1
|
Yang Y, Xu Z, He S, Wang C, Li R, Zhang R, Li J, Yang Z, Li H, Liu S, Guo Q. Developmental dynamics mimicking inversely engineered pericellular matrix for articular cartilage regeneration. Biomaterials 2025; 317:123066. [PMID: 39742841 DOI: 10.1016/j.biomaterials.2024.123066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
The mechanical mismatch of scaffold matrix-mesenchymal stem cells (MSCs) has been a longstanding issue in the clinical application of MSC-based therapy for articular cartilage (AC) regeneration. Existing tissue-engineered scaffolds underestimate the importance of the natural chondrocyte pericellular matrix (PCM). Here, we reveal the temporal and spatial characteristics of collagen distribution around the chondrocytes. Next, we demonstrate a rationally designed layer-by-layer single-cell encapsulation system which can mimic PCM mechanical responses and enhance MSC chondrogenesis via reestablished the mechanical coupling of PCM-like primitive matrix and chondrocytes. This successfully simulates the temporal and spatial characteristics of collagen secretion. Through investigation of the micromechanical environment of the cells and full-atom simulation analysis of TRPV4, we determine the specific mechanisms by which cellular mechanical forces near the cell are converted into biological signals. The TRPV4-YAP/TAZ-PI3K-Akt signaling pathway is involved in MSC cartilage formation through a joint analysis of the mRNA sequencing and spatial transcriptome results. In a rat model of articular cartilage defects, our inversely engineered pericellular matrix-encapsulated MSC-loaded scaffolds show regenerative performance that are superior to those of scaffolds loaded with only MSCs. These results demonstrate the feasibility of using a PCM-mimicking system to improve MSC chondrogenesis and the efficacy of AC repair.
Collapse
Affiliation(s)
- Yongkang Yang
- School of Medicine, Nankai University, Tianjin, 300071, PR China; Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Ziheng Xu
- School of Medicine, Nankai University, Tianjin, 300071, PR China; Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Songlin He
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China; Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, 999077, PR China
| | - Chao Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Runmeng Li
- School of Medicine, Nankai University, Tianjin, 300071, PR China; Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Ruiyang Zhang
- School of Medicine, Nankai University, Tianjin, 300071, PR China; Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Jianwei Li
- School of Medicine, Nankai University, Tianjin, 300071, PR China; Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Zhen Yang
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, PR China; Arthritis Institute, Peking University, Beijing, 100044, PR China
| | - Hao Li
- School of Medicine, Nankai University, Tianjin, 300071, PR China; Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, PR China.
| | - Shuyun Liu
- School of Medicine, Nankai University, Tianjin, 300071, PR China; Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China.
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin, 300071, PR China; Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, PR China.
| |
Collapse
|
2
|
Xu G, Zhang Q, Cheng R, Qu J, Li W. Survival strategies of cancer cells: the role of macropinocytosis in nutrient acquisition, metabolic reprogramming, and therapeutic targeting. Autophagy 2025; 21:693-718. [PMID: 39817564 PMCID: PMC11925119 DOI: 10.1080/15548627.2025.2452149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025] Open
Abstract
Macropinocytosis is a nonselective form of endocytosis that allows cancer cells to largely take up the extracellular fluid and its contents, including nutrients, growth factors, etc. We first elaborate meticulously on the process of macropinocytosis. Only by thoroughly understanding this entire process can we devise targeted strategies against it. We then focus on the central role of the MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) in regulating macropinocytosis, highlighting its significance as a key signaling hub where various pathways converge to control nutrient uptake and metabolic processes. The article covers a comprehensive analysis of the