1
|
Samal A, Majzoub J, Rodriguez Betancourt A, Webber L, Mazzocco J, Wang HL, Castilho R, Fenno JC, Chan HL, Kripfgans OD. High-Frequency Ultrasound for Detecting Periodontal Inflammation: A Preclinical Diagnostic Accuracy Study. J Periodontal Res 2025. [PMID: 39799460 DOI: 10.1111/jre.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/15/2025]
Abstract
AIM Ultrasonography (US) has shown accuracy in imaging healthy periodontium. This study aims to evaluate the feasibility and accuracy of US for estimating dimensions of inflamed periodontium induced by ligature and bacteria. METHODS Periodontal tissues of maxillary as well as mandibular premolars and molars in six female mini pigs were treated with ligature and three strains of bacteria for 4-10 weeks. Before euthanization, the periodontium was imaged with US. After euthanization, cone-beam computed tomography (CBCT) scans and histology were performed. Soft and hard tissue measurements by calibrated and masked examiners from US, CBCT, and histology were statistically compared. RESULTS Seventy-one histological samples with corresponding CBCT and US scans were available for analysis. Overall, there was a good to excellent agreement between histology and US (ICC: 0.77-0.96) for parameters such as Soft Tissue Thickness (STT), Gingival Recession, Crestal Bone Thickness (CBT), and the bone-to-cemento-enamel junction (B-CEJ) distance. However, discrepancies were observed for STT at 3 mm below the CEJ and Soft Tissue Height (STH) (ICC: 0.44 and 0.54, respectively). CBCT showed lower agreement with histology, particularly for thin CBT (< 1 mm), with an ICC of 0.20, compared to 0.90 for US vs. histology. CBCT failed to identify crestal bone in 14 cases when the crestal bone was thin. Notably, CBCT results differed more from histological measurements than US in assessing B-CEJ and thin CBT. CONCLUSION US demonstrated substantial potential as a transformative tool for periodontal diagnostics, exhibiting high agreement with histology in determining critical parameters. Compared to CBCT, US offered advantages, particularly in cases with thin crestal bone.
Collapse
Affiliation(s)
- Ankita Samal
- Department of Periodontology, University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, USA
| | - Jad Majzoub
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | | | - Liana Webber
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - John Mazzocco
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Hom-Lay Wang
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Rogerio Castilho
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Hsun-Liang Chan
- Division of Periodontology, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Oliver D Kripfgans
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Woo J, Kripfgans O, Wang IC, Samal A, Betancourt AR, Fenno JC, Chan HL. Ultrasonographic Evaluation of Vascular Response to Mechanical Compression during Induced Gingival Inflammation. J Dent Res 2024; 103:1403-1411. [PMID: 39582155 DOI: 10.1177/00220345241286807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
The aim of this study was to evaluate the gingival vascular response to mechanical compression during inflammation using ultrasonography. Four female and 4 male Sinclair mini pigs 18 mo of age were included in the study. Pathogenic bacteria-impregnated silk ligatures were placed around the third premolars (PM3), fourth premolars (PM4), and first molars (M1). Ligatures were placed per quadrant at 2-wk intervals in random order. Ultrasonographic study was performed at 2-wk intervals following baseline until the 10th week. Brightness mode (B-mode) images and color flow cine loops were captured at 2 different conditions: 1 with only coupling gel between the ultrasound transducer and the mucosal surface and 1 with the transducer compressing the mucosal surface. The compression was visually adjusted until minimal to no blood flow was detected in color-flow mode. Compression was facilitated using a solid gel pad attached to the transducer. Strain values were obtained from B-mode images of the gel pad and plotted versus study weeks. The t test comparisons were obtained to the baseline (week 0). Data from female and male pigs were plotted and analyzed separately for comparison. Gel pad strain increased with peak around week 4 and gradually decreased in both sexes. In male pigs, the increase in strain was statistically significant in weeks 2, 4, and 6 of all teeth regions and week 8 of PM4 and M1 regions. In female pigs, the increase in strain was significant in only week 4 of PM4. Higher strain required for stoppage of blood flow implies increased gingival blood flow with inflammation, which corresponds with previous studies. Considerably smaller changes in gel pad strain were noted from female pigs, indicating a smaller increase in gingival blood flow compared with males. This study demonstrated a possible application of intraoral ultrasonography for assessment of gingival inflammation.
Collapse
Affiliation(s)
- J Woo
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Dentistry, College of Medicine, Jeju National University, Jeju, Republic of Korea
| | - O Kripfgans
- Department of Radiology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - I-C Wang
- Department of Periodontics and Oral Medicine, College of Dentistry and Dental Clinics, The University of Iowa, Iowa City, IA, USA
| | - A Samal
- Department of Periodontics and Oral Medicine, College of Dentistry and Dental Clinics, The University of Iowa, Iowa City, IA, USA
| | - A R Betancourt
- Department of Periodontics, College of Dentistry, University of Illinois, Chicago, IL, USA
| | - J C Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - H-L Chan
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
3
|
Abe K, Yahara H, Nakao R, Yamaguchi T, Akeda Y. A simple and cost-effective transformation system for Porphyromonas gingivalis via natural competence. Front Microbiol 2024; 15:1476171. [PMID: 39498132 PMCID: PMC11532111 DOI: 10.3389/fmicb.2024.1476171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024] Open
Abstract
Porphyromonas gingivalis is a major oral bacterial pathogen responsible for severe periodontal diseases. Numerous studies have used genetic approaches to elucidate the molecular mechanisms underlying its pathogenicity. Typically, electroporation and conjugation are utilized for mutagenesis of P. gingivalis; however, these techniques require specialized equipment such as high-voltage electroporators, conjugative plasmids and donor strains. In this study, we present a simple, cost-effective transformation method for P. gingivalis without any special equipment by exploiting its natural DNA competence. P. gingivalis ATCC 33277 was grown to the early-exponential phase and mixed with a donor DNA cassette. This mixture was then spotted onto a BHI-HM blood-agar plate and incubated for one day to promote colony biofilm formation. The resulting colony biofilm was suspended in a liquid medium and spread onto antibiotic-containing agar plates. Transformants appeared within 4 to 5 days, achieving a maximum efficiency of 7.7 × 106 CFU/μg. Although we optimized the transformation conditions using a representative strain ATCC 33277, but the method was also effective for other P. gingivalis strains, W83 and TDC60. Additionally, we discovered that deletion of PGN_0421 or PGN_0519, encoding putative ComEA and ComEC, abolished competency, indicating that these gene products are essential for the natural competence.
Collapse
Affiliation(s)
- Kimihiro Abe
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroko Yahara
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ryoma Nakao
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takehiro Yamaguchi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
4
|
Samal A, Chan HL, Wang IC, Webber L, Gallagher S, Majzoub J, Barootchi S, Mazzocco J, Betancourt AR, Castilho R, Masotti M, Kripfgans OD. Use of High-Frequency Ultrasound for the Correlation of Epithelial Rete Peg Variation. ULTRASOUND IN MEDICINE & BIOLOGY 2024:S0301-5629(24)00236-9. [PMID: 39142939 DOI: 10.1016/j.ultrasmedbio.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 08/16/2024]
Abstract
OBJECTIVE Rete pegs are projections of the oral epithelium into connective tissue. Their dimensions change during pathological conditions and may correlate with wound-healing status. Non-invasive, high-frequency ultrasound (US) may be able to capture these changes and aid in early detection of histopathological changes. The aim of this preclinical study is to correlate US images with histology and quantify epithelial layers at different tooth sites. METHODS Sagittal B-mode images of mid-facial and interproximal oral soft tissue sites were recorded in a preclinical minipig model using a linear array in second harmonic mode (12/24 MHz). Histology samples from the same locations were stained (hematoxylin and eosin), digitized and registered with US images. Manual annotations were used to measure distances D1 (thickness of epithelium on histology vs. hyperechoic zone on US) and D2 (sum of epithelial thickness and length of rete pegs on histology vs. sum of hyperechoic and hypoechoic zone on US) to statistically analyze them. RESULTS Ultrasonic-derived dimensions yielded a mean bias of -0.64 (55% coefficient of variance [COV]: -180 to +180 µm) and -12 µm (39% COV: -260 to +240 µm) for D1 and D2, respectively. Individualized analysis of D1 and D2 by tooth type showed similar tends in the ability to differentiate between epithelium at different tooth locations, on both histology and US. CONCLUSION Assessing soft tissue dimensions on a sub-millimeter scale using clinical imaging hardware is still a developing area. Future research might open doors for diagnosis of oral pathologies and abnormal wound healing, and may limit false-positive indications for biopsies.
