131, Padua, Italy
| | - Matteo Alvaro
- Department of Earth and Environmental Sciences, University of Pavia, 27100, Pavia, Italy
| |
Collapse
|
15
|
McIntosh O, García-Florentino C, Fornaro T, Marabello D, Alberini A, Siljeström S, Biczysko M, Szopa C, Brucato J. Undecanoic Acid and L-Phenylalanine in Vermiculite: Detection, Characterization, and UV Degradation Studies for Biosignature Identification on Mars. ASTROBIOLOGY 2024; 24:518-537. [PMID: 38669050 DOI: 10.1089/ast.2023.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Solar radiation that arrives on the surface of Mars interacts with organic molecules present in the soil. The radiation can degrade or transform the organic matter and make the search for biosignatures on the planet's surface difficult. Therefore, samples to be analyzed by instruments on board Mars probes for molecular content should be selectively chosen to have the highest organic preservation content. To support the identification of organic molecules on Mars, the behavior under UV irradiation of two organic compounds, undecanoic acid and L-phenylalanine, in the presence of vermiculite and two chloride salts, NaCl and MgCl, was studied. The degradation of the molecule's bands was monitored through IR spectroscopy. Our results show that, while vermiculite acts as a photoprotective mineral with L-phenylalanine, it catalyzes the photodegradation of undecanoic acid molecules. On the other hand, both chloride salts studied decreased the degradation of both organic species acting as photoprotectors. While these results do not allow us to conclude on the preservation capabilities of vermiculite, they show that places where chloride salts are present could be good candidates for in situ analytic experiments on Mars due to their organic preservation capacity under UV radiation.
Collapse
Affiliation(s)
- Ophélie McIntosh
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
- INAF - Astrophysical Observatory of Arcetri, Firenze, Italy
| | - Cristina García-Florentino
- INAF - Astrophysical Observatory of Arcetri, Firenze, Italy
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, Bilbao, Spain
| | - Teresa Fornaro
- INAF - Astrophysical Observatory of Arcetri, Firenze, Italy
| | - Domenica Marabello
- Department of Chemistry, University of Torino, Torino, Italy
- Interdepartmental Center for Crystallography, University of Torino, Torino, Italy
| | | | - Sandra Siljeström
- Department of Methodology, Textiles and Medical Technology, RISE Research Institutes of Sweden, Stockholm, Sweden
| | - Malgorzata Biczysko
- International Centre for Quantum and Molecular Structures, Physics Department, College of Science, Shanghai University, Shanghai, China
| | - Cyril Szopa
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - John Brucato
- INAF - Astrophysical Observatory of Arcetri, Firenze, Italy
| |
Collapse
|
16
|
Butterworth AL, Golozar M, Estlack Z, McCauley J, Mathies RA, Kim J. Integrated high performance microfluidic organic analysis instrument for planetary and space exploration. LAB ON A CHIP 2024; 24:2551-2560. [PMID: 38624013 DOI: 10.1039/d4lc00012a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The exploration of our solar system to characterize the molecular organic inventory will enable the identification of potentially habitable regions and initiate the search for biosignatures of extraterrestrial life. However, it is challenging to perform the required high-resolution, high-sensitivity chemical analyses in space and in planetary environments. To address this challenge, we have developed a microfluidic organic analyzer (MOA) instrument that consists of a multilayer programmable microfluidic analyzer (PMA) for fluidic processing at the microliter scale coupled with a microfabricated glass capillary electrophoresis (CE) wafer for separation and analysis of the sample components. Organic analytes are labeled with a functional group-specific (e.g. amine, organic acid, aldehyde) fluorescent dye, separated according to charge and hydrodynamic size by capillary electrophoresis (CE), and detected with picomolar limit of detection (LOD) using laser-induced fluorescence (LIF). Our goal is a sensitive automated instrument and autonomous process that enables sample-in to data-out performance in a flight capable format. We present here the design, fabrication, and operation of a technology development unit (TDU) that meets these design goals with a core mass of 3 kg and a volume of <5 L. MOA has a demonstrated resolution of 2 × 105 theoretical plates for relevant amino acids using a 15 cm long CE channel and 467 V cm-1. The LOD of LIF surpasses 100 pM (0.01 ppb), enabling biosignature detection in harsh environments on Earth. MOA is ideally suited for probing biosignatures in potentially habitable destinations on icy moons such as Europa and Enceladus, and on Mars.
Collapse
Affiliation(s)
- Anna L Butterworth
- Space Sciences laboratory, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Matin Golozar
- Chemistry Department, University of California, Berkeley, CA 94720, USA
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Zachary Estlack
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jeremy McCauley
- Space Sciences laboratory, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Richard A Mathies
- Space Sciences laboratory, University of California Berkeley, Berkeley, CA 94720, USA.
- Chemistry Department, University of California, Berkeley, CA 94720, USA
| | - Jungkyu Kim
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
17
|
Clodoré L, Foucher F, Hickman-Lewis K, Sorieul S, Jouve J, Réfrégiers M, Collet G, Petoud S, Gratuze B, Westall F. Multi-Technique Characterization of 3.45 Ga Microfossils on Earth: A Key Approach to Detect Possible Traces of Life in Returned Samples from Mars. ASTROBIOLOGY 2024; 24:190-226. [PMID: 38393828 DOI: 10.1089/ast.2023.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The NASA Mars 2020 Perseverance rover is actively exploring Jezero crater to conduct analyses on igneous and sedimentary rock targets from outcrops located on the crater floor (Máaz and Séítah formations) and from the delta deposits, respectively. The rock samples collected during this mission will be recovered during the Mars Sample Return mission, which plans to bring samples back to Earth in the 2030s to conduct in-depth studies using sophisticated laboratory instrumentation. Some of these samples may contain traces of ancient martian life that may be particularly difficult to detect and characterize because of their morphological simplicity and subtle biogeochemical expressions. Using the volcanic sediments of the 3.45 Ga Kitty's Gap Chert (Pilbara, Australia), containing putative early life forms (chemolithotrophs) and considered as astrobiological analogues for potential early Mars organisms, we document the steps required to demonstrate the syngenicity and biogenicity of such biosignatures using multiple complementary analytical techniques to provide information at different scales of observation. These include sedimentological, petrological, mineralogical, and geochemical analyses to demonstrate macro- to microscale habitability. New approaches, some unavailable at the time of the original description of these features, are used to verify the syngenicity and biogenicity of the purported fossil chemolithotrophs. The combination of elemental (proton-induced X-ray emission spectrometry) and molecular (deep-ultraviolet and Fourier transform infrared) analyses of rock slabs, thin sections, and focused ion beam sections reveals that the carbonaceous matter present in the samples is enriched in trace metals (e.g., V, Cr, Fe, Co) and is associated with aromatic and aliphatic molecules, which strongly support its biological origin. Transmission electron microscopy observations of the carbonaceous matter documented an amorphous nanostructure interpreted to correspond to the degraded remains of microorganisms and their by-products (extracellular polymeric substances, filaments…). Nevertheless, a small fraction of carbonaceous particles has signatures that are more metamorphosed. They probably represent either reworked detrital biological or abiotic fragments of mantle origin. This study serves as an example of the analytical protocol that would be needed to optimize the detection of fossil traces of life in martian rocks.
Collapse
Affiliation(s)
- Laura Clodoré
- CNRS-Centre de Biophysique Moléculaire, Orléans, France
| | - Frédéric Foucher
- CNRS-Centre de Biophysique Moléculaire, Orléans, France
- CNRS-Conditions Extrêmes et Matériaux: Haute Température et Irradiation, Orléans, France
| | - Keyron Hickman-Lewis
- Natural History Museum, London, United Kingdom
- Dipartimento BiGeA, Università di Bologna, Bologna, Italy
| | | | - Jean Jouve
- University of Bordeaux, CNRS, IN2P3, CENBG, Gradignan, France
| | | | - Guillaume Collet
- CNRS-Centre de Biophysique Moléculaire, Orléans, France
- Chair of Cosmetology, AgroParisTech Innovation, Orléans, France
| | | | - Bernard Gratuze
- CNRS-Institut de Recherche sur les ArchéoMATériaux, Orléans, France
| | | |
Collapse
|
18
|
Berliner AJ, Zezulka S, Hutchinson GA, Bertoldo S, Cockell CS, Arkin AP. Domains of life sciences in spacefaring: what, where, and how to get involved. NPJ Microgravity 2024; 10:12. [PMID: 38287000 PMCID: PMC10825151 DOI: 10.1038/s41526-024-00354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Affiliation(s)
- Aaron J Berliner
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA.
- Program in Aerospace Engineering, University of California Berkeley, Berkeley, CA, USA.
| | - Spencer Zezulka
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
- School of Information, University of California Berkeley, Berkeley, CA, USA
| | - Gwyneth A Hutchinson
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Sophia Bertoldo
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Adam P Arkin
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
19
|
Thlaijeh S, Lepot K, Carpentier Y, Riboulleau A, Duca D, Vojkovic M, Tewari A, Sarazin J, Bon M, Nuns N, Tribovillard N, Focsa C. Characterization of Sulfur-Rich Microbial Organic Matter in Jurassic Carbonates Using Laser-Assisted Mass Spectrometry. ASTROBIOLOGY 2024; 24:61-83. [PMID: 38109217 DOI: 10.1089/ast.2023.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Laser desorption-ionization mass spectrometry (MS) shows great potential for in situ molecular analysis of planetary surfaces and microanalysis of space-returned samples or (micro)fossils. Coupled with pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) in ESA's ExoMars project, this technique could help assess further the origin of sulfur-bearing organic matter (OM) recently detected on Mars. To unravel this potential, we analyzed sulfurized microbial OM from ca. 150 million year-old carbonates with laser desorption-ionization mass spectrometry (single- and two-step: LDI-MS and L2MS), in comparison with time-of-flight secondary-ion mass spectrometry (ToF-SIMS), gas chromatography-mass spectrometry (GC-MS), and Py-GC-MS. We show that LDI-MS and L2MS readily detect sulfur-bearing moieties such as (alkyl)thiophenes and (alkyl)benzothiophenes. The mineral matrix, however, made the identification of sulfur-bearing molecules challenging in our L2MS experiment. The dominance of small aromatic hydrocarbons (≤14 carbons) in the LDI-MS and L2MS of the extracted soluble and insoluble OM and of the bulk rock is consistent with the low thermal maturity of the sediment and contrasts with the predominance of larger polycyclic aromatic structures commonly observed in meteorites with these techniques. We detected inorganic ions, in particular VO+, in demineralized OM that likely originate from geoporphyrins, which derive from chlorophylls during sediment diagenesis. Finally, insoluble OM yielded distinct compositions compared with extracted soluble OM, with a greater abundance of ions of mass-to-charge ratio (m/z) over 175 and additional N-moieties. This highlights the potential of laser-assisted MS to decipher the composition of macromolecular OM, in particular to investigate the preservation of biomacromolecules in microfossils. Studies comparing diverse biogenic and abiogenic OM are needed to further assess the use of this technique to search for biosignatures.
Collapse
Affiliation(s)
- Siveen Thlaijeh
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG Laboratoire d'Océanologie et de Géosciences, F-59000 Lille, France
| | - Kevin Lepot
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG Laboratoire d'Océanologie et de Géosciences, F-59000 Lille, France
- Institut Universitaire de France (IUF), Paris, France
| | - Yvain Carpentier
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Armelle Riboulleau
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG Laboratoire d'Océanologie et de Géosciences, F-59000 Lille, France
| | - Dumitru Duca
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Marin Vojkovic
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
- Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21 000 Split, Croatia
| | - Anuradha Tewari
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG Laboratoire d'Océanologie et de Géosciences, F-59000 Lille, France
| | - Johan Sarazin
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Mathilde Bon
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG Laboratoire d'Océanologie et de Géosciences, F-59000 Lille, France
- Department of Geology (WE13), Ghent University, Krijgslaan 281/S8, Ghent, 9000, Belgium
| | - Nicolas Nuns
- Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, F-59000 Lille, France
| | - Nicolas Tribovillard
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG Laboratoire d'Océanologie et de Géosciences, F-59000 Lille, France
| | - Cristian Focsa
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| |
Collapse
|
20
|
Buckner DK, Anderson MJ, Wisnosky S, Alvarado W, Nuevo M, Williams AJ, Ricco AJ, Anamika, Debic S, Friend L, Hoac T, Jahnke L, Radosevich L, Williams R, Wilhelm MB. Quantifying Global Origin-Diagnostic Features and Patterns in Biotic and Abiotic Acyclic Lipids for Life Detection. ASTROBIOLOGY 2024; 24:1-35. [PMID: 38150549 DOI: 10.1089/ast.2023.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Lipids are a geologically robust class of organics ubiquitous to life as we know it. Lipid-like soluble organics are synthesized abiotically and have been identified in carbonaceous meteorites and on Mars. Ascertaining the origin of lipids on Mars would be a profound astrobiological achievement. We enumerate origin-diagnostic features and patterns in two acyclic lipid classes, fatty acids (i.e., carboxylic acids) and acyclic hydrocarbons, by collecting and analyzing molecular data reported in over 1500 samples from previously published studies of terrestrial and meteoritic organics. We identify 27 combined (15 for fatty acids, 12 for acyclic hydrocarbons) molecular patterns and structural features that can aid in distinguishing biotic from abiotic synthesis. Principal component analysis (PCA) demonstrates that multivariate analyses of molecular features (16 for fatty acids, 14 for acyclic hydrocarbons) can potentially indicate sample origin. Terrestrial lipids are dominated by longer straight-chain molecules (C4-C34 fatty acids, C14-C46 acyclic hydrocarbons), with predominance for specific branched and unsaturated isomers. Lipid-like meteoritic soluble organics are shorter, with random configurations. Organic solvent-extraction techniques are most commonly reported, motivating the design of our novel instrument, the Extractor for Chemical Analysis of Lipid Biomarkers in Regolith (ExCALiBR), which extracts lipids while preserving origin-diagnostic features that can indicate biogenicity.