literature on the molecular mechanisms governing macropinocytosis, including the initiation, maturation, and recycling of macropinosomes, with an emphasis on how these processes are hijacked by cancer cells to sustain their growth. Key discussions include the potential therapeutic strategies targeting macropinocytosis, such as enhancing drug delivery via this pathway, inhibiting macropinocytosis to starve cancer cells, blocking the degradation and recycling of macropinosomes, and inducing methuosis - a form of cell death triggered by excessive macropinocytosis. Targeting macropinocytosis represents a novel and innovative approach that could significantly advance the treatment of cancers that rely on this pathway for survival. Through continuous research and innovation, we look forward to developing more effective and safer anti-cancer therapies that will bring new hope to patients.Abbreviation: AMPK: AMP-activated protein kinase; ASOs: antisense oligonucleotides; CAD: carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase; DC: dendritic cell; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; ERBB2: erb-b2 receptor tyrosine kinase 2; ESCRT: endosomal sorting complex required for transport; GAP: GTPase-activating protein; GEF: guanine nucleotide exchange factor; GRB2: growth factor receptor bound protein 2; LPP: lipopolyplex; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; MTORC2: mechanistic target of rapamycin kinase complex 2; NSCLC: non-small cell lung cancer; PADC: pancreatic ductal adenocarcinoma; PDPK1: 3-phosphoinositide dependent protein kinase 1; PI3K: phosphoinositide 3-kinase; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns(3,4,5)P3: phosphatidylinositol-(3,4,5)-trisphosphate; PtdIns(4,5)P2: phosphatidylinositol-(4,5)-bisphosphate; PTT: photothermal therapies; RAC1: Rac family small GTPase 1; RPS6: ribosomal protein S6; RPS6KB1: ribosomal protein S6 kinase B1; RTKs: receptor tyrosine kinases; SREBF: sterol regulatory element binding transcription factor; TFEB: transcription factor EB; TNBC: triple-negative breast cancer; TSC2: TSC complex subunit 2; ULK1: unc-51 like autophagy activating kinase 1; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Guoshuai Xu
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Qinghong Zhang
- Emergency Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Renjia Cheng
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People’s Liberation Army of China, Shenyang, Liaoning, China
| | - Jun Qu
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Wenqiang Li
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
3
|
Park S, Jung S, Lee G, Lee E, Black R, Hong J, Jeong S. Self-Nourishing and Armored Probiotics via Egg-Inspired Encapsulation. Adv Healthc Mater 2025; 14:e2405219. [PMID: 40103525 PMCID: PMC12031648 DOI: 10.1002/adhm.202405219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/24/2025] [Indexed: 03/20/2025]
Abstract
The gut microbiota plays an essential role in regulating overall physiology, including metabolism and neurological and immune functions. Therefore, their dysregulation is closely associated with metabolic disorders, such as obesity and diabetes, as well as other pathological conditions, including inflammatory bowel diseases, cancer, and neurological disorders. Probiotics are commonly used to maintain a healthy gut microbiome, but their oral delivery is inefficient mainly due to their poor stability in the harsh gastrointestinal (GI) environment. This work presents an innovative encapsulation strategy, inspired by the natural structure of an egg, for the effective oral delivery of probiotics, termed PIE (Probiotics-In-Egg). The PIE technology is based upon encapsulating probiotics with phosvitin and ovalbumin derived from egg yolk and egg white, respectively. PIE exhibits significantly enhanced survival and proliferation in a simulated GI tract, as well as the ability to neutralize harmful reactive oxygen species (ROS) and sustain in nutrient-depleted conditions. Moreover, when administered orally in mouse models, PIE demonstrates excellent bioavailability and enhanced colonization in the GI tract. This egg-inspired encapsulation technology has great potential as a practical and effective platform for oral delivery of probiotics, which can significantly help maintain a healthy gut microbiome.