Collapse
Affiliation(s)
- Ankita Samal
- Department of Radiology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Periodontology, University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| | - Hsun-Liang Chan
- Department of Periodontology and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Department of Periodontology, Ohio State University College of Dentistry, Columbus, OH, USA
| | - I-Ching Wang
- Department of Periodontology, University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA; Department of Periodontology and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Liana Webber
- Department of Periodontology and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Sarah Gallagher
- Department of Radiology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jad Majzoub
- Department of Periodontology and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Shayan Barootchi
- Department of Periodontology and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - John Mazzocco
- Department of Periodontology and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Amanda Rodriguez Betancourt
- Department of Periodontology and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Department of Periodontology, University of Illinois Chicago College of Dentistry, Chicago, IL, USA
| | - Rogerio Castilho
- Department of Periodontology and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Maria Masotti
- Department of Radiology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Oliver D Kripfgans
- Department of Radiology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Chowdhury N, Wellslager B, Lee H, Gilbert JL, Yilmaz Ö. Glutamate is a key nutrient for Porphyromonas gingivalis growth and survival during intracellular autophagic life under nutritionally limited conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602514. [PMID: 39026746 PMCID: PMC11257440 DOI: 10.1101/2024.07.08.602514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Porphyromonas gingivalis survives in special autophagic vacuoles that serve as major replicative habitats in human primary gingival epithelial cells (GECs). As an asaccharolytic strict anaerobe, P. gingivalis is dependent on amino acids and peptides for nutrient sources. However, it is largely unknown as to P. gingivalis' metabolic processing under the nutritionally limited intracellular environments such the vacuoles, especially the preferred amino acids and associated-metabolic machineries. Here we elucidate that a Glutamate (Glu) catabolic enzyme, glutamate dehydrogenase (GdhA) is highly enriched in the isolated P. gingivalis -containing vacuoles. Interestingly, we found that P. gingivalis induces conversion of intracellular glutamine pool to Glu determined by analyses of the P. gingivalis- containing vacuoles and the whole infected-GECs. Critically, exogenous Glu-Glu dipeptide, a simple precursor of Glu, significantly increases the size of isolated intact P. gingivalis containing-vacuoles and live wild-type P. gingivalis numbers in GECs. In contrast, the isogenic GdhA-deficient-strain, Δ gdhA displayed a significant growth defect with collapsed-vacuoles in GECs. Next, we confirmed that P. gingivalis uptakes 14 C-Glu and it preferentially utilizes Glu-Glu-dipeptide using a nutritionally reduced Tryptic-Soy-Broth (TSB) media supplemented with Glu-Glu. Contrary, Δ gdhA -strain showed no detectable growth especially in nutritionally reduced TSB media with Glu-Glu. Using Atomic-Force-Microscopy, we observed that, wild-type P. gingivalis but not Δ gdhA strain notably increased the cell volume upon Glu-Glu supplementation, an indicator of higher metabolism and growth. Utilization of a human gingiva-mimicking organoid-system further validated the importance of Glu as an essential nutrient for the intramucosal colonization of P. gingivalis via the protected replicative vacuoles in GECs. Importance This study reveals that P. gingivalis heavily depends on preferential utilization of Glutamate (Glu) for autophagic vacuolar growth and survival in human GECs. Several novel observations are made to support this: (i) GdhA of P. gingivalis is highly enriched in these vacuoles, (ii) P. gingivalis induces a large conversion of intracellular glutamine to Glu, (iii) size of vacuoles are significantly increased in the presence of Glu-Glu in P. gingivalis wild-type strain infection which is opposite in a Δ gdhA strain, (iv) P. gingivalis uptakes 14 C-Glu and preferentially utilizes Glu-Glu dipeptide, (v) similarly, wild-type strain shows growth increase in a nutritionally reduced bacterial culture media, and (vi) finally, Glu-Glu supplementation increases bacterial cell-volume of P. gingivalis wild-type but not Δ gdhA strain, an indicator of higher metabolism and growth. Taken together, this study highlights the pathophysiological importance of Glu for P. gingivalis growth-rate, biomass induction and survival in nutritionally limited host subcellular environments.
Collapse
|
6
|
Bereta GP, Strzelec K, Łazarz-Bartyzel K, Dziedzic-Kowalska A, Nowakowska Z, Krutyhołowa A, Bielecka E, Kantyka T, Grabiec AM, Kaczmarzyk T, Chomyszyn-Gajewska M, Potempa J, Gawron K. Identification of a new genetic variant (G231N, E232T, N235D) of peptidylarginine deiminase from P. gingivalis in advanced periodontitis. Front Immunol 2024; 15:1355357. [PMID: 38576615 PMCID: PMC10991804 DOI: 10.3389/fimmu.2024.1355357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Chronic periodontitis (CP), an inflammatory disease of periodontal tissues driven by a dysbiotic subgingival bacterial biofilm, is also associated with several systemic diseases, including rheumatoid arthritis (RA). Porphyromonas gingivalis, one of the bacterial species implicated in CP as a keystone pathogen produces peptidyl arginine deiminase (PPAD) that citrullinates C-terminal arginine residues in proteins and peptides. Autoimmunity to citrullinated epitopes is crucial in RA, hence PPAD activity is considered a possible mechanistic link between CP and RA. Here we determined the PPAD enzymatic activity produced by clinical isolates of P. gingivalis, sequenced the ppad gene, and correlated the results with clinical determinants of CP in patients from whom the bacteria were isolated. The analysis revealed variations in PPAD activity and genetic diversity of the ppad gene in clinical P. gingivalis isolates. Interestingly, the severity of CP was correlated with a higher level of PPAD activity that was associated with the presence of a triple mutation (G231N, E232T, N235D) in PPAD in comparison to W83 and ATCC 33277 type strains. The relation between mutations and enhanced activity was verified by directed mutagenesis which showed that all three amino acid residue substitutions must be introduced into PPAD expressed by the type strains to obtain the super-active enzyme. Cumulatively, these results may lead to the development of novel prognostic tools to assess the progress of CP in the context of associated RA by analyzing the ppad genotype in CP patients infected with P. gingivalis.