Collapse
Affiliation(s)
- Denise K Buckner
- Department of Geological Sciences, University of Florida, Gainesville, Florida, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Morgan J Anderson
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
- Axient Corporation, Huntsville, Alabama, USA
| | - Sydney Wisnosky
- Axient Corporation, Huntsville, Alabama, USA
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Walter Alvarado
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| | - Michel Nuevo
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Amy J Williams
- Department of Geological Sciences, University of Florida, Gainesville, Florida, USA
| | - Antonio J Ricco
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
- Electrical Engineering-Integrated Circuits Laboratory, Stanford University, Stanford, California, USA
| | - Anamika
- Department of Space Studies, University of North Dakota, Grand Forks, North Dakota, USA
| | - Sara Debic
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Trinh Hoac
- Axient Corporation, Huntsville, Alabama, USA
| | - Linda Jahnke
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | | | - Ross Williams
- Civil & Environmental Engineering & Earth Sciences, Notre Dame University, Notre Dame, Indiana, USA
| | - Mary Beth Wilhelm
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| |
Collapse
|
21
|
Moreno-Paz M, dos Santos Severino RS, Sánchez-García L, Manchado JM, García-Villadangos M, Aguirre J, Fernández-Martínez MA, Carrizo D, Kobayashi L, Dave A, Warren-Rhodes K, Davila A, Stoker CR, Glass B, Parro V. Life Detection and Microbial Biomarker Profiling with Signs of Life Detector-Life Detector Chip During a Mars Drilling Simulation Campaign in the Hyperarid Core of the Atacama Desert. ASTROBIOLOGY 2023; 23:1259-1283. [PMID: 37930382 PMCID: PMC10825288 DOI: 10.1089/ast.2021.0174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/02/2023] [Indexed: 11/07/2023]
Abstract
The low organic matter content in the hyperarid core of the Atacama Desert, together with abrupt temperature shifts and high ultraviolet radiation at its surface, makes this region one of the best terrestrial analogs of Mars and one of the best scenarios for testing instrumentation devoted to in situ planetary exploration. We have operated remotely and autonomously the SOLID-LDChip (Signs of Life Detector-Life Detector Chip), an antibody microarray-based sensor instrument, as part of a rover payload during the 2019 NASA Atacama Rover Astrobiology Drilling Studies (ARADS) Mars drilling simulation campaign. A robotic arm collected drilled cuttings down to 80 cm depth and loaded SOLID to process and assay them with LDChip for searching for molecular biomarkers. A remote science team received and analyzed telemetry data and LDChip results. The data revealed the presence of microbial markers from Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Firmicutes, and Cyanobacteria to be relatively more abundant in the middle layer (40-50 cm). In addition, the detection of several proteins from nitrogen metabolism indicates a pivotal role in the system. These findings were corroborated and complemented on "returned samples" to the lab by a comprehensive analysis that included DNA sequencing, metaproteomics, and a metabolic reconstruction of the sampled area. Altogether, the results describe a relatively complex microbial community with members capable of nitrogen fixation and denitrification, sulfur oxidation and reduction, or triggering oxidative stress responses, among other traits. This remote operation demonstrated the high maturity of SOLID-LDChip as a powerful tool for remote in situ life detection for future missions in the Solar System.
Collapse
Affiliation(s)
- Mercedes Moreno-Paz
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | - Rita Sofia dos Santos Severino
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
- Departament of Física y Matemáticas y de Automática, University of Alcalá de Henares (UAH), Madrid, Spain
| | - Laura Sánchez-García
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | - Juan Manuel Manchado
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | | | - Jacobo Aguirre
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | - Miguel Angel Fernández-Martínez
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
- Department of Natural Resource Sciences, McGill University, Québec, Canada
| | - Daniel Carrizo
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | - Linda Kobayashi
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Arwen Dave
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Kim Warren-Rhodes
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
- Carl Sagan Center, SETI Institute, Mountain View, California, USA
| | - Alfonso Davila
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Carol R. Stoker
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Brian Glass
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Víctor Parro
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| |
Collapse
|
22
|
Heydari E, Schroeder JF, Calef FJ, Parker TJ, Fairén AG. Lacustrine sedimentation by powerful storm waves in Gale crater and its implications for a warming episode on Mars. Sci Rep 2023; 13:18715. [PMID: 37907611 PMCID: PMC10618461 DOI: 10.1038/s41598-023-45068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023] Open
Abstract
This investigation documents that the Rugged Terrain Unit, the Stimson formation, and the Greenheugh sandstone were deposited in a 1200 m-deep lake that formed after the emergence of Mt. Sharp in Gale crater, Mars, nearly 4 billion years ago. In fact, the Curiosity rover traversed on a surface that once was the bottom of this lake and systematically examined the strata that were deposited in its deepest waters on the crater floor to layers that formed along its shoreline on Mt. Sharp. This provided a rare opportunity to document the evolution of one aqueous episode from its inception to its desiccation and to determine the warming mechanism that caused it. Deep water lacustrine siltstones directly overlie conglomerates that were deposited by mega floods on the crater floor. This indicates that the inception phase of the lake was sudden and took place when flood waters poured into the crater. The lake expanded quickly and its shoreline moved up the slope of Mt. Sharp during the lake-level rise phase and deposited a layer of sandstone with large cross beds under the influence of powerful storm waves. The lake-level highstand phase was dominated by strong bottom currents that transported sediments downhill and deposited one of the most distinctive sedimentological features in Gale crater: a layer of sandstone with a 3 km-long field of meter-high subaqueous antidunes (the Washboard) on Mt. Sharp. Bottom current continued downhill and deposited sandstone and siltstone on the foothills of Mt. Sharp and on the crater floor, respectively. The lake-level fall phase caused major erosion of lacustrine strata that resulted in their patchy distribution on Mt. Sharp. Eroded sediments were then transported to deep waters by gravity flows and were re-deposited as conglomerate and sandstone in subaqueous channels and in debris flow fans. The desiccation phase took place in calm waters of the lake. The aqueous episode we investigated was vigorous but short-lived. Its characteristics as determined by our sedimentological study matches those predicted by an asteroid impact. This suggests that the heat generated by an impact transformed Mars into a warm, wet, and turbulent planet. It resulted in planet-wide torrential rain, giant floods on land, powerful storms in the atmosphere, and strong waves in lakes. The absence of age dates prevents the determination of how long the lake existed. Speculative rates of lake-level change suggest that the lake could have lasted for a period ranging from 16 to 240 Ky.
Collapse
Affiliation(s)
- Ezat Heydari
- Department of Physics, Atmospheric Sciences, and Geoscience, Jackson State University, 1400 Lynch Street, Jackson, MS, 39217, USA.
| | - Jeffrey F Schroeder
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Fred J Calef
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Timothy J Parker
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Alberto G Fairén
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
23
|
Rodriguez JAP, Wilhelm MB, Travis B, Kargel JS, Zarroca M, Berman DC, Cohen J, Baker V, Lopez A, Buckner D. Exploring the evidence of Middle Amazonian aquifer sedimentary outburst residues in a Martian chaotic terrain. Sci Rep 2023; 13:17524. [PMID: 37853014 PMCID: PMC10584912 DOI: 10.1038/s41598-023-39060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 07/19/2023] [Indexed: 10/20/2023] Open
Abstract
The quest for past Martian life hinges on locating surface formations linked to ancient habitability. While Mars' surface is considered to have become cryogenic ~3.7 Ga, stable subsurface aquifers persisted long after this transition. Their extensive collapse triggered megafloods ~3.4 Ga, and the resulting outflow channel excavation generated voluminous sediment eroded from the highlands. These materials are considered to have extensively covered the northern lowlands. Here, we show evidence that a lacustrine sedimentary residue within Hydraotes Chaos formed due to regional aquifer upwelling and ponding into an interior basin. Unlike the northern lowland counterparts, its sedimentary makeup likely consists of aquifer-expelled materials, offering a potential window into the nature of Mars' subsurface habitability. Furthermore, the lake's residue's estimated age is ~1.1 Ga (~3.2 Ga post-peak aquifer drainage during the Late Hesperian), enhancing the prospects for organic matter preservation. This deposit's inferred fine-grained composition, coupled with the presence of coexisting mud volcanoes and diapirs, suggest that its source aquifer existed within abundant subsurface mudstones, water ice, and evaporites, forming part of the region's extremely ancient (~ 4 Ga) highland stratigraphy. Our numerical models suggest that magmatically induced phase segregation within these materials generated enormous water-filled chambers. The meltwater, originating from varying thermally affected mudstone depths, could have potentially harbored diverse biosignatures, which could have become concentrated within the lake's sedimentary residue. Thus, we propose that Hydraotes Chaos merits priority consideration in future missions aiming to detect Martian biosignatures.
Collapse
Affiliation(s)
- J Alexis P Rodriguez
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA.
- External Geodynamics and Hydrogeology Group, Department of Geology, Autonomous University of Barcelona, Bellaterra, 08193, Barcelona, Spain.
| | | | - Bryan Travis
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA
| | - Jeffrey S Kargel
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA
| | - Mario Zarroca
- External Geodynamics and Hydrogeology Group, Department of Geology, Autonomous University of Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Daniel C Berman
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA
| | - Jacob Cohen
- NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Victor Baker
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Anthony Lopez
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA
| | - Denise Buckner
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
- University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
24
|
Basapathi Raghavendra J, Zorzano MP, Kumaresan D, Martin-Torres J. DNA sequencing at the picogram level to investigate life on Mars and Earth. Sci Rep 2023; 13:15277. [PMID: 37714862 PMCID: PMC10504319 DOI: 10.1038/s41598-023-42170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023] Open
Abstract
DNA is an incontrovertible biosignature whose sequencing aids in species identification, genome functionality, and evolutionary relationships. To study life within the rocks of Earth and Mars, we demonstrate, in an ISO5 clean room, a procedure based on nanopore technology that correctly identifies organisms at picogram levels of DNA without amplification. Our study with E. coli and S. cerevisiae DNA samples showed that MinION sequencer (Oxford Nanopore Technologies) can unequivocally detect and characterise microbes with as little as 2 pg of input with just 50 active nanopores. This result is an excellent advancement in sensitivity, immediately applicable to investigating low biomass samples. This value is also at the level of possible background contamination associated with the reagents and the environment. Cultivation of natural and heat-treated Martian analogue (MMS-2) regolith samples, exposed to atmospheric water vapour or in increasing water concentrations, led to the extraction of 600-1000 pg of DNA from 500 mg of soil. Applying the low detectability technology enabled through MinION sequencer for a natural low biomass setting, we characterised the dry MMS-2 and found few soil-related organisms and airborne contaminants. The picogram detection level and the procedure presented here, may be of interest for the future Mars sample Return program, and the life research and planetary protection studies that will be implemented through the sample safety assessment.
Collapse
Affiliation(s)
- Jyothi Basapathi Raghavendra
- Department of Planetary Sciences, School of Geosciences, University of Aberdeen, Meston Building, Aberdeen, AB24 3UE, Scotland.
| | - Maria-Paz Zorzano
- Centro de Astrobiología (CAB), CSIC-INTA, 28850, Torrejón de Ardoz, Madrid, Spain
| | - Deepak Kumaresan
- School of Biological Sciences, Queen's University Belfast (QUB), Belfast, BT9 5DL, Northern Ireland
| | - Javier Martin-Torres
- Department of Planetary Sciences, School of Geosciences, University of Aberdeen, Meston Building, Aberdeen, AB24 3UE, Scotland
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), 18100, Granada, Spain
| |
Collapse
|
25
|
Chaouche-Mechidal N, Stalport F, Caupos E, Mebold E, Azémard C, Szopa C, Coll P, Cottin H. Effects of UV and Calcium Perchlorates on Uracil Deposited on Strontium Fluoride Substrates at Mars Pressure and Temperature. ASTROBIOLOGY 2023; 23:959-978. [PMID: 37672714 DOI: 10.1089/ast.2022.0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Organic matter is actively searched on Mars with current and future space missions as it is a key to detecting potential biosignatures. Given the current harsh environmental conditions at the surface of Mars, many organic compounds might not be preserved over a long period as they are exposed to energetic radiation such as ultraviolet light, which is not filtered above 190 nm by the martian atmosphere. Moreover, the presence of strong oxidizing species in the regolith, such as perchlorate salts, might enhance the photodegradation of organic compounds of astrobiological interest. Because current space instruments analyze samples collected in the upper surface layer, it is necessary to investigate the stability of organic matter at the surface of Mars. Previous experimental studies have shown that uracil, a molecule relevant to astrobiology, is quickly photolyzed when exposed to UV radiation under the temperature and pressure conditions of the martian surface with an experimental quantum efficiency of photodecomposition (φexp) of 0.30 ± 0.26 molecule·photon-1. Moreover, the photolysis of uracil leads to the formation of more stable photoproducts that were identified as uracil dimers. The present work aims to characterize the additional effect of calcium perchlorate detected on Mars on the degradation of uracil. Results show that the presence of calcium perchlorate enhances the photodecomposition of uracil with φexp = 12.3 ± 8.3 molecule·photon-1. Although some of the photoproducts formed during these experiments are common to those formed from pure uracil only, the Fourier transformation infrared (FTIR) detection of previously unseen chemical functions such as alkyne C ≡ C or nitrile C ≡ N has shown that additional chemical species are formed in the presence of calcium perchlorate in the irradiated sample. This implies that the effect of calcium perchlorate on the photolysis of uracil is not only kinetic but also related to the nature of the photoproducts formed.
Collapse
Affiliation(s)
- N Chaouche-Mechidal
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
| | - F Stalport
- Université Paris Cité and Univ Paris Est Creteil, CNRS, LISA, F-75013 Paris, France
| | - E Caupos
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
- Ecole des Ponts, LEESU, F-77455 Champs-sur-Marne, France
| | - E Mebold
- Univ Paris Est Creteil, CNRS, OSU-EFLUVE, F-94010 Créteil, France
| | - C Azémard
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
| | - C Szopa
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, 78280 Guyancourt, France
| | - P Coll
- Université Paris Cité and Univ Paris Est Creteil, CNRS, LISA, F-75013 Paris, France
| | - H Cottin
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
| |
Collapse
|
26
|
Boulesteix D, Buch A, Samson J, Millan M, Jomaa J, Coscia D, Moulay V, McIntosh O, Freissinet C, Stern JC, Szopa C. Influence of pH and salts on DMF-DMA derivatization for future Space Applications. Anal Chim Acta 2023; 1266:341270. [PMID: 37244655 DOI: 10.1016/j.aca.2023.341270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/29/2023]
Abstract
For gas chromatography - mass spectrometry (GC-MS) analyses performed in situ, pH and salts (e.g., chlorides, sulfates) may enhance or inhibit the detection of targeted molecules of interest for astrobiology (e.g. amino acids, fatty acids, nucleobases). Obviously, salts influence the ionic strength of the solutions, the pH value, and the salting effect. But the presence of salts may also produce complexes or mask ions in the sample (masking effect on hydroxide ion, ammonia, etc.). For future space missions, wet chemistry will be conducted before GC-MS analyses to detect the full organic content of a sample. The defined organic targets for space GC-MS instrument requirements are generally strongly polar or refractory organic compounds, such as amino acids playing a role in the protein production and metabolism regulations for life on Earth, nucleobases essential for DNA and RNA formation and mutation, and fatty acids that composed most of the eukaryote and prokaryote membranes on Earth and resist to environmental stress long enough to still be observed on Mars or ocean worlds in geological well-preserved records. The wet-chemistry chemical treatment consists of reacting an organic reagent with the sample to extract and volatilize polar or refractory organic molecules (i.e. dimethylformamide dimethyl acetal (DMF-DMA) in this study). DMF-DMA derivatizes functional groups with labile H in organics, without modifying their chiral conformation. The influence of pH and salt concentration of extraterrestrial materials on the DMF-DMA derivatization remains understudied. In this research, we studied the influence of different salts and pHs on the derivatization of organic molecules of astrobiological interest with DMF-DMA, such as amino acids, carboxylic acids, and nucleobases. Results show that salts and pH influence the derivatization yield, and that their effect depend on the nature of the organics and the salts studied. Second, monovalent salts lead to a higher or similar organic recovery compared to divalent salts regardless of pH below 8. However, a pH above 8 inhibits the DMF-DMA derivatization influencing the carboxylic acid function to become an anionic group without labile H. Overall, considering the negative effect of the salts on the detection of organic molecules, future space missions may have to consider a desalting step prior to derivatization and GC-MS analyses.