Collapse
Affiliation(s)
- Sohyeon Park
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sungwon Jung
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Geonhui Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Erin Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rodger Black
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sangmoo Jeong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
4
|
Campos MT, Pires LS, Magalhães FD, Oliveira MJ, Pinto AM. Self-assembled inorganic nanomaterials for biomedical applications. NANOSCALE 2025; 17:5526-5570. [PMID: 39905908 DOI: 10.1039/d4nr04537h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Controlled self-assembly of inorganic nanoparticles has the potential to generate complex nanostructures with distinctive properties. The advancement of more precise techniques empowers researchers in constructing and assembling diverse building blocks, marking a pivotal evolution in nanotechnology and biomedicine. This progress enables the creation of customizable biomaterials with unique characteristics and functions. This comprehensive review takes an innovative approach to explore the current state-of-the-art self-assembly methods and the key interactions driving the self-assembly processes and provides a range of examples of biomedical and therapeutic applications involving inorganic or hybrid nanoparticles and structures. Self-assembly methods applied to bionanomaterials are presented, ranging from commonly used methods in cancer phototherapy and drug delivery to emerging techniques in bioimaging and tissue engineering. The most promising in vitro and in vivo experimental results achieved thus far are presented. Additionally, the review engages in a discourse on safety and biocompatibility concerns related to inorganic self-assembled nanomaterials. Finally, opinions on future challenges and prospects anticipated in this evolving field are provided.
Collapse
Affiliation(s)
- Miguel T Campos
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| | - Laura S Pires
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Portugal
| | - Fernão D Magalhães
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Portugal
| | - Maria J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| | - Artur M Pinto
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| |
Collapse
|
5
|
Szwed M, Poczta-Krawczyk A, Kania KD, Wiktorowski K, Podsiadło K, Marczak A, Szczepanowicz K. Multicore, SDS-Based Polyelectrolyte Nanocapsules as Novel Nanocarriers for Paclitaxel to Reduce Cardiotoxicity by Protecting the Mitochondria. Int J Mol Sci 2025; 26:901. [PMID: 39940670 PMCID: PMC11817011 DOI: 10.3390/ijms26030901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
The clinical application of paclitaxel (PTX), a widely used anticancer drug, is constrained by cardiac arrhythmias and disruptions in vascular homeostasis. To mitigate the non-specific, high toxicity of PTX towards cardiomyocytes, we propose the application of newly synthesized SDS-based polyelectrolyte multicore nanocapsules. This study aims to verify the hypothesis that SDS-based NCs can mitigate the cytotoxic effects of PTX on cardiac cells and serve as effective nanocarriers for this drug. We investigated two types of multicore NCs with differing polyelectrolyte coatings: poly-L-lysine (PLL) and a combination of PLL with poly-L-glutamic acid (PGA). The cytotoxicity of the formulated nanosystems was evaluated using HL-1 cardiomyocytes. Oxygraphy, flow cytometry, spectrophotometry, spectrofluorimetry, fluorescence microscopy, and RT-PCR were employed to assess disruptions in cardiac cellular homeostasis. Our data revealed that, among the tested NCs, SDS/PLL/PGA/PTX exhibited reduced cardiotoxicity and were better tolerated by HL-1 cardiomyocytes compared to SDS/PLL/PTX or PTX alone. In addition, SDS/PLL/PGA/PTX showed a marginal disruption of mitochondria's homeostasis, and no changes in APT level and intracellular calcium concentrations were observed. These findings underscore the potential of SDS-based multicore nanocarriers in anticancer therapy, particularly due to diminished cardiotoxicity and long-term stability in the biological fluids.