Collapse
Affiliation(s)
- Grzegorz P. Bereta
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Strzelec
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Łazarz-Bartyzel
- Department of Periodontology, Preventive Dentistry and Oral Pathology, Faculty of Medicine, Medical College, Jagiellonian University, Krakow, Poland
| | - Agata Dziedzic-Kowalska
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Zuzanna Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Krutyhołowa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewa Bielecka
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tomasz Kantyka
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksander M. Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tomasz Kaczmarzyk
- Department of Oral Surgery, Medical College, Jagiellonian University, Krakow, Poland
| | - Maria Chomyszyn-Gajewska
- Department of Periodontology, Preventive Dentistry and Oral Pathology, Faculty of Medicine, Medical College, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
7
|
Pham C, Guo S, Han X, Coleman L, Sze CW, Wang H, Liu J, Li C. A pleiotropic role of sialidase in the pathogenicity of Porphyromonas gingivalis. Infect Immun 2024; 92:e0034423. [PMID: 38376159 PMCID: PMC10929438 DOI: 10.1128/iai.00344-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
As one of the keystone pathogens of periodontitis, the oral bacterium Porphyromonas gingivalis produces an array of virulence factors, including a recently identified sialidase (PG0352). Our previous report involving loss-of-function studies indicated that PG0352 plays an important role in the pathophysiology of P. gingivalis. However, this report had not been corroborated by gain-of-function studies or substantiated in different P. gingivalis strains. To fill these gaps, herein we first confirm the role of PG0352 in cell surface structures (e.g., capsule) and serum resistance using P. gingivalis W83 strain through genetic complementation and then recapitulate these studies using P. gingivalis ATCC33277 strain. We further investigate the role of PG0352 and its counterpart (PGN1608) in ATCC33277 in cell growth, biofilm formation, neutrophil killing, cell invasion, and P. gingivalis-induced inflammation. Our results indicate that PG0352 and PGN1608 are implicated in P. gingivalis cell surface structures, hydrophobicity, biofilm formation, resistance to complement and neutrophil killing, and host immune responses. Possible molecular mechanisms involved are also discussed. In summary, this report underscores the importance of sialidases in the pathophysiology of P. gingivalis and opens an avenue to elucidate their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Christopher Pham
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Shuaiqi Guo
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
| | - Xiao Han
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Laurynn Coleman
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ching Wooen Sze
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Huizhi Wang
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
| | - Chunhao Li
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
8
|
Szczęśniak K, Veillard F, Scavenius C, Chudzik K, Ferenc K, Bochtler M, Potempa J, Mizgalska D. The Bacteroidetes Q-rule and glutaminyl cyclase activity increase the stability of extracytoplasmic proteins. mBio 2023; 14:e0098023. [PMID: 37750700 PMCID: PMC10653852 DOI: 10.1128/mbio.00980-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/07/2023] [Indexed: 09/27/2023] Open
Abstract
IMPORTANCE Exclusively in the Bacteroidetes phylum, most proteins exported across the inner membrane via the Sec system and released into the periplasm by type I signal peptidase have N-terminal glutamine converted to pyroglutamate. The reaction is catalyzed by the periplasmic enzyme glutaminyl cyclase (QC), which is essential for the growth of Porphyromonas gingivalis and other periodontopathogens. Apparently, pyroglutamyl formation stabilizes extracytoplasmic proteins and/or protects them from proteolytic degradation in the periplasm. Given the role of P. gingivalis as the keystone pathogen in periodontitis, P. gingivalis QC is a promising target for the development of drugs to treat and/or prevent this highly prevalent chronic inflammatory disease leading to tooth loss and associated with severe systemic diseases.
Collapse
Affiliation(s)
- Katarzyna Szczęśniak
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Florian Veillard
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Kamila Chudzik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Kinga Ferenc
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
9
|
Kim S, Bando Y, Chang C, Kwon J, Tarverti B, Kim D, Lee SH, Ton-That H, Kim R, Nara PL, Park NH. Topical application of Porphyromonas gingivalis into the gingival pocket in mice leads to chronic‑active infection, periodontitis and systemic inflammation. Int J Mol Med 2022; 50:103. [PMID: 35703359 PMCID: PMC9242655 DOI: 10.3892/ijmm.2022.5159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/14/2022] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis (Pg), one of the 'red-complex' perio-pathogens known to play a critical role in the development of periodontitis, has been used in various animal models to mimic human bacteria-induced periodontitis. In order to achieve a more realistic animal model of human Pg infection, the present study investigated whether repeated small-volume topical applications of Pg directly into the gingival pocket can induce local infection, including periodontitis and systemic vascular inflammation in wild-type mice. Freshly cultured Pg was topically applied directly into the gingival pocket of the second molars for 5 weeks (3 times/week). After the final application, the mice were left in cages for 4 or 8 weeks and sacrificed. The status of Pg colony formation in the pocket, gingival inflammation, alveolar bone loss, the expression levels of pro-inflammatory cytokines in the serum and aorta, the presence of anti-Pg lipopolysaccharide (LPS) and gingipain (Kpg and RgpB) antibodies in the serum, as well as the accumulation of Pg LPS and gingipain aggregates in the gingiva and arterial wall were evaluated. The topical application of Pg into the gingival pocket induced the following local and systemic pathohistological changes in mice when examined at 4 or 8 weeks after the final topical Pg application: Pg colonization in the majority of gingival pockets; increased gingival pocket depths; gingival inflammation indicated by the increased expression of TNF-α, IL-6 and IL-1β; significant loss of alveolar bone at the sites of topical Pg application; and increased levels of pro-inflammatory cytokines, such as TNF-α, IL-1β, IL-17, IL-13, KC and IFN-γ in the serum in comparison to those from mice receiving PBS. In addition, the Pg application/colonization model induced anti-Pg LPS and gingipain antibodies in serum, as well as the accumulation of Pg LPS and gingipain aggregates in the gingivae and arterial walls. To the best of our knowledge, this mouse model represents the first example of creating a more sustained local infection in the gingival tissues of wild-type mice and may prove to be useful for the investigation of the more natural and complete pathogenesis of the bacteria in the development of local oral and systemic diseases, such as atherosclerosis. It may also be useful for the determination of a treatment/prevention/efficacy model associated with Pg-induced colonization periodontitis in mice.
Collapse
Affiliation(s)
- Sharon Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Yasuhiko Bando
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Chungyu Chang
- Section of Oral Biology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Jeonga Kwon
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Berta Tarverti
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Doohyun Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Sung Hee Lee
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Hung Ton-That
- Section of Oral Biology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Reuben Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Peter L Nara
- Keystone Bio Incorporated, Suite 200, St. Louis, MO 63110, USA
| | - No-Hee Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Wielento A, Bereta GP, Łagosz-Ćwik KB, Eick S, Lamont RJ, Grabiec AM, Potempa J. TLR2 Activation by Porphyromonas gingivalis Requires Both PPAD Activity and Fimbriae. Front Immunol 2022; 13:823685. [PMID: 35432342 PMCID: PMC9010743 DOI: 10.3389/fimmu.2022.823685] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
Porphyromonas gingivalis, a keystone oral pathogen implicated in development and progression of periodontitis, may also contribute to the pathogenicity of diseases such as arthritis, atherosclerosis, and Alzheimer's. P. gingivalis is a master manipulator of host immune responses due to production of a large variety of virulence factors. Among these, P. gingivalis peptidilarginine deiminase (PPAD), an enzyme unique to P. gingivalis, converts C-terminal Arg residues in bacterium- and host-derived proteins and peptides into citrulline. PPAD contributes to stimulation of proinflammatory responses in host cells and is essential for activation of the prostaglandin E2 (PGE2) synthesis pathway in gingival fibroblasts. Since P. gingivalis is recognized mainly by Toll-like receptor-2 (TLR2), we investigated the effects of PPAD activity on TLR2-dependent host cell responses to P. gingivalis, as well as to outer membrane vesicles (OMVs) and fimbriae produced by this organism. Using reporter cell lines, we found that PPAD activity was required for TLR2 activation by P. gingivalis cells and OMVs. We also found that fimbriae, an established TLR2 ligand, from wild-type ATCC 33277 (but not from its isogenic PPAD mutant) enhanced the proinflammatory responses of host cells. Furthermore, only fimbriae from wild-type ATCC 33277, but not from the PPAD-deficient strains, induced cytokine production and stimulated expression of genes within the PGE2 synthesis pathway in human gingival fibroblasts via activation of the NF-ĸB and MAP kinase-dependent signaling pathways. Analysis of ten clinical isolates revealed that type I FimA is preferable for TLR2 signaling enhancement. In conclusion, the data strongly suggest that both PPAD activity and fimbriae are important for TLR2-dependent cell responses to P. gingivalis infection.