Collapse
Affiliation(s)
- D Boulesteix
- Laboratoire Génie des Procédés et Matériaux, CentraleSupélec, University Paris-Saclay, 8-10 Rue Joliot-Curie, 91190, Gif-sur-Yvette, France.
| | - A Buch
- Laboratoire Génie des Procédés et Matériaux, CentraleSupélec, University Paris-Saclay, 8-10 Rue Joliot-Curie, 91190, Gif-sur-Yvette, France.
| | - J Samson
- Laboratoire Génie des Procédés et Matériaux, CentraleSupélec, University Paris-Saclay, 8-10 Rue Joliot-Curie, 91190, Gif-sur-Yvette, France
| | - M Millan
- LATMOS/IPSL, UVSQ University Paris-Saclay, Sorbonne University, CNRS, 11 Bd d'Alembert, 78280, Guyancourt, France
| | - J Jomaa
- Planetary Environments Laboratory (Code 699), NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA; School of Medicine, Wayne State University, 42 W. Warren Ave, Detroit, MI, 48202, USA
| | - D Coscia
- LATMOS/IPSL, UVSQ University Paris-Saclay, Sorbonne University, CNRS, 11 Bd d'Alembert, 78280, Guyancourt, France
| | - V Moulay
- LATMOS/IPSL, UVSQ University Paris-Saclay, Sorbonne University, CNRS, 11 Bd d'Alembert, 78280, Guyancourt, France
| | - O McIntosh
- LATMOS/IPSL, UVSQ University Paris-Saclay, Sorbonne University, CNRS, 11 Bd d'Alembert, 78280, Guyancourt, France
| | - C Freissinet
- LATMOS/IPSL, UVSQ University Paris-Saclay, Sorbonne University, CNRS, 11 Bd d'Alembert, 78280, Guyancourt, France
| | - J C Stern
- Space Science Exploration Division (Code 690), NASA, Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - C Szopa
- LATMOS/IPSL, UVSQ University Paris-Saclay, Sorbonne University, CNRS, 11 Bd d'Alembert, 78280, Guyancourt, France
| |
Collapse
|
27
|
Sharma S, Roppel RD, Murphy AE, Beegle LW, Bhartia R, Steele A, Hollis JR, Siljeström S, McCubbin FM, Asher SA, Abbey WJ, Allwood AC, Berger EL, Bleefeld BL, Burton AS, Bykov SV, Cardarelli EL, Conrad PG, Corpolongo A, Czaja AD, DeFlores LP, Edgett K, Farley KA, Fornaro T, Fox AC, Fries MD, Harker D, Hickman-Lewis K, Huggett J, Imbeah S, Jakubek RS, Kah LC, Lee C, Liu Y, Magee A, Minitti M, Moore KR, Pascuzzo A, Rodriguez Sanchez-Vahamonde C, Scheller EL, Shkolyar S, Stack KM, Steadman K, Tuite M, Uckert K, Werynski A, Wiens RC, Williams AJ, Winchell K, Kennedy MR, Yanchilina A. Diverse organic-mineral associations in Jezero crater, Mars. Nature 2023; 619:724-732. [PMID: 37438522 PMCID: PMC10371864 DOI: 10.1038/s41586-023-06143-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/27/2023] [Indexed: 07/14/2023]
Abstract
The presence and distribution of preserved organic matter on the surface of Mars can provide key information about the Martian carbon cycle and the potential of the planet to host life throughout its history. Several types of organic molecules have been previously detected in Martian meteorites1 and at Gale crater, Mars2-4. Evaluating the diversity and detectability of organic matter elsewhere on Mars is important for understanding the extent and diversity of Martian surface processes and the potential availability of carbon sources1,5,6. Here we report the detection of Raman and fluorescence spectra consistent with several species of aromatic organic molecules in the Máaz and Séítah formations within the Crater Floor sequences of Jezero crater, Mars. We report specific fluorescence-mineral associations consistent with many classes of organic molecules occurring in different spatial patterns within these compositionally distinct formations, potentially indicating different fates of carbon across environments. Our findings suggest there may be a diversity of aromatic molecules prevalent on the Martian surface, and these materials persist despite exposure to surface conditions. These potential organic molecules are largely found within minerals linked to aqueous processes, indicating that these processes may have had a key role in organic synthesis, transport or preservation.
Collapse
Affiliation(s)
- Sunanda Sharma
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| | - Ryan D Roppel
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | - Andrew Steele
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
| | | | - Sandra Siljeström
- Department of Methodology, Textiles and Medical Technology, RISE Research Institutes of Sweden, Stockholm, Sweden
| | - Francis M McCubbin
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
| | - Sanford A Asher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - William J Abbey
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Abigail C Allwood
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Eve L Berger
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
- Texas State University, Houston, TX, USA
- Jacobs JETS II, Houston, TX, USA
| | | | - Aaron S Burton
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
| | - Sergei V Bykov
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily L Cardarelli
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Pamela G Conrad
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
| | - Andrea Corpolongo
- Department of Geosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Andrew D Czaja
- Department of Geosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Lauren P DeFlores
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Kenneth A Farley
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Teresa Fornaro
- Astrophysical Observatory of Arcetri, INAF, Florence, Italy
| | - Allison C Fox
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
- Texas State University, Houston, TX, USA
- Jacobs JETS II, Houston, TX, USA
| | - Marc D Fries
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
| | - David Harker
- Malin Space Science Systems, Inc., San Diego, CA, USA
| | | | | | - Samara Imbeah
- Malin Space Science Systems, Inc., San Diego, CA, USA
| | - Ryan S Jakubek
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
- Jacobs JETS II, Houston, TX, USA
| | - Linda C Kah
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA
| | - Carina Lee
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
- Texas State University, Houston, TX, USA
- Jacobs JETS II, Houston, TX, USA
| | - Yang Liu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Angela Magee
- Malin Space Science Systems, Inc., San Diego, CA, USA
| | | | - Kelsey R Moore
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | | | | | - Eva L Scheller
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Svetlana Shkolyar
- Department of Astronomy, University of Maryland, College Park, MD, USA
- Planetary Geology, Geophysics and Geochemistry Lab, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Kathryn M Stack
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Kim Steadman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Michael Tuite
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Kyle Uckert
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Roger C Wiens
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, Lafayette, IN, USA
| | - Amy J Williams
- Department of Geological Sciences, University of Florida, Gainesville, FL, USA
| | - Katherine Winchell
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | | | | |
Collapse
|
28
|
Ni Z, Arevalo R, Bardyn A, Willhite L, Ray S, Southard A, Danell R, Graham J, Li X, Chou L, Briois C, Thirkell L, Makarov A, Brinckerhoff W, Eigenbrode J, Junge K, Nunn BL. Detection of Short Peptides as Putative Biosignatures of Psychrophiles via Laser Desorption Mass Spectrometry. ASTROBIOLOGY 2023; 23:657-669. [PMID: 37134219 DOI: 10.1089/ast.2022.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Studies of psychrophilic life on Earth provide chemical clues as to how extraterrestrial life could maintain viability in cryogenic environments. If living systems in ocean worlds (e.g., Enceladus) share a similar set of 3-mer and 4-mer peptides to the psychrophile Colwellia psychrerythraea on Earth, spaceflight technologies and analytical methods need to be developed to detect and sequence these putative biosignatures. We demonstrate that laser desorption mass spectrometry, as implemented by the CORALS spaceflight prototype instrument, enables the detection of protonated peptides, their dimers, and metal adducts. The addition of silicon nanoparticles promotes the ionization efficiency, improves mass resolving power and mass accuracies via reduction of metastable decay, and facilitates peptide de novo sequencing. The CORALS instrument, which integrates a pulsed UV laser source and an Orbitrap™ mass analyzer capable of ultrahigh mass resolving powers and mass accuracies, represents an emerging technology for planetary exploration and a pathfinder for advanced technique development for astrobiological objectives. Teaser: Current spaceflight prototype instrument proposed to visit ocean worlds can detect and sequence peptides that are found enriched in at least one strain of microbe surviving in subzero icy brines via silicon nanoparticle-assisted laser desorption analysis.
Collapse
Affiliation(s)
- Ziqin Ni
- University of Maryland, College Park, Maryland, USA
| | | | - Anais Bardyn
- University of Maryland, College Park, Maryland, USA
| | | | - Soumya Ray
- University of Maryland, College Park, Maryland, USA
| | | | - Ryan Danell
- Danell Consulting, Winterville, North Carolina, USA
| | - Jacob Graham
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Xiang Li
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Georgetown University, Washington, DC, USA
| | - Christelle Briois
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, Orléans, France
| | - Laurent Thirkell
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, Orléans, France
| | | | | | | | - Karen Junge
- University of Washington, Seattle, Washington, USA
| | - Brook L Nunn
- University of Washington, Seattle, Washington, USA
| |
Collapse
|
29
|
Ferrari M, De Angelis S, De Sanctis MC, Frigeri A, Altieri F, Ammannito E, Formisano M, Vinogradoff V. Constraining the Rosalind Franklin Rover/Ma_MISS Instrument Capability in the Detection of Organics. ASTROBIOLOGY 2023; 23:691-704. [PMID: 37126783 DOI: 10.1089/ast.2022.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Mars Multispectral Imager for Subsurface Studies (Ma_MISS) instrument is a miniaturized visible and near-infrared spectrometer that is integrated into the drilling system of the ESA Rosalind Franklin rover, which is devoted to subsurface exploration on Mars. Ma_MISS will acquire spectral data on the Martian subsurface from excavated borehole walls. The spectral data collected by Ma_MISS on unexposed rocks will be crucial for determination of the composition of subsurface rocks and optical and physical properties of materials (i.e., grain size). Ma_MISS will further contribute to a reconstruction of the stratigraphic column and acquire data on subsurface geological processes. Ma_MISS data may also inform with regard to the presence of potential biomarkers in the subsurface, given the presence of organic matter that may affect some spectral parameters. In this framework, we performed a wide range of measurements using the laboratory model of the Ma_MISS to investigate mineral/organic mixtures in different proportions. We prepared mixtures by combining kaolinite and nontronite with glycine, asphaltite, polyoxymethylene, and benzoic acid. These organic compounds show different spectral characteristics in the visible and near-infrared; therefore their presence can be detected by the Ma_MISS instrument. Our results indicate that the Ma_MISS instrument can detect organic material down to abundances of around 1 wt %. In particular, the data collected on low-concentration mixtures show that, by analyzing sediments with a grain size smaller than the Ma_MISS spatial resolution, the instrument can still discern those points where organic matter is present from points with exclusive mineral composition. The results also show that a collection of multiple contiguous measurements on a hypothetical borehole wall could help indicate the presence of organic matter in clay-rich soils if present.
Collapse
Affiliation(s)
- M Ferrari
- Institute for Space Astrophysics and Planetology, IAPS-INAF, Rome, Italy
| | - S De Angelis
- Institute for Space Astrophysics and Planetology, IAPS-INAF, Rome, Italy
| | - M C De Sanctis
- Institute for Space Astrophysics and Planetology, IAPS-INAF, Rome, Italy
| | - A Frigeri
- Institute for Space Astrophysics and Planetology, IAPS-INAF, Rome, Italy
| | - F Altieri
- Institute for Space Astrophysics and Planetology, IAPS-INAF, Rome, Italy
| | | | - M Formisano
- Institute for Space Astrophysics and Planetology, IAPS-INAF, Rome, Italy
| | - V Vinogradoff
- Aix Marseille University, CNRS-UMR 7345, PIIM, Marseille, France
| |
Collapse
|
30
|
Perron A, Stalport F, Dupraz S, Person A, Coll P, Szopa C, Navarro-González R, Glavin D, Vaulay MJ, Ménez B. Thermal Stability of (Bio)Carbonates: A Potential Signature for Detecting Life on Mars? ASTROBIOLOGY 2023; 23:359-371. [PMID: 37017440 DOI: 10.1089/ast.2021.0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The environmental conditions that prevail on the surface of Mars (i.e., high levels of radiation and oxidants) are not favorable for the long-term preservation of organic compounds on which all strategies for finding life on Mars have been based to date. Since life commonly produces minerals that are considered more resilient, the search for biominerals could constitute a promising alternative approach. Carbonates are major biominerals on Earth, and although they have not been detected in large amounts at the martian surface, recent observations show that they could constitute a significant part of the inorganic component in the martian soil. Previous studies have shown that calcite and aragonite produced by eukaryotes thermally decompose at temperatures 15°C lower than those of their abiotic counterparts. By using carbonate concretions formed by microorganisms, we find that natural and experimental carbonates produced by prokaryotes decompose at 28°C below their abiotic counterparts. The study of this sample set serves as a proof of concept for the differential thermal analysis approach to distinguish abiotic from bio-related carbonates. This difference in carbonate decomposition temperature can be used as a first physical evidence of life on Mars to be searched by in situ space exploration missions with the resolution and the technical constraints of the available onboard instruments.
Collapse
Affiliation(s)
- Alexandra Perron
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS UMR 7583, Université Paris Est Créteil et Université Paris Cité, Institut Pierre Simon Laplace (IPSL), Créteil, France
- Université Paris Cité, Institut de physique du globe de Paris, CNRS UMR 7154, Paris, France
| | - Fabien Stalport
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS UMR 7583, Université Paris Est Créteil et Université Paris Cité, Institut Pierre Simon Laplace (IPSL), Créteil, France
| | - Sébastien Dupraz
- Université Paris Cité, Institut de physique du globe de Paris, CNRS UMR 7154, Paris, France
| | - Alain Person
- Laboratoire de Biominéralisations et Paléoenvironnements, Sorbonne Université, Paris, France
| | - Patrice Coll
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS UMR 7583, Université Paris Est Créteil et Université Paris Cité, Institut Pierre Simon Laplace (IPSL), Créteil, France
| | - Cyril Szopa
- Laboratoire Atmosphères, Milieux, Observations Spatiales, Institut Pierre Simon Laplace (IPSL), CNRS UMR 8190, UVSQ Université Paris-Saclay, Sorbonne Université, Guyancourt, France
| | - Rafael Navarro-González
- Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de Mexico, Mexico
| | - Daniel Glavin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Marie Josèphe Vaulay
- Laboratoire Interfaces Traitements Organisation et DYnamique des Systèmes (ITODYS), CNRS UMR 7086, Université Paris Cité, Paris, France
| | - Bénédicte Ménez
- Université Paris Cité, Institut de physique du globe de Paris, CNRS UMR 7154, Paris, France
| |
Collapse
|
31
|
Self-Similar Patterns from Abiotic Decarboxylation Metabolism through Chemically Oscillating Reactions: A Prebiotic Model for the Origin of Life. Life (Basel) 2023; 13:life13020551. [PMID: 36836908 PMCID: PMC9960873 DOI: 10.3390/life13020551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
The origin of life must have included an abiotic stage of carbon redox reactions that involved electron transport chains and the production of lifelike patterns. Chemically oscillating reactions (COR) are abiotic, spontaneous, out-of-equilibrium, and redox reactions that involve the decarboxylation of carboxylic acids with strong oxidants and strong acids to produce CO2 and characteristic self-similar patterns. Those patterns have circular concentricity, radial geometries, characteristic circular twins, colour gradients, cavity structures, and branching to parallel alignment. We propose that COR played a role during the prebiotic cycling of carboxylic acids, furthering the new model for geology where COR can also explain the patterns of diagenetic spheroids in sediments. The patterns of COR in Petri dishes are first considered and compared to those observed in some eukaryotic lifeforms. The molecular structures and functions of reactants in COR are then compared to key biological metabolic processes. We conclude that the newly recognised similarities in compositions and patterns warrant future research to better investigate the role of halogens in biochemistry; COR in life-forms, including in humans; and the COR-stage of prebiotic carbon cycling on other planets, such as Mars.