Collapse
Affiliation(s)
- Marzena Szwed
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 St, 90-236 Lodz, Poland
| | - Anastazja Poczta-Krawczyk
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 St, 90-236 Lodz, Poland
| | - Katarzyna D. Kania
- Laboratory of Virology, Institute for Medical Biology, Polish Academy of Sciences, Lodowa 106A St, 93-232 Lodz, Poland
- Department of Diagnostic Techniques in Pathomorphology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Kacper Wiktorowski
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 St, 90-236 Lodz, Poland
- Student’s Scientific Circle of Young Biophysicists, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 St, 90-236 Lodz, Poland
| | - Kamila Podsiadło
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 St, 90-236 Lodz, Poland
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 St, 90-236 Lodz, Poland
| | - Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8 St, 30-239 Kraków, Poland
| |
Collapse
|
6
|
Romano N, Tavares G, Passot S, Sanchez MG, Golowczyc M, Campoy S, Fonseca F, Alves P, Coimbra P, Simões PN, Gomez-Zavaglia A. Bench scale Layer-by-Layer microencapasulation of Lactiplantibacillus plantarum WCFS1. Food Res Int 2025; 200:115431. [PMID: 39779077 DOI: 10.1016/j.foodres.2024.115431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Layer-by-Layer (LbL) self-assembly encapsulation is a promising technology for the protection and delivery of lactic acid bacteria. However, laboratory-scale encapsulation is often time-consuming, involves intensive protocols tailored for small-scale operations, requires substantial amounts of energy and water, and results in a low yield of encapsulated biomass. Scaling-up this process to a bench-bioreactor scale is not simply a matter of increasing culture volume as different key parameters (not particularly relevant at lab scale) become critical, including biomass production, the number of polymer layers, and the biomass-to-polymer mass ratio. To our knowledge, this work is the first to address the optimization of each stage of the encapsulation process for Lactiplantibacillus plantarum WCFS1. These stages include biomass production, handling of encapsulation polymers [chitosan (Chi) and alginate (Alg)], critical LbL parameters (e.g., biomass concentration, washing steps). The encapsulation efficiency was assessed by plate-counting microorganisms before and after coating with the polymers layers, followed by spray- and freeze-drying dehydration using fructo-oligosaccharides (FOS) and maltodextrin as carriers. Once dehydrated, microorganisms were either exposed to gastrointestinal conditions or stored for 30 days at 25 and 30 °C. Supplementing culture media with glucose, controlling pH, and harvesting at the early stationary phase during biomass production increased the bacterial recovery after LbL encapsulation (decrease < 1 log unit) compared to bacteria grown under non-controlled conditions (decrease of 4 log units). Coating bacteria (B) with up to two polymer layers (B|Chi or B|Chi|Alg) did not significantly affect bacterial culturability, unlike adding further layers. Zeta-potential measurements enabled the determination of the optimal biomass-to-polymer mass ratio. Using up to a 10:1 bacterial-to-polymer ratio did not change the z-potential for B|Chi or B|Chi|Alg samples. After drying, a synergistic effect between the LbL coating and carrier compounds (FOS and maltodextrin) was observed in terms of culturability. LbL encapsulation mitigated thermal and acidic stresses during spray-drying and gastrointestinal exposure. These findings support scaling-up LbL encapsulation for delivering sensitive lactic acid bacteria strains to the gut.
Collapse
Affiliation(s)
- Nelson Romano
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET), La Plata 1900, Argentina
| | - Gina Tavares
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Stéphanie Passot
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, F-91120, Palaiseau, France
| | | | - Marina Golowczyc
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET), La Plata 1900, Argentina
| | | | - Fernanda Fonseca
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, F-91120, Palaiseau, France
| | - Patrícia Alves
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Patrícia Coimbra
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Pedro Nuno Simões
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal.
| | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET), La Plata 1900, Argentina.