Collapse
Affiliation(s)
- Aleksandra Wielento
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grzegorz P. Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna B. Łagosz-Ćwik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sigrun Eick
- Department of Periodontology, Laboratory of Oral Microbiology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Aleksander M. Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| |
Collapse
|
11
|
Kondo Y. Construction of a Mutant in Prevotella melaninogenica Using the Conjugation Transfer Method with Escherichia coli. Methods Mol Biol 2021; 2210:33-41. [PMID: 32815125 DOI: 10.1007/978-1-0716-0939-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Prevotella melaninogenica is a bacterium that is resident in the oral cavity and upper respiratory tract and is associated with periodontal disease and aspiration pneumonia. Prevotella mutants are difficult to produce and only few reports have been reported. We examined several methods and many strains and succeeded in producing mutants in Prevotella melaninogenica GAI 07411. In this chapter, we will describe how to create a mutation of a target gene by carrying out conjugation transfer using Escherichia coli S17-1 as a donor and introducing a plasmid into P. melaninogenica.
Collapse
Affiliation(s)
- Yoshio Kondo
- Department of Pediatric Dentistry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| |
Collapse
|
12
|
Oral Pathogen Porphyromonas gingivalis Can Escape Phagocytosis of Mammalian Macrophages. Microorganisms 2020; 8:microorganisms8091432. [PMID: 32961960 PMCID: PMC7563140 DOI: 10.3390/microorganisms8091432] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Macrophages are phagocytic cells that play a key role in host immune response and clearance of microbial pathogens. Porphyromonas gingivalis is an oral pathogen associated with the development of periodontitis. Escape from macrophage phagocytosis was tested by infecting THP-1-derived human macrophages and RAW 264.7 mouse macrophages with strains of P. gingivalis W83 and 33277 as well as Streptococcus gordonii DL1 and Escherichia coli OP50 at MOI = 100. CFU counts for all intracellular bacteria were determined. Then, infected macrophages were cultured in media without antibiotics to allow for escape and escaping bacteria were quantified by CFU counting. P. gingivalis W83 displayed over 60% of the bacterial escape from the total amount of intracellular CFUs, significantly higher compared to all other bacteria strains. In addition, bacterial escape and re-entry were also tested and P. gingivalis W83, once again, showed the highest numbers of CFUs able to exit and re-enter macrophages. Lastly, the function of the PG0717 gene of P. gingivalis W83 was tested on escape but found not related to this activity. Altogether, our results suggest that P. gingivalis W83 is able to significantly avoid macrophage phagocytosis. We propose this ability is likely linked to the chronic nature of periodontitis.
Collapse
|
13
|
Kin LX, Butler CA, Slakeski N, Hoffmann B, Dashper SG, Reynolds EC. Metabolic cooperativity between Porphyromonas gingivalis and Treponema denticola. J Oral Microbiol 2020; 12:1808750. [PMID: 32944158 PMCID: PMC7482830 DOI: 10.1080/20002297.2020.1808750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Porphyromonas gingivalis and Treponema denticola are proteolytic periodontopathogens that co-localize in polymicrobial subgingival plaque biofilms, display in vitro growth symbiosis and synergistic virulence in animal models of disease. These symbioses are underpinned by a range of metabolic interactions including cooperative hydrolysis of glycine-containing peptides to produce free glycine, which T. denticola uses as a major energy and carbon source. Objective To characterize the P. gingivalis gene products essential for these interactions. Methods: The P. gingivalis transcriptome exposed to cell-free T. denticola conditioned medium was determined using RNA-seq. P. gingivalis proteases potentially involved in hydrolysis of glycine-containing peptides were identified using a bioinformatics approach. Results One hundred and thirty-twogenes displayed differential expression, with the pattern of gene expression consistent with succinate cross-feeding from T. denticola to P. gingivalis and metabolic shifts in the P. gingivalis folate-mediated one carbon superpathway. Interestingly, no P. gingivalis proteases were significantly up-regulated. Three P. gingivalis proteases were identified as candidates and inactivated to determine their role in the release of free glycine. P. gingivalis PG0753 and PG1788 but not PG1605 are involved in the hydrolysis of glycine-containing peptides, making free glycine available for T. denticola utilization. Conclusion Collectively these metabolic interactions help to partition resources and engage synergistic interactions between these two species.
Collapse
Affiliation(s)
- Lin Xin Kin
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Catherine A Butler
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Nada Slakeski
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Brigitte Hoffmann
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Stuart G Dashper
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
14
|
Madej M, White JBR, Nowakowska Z, Rawson S, Scavenius C, Enghild JJ, Bereta GP, Pothula K, Kleinekathoefer U, Baslé A, Ranson NA, Potempa J, van den Berg B. Structural and functional insights into oligopeptide acquisition by the RagAB transporter from Porphyromonas gingivalis. Nat Microbiol 2020; 5:1016-1025. [PMID: 32393857 PMCID: PMC7610489 DOI: 10.1038/s41564-020-0716-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/31/2020] [Indexed: 12/30/2022]
Abstract
Porphyromonas gingivalis, an asaccharolytic member of the Bacteroidetes, is a keystone pathogen in human periodontitis that may also contribute to the development of other chronic inflammatory diseases. P. gingivalis utilizes protease-generated peptides derived from extracellular proteins for growth, but how these peptides enter the cell is not clear. Here, we identify RagAB as the outer-membrane importer for these peptides. X-ray crystal structures show that the transporter forms a dimeric RagA2B2 complex, with the RagB substrate-binding surface-anchored lipoprotein forming a closed lid on the RagA TonB-dependent transporter. Cryo-electron microscopy structures reveal the opening of the RagB lid and thus provide direct evidence for a 'pedal bin' mechanism of nutrient uptake. Together with mutagenesis, peptide-binding studies and RagAB peptidomics, our work identifies RagAB as a dynamic, selective outer-membrane oligopeptide-acquisition machine that is essential for the efficient utilization of proteinaceous nutrients by P. gingivalis.
Collapse
Affiliation(s)
- Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Joshua B R White
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- The Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA
| | - Zuzanna Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Shaun Rawson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- The Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA
| | - Carsten Scavenius
- Interdisciplinary Nanoscience Center (iNANO) and the Department of Molecular Biology, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Interdisciplinary Nanoscience Center (iNANO) and the Department of Molecular Biology, Aarhus University, Aarhus, Denmark
| | - Grzegorz P Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karunakar Pothula
- Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen, Germany
| | | | - Arnaud Baslé
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.
| | - Bert van den Berg
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
15
|
Cheng T, Lai YT, Wang C, Wang Y, Jiang N, Li H, Sun H, Jin L. Bismuth drugs tackle Porphyromonas gingivalis and attune cytokine response in human cells. Metallomics 2020; 11:1207-1218. [PMID: 31179464 DOI: 10.1039/c9mt00085b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Periodontitis is the leading cause of severe tooth loss and edentulism in adults worldwide and is closely linked to systemic conditions such as diabetes and cardiovascular disease. Porphyromonas gingivalis is the key pathogen in periodontitis. Herein, we provided the first evidence that bismuth drugs suppress P. gingivalis in its planktonic, biofilm, and intracellular states. In total, 42 bismuth-associated proteins were identified including its major virulent factors (e.g., gingipains, hemagglutinin HagA, and fimbriae). Bismuth perturbed its iron acquisition, disturbed the energy metabolism and virulence, and deactivated multiple key enzymes (e.g., superoxide dismutase and thioredoxins). Moreover, bismuth inhibited its biofilm formation and disrupted the 3-day matured biofilms. Notably, the internalized P. gingivalis in various human cells (e.g., human gingival epithelium progenitors, HGEPs) was oppressed by bismuth but not the commonly used antibiotic metronidazole. Importantly, bismuth drugs enabled the counteraction of immuno-inflammatory responses in different host cells perturbed by P. gingivalis. The production of IL-6 and IL-8 attenuated by P. gingivalis in both of native and IL-1β-stimulated HGEPs was restored, while the bacterium-enhanced expression of IL-6, IL-1β, and TNFα in THP-1 macrophages was alleviated. This proof-of-concept study brings prospects for the potential reposition of the routinely used anti-Helicobacter pylori bismuth drugs to better manage inflammatory diseases such as periodontitis and P. gingivalis-related complex systemic disorders.