Collapse
|
32
|
Liu W, Wu Z, Chen W, Jin G, Zhang W, Lv X, Yu P, Zhao H. A potential application for life-related organics detection on Mars by diffuse reflectance infrared spectroscopy. Heliyon 2023; 9:e13560. [PMID: 36846659 PMCID: PMC9946848 DOI: 10.1016/j.heliyon.2023.e13560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Life information searching is a hot point for Mars exploration. Ancient Mars was very likely to reach a habitable environment, and there was a real possibility of arising life on Mars. However, the current Mars has a harsh environment. Under such conditions, life materials on Mars are supposed to have taken the form of relatively primitive microbial or organic residues, which might be preserved in some mineral matrices. Detection of these remnants is of great significance for understanding the origin and evolution of life on Mars. The best detection method is in-situ detection or sample return. Herein, diffuse reflectance infrared spectroscopy (DRIFTS) was used to detect characteristic spectra and the limit of detection (LOD) of potential representative organic compounds with associated minerals. In view of high oxidation due to the electrostatic discharge (ESD) during dust actives on Martian surface. The degradation of organic matter by ESD process was studied under simulated Mars conditions. Our results show that the spectral characteristics of organic matter are significantly different from that of associated minerals. The different organic samples have different mass loss and color change after ESD reaction. And the signal intensity of infrared diffuse reflection spectrum can also reflect the changes of organic molecules after ESD reaction. Our results indicated that the degradation products of organics rather than organic itself are most likely to be founded on current Martian surface.
Collapse
Affiliation(s)
- Wang Liu
- School of Space Science and Physics, Institute of Space Sciences, Shandong University, Weihai, Shandong, 264209, China,Research Center for Biological Adaptability in Space Environment, Institute of Space Sciences, Shandong University, Weihai, Shandong, 264209, China
| | - Zhongchen Wu
- School of Space Science and Physics, Institute of Space Sciences, Shandong University, Weihai, Shandong, 264209, China,Research Center for Biological Adaptability in Space Environment, Institute of Space Sciences, Shandong University, Weihai, Shandong, 264209, China,Corresponding author. School of Space Science and Physics, Institute of Space Sciences, Shandong University, Weihai, Shandong, 264209, China.
| | - Wenxi Chen
- School of Space Science and Physics, Institute of Space Sciences, Shandong University, Weihai, Shandong, 264209, China,Research Center for Biological Adaptability in Space Environment, Institute of Space Sciences, Shandong University, Weihai, Shandong, 264209, China
| | - Guobin Jin
- School of Space Science and Physics, Institute of Space Sciences, Shandong University, Weihai, Shandong, 264209, China,Research Center for Biological Adaptability in Space Environment, Institute of Space Sciences, Shandong University, Weihai, Shandong, 264209, China
| | - Wei Zhang
- Marine College, Shandong University, Weihai, Shandong, 264209, China,Research Center for Biological Adaptability in Space Environment, Institute of Space Sciences, Shandong University, Weihai, Shandong, 264209, China
| | - Xinfang Lv
- Marine College, Shandong University, Weihai, Shandong, 264209, China,Research Center for Biological Adaptability in Space Environment, Institute of Space Sciences, Shandong University, Weihai, Shandong, 264209, China
| | - Pei Yu
- SDU-ANU Joint Science College, Shandong University, Weihai, Shandong, 264209, China,Research Center for Biological Adaptability in Space Environment, Institute of Space Sciences, Shandong University, Weihai, Shandong, 264209, China
| | - Hong Zhao
- Marine College, Shandong University, Weihai, Shandong, 264209, China,Research Center for Biological Adaptability in Space Environment, Institute of Space Sciences, Shandong University, Weihai, Shandong, 264209, China
| |
Collapse
|
33
|
Moulay V, Freissinet C, Rizk-Bigourd M, Buch A, Ancelin M, Couturier E, Breton C, Trainer MG, Szopa C. Selection and Analytical Performances of the Dragonfly Mass Spectrometer Gas Chromatographic Columns to Support the Search for Organic Molecules of Astrobiological Interest on Titan. ASTROBIOLOGY 2023; 23:213-229. [PMID: 36577024 DOI: 10.1089/ast.2022.0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Titan is a key planetary body for astrobiology, with the presence of a subsurface ocean and a dense atmosphere, in which complex chemistry is known to occur. Approximately 1-Titan-year after the Cassini-Huygens mission arrived in the saturnian system, Dragonfly rotorcraft will land on Titan's surface by 2034 for an exhaustive geophysical and chemical investigation of the Shangri-La organic sand sea region. Among the four instruments onboard Dragonfly, the Dragonfly Mass Spectrometer (DraMS) is dedicated to analyze the chemical composition of surface samples and noble gases in the atmosphere. One of the DraMS analysis modes, the Gas Chromatograph-Mass Spectrometer (GC-MS), is devoted to the detection and identification of organic molecules that could be involved in the development of a prebiotic chemistry or even representative of traces of past or present life. Therefore, DraMS-GC subsystem should be optimized to detect and identify relevant organic compounds to meet this objective. This work is focused on the experimental methods employed to select the chromatographic column to be integrated in DraMS-GC, to assess the analytical performances of the column selected, and also to assess the performances of the second DraMS-GC column, which is devoted to the separation of organic enantiomers. Four different stationary phases have been tested to select the most relevant one for the separation of the targeted chemical species. The results show that the stationary phase composed of polymethyl (95%) diphenyl (5%) siloxane is the best compromise in terms of efficiency, robustness, and retention times of the molecules. The combination of the general and the chiral columns in DraMS is perfectly suited to in situ chemical analysis on Titan and for the detection of expected diverse and complex organic compounds.
Collapse
Affiliation(s)
- Valentin Moulay
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Caroline Freissinet
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Malak Rizk-Bigourd
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Arnaud Buch
- Laboratoire Génie des Procédés et Matériaux, CentraleSupelec, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Mayline Ancelin
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Elise Couturier
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Caroline Breton
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Melissa G Trainer
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Cyril Szopa
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| |
Collapse
|
34
|
Chen Y, Sun Y, Liu L, Shen J, Qu Y, Pan Y, Lin W. Biosignatures Preserved in Carbonate Nodules from the Western Qaidam Basin, NW China: Implications for Life Detection on Mars. ASTROBIOLOGY 2023; 23:172-182. [PMID: 36577041 DOI: 10.1089/ast.2021.0196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The search for organic matter on Mars is one of the major objectives of Mars exploration. However, limited detection of organic signals by Mars rovers to date demands further investigation on this topic. The Curiosity rover recently discovered numerous nodules in Gale Crater on Mars. These nodules have been considered to precipitate in the neutral-to-alkaline and saline diagenetic fluids and could be beneficial for organic preservation. Here, we examine this possibility by studying the carbonate nodules in the western Qaidam Basin, NW China, one of the terrestrial analog sites for Mars. Fourier transform infrared spectra of the carbonate nodules reveal that the aliphatic and aromatic molecules can be readily preserved inside nodules in Mars-like environments. The chain-branching index of the Qaidam nodules suggests that the diagenetic fluids where nodules precipitated were able to support diverse microbial communities that could vary with the water salinity. Findings of this study provide new perspectives on the astrobiological significance of nodules in Gale Crater and the further detection of organic matter on Mars.
Collapse
Affiliation(s)
- Yan Chen
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Yu Sun
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Li Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianxun Shen
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Yuangao Qu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Schmitt-Kopplin P, Matzka M, Ruf A, Menez B, Chennaoui Aoudjehane H, Harir M, Lucio M, Hertzog J, Hertkorn N, Gougeon RD, Hoffmann V, Hinman NW, Ferrière L, Greshake A, Gabelica Z, Trif L, Steele A. Complex carbonaceous matter in Tissint martian meteorites give insights into the diversity of organic geochemistry on Mars. SCIENCE ADVANCES 2023; 9:eadd6439. [PMID: 36630504 PMCID: PMC9833655 DOI: 10.1126/sciadv.add6439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
We report a huge organic diversity in the Tissint Mars meteorite and the sampling of several mineralogical lithologies, which revealed that the organic molecules were nonuniformly distributed in functionality and abundance. The range of organics in Tissint meteorite were abundant C3-7 aliphatic branched carboxylic acids and aldehydes, olefins, and polyaromatics with and without heteroatoms in a homologous oxidation structural continuum. Organomagnesium compounds were extremely abundant in olivine macrocrystals and in the melt veins, reflecting specific organo-synsthesis processes in close interaction with the magnesium silicates and temperature stresses, as previously observed. The diverse chemistry and abundance in complex molecules reveal heterogeneity in organic speciation within the minerals grown in the martian mantle and crust that may have evolved over geological time.
Collapse
Affiliation(s)
- Philippe Schmitt-Kopplin
- Technische Universität München, Chair of Analytical Food Chemistry, Freising-Weihenstephan 85354, Germany
- Max Planck Institute for Extraterrestrial Physics, Center for Astrochemical Studies, Garching 85748, Germany
- Helmholtz München, Analytical BioGeoChemistry, Neuherberg 85764, Germany
| | - Marco Matzka
- Helmholtz München, Analytical BioGeoChemistry, Neuherberg 85764, Germany
| | - Alexander Ruf
- Technische Universität München, Chair of Analytical Food Chemistry, Freising-Weihenstephan 85354, Germany
- Excellence Cluster ORIGINS, Boltzmannstraße 2, Garching 85748, Germany
- Ludwig-Maximilians-University, Department of Chemistry and Pharmacy, Butenandtstr. 5-13, Munich 81377, Germany
| | - Benedicte Menez
- Université de Paris, Institut de Physique du Globe de Paris, CNRS - 1, rue Jussieu, Paris Cedex 05 75238, France
| | - Hasnaa Chennaoui Aoudjehane
- Faculty of Sciences Ain Chock, GAIA Laboratory, Hassan II University of Casablanca, km 8 Route d’El Jadida, Casablanca 20150, Morocco
| | - Mourad Harir
- Helmholtz München, Analytical BioGeoChemistry, Neuherberg 85764, Germany
| | - Marianna Lucio
- Helmholtz München, Analytical BioGeoChemistry, Neuherberg 85764, Germany
| | - Jasmine Hertzog
- Technische Universität München, Chair of Analytical Food Chemistry, Freising-Weihenstephan 85354, Germany
- Helmholtz München, Analytical BioGeoChemistry, Neuherberg 85764, Germany
| | - Norbert Hertkorn
- Helmholtz München, Analytical BioGeoChemistry, Neuherberg 85764, Germany
| | - Régis D. Gougeon
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne/AgroSupDijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, Dijon 21000, France
| | - Victor Hoffmann
- Faculty of Geosciences, Dep. Geo- and Environmental Sciences, LMU, Muenchen, Germany
| | | | | | | | - Zelimir Gabelica
- Université de Haute Alsace, École Nationale Supérieure de Chimie de Mulhouse, F-68094 Mulhouse Cedex, France
| | - László Trif
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Budapest, Hungary
| | - Andrew Steele
- Earth and Planetary Laboratory, Carnegie Institution for Science, 5251 Broad Branch Rd., Washington, DC 20015, USA
| |
Collapse
|
36
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
37
|
Razzell Hollis J, Sharma S, Abbey W, Bhartia R, Beegle L, Fries M, Hein JD, Monacelli B, Nordman AD. A Deep Ultraviolet Raman and Fluorescence Spectral Library of 51 Organic Compounds for the SHERLOC Instrument Onboard Mars 2020. ASTROBIOLOGY 2023; 23:1-23. [PMID: 36367974 PMCID: PMC9810352 DOI: 10.1089/ast.2022.0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
We report deep ultraviolet (DUV) Raman and Fluorescence spectra obtained on a SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) analog instrument for 51 pure organic compounds, including 5 carboxylic acids, 10 polycyclic aromatic hydrocarbons, 24 amino acids, 6 nucleobases, and 6 different grades of macromolecular carbon from humic acid to graphite. Organic mixtures were not investigated. We discuss how the DUV fluorescence and Raman spectra exhibited by different organic compounds allow for detection, classification, and identification of organics by SHERLOC. We find that 1- and 2-ring aromatic compounds produce detectable fluorescence within SHERLOC's spectral range (250-355 nm), but fluorescence spectra are not unique enough to enable easy identification of particular compounds. However, both aromatic and aliphatic compounds can be identified by their Raman spectra, with the number of Raman peaks and their positions being highly specific to chemical structure, within SHERLOC's reported spectral uncertainty of ±5 cm-1. For compounds that are not in the Library, classification is possible by comparing the general number and position of dominant Raman peaks with trends for different kinds of organic compounds.
Collapse
Affiliation(s)
- Joseph Razzell Hollis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
| | - Sunanda Sharma
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - William Abbey
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Luther Beegle
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Marc Fries
- NASA Johnson Space Center, Houston, Texas, USA
| | - Jeffrey D. Hein
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Brian Monacelli
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Austin D. Nordman
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
38
|
Kashyap S, Sklute EC, Wang P, Tague TJ, Dyar MD, Holden JF. Spectral Detection of Nanophase Iron Minerals Produced by Fe(III)-Reducing Hyperthermophilic Crenarchaea. ASTROBIOLOGY 2023; 23:43-59. [PMID: 36070586 PMCID: PMC9810357 DOI: 10.1089/ast.2022.0042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Mineral transformations by two hyperthermophilic Fe(III)-reducing crenarchaea, Pyrodictium delaneyi and Pyrobaculum islandicum, were examined using synthetic nanophase ferrihydrite, lepidocrocite, and akaganeite separately as terminal electron acceptors and compared with abiotic mineral transformations under similar conditions. Spectral analyses using visible-near-infrared, Fourier-transform infrared attenuated total reflectance (FTIR-ATR), Raman, and Mössbauer spectroscopies were complementary and revealed formation of various biomineral assemblages distinguishable from abiotic phases. The most extensive biogenic mineral transformation occurred with ferrihydrite, which formed primarily magnetite with spectral features similar to biomagnetite relative to a synthetic magnetite standard. The FTIR-ATR spectra of ferrihydrite bioreduced by P. delaneyi also showed possible cell-associated organics such as exopolysaccharides. Such combined detections of biomineral assemblages and organics might serve as biomarkers for hyperthermophilic Fe(III) reduction. With lepidocrocite, P. delaneyi produced primarily a ferrous carbonate phase reminiscent of siderite, and with akaganeite, magnetite and a ferrous phosphate phase similar to vivianite were formed. P. islandicum showed minor biogenic production of a ferrous phosphate similar to vivianite when grown on lepidocrocite, and a mixed valent phosphate or sulfate mineral when grown on akaganeite. These results expand the range of biogenic mineral transformations at high temperatures and identify spacecraft-relevant spectroscopies suitable for discriminating mineral biogenicity.