| |
Collapse
|
7
|
El-Seedi HR, Omara MS, Omar AH, Elakshar MM, Shoukhba YM, Duman H, Karav S, Rashwan AK, El-Seedi AH, Altaleb HA, Gao H, Saeed A, Jefri OA, Guo Z, Khalifa SAM. Updated Review of Metal Nanoparticles Fabricated by Green Chemistry Using Natural Extracts: Biosynthesis, Mechanisms, and Applications. Bioengineering (Basel) 2024; 11:1095. [PMID: 39593755 PMCID: PMC11591867 DOI: 10.3390/bioengineering11111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Metallic nanoparticles have found wide applications due to their unique physical and chemical properties. Green biosynthesis using plants, microbes, and plant/microbial extracts provides an environmentally friendly approach for nanoparticle synthesis. This review discusses the mechanisms and factors governing the biosynthesis of metallic nanoparticles such as silver, gold, and zinc using various plant extracts and microorganisms, including bacteria, fungi, and algae. The phytochemicals and biomolecules responsible for reducing metal ions and stabilizing nanoparticles are discussed. Key process parameters like pH, temperature, and precursor concentration affecting particle size are highlighted. Characterization techniques for confirming the formation and properties of nanoparticles are also mentioned. Applications of biosynthesized nanoparticles in areas such as antibacterial delivery, cancer therapy, biosensors, and environmental remediation are reviewed. Challenges in scaling up production and regulating nanoparticle properties are addressed. Power Point 365 was used for creating graphics. Overall, green biosynthesis is an emerging field with opportunities for developing eco-friendly nanomanufacturing platforms using abundant natural resources. Further work on optimizing conditions, standardizing protocols, and exploring new biosources is needed to realize the full potential of this approach.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32111, Egypt
| | - Mohamed S. Omara
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Abdulrahman H. Omar
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Mahmoud M. Elakshar
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Yousef M. Shoukhba
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey; (H.D.); (S.K.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey; (H.D.); (S.K.)
| | - Ahmed K. Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Awg H. El-Seedi
- International IT College of Sweden, Stockholm, Hälsobrunnsgatan 6, Arena Academy, 11361 Stockholm, Sweden;
| | - Hamud A. Altaleb
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Haiyan Gao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Ohoud A. Jefri
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Biology, College of Science, Taibah University, Al-Madinah Al Munawarah 42353, Saudi Arabia
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Shaden A. M. Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Neurology and Psychiatry Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 11219 Stockholm, Sweden
| |
Collapse
|
8
|
Yuan P, Chen M, Lu X, Yang H, Wang L, Bai T, Zhou W, Liu T, Yu S. Application of advanced surface modification techniques in titanium-based implants: latest strategies for enhanced antibacterial properties and osseointegration. J Mater Chem B 2024; 12:10516-10549. [PMID: 39311411 DOI: 10.1039/d4tb01714e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Titanium-based implants, renowned for their excellent mechanical properties, corrosion resistance, and biocompatibility, have found widespread application as premier implant materials in the medical field. However, as bioinert materials, they often face challenges such as implant failure caused by bacterial infections and inadequate osseointegration post-implantation. Thus, to address these issues, researchers have developed various surface modification techniques to enhance the surface properties and bioactivity of titanium-based implants. This review aims to outline several key surface modification methods for titanium-based implants, including acid etching, sol-gel method, chemical vapor deposition, electrochemical techniques, layer-by-layer self-assembly, and chemical grafting. It briefly summarizes the advantages, limitations, and potential applications of these technologies, presenting readers with a comprehensive perspective on the latest advances and trends in the surface modification of titanium-based implants.
Collapse
Affiliation(s)
- Pingyun Yuan
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Mi Chen
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Xiaotong Lu
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Hui Yang
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Lan Wang
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Tian Bai
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Wenhao Zhou
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Tao Liu
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Sen Yu
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| |
Collapse
|
9
|
Yitayew MY, Gasparrini M, Li L, Paraskevas S, Tabrizian M. An investigation of functionalized chitosan and alginate multilayer conformal nanocoating on mouse beta cell spheroids as a model for pancreatic islet transplantation. Int J Biol Macromol 2024; 278:134960. [PMID: 39179080 DOI: 10.1016/j.ijbiomac.2024.134960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Multilayer conformal coatings have been shown to provide a nanoscale barrier between cells and their environment with adequate stability, while regulating the diffusion of nutrition and waste across the cell membrane. The coating method aims to minimize capsule thickness and implant volume while reducing the need for immunosuppressive drugs, making it a promising approach for islet cell encapsulation in clinical islet transplantation for the treatment of Type 1 diabetes. This study introduces an immunoprotective nanocoating obtained through electrostatic interaction between quaternized phosphocholine-chitosan (PC-QCH) and tetrahydropyran triazole phenyl-alginate (TZ-AL) onto mouse β-cell spheroids. First, successful synthesis of the proposed polyelectrolytes was confirmed with physico-chemical characterization. A coating with an average thickness of 540 nm was obtained with self-assembly of 4-bilayers of PC-QCH/TZ-AL onto MIN6 β-cell spheroids. Surface coating of spheroids did not affect cell viability, metabolic activity, or insulin secretion, when compared to non-coated spheroids. The exposure of the polyelectrolytes to THP-1 monocyte-derived macrophages lead to a reduced level of TNF-α secretion and exposure of coated spheroids to RAW264.7 macrophages showed a decreasing trend in the secretion of TNF-α and IL-6. In addition, coated spheroids were able to establish normoglycemia when implanted into diabetic NOD-SCID mice, demonstrating in vivo biocompatibility and cellular function. These results demonstrate the ability of the PC-QCH/TZ-AL conformal coating to mitigate pro-inflammatory responses from macrophages, and thus can be a promising candidate towards nanoencapsulation for cell-based therapy, particularly in type 1 diabetes, where the insulin secreting β-cells are subjected to inflammation and immune cell attack.