Collapse
Affiliation(s)
- Tianfan Cheng
- Discipline of Periodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Yau-Tsz Lai
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Chuan Wang
- Discipline of Periodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Yi Wang
- Discipline of Periodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Nan Jiang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Lijian Jin
- Discipline of Periodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
16
|
Bereta G, Goulas T, Madej M, Bielecka E, Solà M, Potempa J, Xavier Gomis-Rüth F. Structure, function, and inhibition of a genomic/clinical variant of Porphyromonas gingivalis peptidylarginine deiminase. Protein Sci 2019; 28:478-486. [PMID: 30638292 DOI: 10.1002/pro.3571] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/31/2022]
Abstract
Citrullination is an essential post-translational modification in which the guanidinium group of protein and peptide arginines is deiminated by peptidylarginine deiminases (PADs). When deregulated, excessive citrullination leads to inflammation as in severe periodontal disease (PD) and rheumatoid arthritis (RA). Porphyromonas gingivalis is the major periodontopathogenic causative agent of PD and also an etiological agent of RA. It secretes a PAD, termed Porphyromonas PAD (PPAD), which is a virulence factor that causes aberrant citrullination. Analysis of P. gingivalis genomes of laboratory strains and clinical isolates unveiled a PPAD variant (PPAD-T2), which showed three amino-acid substitutions directly preceding catalytic Residue H236 (G231 N/E232 T/N235 D) when compared with PPAD from the reference strain (PPAD-T1). Mutation of these positions in the reference strain resulted in twofold higher cell-associated citrullinating activity. Similar to PPAD-T1, recombinant PPAD-T2 citrullinated arginines at the C-termini of general peptidic substrates but not within peptides. Catalytically, PPAD-T2 showed weaker substrate binding but higher turnover rates than PPAD-T1. In contrast, no differences were found in thermal stability. The 1.6 Å-resolution X-ray crystal structure of PPAD-T2 in complex with the general human PAD inhibitor, Cl-amidine, revealed that the inhibitor moiety is tightly bound and that mutations localize to a loop engaged in substrate/inhibitor binding. In particular, mutation G231 N caused a slight structural rearrangement, which probably originated the higher substrate turnover observed. The present data compare two natural PPAD variants and will set the pace for the design of specific inhibitors against P. gingivalis-caused PD.
Collapse
Affiliation(s)
- Grzegorz Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, PL-30-387, Kraków, Poland
| | - Theodoros Goulas
- Proteolysis Laboratory, Structural Biology Unit, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/Baldiri Reixac, 15-21, E-08028, Barcelona, Catalonia, Spain
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, PL-30-387, Kraków, Poland
| | - Ewa Bielecka
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, PL-30-387, Kraków, Poland
| | - Maria Solà
- Structural MitoLab, Structural Biology Unit, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/Baldiri Reixac, 15-21, E-08028, Barcelona, Catalonia, Spain
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, PL-30-387, Kraków, Poland.,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, 40202
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Structural Biology Unit, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/Baldiri Reixac, 15-21, E-08028, Barcelona, Catalonia, Spain
| |
Collapse
|
17
|
Wu L, Zhao L, Wang J, Liu C, Li Y, Wu Y. pckA-deficient Porphyromonas gingivalis W83 shows reduction in hemagglutination activity and alteration in the distribution of gingipain activity. Eur J Oral Sci 2018; 126:359-366. [PMID: 30126013 DOI: 10.1111/eos.12565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2018] [Indexed: 02/05/2023]
Abstract
Bacterial metabolism during infection is related to bacterial persistence and virulence factors. Porphyromonas gingivalis is a key pathogen that contributes to chronic periodontitis. Our previous study showed that pckA, the gene encoding phosphoenolpyruvate carboxykinase, is a putative-specific pathogenic gene of virulent strains of P. gingivalis. Here, a pckA-deficient strain (ΔPG1676) was constructed in P. gingivalis W83. Virulence properties were compared between the mutant and wild-type strains. Specifically, hemagglutination activity was determined by the ability to agglutinate sheep erythrocytes. Gingipain activity was detected using synthetic-specific substrates. Gene expression levels were analyzed using RT-qPCR, and cell surface-associated polysaccharides were examined by silver staining and electron microscopy. Inactivation of the pckA gene did not affect bacterial growth and lipopolysaccharide formation but led to a reduction in hemagglutination activity and downregulation in expression of the hemagglutination-associated gene, rfa, when compared with the wild-type strain. Additionally, the ΔPG1676 mutant exhibited an alteration in the distribution of gingipain activity. Increased gingipain activity was detected on the cell surface, but a decrease in its activity in the culture supernatant was shown. Taken together, our results suggest that the pckA gene plays a role in modulating the virulence of P. gingivalis W83.
Collapse
Affiliation(s)
- Leng Wu
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Zhao
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengcheng Liu
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yafei Wu
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Bochtler M, Mizgalska D, Veillard F, Nowak ML, Houston J, Veith P, Reynolds EC, Potempa J. The Bacteroidetes Q-Rule: Pyroglutamate in Signal Peptidase I Substrates. Front Microbiol 2018; 9:230. [PMID: 29545777 PMCID: PMC5837995 DOI: 10.3389/fmicb.2018.00230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/30/2018] [Indexed: 11/17/2022] Open
Abstract
Bacteroidetes feature prominently in the human microbiome, as major colonizers of the gut and clinically relevant pathogens elsewhere. Here, we reveal a new Bacteroidetes specific feature in the otherwise widely conserved Sec/SPI (Sec translocase/signal peptidase I) pathway. In Bacteroidetes, but not the entire FCB group or related phyla, signal peptide cleavage exposes N-terminal glutamine residues in most SPI substrates. Reanalysis of published mass spectrometry data for five Bacteroidetes species shows that the newly exposed glutamines are cyclized to pyroglutamate (also termed 5-oxoproline) residues. Using the dental pathogen Porphyromonas gingivalis as a model, we identify the PG2157 (also called PG_RS09565, Q7MT37) as the glutaminyl cyclase in this species, and map the catalytic activity to the periplasmic face of the inner membrane. Genetic manipulations that alter the glutamine residue immediately after the signal peptide in the pre-pro-forms of the gingipains affect the extracellular proteolytic activity of RgpA, but not RgpB and Kgp. Glutamine statistics, mass spectrometry data and the mutagenesis results show that the N-terminal glutamine residues or their pyroglutamate cyclization products do not act as generic sorting signals.