Collapse
Affiliation(s)
- Srishti Kashyap
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | | | - Peng Wang
- Bruker Optics, Inc., Billerica, Massachusetts, USA
| | | | - M. Darby Dyar
- Planetary Science Institute, Tucson, Arizona, USA
- Department of Astronomy, Mount Holyoke College, South Hadley, Massachusetts, USA
| | - James F. Holden
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
39
|
Scheller EL, Razzell Hollis J, Cardarelli EL, Steele A, Beegle LW, Bhartia R, Conrad P, Uckert K, Sharma S, Ehlmann BL, Abbey WJ, Asher SA, Benison KC, Berger EL, Beyssac O, Bleefeld BL, Bosak T, Brown AJ, Burton AS, Bykov SV, Cloutis E, Fairén AG, DeFlores L, Farley KA, Fey DM, Fornaro T, Fox AC, Fries M, Hickman-Lewis K, Hug WF, Huggett JE, Imbeah S, Jakubek RS, Kah LC, Kelemen P, Kennedy MR, Kizovski T, Lee C, Liu Y, Mandon L, McCubbin FM, Moore KR, Nixon BE, Núñez JI, Rodriguez Sanchez-Vahamonde C, Roppel RD, Schulte M, Sephton MA, Sharma SK, Siljeström S, Shkolyar S, Shuster DL, Simon JI, Smith RJ, Stack KM, Steadman K, Weiss BP, Werynski A, Williams AJ, Wiens RC, Williford KH, Winchell K, Wogsland B, Yanchilina A, Yingling R, Zorzano MP. Aqueous alteration processes in Jezero crater, Mars-implications for organic geochemistry. Science 2022; 378:1105-1110. [PMID: 36417498 DOI: 10.1126/science.abo5204] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Perseverance rover landed in Jezero crater, Mars, in February 2021. We used the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument to perform deep-ultraviolet Raman and fluorescence spectroscopy of three rocks within the crater. We identify evidence for two distinct ancient aqueous environments at different times. Reactions with liquid water formed carbonates in an olivine-rich igneous rock. A sulfate-perchlorate mixture is present in the rocks, which probably formed by later modifications of the rocks by brine. Fluorescence signatures consistent with aromatic organic compounds occur throughout these rocks and are preserved in minerals related to both aqueous environments.
Collapse
Affiliation(s)
- Eva L Scheller
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.,Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph Razzell Hollis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.,The Natural History Museum, London, UK
| | - Emily L Cardarelli
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Andrew Steele
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
| | - Luther W Beegle
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Pamela Conrad
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
| | - Kyle Uckert
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Sunanda Sharma
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Bethany L Ehlmann
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.,NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - William J Abbey
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Sanford A Asher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, WV, USA
| | - Eve L Berger
- Texas State University, San Marcos, TX, USA.,Jacobs Johnson Space Center Engineering, Technology and Science Contract, Houston, TX, USA.,NASA Johnson Space Center, Houston, TX, USA
| | - Olivier Beyssac
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Centre National de la Recherche Scientifique, Sorbonne Université, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | | | - Tanja Bosak
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Sergei V Bykov
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ed Cloutis
- Geography, The University of Winnipeg, Winnipeg, MB, Canada
| | - Alberto G Fairén
- Centro de Astrobiología, Consejo Superior de Investigaciones Cientificas-Instituto Nacional de Tecnica Aeroespacial, Madrid, Spain.,Department of Astronomy, Cornell University, Ithaca, NY, USA
| | - Lauren DeFlores
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Kenneth A Farley
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | | | - Teresa Fornaro
- Astrophysical Observatory of Arcetri, Istituto Nazionale di Astrofisica, Florence, Italy
| | | | - Marc Fries
- NASA Johnson Space Center, Houston, TX, USA
| | - Keyron Hickman-Lewis
- Department of Earth Sciences, The Natural History Museum, London, UK.,Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | | | | | | | | | - Linda C Kah
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA
| | - Peter Kelemen
- Lamont Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | | | - Tanya Kizovski
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Carina Lee
- Lunar and Planetary Institute, Universities Space Research Association, Houston, TX, USA
| | - Yang Liu
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Lucia Mandon
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris, Centre National de la Recherche Scientifique, Sorbonne Université, Université Paris Diderot, 92195 Meudon, France
| | | | - Kelsey R Moore
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Jorge I Núñez
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | | | - Ryan D Roppel
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mitchell Schulte
- Mars Exploration Program, NASA Headquarters, Washington, DC, USA
| | - Mark A Sephton
- Earth Science and Engineering, South Kensington Campus, Imperial College London, SW7 2AZ London, UK
| | - Shiv K Sharma
- Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, Honolulu, HI, USA
| | | | - Svetlana Shkolyar
- Department of Astronomy, University of Maryland, College Park, MD, USA.,NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - David L Shuster
- Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA
| | | | - Rebecca J Smith
- Department of Geosciences, Stony Brook University, Stony Brook, NY, USA
| | - Kathryn M Stack
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Kim Steadman
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Benjamin P Weiss
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Amy J Williams
- Department of Geological Sciences, University of Florida, Gainesville, FL, USA
| | - Roger C Wiens
- Los Alamos National Laboratory, Los Alamos, NM, USA.,Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA
| | - Kenneth H Williford
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.,Blue Marble Space Institute of Science, Seattle, WA, USA
| | | | - Brittan Wogsland
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA
| | | | | | - Maria-Paz Zorzano
- Centro de Astrobiología, Consejo Superior de Investigaciones Cientificas-Instituto Nacional de Tecnica Aeroespacial, Madrid, Spain
| |
Collapse
|
40
|
Milojevic T, Cramm MA, Hubert CRJ, Westall F. "Freezing" Thermophiles: From One Temperature Extreme to Another. Microorganisms 2022; 10:2417. [PMID: 36557670 PMCID: PMC9782878 DOI: 10.3390/microorganisms10122417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
New detections of thermophiles in psychrobiotic (i.e., bearing cold-tolerant life forms) marine and terrestrial habitats including Arctic marine sediments, Antarctic accretion ice, permafrost, and elsewhere are continually being reported. These microorganisms present great opportunities for microbial ecologists to examine biogeographical processes for spore-formers and non-spore-formers alike, including dispersal histories connecting warm and cold biospheres. In this review, we examine different examples of thermophiles in cryobiotic locations, and highlight exploration of thermophiles at cold temperatures under laboratory conditions. The survival of thermophiles in psychrobiotic environments provokes novel considerations of physiological and molecular mechanisms underlying natural cryopreservation of microorganisms. Cultures of thermophiles maintained at low temperature may serve as a non-sporulating laboratory model for further exploration of metabolic potential of thermophiles at psychrobiotic temperatures, as well as for elucidating molecular mechanisms behind natural preservation and adaptation to psychrobiotic environments. These investigations are highly relevant for the search for life on other cold and icy planets in the Solar System, such as Mars, Europa and Enceladus.
Collapse
Affiliation(s)
- Tetyana Milojevic
- Exobiology Group, CNRS-Centre de Biophysique Moléculaire, University of Orléans, Rue Charles Sadron, CEDEX 2, 45071 Orléans, France
| | - Margaret Anne Cramm
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Casey R. J. Hubert
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Frances Westall
- Exobiology Group, CNRS-Centre de Biophysique Moléculaire, Rue Charles Sadron, CEDEX 2, 45071 Orléans, France
| |
Collapse
|
41
|
Hickman-Lewis K, Moore KR, Hollis JJR, Tuite ML, Beegle LW, Bhartia R, Grotzinger JP, Brown AJ, Shkolyar S, Cavalazzi B, Smith CL. In Situ Identification of Paleoarchean Biosignatures Using Colocated Perseverance Rover Analyses: Perspectives for In Situ Mars Science and Sample Return. ASTROBIOLOGY 2022; 22:1143-1163. [PMID: 35862422 PMCID: PMC9508457 DOI: 10.1089/ast.2022.0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The NASA Mars 2020 Perseverance rover is currently exploring Jezero crater, a Noachian-Hesperian locality that once hosted a delta-lake system with high habitability and biosignature preservation potential. Perseverance conducts detailed appraisals of rock targets using a synergistic payload capable of geological characterization from kilometer to micron scales. The highest-resolution textural and chemical information will be provided by correlated WATSON (imaging), SHERLOC (deep-UV Raman and fluorescence spectroscopy), and PIXL (X-ray lithochemistry) analyses, enabling the distributions of organic and mineral phases within rock targets to be comprehensively established. Herein, we analyze Paleoarchean microbial mats from the ∼3.42 Ga Buck Reef Chert (Barberton greenstone belt, South Africa)-considered astrobiological analogues for a putative ancient martian biosphere-following a WATSON-SHERLOC-PIXL protocol identical to that conducted by Perseverance on Mars during all sampling activities. Correlating deep-UV Raman and fluorescence spectroscopic mapping with X-ray elemental mapping, we show that the Perseverance payload has the capability to detect thermally and texturally mature organic materials of biogenic origin and can highlight organic-mineral interrelationships and elemental colocation at fine spatial scales. We also show that the Perseverance protocol obtains very similar results to high-performance laboratory imaging, Raman spectroscopy, and μXRF instruments. This is encouraging for the prospect of detecting microscale organic-bearing textural biosignatures on Mars using the correlative micro-analytical approach enabled by WATSON, SHERLOC, and PIXL; indeed, laminated, organic-bearing samples such as those studied herein are considered plausible analogues of biosignatures from a potential Noachian-Hesperian biosphere. Were similar materials discovered at Jezero crater, they would offer opportunities to reconstruct aspects of the early martian carbon cycle and search for potential fossilized traces of life in ancient paleoenvironments. Such samples should be prioritized for caching and eventual return to Earth.
Collapse
Affiliation(s)
- Keyron Hickman-Lewis
- Department of Earth Sciences, The Natural History Museum, London, United Kingdom
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Kelsey R. Moore
- NASA Jet Propulsion Laboratory, Pasadena, California, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | | | | | | | | | - John P. Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | | | - Svetlana Shkolyar
- Department of Astronomy, University of Maryland, College Park, Maryland, USA
- Planetary Geology, Geophysics and Geochemistry Lab, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Barbara Cavalazzi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| | - Caroline L. Smith
- Department of Earth Sciences, The Natural History Museum, London, United Kingdom
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
42
|
Pavlov AA, McLain HL, Glavin DP, Roussel A, DworkIn JP, Elsila JE, Yocum KM. Rapid Radiolytic Degradation of Amino Acids in the Martian Shallow Subsurface: Implications for the Search for Extinct Life. ASTROBIOLOGY 2022; 22:1099-1115. [PMID: 35749703 DOI: 10.1089/ast.2021.0166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Amino acids are fundamental to life as we know them as the monomers of proteins and enzymes. They are also readily synthesized under a variety of plausible prebiotic conditions and are common in carbon-rich meteorites. Thus, they represent a reasonable class of organics to target in the search for prebiotic chemistry or chemical evidence of life on Mars. However, regardless of their origin, amino acids and other organic molecules present in near-surface regolith and rocks on Mars can be degraded by exposure to cosmic rays that can penetrate to a depth of a few meters. We exposed several pure amino acids in dry and hydrated silicate mixtures and in mixtures of silicates with perchlorate salts to gamma radiation at various temperatures and radiation doses representative of the martian near-subsurface. We found that irradiation of amino acids mixed with dry silica powder increased the rate of amino acid radiolysis, with the radiolysis constants of amino acids in silicate mixtures at least a factor of 10 larger compared with the radiolysis constants of amino acids alone. The addition of perchlorate salts to the silicate samples or hydration of silicate samples further accelerated the rate of amino acid destruction during irradiation and increased the radiolysis constants by a factor of ∼1.5. Our results suggest that even low-molecular-weight amino acids could degrade in just ∼20 million years in the top 10 cm of the martian surface regolith and rock, and even faster if the material contains elevated abundances of hydrated silicate minerals or perchlorates. We did not detect evidence of amino acid racemization after gamma radiation exposure of the samples, which indicates that the chirality of some surviving amino acids may still be preserved. Our experimental results suggest serious challenges for the search of ancient amino acids and other potential organic biosignatures in the top 2 m of the martian surface.
Collapse
Affiliation(s)
- Alexander A Pavlov
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Hannah L McLain
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Department of Physics, Catholic University of America, Washington, District of Columbia, USA
- Center for Research and Exploration in Space Science and Technology, NASA/GSFC, Greenbelt, Maryland, USA
| | - Daniel P Glavin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Anaïs Roussel
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
| | - Jason P DworkIn
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Jamie E Elsila
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Katarina M Yocum
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
43
|
Enya K, Yamagishi A, Kobayashi K, Yoshimura Y. Comparative study of methods for detecting extraterrestrial life in exploration mission of Mars and the solar system. LIFE SCIENCES IN SPACE RESEARCH 2022; 34:53-67. [PMID: 35940690 DOI: 10.1016/j.lssr.2022.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The detection and analysis of extraterrestrial life are important issues of space science. Mars is among the most important planets to explore for extraterrestrial life, owing both to its physical properties and to its ancient and present environments as revealed by previous exploration missions. In this paper, we present a comparative study of methods for detecting extraterrestrial life and life-related substances. To this end, we have classified and summarized the characteristics targeted for the detection of extraterrestrial life in solar system exploration mission and the methods used to evaluate them. A summary table is presented. We conclude that at this moment (i) there is no realistic single detection method capable of concluding the discovery of extraterrestrial life, (ii) no single method has an advantage over the others in all respects, and (iii) there is no single method capable of distinguishing extraterrestrial life from terrestrial life. Therefore, a combination of complementary methods is essential. We emphasize the importance of endeavoring to detect extraterrestrial life without overlooking possible alien life forms, even at the cost of tolerating false positives. Summaries of both the targets and the detection methods should be updated continuously, and comparative studies of both should be pursued. Although this study assumes Mars to be a model site for the primary environment for life searches, both the targets and detection methods described herein will also be useful for searching for extraterrestrial life in any celestial environment and for the initial inspection of returned samples.
Collapse
Affiliation(s)
- Keigo Enya
- Institute of Space & Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuou, Sagamihara, Kanagawa 252-5210, Japan.
| | - Akihiko Yamagishi
- School of Life Science, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kensei Kobayashi
- Department of Chemistry, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Yoshitaka Yoshimura
- Department of Life Science, Tamagawa University, 6-1-1 Tamagawagakuen, Machida, Tokyo 194-8610, Japan
| |
Collapse
|
44
|
Abstract
This work presents the first quantification of bulk organic carbon in Mars surface sedimentary rocks, enabled by a stepped combustion experiment performed by the Curiosity Rover in Gale crater, Mars. The mudstone sample analyzed by Curiosity represents a previously habitable lacustrine environment and a depositional environment favorable for preservation of organics formed in situ and/or transported from a wide catchment area. Here we present the abundance of bulk organic carbon in these mudstone samples and discuss the contributions from various carbon reservoirs on Mars. The Sample Analysis at Mars instrument stepped combustion experiment on a Yellowknife Bay mudstone at Gale crater, Mars revealed the presence of organic carbon of Martian and meteoritic origins. The combustion experiment was designed to access refractory organic carbon in Mars surface sediments by heating samples in the presence of oxygen to combust carbon to CO2. Four steps were performed, two at low temperatures (less than ∼550 °C) and two at high temperatures (up to ∼870 °C). More than 950 μg C/g was released at low temperatures (with an isotopic composition of δ13C = +1.5 ± 3.8‰) representing a minimum of 431 μg C/g indigenous organic and inorganic Martian carbon components. Above 550 °C, 273 ± 30 μg C/g was evolved as CO2 and CO (with estimated δ13C = −32.9‰ to −10.1‰ for organic carbon). The source of high temperature organic carbon cannot be definitively confirmed by isotopic composition, which is consistent with macromolecular organic carbon of igneous origin, meteoritic infall, or diagenetically altered biomass, or a combination of these. If from allochthonous deposition, organic carbon could have supported both prebiotic organic chemistry and heterotrophic metabolism at Gale crater, Mars, at ∼3.5 Ga.
Collapse
|
45
|
Tosca NJ, Agee CB, Cockell CS, Glavin DP, Hutzler A, Marty B, McCubbin FM, Regberg AB, Velbel MA, Kminek G, Meyer MA, Beaty DW, Carrier BL, Haltigin T, Hays LE, Busemann H, Cavalazzi B, Debaille V, Grady MM, Hauber E, Pratt LM, Smith AL, Smith CL, Summons RE, Swindle TD, Tait KT, Udry A, Usui T, Wadhwa M, Westall F, Zorzano MP. Time-Sensitive Aspects of Mars Sample Return (MSR) Science. ASTROBIOLOGY 2022; 22:S81-S111. [PMID: 34904889 DOI: 10.1089/ast.2021.0115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Samples returned from Mars would be placed under quarantine at a Sample Receiving Facility (SRF) until they are considered safe to release to other laboratories for further study. The process of determining whether samples are safe for release, which may involve detailed analysis and/or sterilization, is expected to take several months. However, the process of breaking the sample tube seal and extracting the headspace gas will perturb local equilibrium conditions between gas and rock and set in motion irreversible processes that proceed as a function of time. Unless these time-sensitive processes are understood, planned for, and/or monitored during the quarantine period, scientific information expected from further analysis may be lost forever. At least four processes underpin the time-sensitivity of Mars returned sample science: (1) degradation of organic material of potential biological origin, (2) modification of sample headspace gas composition, (3) mineral-volatile exchange, and (4) oxidation/reduction of redox-sensitive materials. Available constraints on the timescales associated with these processes supports the conclusion that an SRF must have the capability to characterize attributes such as sample tube headspace gas composition, organic material of potential biological origin, as well as volatiles and their solid-phase hosts. Because most time-sensitive investigations are also sensitive to sterilization, these must be completed inside the SRF and on timescales of several months or less. To that end, we detail recommendations for how sample preparation and analysis could complete these investigations as efficiently as possible within an SRF. Finally, because constraints on characteristic timescales that define time-sensitivity for some processes are uncertain, future work should focus on: (1) quantifying the timescales of volatile exchange for core material physically and mineralogically similar to samples expected to be returned from Mars, and (2) identifying and developing stabilization or temporary storage strategies that mitigate volatile exchange until analysis can be completed. Executive Summary Any samples returned from Mars would be placed under quarantine at a Sample Receiving Facility (SRF) until it can be determined that they are safe to release to other laboratories for further study. The process of determining whether samples are safe for release, which may involve detailed analysis and/or sterilization, is expected to take several months. However, the process of breaking the sample tube seal and extracting the headspace gas would perturb local equilibrium conditions between gas and rock and set in motion irreversible processes that proceed as a function of time. Unless these processes are understood, planned for, and/or monitored during the quarantine period, scientific information expected from further analysis may be lost forever. Specialist members of the Mars Sample Return Planning Group Phase 2 (MSPG-2), referred to here as the Time-Sensitive Focus Group, have identified four processes that underpin the time-sensitivity of Mars returned sample science: (1) degradation of organic material of potential biological origin, (2) modification of sample headspace gas composition, (3) mineral-volatile exchange, and (4) oxidation/reduction of redox-sensitive materials (Figure 2). Consideration of the timescales and the degree to which these processes jeopardize scientific investigations of returned samples supports the conclusion that an SRF must have the capability to characterize: (1) sample tube headspace gas composition, (2) organic material of potential biological origin, (3) volatiles bound to or within minerals, and (4) minerals or other solids that host volatiles (Table 4). Most of the investigations classified as time-sensitive in this report are also sensitive to sterilization by either heat treatment and/or gamma irradiation (Velbel et al., 2022). Therefore, these investigations must be completed inside biocontainment and on timescales that minimize the irrecoverable loss of scientific information (i.e., several months or less; Section 5). To that end, the Time-Sensitive Focus Group has outlined a number of specific recommendations for sample preparation and instrumentation in order to complete these investigations as efficiently as possible within an SRF (Table 5). Constraints on the characteristic timescales that define time-sensitivity for different processes can range from relatively coarse to uncertain (Section 4). Thus, future work should focus on: (1) quantifying the timescales of volatile exchange for variably lithified core material physically and mineralogically similar to samples expected to be returned from Mars, and (2) identifying and developing stabilization strategies or temporary storage strategies that mitigate volatile exchange until analysis can be completed. List of Findings FINDING T-1: Aqueous phases, and oxidants liberated by exposure of the sample to aqueous phases, mediate and accelerate the degradation of critically important but sensitive organic compounds such as DNA. FINDING T-2: Warming samples increases reaction rates and destroys compounds making biological studies much more time-sensitive. MAJOR FINDING T-3: Given the potential for rapid degradation of biomolecules, (especially in the presence of aqueous phases and/or reactive O-containing compounds) Sample Safety Assessment Protocol (SSAP) and parallel biological analysis are time sensitive and must be carried out as soon as possible. FINDING T-4: If molecules or whole cells from either extant or extinct organisms have persisted under present-day martian conditions in the samples, then it follows that preserving sample aliquots under those same conditions (i.e., 6 mbar total pressure in a dominantly CO2 atmosphere and at an average temperature of -80°C) in a small isolation chamber is likely to allow for their continued persistence. FINDING T-5: Volatile compounds (e.g., HCN and formaldehyde) have been lost from Solar System materials stored under standard curation conditions. FINDING T-6: Reactive O-containing species have been identified in situ at the martian surface and so may be present in rock or regolith samples returned from Mars. These species rapidly degrade organic molecules and react more rapidly as temperature and humidity increase. FINDING T-7: Because the sample tubes would not be closed with perfect seals and because, after arrival on Earth, there will be a large pressure gradient across that seal such that the probability of contamination of the tube interiors by terrestrial gases increases with time, the as-received sample tubes are considered a poor choice for long-term gas sample storage. This is an important element of time sensitivity. MAJOR FINDING T-8: To determine how volatiles may have been exchanged with headspace gas during transit to Earth, the composition of martian atmosphere (in a separately sealed reservoir and/or extracted from the witness tubes), sample headspace gas composition, temperature/time history of the samples, and mineral composition (including mineral-bound volatiles) must all be quantified. When the sample tube seal is breached, mineral-bound volatile loss to the curation atmosphere jeopardizes robust determination of volatile exchange history between mineral and headspace. FINDING T-9: Previous experiments with mineral powders show that sulfate minerals are susceptible to H2O loss over timescales of hours to days. In addition to volatile loss, these processes are accompanied by mineralogical transformation. Thus, investigations targeting these minerals should be considered time-sensitive. FINDING T-10: Sulfate minerals may be stabilized by storage under fixed relative-humidity conditions, but only if the identity of the sulfate phase(s) is known a priori. In addition, other methods such as freezing may also stabilize these minerals against volatile loss. FINDING T-11: Hydrous perchlorate salts are likely to undergo phase transitions and volatile exchange with ambient surroundings in hours to days under temperature and relative humidity ranges typical of laboratory environments. However, the exact timescale over which these processes occur is likely a function of grain size, lithification, and/or cementation. FINDING T-12: Nanocrystalline or X-ray amorphous materials are typically stabilized by high proportions of surface adsorbed H2O. Because this surface adsorbed H2O is weakly bound compared to bulk materials, nanocrystalline materials are likely to undergo irreversible ripening reactions in response to volatile loss, which in turn results in decreases in specific surface area and increases in crystallinity. These reactions are expected to occur over the timescale of weeks to months under curation conditions. Therefore, the crystallinity and specific surface area of nanocrystalline materials should be characterized and monitored within a few months of opening the sample tubes. These are considered time-sensitive measurements that must be made as soon as possible. FINDING T-13: Volcanic and impact glasses, as well as opal-CT, are metastable in air and susceptible to alteration and volatile exchange with other solid phases and ambient headspace. However, available constraints indicate that these reactions are expected to proceed slowly under typical laboratory conditions (i.e., several years) and so analyses targeting these materials are not considered time sensitive. FINDING T-14: Surface adsorbed and interlayer-bound H2O in clay minerals is susceptible to exchange with ambient surroundings at timescales of hours to days, although the timescale may be modified depending on the degree of lithification or cementation. Even though structural properties of clay minerals remain unaffected during this process (with the exception of the interlayer spacing), investigations targeting H2O or other volatiles bound on or within clay minerals should be considered time sensitive upon opening the sample tube. FINDING T-15: Hydrated Mg-carbonates are susceptible to volatile loss and recrystallization and transformation over timespans of months or longer, though this timescale may be modified by the degree of lithification and cementation. Investigations targeting hydrated carbonate minerals (either the volatiles they host or their bulk mineralogical properties) should be considered time sensitive upon opening the sample tube. MAJOR FINDING T-16: Current understanding of mineral-volatile exchange rates and processes is largely derived from monomineralic experiments and systems with high surface area; lithified sedimentary rocks (accounting for some, but not all, of the samples in the cache) will behave differently in this regard and are likely to be associated with longer time constants controlled in part by grain boundary diffusion. Although insufficient information is available to quantify this at the present time, the timescale of mineral-volatile exchange in lithified samples is likely to overlap with the sample processing and curation workflow (i.e., 1-10 months; Table 4). This underscores the need to prioritize measurements targeting mineral-hosted volatiles within biocontainment. FINDING T-17: The liberation of reactive O-species through sample treatment or processing involving H2O (e.g., rinsing, solvent extraction, particle size separation in aqueous solution, or other chemical extraction or preparation protocols) is likely to result in oxidation of some component of redox-sensitive materials in a matter of hours. The presence of reactive O-species should be examined before sample processing steps that seek to preserve or target redox-sensitive minerals. Electron paramagnetic resonance spectroscopy (EPR) is one example of an effective analytical method capable of detecting and characterizing the presence of reactive O-species. FINDING T-18: Environments that maintain anoxia under inert gas containing <<1 ppm O2 are likely to stabilize redox-sensitive minerals over timescales of several years. MAJOR FINDING T-19: MSR investigations targeting organic macromolecular or cellular material, mineral-bound volatile compounds, redox sensitive minerals, and/or hydrous carbonate minerals can become compromised at the timescale of weeks (after opening the sample tube), and scientific information may be completely lost within a time timescale of a few months. Because current considerations indicate that completion of SSAP, sample sterilization, and distribution to investigator laboratories cannot be completed in this time, these investigations must be completed within the Sample Receiving Facility as soon as possible.