Collapse
Affiliation(s)
- Matthias Bochtler
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Florian Veillard
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Magdalena L. Nowak
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - John Houston
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Paul Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| |
Collapse
|
19
|
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) RNAs in the Porphyromonas gingivalis CRISPR-Cas I-C System. J Bacteriol 2017; 199:JB.00275-17. [PMID: 28893837 DOI: 10.1128/jb.00275-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 08/25/2017] [Indexed: 11/20/2022] Open
Abstract
The CRISPR-Cas (clustered regularly interspaced short palindromic repeat-CRISPR-associated protein) system is unique to prokaryotes and provides the majority of bacteria and archaea with immunity against nucleic acids of foreign origin. CRISPR RNAs (crRNAs) are the key element of this system, since they are responsible for its selectivity and effectiveness. Typical crRNAs consist of a spacer sequence flanked with 5' and 3' handles originating from repeat sequences that are important for recognition of these small RNAs by the Cas machinery. In this investigation, we studied the type I-C CRISPR-Cas system in Porphyromonas gingivalis, a human pathogen associated with periodontitis, rheumatoid arthritis, cardiovascular disease, and aspiration pneumonia. We demonstrated the importance of the 5' handle for crRNA recognition by the effector complex and consequently activity, as well as secondary trimming of the 3' handle, which was not affected by modifications of the repeat sequence.IMPORTANCEPorphyromonas gingivalis, a clinically relevant Gram-negative, anaerobic bacterium, is one of the major etiologic agents of periodontitis and has been linked with the development of other clinical conditions, including rheumatoid arthritis, cardiovascular disease, and aspiration pneumonia. The presented results on the biogenesis and functions of crRNAs expand our understanding of CRISPR-Cas cellular defenses in P. gingivalis and of horizontal gene transfer in bacteria.
Collapse
|
20
|
Abstract
Porphyromonas gingivalis is an oral opportunistic pathogen. Sequenced P. gingivalis laboratory strains display limited diversity in antigens that modulate host responses. Here, we present the genome sequence of A7A1-28, a strain possessing atypical fimbrillin and capsule types, with a single contig of 2,249,024 bp and a G+C content of 48.58%.
Collapse
|
21
|
Abstract
Porphyromonas gingivalis is associated with both oral and systemic diseases. Strain-specific P. gingivalis invasion phenotypes do not reliably predict disease presentation during in vivo studies. Here, we present the genome sequence of 381, a common laboratory strain, with a single contig of 2,378,872 bp and a G+C content of 48.36%.
Collapse
|
22
|
Structural and functional probing of PorZ, an essential bacterial surface component of the type-IX secretion system of human oral-microbiomic Porphyromonas gingivalis. Sci Rep 2016; 6:37708. [PMID: 27883039 PMCID: PMC5121618 DOI: 10.1038/srep37708] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/03/2016] [Indexed: 12/30/2022] Open
Abstract
Porphyromonas gingivalis is a member of the human oral microbiome abundant in dysbiosis and implicated in the pathogenesis of periodontal (gum) disease. It employs a newly described type-IX secretion system (T9SS) for secretion of virulence factors. Cargo proteins destined for secretion through T9SS carry a recognition signal in the conserved C-terminal domain (CTD), which is removed by sortase PorU during translocation. Here, we identified a novel component of T9SS, PorZ, which is essential for surface exposure of PorU and posttranslational modification of T9SS cargo proteins. These include maturation of enzyme precursors, CTD removal and attachment of anionic lipopolysaccharide for anchorage in the outer membrane. The crystal structure of PorZ revealed two β-propeller domains and a C-terminal β-sandwich domain, which conforms to the canonical CTD architecture. We further documented that PorZ is itself transported to the cell surface via T9SS as a full-length protein with its CTD intact, independently of the presence or activity of PorU. Taken together, our results shed light on the architecture and possible function of a novel component of the T9SS. Knowledge of how T9SS operates will contribute to our understanding of protein secretion as part of host-microbiome interactions by dysbiotic members of the human oral cavity.
Collapse
|
23
|
Zhang R, Yang J, Wu J, Sun WB, Liu Y. Effect of deletion of the rgpA gene on selected virulence of Porphyromonas gingivalis. J Dent Sci 2016; 11:279-286. [PMID: 30894985 PMCID: PMC6395235 DOI: 10.1016/j.jds.2016.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/13/2016] [Indexed: 01/24/2023] Open
Abstract
Background/purpose The most potent virulence factors of the periodontal pathogen Porphyromonas gingivalis are gingipains, three cysteine proteases (RgpA, RgpB, and Kgp) that bind and cleave a wide range of host proteins. Considerable proof indicates that RgpA contributes to the entire virulence of the organism and increases the risk of periodontal disease by disrupting the host immune defense and destroying the host tissue. However, the functional significance of this proteinase is incompletely understood. It is important to analyze the effect of arginine-specific gingipain A gene (rgpA) on selected virulence and physiological properties of P. gingivalis. Materials and methods Electroporation and homologous recombination were used to construct an rgpA mutant of P. gingivalis ATCC33277. The mutant was verified by polymerase chain reaction and sodium dodecyl sulfate–polyacrylamide gel electrophoresis. Cell structures of the mutant were examined by transmission electron microscopy and homotypic biofilm formation was examined by confocal laser scanning microscopy. Results Gene analysis revealed that the rgpA gene was deleted and replaced by a drug resistance gene marker. The defect of the gene resulted in a complete loss of RgpA proteinase, a reduction of out membrane vesicles and hemagglutination, and an increase in homotypic biofilm formation. Conclusion Our data indicate that an rgpA gene deficient strain of P. gingivalis is successfully isolated. RgpA may have a variety of physiological and pathological roles in P. gingivalis.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Periodontology, Hospital of Stomatology, Medical School of Nanjing University, Nanjing, China
| | - Jie Yang
- Department of Periodontology, Hospital of Stomatology, Medical School of Nanjing University, Nanjing, China
| | - Juan Wu
- Department of Periodontology, Hospital of Stomatology, Medical School of Nanjing University, Nanjing, China
| | - Wei-Bin Sun
- Department of Periodontology, Hospital of Stomatology, Medical School of Nanjing University, Nanjing, China
| | - Yu Liu
- Department of Periodontology, Hospital of Stomatology, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
24
|
Abstract
Porphyromonas gingivalis is associated with oral and systemic diseases. Strain-specific P. gingivalis invasion phenotypes have been correlated with disease presentation in infected laboratory animals. Here, we present the genome sequence of AJW4, a minimally invasive strain, with a single contig of 2,372,492 bp and a G+C content of 48.27%.
Collapse
|
25
|
Abstract
Porphyromonas gingivalis is strongly associated with periodontitis. P. gingivalis strain trafficking and tissue homing differ widely, even among presumptive closely related strains, such as W83 and A7436. Here, we present the genome sequence of A7436 with a single contig of 2,367,029 bp and a G+C content of 48.33%.
Collapse
|
26
|
Structure and mechanism of a bacterial host-protein citrullinating virulence factor, Porphyromonas gingivalis peptidylarginine deiminase. Sci Rep 2015; 5:11969. [PMID: 26132828 PMCID: PMC4487231 DOI: 10.1038/srep11969] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/12/2015] [Indexed: 01/08/2023] Open
Abstract
Citrullination is a post-translational modification of higher organisms that deiminates arginines in proteins and peptides. It occurs in physiological processes but also pathologies such as multiple sclerosis, fibrosis, Alzheimer’s disease and rheumatoid arthritis (RA). The reaction is catalyzed by peptidylarginine deiminases (PADs), which are found in vertebrates but not in lower organisms. RA has been epidemiologically associated with periodontal disease, whose main infective agent is Porphyromonas gingivalis. Uniquely among microbes, P. gingivalis secretes a PAD, termed PPAD (Porphyromonas peptidylarginine deiminase), which is genetically unrelated to eukaryotic PADs. Here, we studied function of PPAD and its substrate-free, substrate-complex, and substrate-mimic-complex structures. It comprises a flat cylindrical catalytic domain with five-fold α/β-propeller architecture and a C-terminal immunoglobulin-like domain. The PPAD active site is a funnel located on one of the cylinder bases. It accommodates arginines from peptide substrates after major rearrangement of a “Michaelis loop” that closes the cleft. The guanidinium and carboxylate groups of substrates are tightly bound, which explains activity of PPAD against arginines at C-termini but not within peptides. Catalysis is based on a cysteine-histidine-asparagine triad, which is shared with human PAD1-PAD4 and other guanidino-group modifying enzymes. We provide a working mechanism hypothesis based on 18 structure-derived point mutants.
Collapse
|
27
|
Functional Analysis of Porphyromonas gingivalis W83 CRISPR-Cas Systems. J Bacteriol 2015; 197:2631-41. [PMID: 26013482 DOI: 10.1128/jb.00261-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/21/2015] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED The CRISPR-Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated genes) system provides prokaryotic cells with an adaptive and heritable immune response to foreign genetic elements, such as viruses, plasmids, and transposons. It is present in the majority of Archaea and almost half of species of Bacteria. Porphyromonas gingivalis is an important human pathogen that has been proven to be an etiological agent of periodontitis and has been linked to systemic conditions, such as rheumatoid arthritis and cardiovascular disease. At least 95% of clinical strains of P. gingivalis carry CRISPR arrays, suggesting that these arrays play an important function in vivo. Here we show that all four CRISPR arrays present in the P. gingivalis W83 genome are transcribed. For one of the arrays, we demonstrate in vivo activity against double-stranded DNA constructs containing protospacer sequences accompanied at the 3' end by an NGG protospacer-adjacent motif (PAM). Most of the 44 spacers present in the genome of P. gingivalis W83 share no significant similarity with any known sequences, although 4 spacers are similar to sequences from bacteria found in the oral cavity and the gastrointestinal tract. Four spacers match genomic sequences of the host; however, none of these is flanked at its 3' terminus by the appropriate PAM element. IMPORTANCE The CRISPR-Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated genes) system is a unique system that provides prokaryotic cells with an adaptive and heritable immunity. In this report, we show that the CRISPR-Cas system of P. gingivalis, an important human pathogen associated with periodontitis and possibly also other conditions, such as rheumatoid arthritis and cardiovascular disease, is active and provides protection from foreign genetic elements. Importantly, the data presented here may be useful for better understanding the communication between cells in larger bacterial communities and, consequently, the process of disease development and progression.
Collapse
|
28
|
Klein BA, Duncan MJ, Hu LT. Defining essential genes and identifying virulence factors of Porphyromonas gingivalis by massively parallel sequencing of transposon libraries (Tn-seq). Methods Mol Biol 2015; 1279:25-43. [PMID: 25636611 PMCID: PMC4824196 DOI: 10.1007/978-1-4939-2398-4_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Porphyromonas gingivalis is a keystone pathogen in the development and progression of periodontal disease. Obstacles to the development of saturated transposon libraries have previously limited transposon mutant-based screens as well as essential gene studies. We have developed a system for efficient transposon mutagenesis of P. gingivalis using a modified mariner transposon. Tn-seq is a technique that allows for quantitative assessment of individual mutants within a transposon mutant library by sequencing the transposon-genome junctions and then compiling mutant presence by mapping to a base genome. Using Tn-seq, it is possible to quickly define all the insertional mutants in a library and thus identify nonessential genes under the conditions in which the library was produced. Identification of fitness of individual mutants under specific conditions can be performed by exposing the library to selective pressures.
Collapse
Affiliation(s)
- Brian A Klein
- Graduate Program of Molecular Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | | | | |
Collapse
|
29
|
Tagawa J, Inoue T, Naito M, Sato K, Kuwahara T, Nakayama M, Nakayama K, Yamashiro T, Ohara N. Development of a novel plasmid vector pTIO-1 adapted for electrotransformation of Porphyromonas gingivalis. J Microbiol Methods 2014; 105:174-9. [DOI: 10.1016/j.mimet.2014.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 11/27/2022]
|
30
|
Abstract
Recent progress in molecular biology and genetics opens up the possibility of engineering a variety of biological systems, from single-cellular to multicellular organisms. The consortia of microbes that reside on the human body, the human-associated microbiota, are particularly interesting as targets for forward engineering and manipulation due to their relevance in health and disease. New technologies in analysis and perturbation of the human microbiota will lead to better diagnostic and therapeutic strategies against diseases of microbial origin or pathogenesis. Here, we discuss recent advances that are bringing us closer to realizing the true potential of an engineered human-associated microbial community.
Collapse
Affiliation(s)
- Stephanie J Yaung
- Program in Medical Engineering Medical Physics, Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
31
|
Tribble GD, Kerr JE, Wang BY. Genetic diversity in the oral pathogen Porphyromonas gingivalis: molecular mechanisms and biological consequences. Future Microbiol 2013; 8:607-20. [PMID: 23642116 DOI: 10.2217/fmb.13.30] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobic bacterium that colonizes the human oral cavity. It is implicated in the development of periodontitis, a chronic periodontal disease affecting half of the adult population in the USA. To survive in the oral cavity, these bacteria must colonize dental plaque biofilms in competition with other bacterial species. Long-term survival requires P. gingivalis to evade host immune responses, while simultaneously adapting to the changing physiology of the host and to alterations in the plaque biofilm. In reflection of this highly variable niche, P. gingivalis is a genetically diverse species and in this review the authors summarize genetic diversity as it relates to pathogenicity in P. gingivalis. Recent studies revealing a variety of mechanisms by which adaptive changes in genetic content can occur are also reviewed. Understanding the genetic plasticity of P. gingivalis will provide a better framework for understanding the host-microbe interactions associated with periodontal disease.
Collapse
Affiliation(s)
- Gena D Tribble
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA.
| | | | | |
Collapse
|
32
|
Rodrigues PH, Reyes L, Chadda AS, Bélanger M, Wallet SM, Akin D, Dunn W, Progulske-Fox A. Porphyromonas gingivalis strain specific interactions with human coronary artery endothelial cells: a comparative study. PLoS One 2012; 7:e52606. [PMID: 23300720 PMCID: PMC3530483 DOI: 10.1371/journal.pone.0052606] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/19/2012] [Indexed: 12/24/2022] Open
Abstract
Both epidemiologic and experimental findings suggest that infection with Porphyromonas gingivalis exacerbates progression of atherosclerosis. As P. gingivalis exhibits significant strain variation, it is reasonable that different strains possess different capabilities and/or mechanisms by which they promote atherosclerosis. Using P. gingivalis strains that have been previously evaluated in the ApoE null atherosclerosis model, we assessed the ability of W83, A7436, 381, and 33277 to adhere, invade, and persist in human coronary artery endothelial (HCAE) cells. W83 and 381 displayed an equivalent ability to adhere to HCAE cells, which was significantly greater than both A7436 and 33277 (P<0.01). W83, 381, and 33277 were more invasive than A7436 (P<0.0001). However, only W83 and A7436 were able to remain viable up to 48 hours in HCAE cell cultures, whereas 381 was cleared by 48 hours and 33277 was cleared by 24 hours. These differences in persistence were in part due to strain specific differences in intracellular trafficking. Both W83 and 381 trafficked through the autophagic pathway, but not A7436 or 33277. Internalized 381 was the only strain that was dependent upon the autophagic pathway for its survival. Finally, we assessed the efficacy of these strains to activate HCAE cells as defined by production of IL-6, IL-8, IL-12p40, MCP-1, RANTES, TNF-α, and soluble adhesion molecules (sICAM-1, sVCAM-1, and sE-selectin). Only moderate inflammation was observed in cells infected with either W83 or A7436, whereas cells infected with 381 exhibited the most profound inflammation, followed by cells infected with 33277. These results demonstrate that virulence mechanisms among different P. gingivalis strains are varied and that pathogenic mechanisms identified for one strain are not necessarily applicable to other strains.