Collapse
Affiliation(s)
- Nicholas J Tosca
- University of Cambridge, Department of Earth Sciences, Cambridge, UK
| | - Carl B Agee
- University of New Mexico, Institute of Meteoritics, Albuquerque, New Mexico, USA
| | - Charles S Cockell
- University of Edinburgh, Centre for Astrobiology, School of Physics and Astronomy, Edinburgh, UK
| | - Daniel P Glavin
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, Maryland, USA
| | | | | | - Francis M McCubbin
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Aaron B Regberg
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Michael A Velbel
- Michigan State University, Earth and Environmental Sciences, East Lansing, Michigan, USA
- Smithsonian Institution, Department of Mineral Sciences, National Museum of Natural History, Washington, DC, USA
| | | | - Michael A Meyer
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - David W Beaty
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Brandi L Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Lindsay E Hays
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - Henner Busemann
- ETH Zürich, Institute of Geochemistry and Petrology, Zürich, Switzerland
| | - Barbara Cavalazzi
- Università di Bologna, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Bologna, Italy
| | | | | | - Ernst Hauber
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | - Lisa M Pratt
- Indiana University Bloomington, Earth and Atmospheric Sciences, Bloomington, Indiana, USA
| | - Alvin L Smith
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Caroline L Smith
- Natural History Museum, Department of Earth Sciences, London, UK
- University of Glasgow, School of Geographical and Earth Sciences, Glasgow, UK
| | - Roger E Summons
- Massachusetts Institute of Technology, Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA
| | - Timothy D Swindle
- University of Arizona, Lunar and Planetary Laboratory, Tucson, Arizona, USA
| | - Kimberly T Tait
- Royal Ontario Museum, Department of Natural History, Toronto, Ontario, Canada
| | - Arya Udry
- University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Tomohiro Usui
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Chofu, Tokyo, Japan
| | - Meenakshi Wadhwa
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Arizona State University, Tempe, Arizona, USA
| | - Frances Westall
- Centre National de la Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Orléans, France
| | - Maria-Paz Zorzano
- Centro de Astrobiologia (CSIC-INTA), Torrejon de Ardoz, Spain
- University of Aberdeen, Department of Planetary Sciences, School of Geosciences, King's College, Aberdeen, UK
| |
Collapse
|
46
|
Velbel MA, Cockell CS, Glavin DP, Marty B, Regberg AB, Smith AL, Tosca NJ, Wadhwa M, Kminek G, Meyer MA, Beaty DW, Carrier BL, Haltigin T, Hays LE, Agee CB, Busemann H, Cavalazzi B, Debaille V, Grady MM, Hauber E, Hutzler A, McCubbin FM, Pratt LM, Smith CL, Summons RE, Swindle TD, Tait KT, Udry A, Usui T, Westall F, Zorzano MP. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR). ASTROBIOLOGY 2022; 22:S112-S164. [PMID: 34904892 DOI: 10.1089/ast.2021.0113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The NASA/ESA Mars Sample Return (MSR) Campaign seeks to establish whether life on Mars existed where and when environmental conditions allowed. Laboratory measurements on the returned samples are useful if what is measured is evidence of phenomena on Mars rather than of the effects of sterilization conditions. This report establishes that there are categories of measurements that can be fruitful despite sample sterilization and other categories that cannot. Sterilization kills living microorganisms and inactivates complex biological structures by breaking chemical bonds. Sterilization has similar effects on chemical bonds in non-biological compounds, including abiotic or pre-biotic reduced carbon compounds, hydrous minerals, and hydrous amorphous solids. We considered the sterilization effects of applying dry heat under two specific temperature-time regimes and the effects of γ-irradiation. Many measurements of volatile-rich materials are sterilization sensitive-they will be compromised by either dehydration or radiolysis upon sterilization. Dry-heat sterilization and γ-irradiation differ somewhat in their effects but affect the same chemical elements. Sterilization-sensitive measurements include the abundances and oxidation-reduction (redox) states of redox-sensitive elements, and isotope abundances and ratios of most of them. All organic molecules, and most minerals and naturally occurring amorphous materials that formed under habitable conditions, contain at least one redox-sensitive element. Thus, sterilization-sensitive evidence about ancient life on Mars and its relationship to its ancient environment will be severely compromised if the samples collected by Mars 2020 rover Perseverance cannot be analyzed in an unsterilized condition. To ensure that sterilization-sensitive measurements can be made even on samples deemed unsafe for unsterilized release from containment, contingency instruments in addition to those required for curation, time-sensitive science, and the Sample Safety Assessment Protocol would need to be added to the Sample Receiving Facility (SRF). Targeted investigations using analogs of MSR Campaign-relevant returned-sample types should be undertaken to fill knowledge gaps about sterilization effects on important scientific measurements, especially if the sterilization regimens eventually chosen are different from those considered in this report. Executive Summary A high priority of the planned NASA/ESA Mars Sample Return Campaign is to establish whether life on Mars exists or existed where and when allowed by paleoenvironmental conditions. To answer these questions from analyses of the returned samples would require measurement of many different properties and characteristics by multiple and diverse instruments. Planetary Protection requirements may determine that unsterilized subsamples cannot be safely released to non-Biosafety Level-4 (BSL-4) terrestrial laboratories. Consequently, it is necessary to determine what, if any, are the negative effects that sterilization might have on sample integrity, specifically the fidelity of the subsample properties that are to be measured. Sample properties that do not survive sterilization intact should be measured on unsterilized subsamples, and the Sample Receiving Facility (SRF) should support such measurements. This report considers the effects that sterilization of subsamples might have on the science goals of the MSR Campaign. It assesses how the consequences of sterilization affect the scientific usefulness of the subsamples and hence our ability to conduct high-quality science investigations. We consider the sterilization effects of (a) the application of dry heat under two temperature-time regimes (180°C for 3 hours; 250°C for 30 min) and (b) γ-irradiation (1 MGy), as provided to us by the NASA and ESA Planetary Protection Officers (PPOs). Measurements of many properties of volatile-rich materials are sterilization sensitive-they would be compromised by application of either sterilization mode to the subsample. Such materials include organic molecules, hydrous minerals (crystalline solids), and hydrous amorphous (non-crystalline) solids. Either proposed sterilization method would modify the abundances, isotopes, or oxidation-reduction (redox) states of the six most abundant chemical elements in biological molecules (i.e., carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulphur, CHNOPS), and of other key redox-sensitive elements that include iron (Fe), other first-row transition elements (FRTE), and cerium (Ce). As a result of these modifications, such evidence of Mars' life, paleoenvironmental history, potential habitability, and potential biosignatures would be corrupted or destroyed. Modifications of the abundances of some noble gases in samples heated during sterilization would also reset scientifically important radioisotope geochronometers and atmospheric-evolution measurements. Sterilization is designed to render terminally inactive (kill) all living microorganisms and inactivate complex biological structures (including bacterial spores, viruses, and prions). Sterilization processes do so by breaking certain pre-sterilization chemical bonds (including strong C-C, C-O, C-N, and C-H bonds of predominantly covalent character, as well as weaker hydrogen and van der Waals bonds) and forming different bonds and compounds, disabling the biological function of the pre-sterilization chemical compound. The group finds the following: No sterilization process could destroy the viability of cells whilst still retaining molecular structures completely intact. This applies not only to the organic molecules of living organisms, but also to most organic molecular biosignatures of former life (molecular fossils). As a matter of biological principle, any sterilization process would result in the loss of biological and paleobiological information, because this is the mechanism by which sterilization is achieved. Thus, almost all life science investigations would be compromised by sterilizing the subsample by either mode. Sterilization by dry heat at the proposed temperatures would lead to changes in many of the minerals and amorphous solids that are most significant for the study of paleoenvironments, habitability, potential biosignatures, and the geologic context of life-science observations. Gamma-(γ-)irradiation at even sub-MGy doses induces radiolysis of water. The radiolysis products (e.g., free radicals) react with redox-sensitive chemical species of interest for the study of paleoenvironments, habitability, and potential biosignatures, thereby adversely affecting measurements of those species. Heat sterilization and radiation also have a negative effect on CHNOPS and redox-sensitive elements. MSPG2 was unable to identify with confidence any measurement of abundances or oxidation-reduction states of CHNOPS elements, other redox-sensitive elements (e.g., Fe and other FRTE; Ce), or their isotopes that would be affected by only one, but not both, of the considered sterilization methods. Measurements of many attributes of volatile-rich subsamples are sterilization sensitive to both heat and γ-irradiation. Such a measurement is not useful to Mars science if what remains in the subsample is evidence of sterilization conditions and effects instead of evidence of conditions on Mars. Most measurements relating to the detection of evidence for extant or extinct life are sterilization sensitive. Many measurements other than those for life-science seek to retrieve Mars' paleoenvironmental information from the abundances or oxidation-reduction states of CHNOPS elements, other redox-sensitive elements, or their isotopes (and some noble gases) in returned samples. Such measurements inform scientific interpretations of (paleo)atmosphere composition and evolution, (paleo)surface water origin and chemical evolution, potential (paleo)habitability, (paleo)groundwater-porewater solute chemistry, origin and evolution, potential biosignature preservation, metabolic element or isotope fractionation, and the geologic, geochronological, and geomorphic context of life-sciences observations. Most such measurements are also sterilization sensitive. The sterilization-sensitive attributes cannot be meaningfully measured in any such subsample that has been sterilized by heat or γ-irradiation. Unless such subsamples are deemed biohazard-safe for release to external laboratories in unsterilized form, all such measurements must be made on unsterilized samples in biocontainment. An SRF should have the capability to carry out scientific investigations that are sterilization-sensitive to both PPO-provided sterilization methods (Figure SE1). The following findings have been recognized in the Report. Full explanations of the background, scope, and justification precede the presentation of each Finding in the Section identified for that Finding. One or more Findings follow our assessment of previous work on the effects of each provided sterilization method on each of three broad categories of measurement types-biosignatures of extant or ancient life, geological evidence of paleoenvironmental conditions, and gases. Findings are designated Major if they explicitly refer to both PPO-provided sterilization methods or have specific implications for the functionalities that need to be supported within an SRF. FINDING SS-1: More than half of the measurements described by iMOST for investigation into the presence of (mostly molecular) biosignatures (iMOST Objectives 2.1, 2.2 and 2.3) in returned martian samples are sterilization-sensitive and therefore cannot be performed with acceptable analytical precision or sensitivity on subsamples sterilized either by heat or by γ-irradiation at the sterilization parameters supplied to MSPG2. That proportion rises to 86% of the measurements specific to the investigation of extant or recent life (iMOST Objective 2.3) (see Section 2.5). This Finding supersedes Finding #4 of the MSPG Science in Containment report (MSPG, 2019). FINDING SS-2: Almost three quarters (115 out of 160; 72%) of the measurements described by iMOST for science investigations not associated with Objective 2 but associated with Objectives concerning geological phenomena that include past interactions with the hydrosphere (Objectives 1 and 3) and the atmosphere (Objective 4) are sterilization-tolerant and therefore can (generally) be performed with acceptable analytical precision or sensitivity on subsamples sterilized either by heat or by γ-irradiation at the sterilization parameters supplied to MSPG2 (see Section 2.5). This Finding supports Finding #6 of the MSPG Science in Containment report (MSPG, 2019). MSPG2 endorses the previously proposed strategy of conducting as many measurements as possible outside the SRF where the option exists. FINDING SS-3: Suggested strategies for investigating the potential for extant life in returned martian samples lie in understanding biosignatures and, more importantly, the presence of nucleic acid structures (DNA/RNA) and possible agnostic functionally similar information-bearing polymers. A crucial observation is that exposure of microorganisms to temperatures associated with sterilization above those typical of a habitable surface or subsurface environment results in a loss of biological information. If extant life is a target for subsample analysis, sterilization of material via dry heat would likely compromise any such analysis (see Section 3.2). FINDING SS-4: Suggested strategies for investigating the potential for extant life in returned martian samples lie in understanding biosignatures, including the presence of nucleic acid structures (DNA/RNA) and possible agnostic functionally similar information-bearing polymers. A crucial observation is that exposure of microorganisms to γ-radiation results in a loss of biological information through molecular damage and/or destruction. If extant life is a target for subsample analysis, sterilization of material via γ-radiation would likely compromise any such analysis (see Section 3.3). FINDING SS-5: Suggested strategies for investigating biomolecules in returned martian samples lie in detection of a variety of complex molecules, including peptides, proteins, DNA (deoxyribonucleic acid) and RNA (ribonucleic acid), as well as compounds associated with cell membranes such as lipids, sterols, and fatty acids and their geologically stable reaction products (hopanes, steranes, etc.) and possible agnostic functionally similar information-bearing polymers. Exposure to temperatures above MSR Campaign-Level Requirements for sample temperature, up to and including sterilization temperatures, results in a loss of biological information. If the presence of biosignatures is a target for subsample analysis, sterilization of material via dry heat would likely compromise any such analysis (see Section 4.2). FINDING SS-6: Suggested strategies for investigating biomolecules in returned martian samples lie in detection of a variety of complex molecules, including peptides, proteins, DNA (deoxyribonucleic acid) and RNA (ribonucleic acid), and compounds associated with cell membranes such as lipids, sterols and fatty acids and their geologically stable reaction products (hopanes, steranes, etc.) and possible agnostic functionally similar information-bearing polymers. Exposure to radiation results in a loss of biological information. If the presence of biosignatures is a target for subsample analysis, sterilization of material via γ-irradiation would likely compromise any such analysis (see Section 4.3). [Figure: see text] MAJOR FINDING SS-7: The use of heat or γ-irradiation sterilization should be avoided for subsamples intended to be used for organic biosignature investigations (for extinct or extant life). Studies of organic molecules from extinct or extant life (either indigenous or contaminants, viable or dead cells) or even some organic molecules derived from abiotic chemistry cannot credibly be done on subsamples that have been sterilized by any means. The concentrations of amino acids and other reduced organic biosignatures in the returned martian samples may also be so low that additional heat and/or γ-irradiation sterilization would reduce their concentrations to undetectable levels. It is a very high priority that these experiments be done on unsterilized subsamples inside containment (see Section 4.4). FINDING SS-8: Solvent extraction and acid hydrolysis at ∼100°C of unsterilized martian samples will inactivate any biopolymers in the extract and would not require additional heat or radiation treatment for the subsamples to be rendered sterile. Hydrolyzed extracts should be safe for analysis of soluble free organic molecules outside containment and may provide useful information about their origin for biohazard assessments; this type of approach, if approved, is strongly preferred and endorsed (see Section 4.4). FINDING SS-9: Minerals and amorphous materials formed by low temperature processes on Mars are highly sensitive to thermal alteration, which leads to irreversible changes in composition and/or structure when heated. Exposure to temperatures above MSR Campaign-Level Requirements for sample temperature, up to and including sterilization temperatures, has the potential to alter them from their as-received state. Sterilization by dry heat at the proposed sterilization temperatures would lead to changes in many of the minerals that are most significant for the study of paleoenvironments, habitability, and potential biosignatures or biosignature hosts. It is crucial that the returned samples are not heated to temperatures above which mineral transitions occur (see Section 5.3). FINDING SS-10: Crystal structure, major and non-volatile minor element abundances, and stoichiometric compositions of minerals are unaffected by γ-irradiation of up to 0.3-1 MGy, but crystal structures are completely destroyed at 130 MGy. Measurements of these specific properties cannot be acquired from subsamples γ-irradiated at the notional 1 MGy dose-they are sterilization-sensitive (see Section 5.4). FINDING SS-11: Sterilization by γ-irradiation (even at sub-MGy doses) results in significant changes to the redox state of elements bound within a mineral lattice. Redox-sensitive elements include Fe and other first-row transition elements (FRTE) as well as C, H, N, O, P and S. Almost all minerals and naturally occurring amorphous materials that formed under habitable conditions, including the ambient paleotemperatures of Mars' surface or shallow subsurface, contain at least one of these redox-sensitive elements. Therefore, measurements and investigations of the listed properties of such geological materials are sterilization sensitive and should not be performed on γ-irradiated subsamples (see Section 5.4). FINDING SS-12: A significant fraction of investigations that focus on high-temperature magmatic and impact-related processes, their chronology, and the chronology of Mars' geophysical evolution are sterilization-tolerant. While there may be a few analyses involved in such investigations that could be affected to some degree by heat sterilization, most of these analyses would not be affected by sterilization involving γ-irradiation (see Section 5.6). MAJOR FINDING SS-13: Scientific investigations of materials containing hydrous or otherwise volatile-rich minerals and/or X-ray amorphous materials that formed or were naturally modified at low (Mars surface-/near-surface) temperature are sterilization-sensitive in that they would be compromised by changes in the abundances, redox states, and isotopes of CHNOPS and other volatiles (e.g., noble gases for chronometry), FRTE, and Ce, and cannot be performed on subsamples that have been sterilized by either dry heat or γ-irradiation (see Section 5.7). MAJOR FINDING SS-14: It would be far preferable to work on sterilized gas samples outside of containment, if the technical issues can all be worked out, than to build and operate a large gas chemistry laboratory inside containment. Depending on their reactivity (or inertness), gases extracted from sample tubes could be sterilized by dry heat or γ-irradiation and analyzed outside containment. Alternatively, gas samples could be filtered through an inert grid and the filtered gas analyzed outside containment (see Section 6.5). MAJOR FINDING SS-15: It is fundamental to the campaign-level science objectives of the Mars Sample Return Campaign that the SRF support characterization of samples returned from Mars that contain organic matter and/or minerals formed under habitable conditions that include the ambient paleotemperatures of Mars' surface or subsurface (<∼200°C)-such as most clays, sulfates, and carbonates-in laboratories on Earth in their as-received-at-the-SRF condition (see Section 7.1). MAJOR FINDING SS-16: The search for any category of potential biosignature would be adversely affected by either of the proposed sterilization methods (see Section 7.1). MAJOR FINDING SS-17: Carbon, hydrogen, nitrogen, oxygen, sulfur, phosphorus, and other volatiles would be released from a subsample during the sterilization step. The heat and γ-ray sterilization chambers should be able to monitor weight loss from the subsample during sterilization. Any gases produced in the sample headspace and sterilization chamber during sterilization should be captured and contained for future analyses of the chemical and stable isotopic compositions of the evolved elements and compounds for all sterilized subsamples to characterize and document fully any sterilization-induced alteration and thereby recover some important information that would otherwise be lost (see Section 7.2). This report shows that most of the sterilization-sensitive iMOST measurement types are among either the iMOST objectives for life detection and life characterization (half or more of the measurements for life-science sub-objectives are critically sterilization sensitive) or the iMOST objectives for inferring paleoenvironments, habitability, preservation of potential biosignatures, and the geologic context of life-science observations (nearly half of the measurements for sub-objectives involving geological environments, habitability, potential biosignature preservation, and gases/volatiles are critically sterilization sensitive) (Table 2; see Beaty et al., 2019 for the full lists of iMOST objectives, goals, investigations, and sample measurement types). Sterilization-sensitive science about ancient life on Mars and its relationship to its ancient environment will be severely impaired or lost if the samples collected by Perseverance cannot be analyzed in an unsterilized condition. Summary: ○The SRF should have the capability to carry out or otherwise support scientific investigations that are sensitive to both PPO-provided sterilization methods. ○Measurements of most life-sciences and habitability-related (paleoenvironmental) phenomena are sensitive to both PPO-provided sterilization modes. (Major Finding SS-7, SS-15, SS-16 and Finding SS-1, SS-3, SS-4, SS-5, SS-6, SS-9, SS-11, SS-13) If subsamples for sterilization-sensitive measurement cannot be deemed safe for release, then additional contingency analytical capabilities are needed in the SRF to complete MSR Campaign measurements of sterilization-sensitive sample properties on unsterilized samples in containment (Figure SE1, below). ○Measurements of high-temperature (low-volatile) phenomena are tolerant of both PPO-provided sterilization modes (Finding SS-12). Subsamples for such measurements may be sterilized and released to laboratories outside containment without compromising the scientific value of the measurements. ○Capturing, transporting, and analyzing gases is important and will require careful design of apparatus. Doing so for volatiles present as headspace gases and a dedicated atmosphere sample will enable important atmospheric science (Major Finding SS-14). Similarly, capturing and analyzing gases evolved during subsample sterilization (i.e., gas from the sterilization chamber) would compensate for some sterilization-induced loss of science data from volatile-rich solid (geological) subsamples (Finding SS-14, SS-17; other options incl. SS-8).
Collapse
Affiliation(s)
- Michael A Velbel
- Michigan State University, Earth and Environmental Sciences, East Lansing, Michigan, USA
- Smithsonian Institution, Department of Mineral Sciences, National Museum of Natural History, Washington, DC, USA
| | - Charles S Cockell
- University of Edinburgh, Centre for Astrobiology, School of Physics and Astronomy, Edinburgh, UK
| | - Daniel P Glavin
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, Maryland, USA
| | | | - Aaron B Regberg
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Alvin L Smith
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Nicholas J Tosca
- University of Cambridge, Department of Earth Sciences, Cambridge, UK
| | - Meenakshi Wadhwa
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Arizona State University, Tempe, Arizona, USA
| | | | - Michael A Meyer
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - David W Beaty
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Brandi Lee Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Lindsay E Hays
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - Carl B Agee
- University of New Mexico, Institute of Meteoritics, Albuquerque, New Mexico, USA
| | - Henner Busemann
- ETH Zürich, Institute of Geochemistry and Petrology, Zürich, Switzerland
| | - Barbara Cavalazzi
- Università di Bologna, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Bologna, Italy
| | | | | | - Ernst Hauber
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | | | - Francis M McCubbin
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Lisa M Pratt
- Indiana University Bloomington, Earth and Atmospheric Sciences, Bloomington, Indiana, USA
| | - Caroline L Smith
- Natural History Museum, Department of Earth Sciences, London, UK
- University of Glasgow, School of Geographical and Earth Sciences, Glasgow, UK
| | - Roger E Summons
- Massachusetts Institute of Technology, Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA
| | - Timothy D Swindle
- University of Arizona, Lunar and Planetary Laboratory, Tucson, Arizona, USA
| | - Kimberly T Tait
- Royal Ontario Museum, Department of Natural History, Toronto, Ontario, Canada
| | - Arya Udry
- University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Tomohiro Usui
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Chofu, Tokyo, Japan
| | - Frances Westall
- Centre National de la Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Orléans, France
| | - Maria-Paz Zorzano
- Centro de Astrobiologia (CSIC-INTA), Torrejon de Ardoz, Spain
- University of Aberdeen, Department of Planetary Sciences, School of Geosciences, King's College, Aberdeen, UK
| |
Collapse
|
47
|
Grady MM, Summons RE, Swindle TD, Westall F, Kminek G, Meyer MA, Beaty DW, Carrier BL, Haltigin T, Hays LE, Agee CB, Busemann H, Cavalazzi B, Cockell CS, Debaille V, Glavin DP, Hauber E, Hutzler A, Marty B, McCubbin FM, Pratt LM, Regberg AB, Smith AL, Smith CL, Tait KT, Tosca NJ, Udry A, Usui T, Velbel MA, Wadhwa M, Zorzano MP. The Scientific Importance of Returning Airfall Dust as a Part of Mars Sample Return (MSR). ASTROBIOLOGY 2022; 22:S176-S185. [PMID: 34904884 DOI: 10.1089/ast.2021.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dust transported in the martian atmosphere is of intrinsic scientific interest and has relevance for the planning of human missions in the future. The MSR Campaign, as currently designed, presents an important opportunity to return serendipitous, airfall dust. The tubes containing samples collected by the Perseverance rover would be placed in cache depots on the martian surface perhaps as early as 2023-24 for recovery by a subsequent mission no earlier than 2028-29, and possibly as late as 2030-31. Thus, the sample tube surfaces could passively collect dust for multiple years. This dust is deemed to be exceptionally valuable as it would inform our knowledge and understanding of Mars' global mineralogy, surface processes, surface-atmosphere interactions, and atmospheric circulation. Preliminary calculations suggest that the total mass of such dust on a full set of tubes could be as much as 100 mg and, therefore, sufficient for many types of laboratory analyses. Two planning steps would optimize our ability to take advantage of this opportunity: (1) the dust-covered sample tubes should be loaded into the Orbiting Sample container (OS) with minimal cleaning and (2) the capability to recover this dust early in the workflow within an MSR Sample Receiving Facility (SRF) would need to be established. A further opportunity to advance dust/atmospheric science using MSR, depending upon the design of the MSR Campaign elements, may lie with direct sampling and the return of airborne dust. Summary of Findings FINDING D-1: An accumulation of airfall dust would be an unavoidable consequence of leaving M2020 sample tubes cached and exposed on the surface of Mars. Detailed laboratory analyses of this material would yield new knowledge concerning surface-atmosphere interactions that operate on a global scale, as well as provide input to planning for the future robotic and human exploration of Mars. FINDING D-2: The detailed information that is possible from analysis of airfall dust can only be obtained by investigation in Earth laboratories, and thus this is an important corollary aspect of MSR. The same information cannot be obtained from orbit, from in situ analyses, or from analyses of samples drilled from single locations. FINDING D-3: Given that at least some martian dust would be on the exterior surfaces of any sample tubes returned to Earth, the capability to receive and curate dust in an MSR Sample Receiving Facility (SRF) is essential. SUMMARY STATEMENT: The fact that any sample tubes cached on the martian surface would accumulate some quantity of martian airfall dust presents a low-cost scientifically valuable opportunity. Some of this dust would inadvertently be knocked off as part of tube manipulation operations, but any dust possible should be loaded into the OS along with the sample tubes. This dust should be captured in an SRF and made available for detailed scientific analysis.
Collapse
Affiliation(s)
| | - Roger E Summons
- Massachusetts Institute of Technology, Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA
| | - Timothy D Swindle
- University of Arizona, Lunar and Planetary Laboratory, Tucson, Arizona, USA
| | - Frances Westall
- Centre National de la Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Orléans, France
| | | | - Michael A Meyer
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - David W Beaty
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Brandi L Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Lindsay E Hays
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - Carl B Agee
- University of New Mexico, Institute of Meteoritics, Albuquerque, New Mexico, USA
| | - Henner Busemann
- ETH Zürich, Institute of Geochemistry and Petrology, Zürich, Switzerland
| | - Barbara Cavalazzi
- Università di Bologna, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Bologna, Italy
| | - Charles S Cockell
- University of Edinburgh, Centre for Astrobiology, School of Physics and Astronomy, Edinburgh, UK
| | | | - Daniel P Glavin
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, Maryland, USA
| | - Ernst Hauber
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | | | | | - Francis M McCubbin
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Lisa M Pratt
- Indiana University Bloomington, Earth and Atmospheric Sciences, Bloomington, Indiana, USA
| | - Aaron B Regberg
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Alvin L Smith
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Caroline L Smith
- Natural History Museum, Department of Earth Sciences, London, UK
- University of Glasgow, School of Geographical and Earth Sciences, Glasgow, UK
| | - Kimberly T Tait
- Royal Ontario Museum, Department of Natural History, Toronto, Ontario, Canada
| | - Nicholas J Tosca
- University of Cambridge, Department of Earth Sciences, Cambridge, UK
| | - Arya Udry
- University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Tomohiro Usui
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Chofu, Tokyo, Japan
| | - Michael A Velbel
- Michigan State University, Earth and Environmental Sciences, East Lansing, Michigan, USA
- Smithsonian Institution, Department of Mineral Sciences, National Museum of Natural History, Washington, DC, USA
| | - Meenakshi Wadhwa
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Arizona State University, Tempe, Arizona, USA
| | - Maria-Paz Zorzano
- Centro de Astrobiologia (CSIC-INTA), Torrejon de Ardoz, Spain
- University of Aberdeen, Department of Planetary Sciences, School of Geosciences, King's College, Aberdeen, UK
| |
Collapse
|
48
|
Royle SH, Salter TL, Watson JS, Sephton MA. Mineral Matrix Effects on Pyrolysis Products of Kerogens Infer Difficulties in Determining Biological Provenance of Macromolecular Organic Matter at Mars. ASTROBIOLOGY 2022; 22:520-540. [PMID: 35171040 DOI: 10.1089/ast.2021.0074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ancient martian organic matter is likely to take the form of kerogen-like recalcitrant macromolecular organic matter (MOM), existing in close association with reactive mineral surfaces, especially iron oxides. Detecting and identifying a biological origin for martian MOM will therefore be of utmost importance for life-detection efforts at Mars. We show that Type I and Type IV kerogens provide effective analogues for putative martian MOM of biological and abiological (meteoric) provenances, respectively. We analyze the pyrolytic breakdown products when these kerogens are mixed with mineral matrices highly relevant for the search for life on Mars. We demonstrate that, using traditional thermal techniques as generally used by the Sample Analysis at Mars and Mars Organic Molecule Analyser instruments, even the breakdown products of highly recalcitrant MOM are transformed during analysis in the presence of reactive mineral surfaces, particularly iron. Analytical transformation reduces the diagnostic ability of this technique, as detected transformation products of both biological and abiological MOM may be identical (low molecular weight gas phases and benzene) and indistinguishable. The severity of transformational effects increased through calcite < kaolinite < hematite < nontronite < magnetite < goethite. Due to their representation of various habitable aqueous environments and the preservation potential of organic matter by iron, it is not advisable to completely avoid iron-rich strata. We conclude that hematite-rich localities, with evidence of extensive aqueous alteration of originally reducing phases, such as the Vera Rubin Ridge, may be relatively promising targets for identifying martian biologically sourced MOM.
Collapse
Affiliation(s)
- Samuel H Royle
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Tara L Salter
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Jonathan S Watson
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Mark A Sephton
- Department of Earth Science and Engineering, Imperial College London, London, UK
| |
Collapse
|
49
|
Singh D, Sinha RK, Singh P, Roy N, Mukherjee S. Astrobiological Potential of Fe/Mg Smectites with Special Emphasis on Jezero Crater, Mars 2020 Landing Site. ASTROBIOLOGY 2022; 22:579-597. [PMID: 35171004 DOI: 10.1089/ast.2021.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Life is known to adapt in accordance with its surrounding environment and sustainable resources available to it. Since harsh conditions would have precluded any possible aerobic evolution of life at the martian surface, it is plausible that martian life, should it exist, would have evolved in such a way as to derive energy from more optimum resources. Iron is one of the most abundant elements present in the martian crust and occurs at about twice the amount present on Earth. Clay minerals contribute to about half the iron found in soils and sediments. On Earth, clay acts as an electron donor as well as an acceptor in the carbon cycles and thereby supports a wide variety of metabolic reactions. In this context, we consider the potential of Fe/Mg smectites, one of the most widely reported hydrated minerals on Mars, for preservation of macro- and microscopic biosignatures. We proceed by understanding the environmental conditions during the formation of smectites and various microbes and metabolic processes associated with them as indicated in Earth-based studies. We also explore the possibility of biosignatures and their identification within the Mars 2020 landing site (Jezero Crater) by using the astrobiological payloads on board the Perseverance rover.
Collapse
Affiliation(s)
- Deepali Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Priyadarshini Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nidhi Roy
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Saumitra Mukherjee
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
50
|
Vasavada AR. Mission Overview and Scientific Contributions from the Mars Science Laboratory Curiosity Rover After Eight Years of Surface Operations. SPACE SCIENCE REVIEWS 2022; 218:14. [PMID: 35399614 PMCID: PMC8981195 DOI: 10.1007/s11214-022-00882-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED NASA's Mars Science Laboratory mission, with its Curiosity rover, has been exploring Gale crater (5.4° S, 137.8° E) since 2012 with the goal of assessing the potential of Mars to support life. The mission has compiled compelling evidence that the crater basin accumulated sediment transported by marginal rivers into lakes that likely persisted for millions of years approximately 3.6 Ga ago in the early Hesperian. Geochemical and mineralogical assessments indicate that environmental conditions within this timeframe would have been suitable for sustaining life, if it ever were present. Fluids simultaneously circulated in the subsurface and likely existed through the dry phases of lake bed exposure and aeolian deposition, conceivably creating a continuously habitable subsurface environment that persisted to less than 3 Ga in the early Amazonian. A diversity of organic molecules has been preserved, though degraded, with evidence for more complex precursors. Solid samples show highly variable isotopic abundances of sulfur, chlorine, and carbon. In situ studies of modern wind-driven sediment transport and multiple large and active aeolian deposits have led to advances in understanding bedform development and the initiation of saltation. Investigation of the modern atmosphere and environment has improved constraints on the timing and magnitude of atmospheric loss, revealed the presence of methane and the crater's influence on local meteorology, and provided measurements of high-energy radiation at Mars' surface in preparation for future crewed missions. Rover systems and science instruments remain capable of addressing all key scientific objectives. Emphases on advance planning, flexibility, operations support work, and team culture have allowed the mission team to maintain a high level of productivity in spite of declining rover power and funding. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11214-022-00882-7.
Collapse
Affiliation(s)
- Ashwin R. Vasavada
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|