Collapse
Affiliation(s)
- Paulo H. Rodrigues
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Leticia Reyes
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Amandeep S. Chadda
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Myriam Bélanger
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Shannon M. Wallet
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, Florida, United States of America
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Debra Akin
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - William Dunn
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Ann Progulske-Fox
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
33
|
Dolgilevich S, Rafferty B, Luchinskaya D, Kozarov E. Genomic comparison of invasive and rare non-invasive strains reveals Porphyromonas gingivalis genetic polymorphisms. J Oral Microbiol 2011; 3. [PMID: 21541093 PMCID: PMC3086587 DOI: 10.3402/jom.v3i0.5764] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/20/2011] [Accepted: 02/03/2011] [Indexed: 11/14/2022] Open
Abstract
Background Porphyromonas gingivalis strains are shown to invade human cells in vitro with different invasion efficiencies, varying by up to three orders of magnitude. Objective We tested the hypothesis that invasion-associated interstrain genomic polymorphisms are present in P. gingivalis and that putative invasion-associated genes can contribute to P. gingivalis invasion. Design Using an invasive (W83) and the only available non-invasive P. gingivalis strain (AJW4) and whole genome microarrays followed by two separate software tools, we carried out comparative genomic hybridization (CGH) analysis. Results We identified 68 annotated and 51 hypothetical open reading frames (ORFs) that are polymorphic between these strains. Among these are surface proteins, lipoproteins, capsular polysaccharide biosynthesis enzymes, regulatory and immunoreactive proteins, integrases, and transposases often with abnormal GC content and clustered on the chromosome. Amplification of selected ORFs was used to validate the approach and the selection. Eleven clinical strains were investigated for the presence of selected ORFs. The putative invasion-associated ORFs were present in 10 of the isolates. The invasion ability of three isogenic mutants, carrying deletions in PG0185, PG0186, and PG0982 was tested. The PG0185 (ragA) and PG0186 (ragB) mutants had 5.1×103-fold and 3.6×103-fold decreased in vitro invasion ability, respectively. Conclusion The annotation of divergent ORFs suggests deficiency in multiple genes as a basis for P. gingivalis non-invasive phenotype.
Collapse
Affiliation(s)
- Svetlana Dolgilevich
- Section Oral and Diagnostic Sciences, Columbia University College of Dental Medicine, New York
| | | | | | | |
Collapse
|
34
|
Brunner J, Scheres N, El Idrissi NB, Deng DM, Laine ML, van Winkelhoff AJ, Crielaard W. The capsule of Porphyromonas gingivalis reduces the immune response of human gingival fibroblasts. BMC Microbiol 2010; 10:5. [PMID: 20064245 PMCID: PMC2817674 DOI: 10.1186/1471-2180-10-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 01/11/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Periodontitis is a bacterial infection of the periodontal tissues. The Gram-negative anaerobic bacterium Porphyromonas gingivalis is considered a major causative agent. One of the virulence factors of P. gingivalis is capsular polysaccharide (CPS). Non-encapsulated strains have been shown to be less virulent in mouse models than encapsulated strains. RESULTS To examine the role of the CPS in host-pathogen interactions we constructed an insertional isogenic P. gingivalis knockout in the epimerase-coding gene epsC that is located at the end of the CPS biosynthesis locus. This mutant was subsequently shown to be non-encapsulated. K1 capsule biosynthesis could be restored by in trans expression of an intact epsC gene. We used the epsC mutant, the W83 wild type strain and the complemented mutant to challenge human gingival fibroblasts to examine the immune response by quantification of IL-1beta, IL-6 and IL-8 transcription levels. For each of the cytokines significantly higher expression levels were found when fibroblasts were challenged with the epsC mutant compared to those challenged with the W83 wild type, ranging from two times higher for IL-1beta to five times higher for IL-8. CONCLUSIONS These experiments provide the first evidence that P. gingivalis CPS acts as an interface between the pathogen and the host that may reduce the host's pro-inflammatory immune response. The higher virulence of encapsulated strains may be caused by this phenomenon which enables the bacteria to evade the immune system.
Collapse
Affiliation(s)
- Jorg Brunner
- Department of Oral Microbiology, Academic Centre for Dentistry Amsterdam, Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
35
|
Walters S, Bélanger M, Rodrigues PH, Whitlock J, Progulske-Fox A. A member of the peptidase M48 superfamily of Porphyromonas gingivalis is associated with virulence in vitro and in vivo. J Oral Microbiol 2009; 1. [PMID: 21523206 PMCID: PMC3076999 DOI: 10.3402/jom.v1i0.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 10/15/2009] [Accepted: 10/20/2009] [Indexed: 12/03/2022] Open
Abstract
Background In vivo-induced antigen technology was previously used to identify 115 genes induced in Porphyromonas gingivalis W83 during human infection. One of these, PG2197, a conserved hypothetical protein which has homology to a Zn-dependent protease, was examined with respect to a role in disease. Design The expression of PG2197 in human periodontitis patients was investigated, but as there is increasing evidence of a direct relationship between P. gingivalis and cardiovascular disease, a mutation was constructed in this gene to also determine its role in adherence, invasion, and persistence within human coronary artery endothelial cells (HCAEC) and neutrophil killing susceptibility. Results Plaque samples from 20 periodontitis patients were analyzed by real-time PCR, revealing that PG2197 was expressed in 60.0% of diseased sites compared to 15.8% of healthy sites, even though P. gingivalis was detected in equal numbers from both sites. The expression of this gene was also found to be up-regulated in microarrays at 5 and 30 min of invasion of HCAEC. Interestingly, a PG2197 mutant displayed increased adherence, invasion, and persistence within HCAEC when compared to the wild-type strain. Conclusion This gene appears to be important for the virulence of P. gingivalis, both in vivo and in vitro.
Collapse
Affiliation(s)
- Sheila Walters
- Department of Oral Biology, Center for Molecular Microbiology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
36
|
Walters S, Rodrigues P, Bélanger M, Whitlock J, Progulske-Fox A. Analysis of a band 7/MEC-2 family gene of Porphyromonas gingivalis. J Dent Res 2009; 88:34-8. [PMID: 19131314 PMCID: PMC2693890 DOI: 10.1177/0022034508328381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 09/09/2008] [Accepted: 10/14/2008] [Indexed: 11/15/2022] Open
Abstract
In vivo-induced antigen technology has previously been used to identify 115 genes induced in Porphyromonas gingivalis W83 during human infection. The aim of this study was to determine if one of these genes, PG1334, was important for the virulence of P. gingivalis. Analysis of plaque samples from persons with periodontitis revealed that PG1334 was expressed in 88.0% of diseased sites, compared with 42.1% of healthy sites, even though P. gingivalis was detected in equal numbers from both sites. A mutant of PG1334 was found to adhere to and to invade better than the parent strain, but did not persist as well in human coronary artery endothelial cells. Additionally, the mutant did not persist as well in a mouse abscess model. This gene appears to be important for the virulence of P. gingivalis, both in vivo and in vitro.
Collapse
Affiliation(s)
- S. Walters
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, FL 32610-0424, USA
- Immunology Branch, US Army Dental and Trauma Research Detachment, Walter Reed Army Institute of Research, Great Lakes Naval Training Center, Great Lakes, IL 60088, USA
| | - P. Rodrigues
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, FL 32610-0424, USA
| | - M. Bélanger
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, FL 32610-0424, USA
| | - J. Whitlock
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, FL 32610-0424, USA
| | - A. Progulske-Fox
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, FL 32610-0424, USA
| |
Collapse
|