Collapse
Affiliation(s)
| | - Marco Gasparrini
- Metabolic Disorders and Complications (MeDiC) Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Human Islet Transplantation Laboratory, McGill University Health Centre, Montréal, QC, Canada
| | - Ling Li
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Steven Paraskevas
- Metabolic Disorders and Complications (MeDiC) Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Human Islet Transplantation Laboratory, McGill University Health Centre, Montréal, QC, Canada; Department of Surgery, McGill University, Montréal, QC, Canada; Division of General Surgery and Multi-Organ Transplant Program, Department of Surgery, McGill University Health Centre, Montréal, QC, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, Montréal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada.
| |
Collapse
|
10
|
Li Z, Zhou D. Acrylate-Based PEG Hydrogels with Ultrafast Biodegradability for 3D Cell Culture. Biomacromolecules 2024; 25:6195-6202. [PMID: 39136362 DOI: 10.1021/acs.biomac.4c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Poly(ethylene glycol) (PEG)-based hydrogels are particularly challenging to degrade, which hinders efficient cell harvesting within the gel matrix. Here, highly branched copolymers of PEG methyl ether acrylate (PEGMA) and disulfide diacrylate (DSDA) (PEG-DS) with short primary chains and multiple pendent vinyl groups were synthesized by a "vinyl oligomer combination" approach. PEG-DS readily cross-links with thiolated gelatin (Gel-SH) to form hydrogels. Results demonstrate that shortening the primary chains of PEG-DS significantly enhances the viability of bone marrow mesenchymal stem cells (BMSCs) by up to 193.2%. Importantly, DS junctions can be easily cleaved into short primary chains using dithiothreitol (DTT), triggering ultrafast degradation of PEG-DS/Gel-SH hydrogels within 2 min under mild conditions and release of the encapsulated BMSCs. This study establishes a novel strategy to enhance the degradation of acrylate-based PEG hydrogels for three-dimensional (3D) cell culture and harvesting. These findings expand the potential applications of such hydrogels in various biomedical fields.
Collapse
Affiliation(s)
- Zhili Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
11
|
Li C, Wang ZX, Xiao H, Wu FG. Intestinal Delivery of Probiotics: Materials, Strategies, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310174. [PMID: 38245861 DOI: 10.1002/adma.202310174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/04/2024] [Indexed: 01/22/2024]
Abstract
Probiotics with diverse and crucial properties and functions have attracted broad interest from many researchers, who adopt intestinal delivery of probiotics to modulate the gut microbiota. However, the major problems faced for the therapeutic applications of probiotics are the viability and colonization of probiotics during their processing, oral intake, and subsequent delivery to the gut. The challenges of simple oral delivery (stability, controllability, targeting, etc.) have greatly limited the use of probiotics in clinical therapies. Nanotechnology can endow the probiotics to be delivered to the intestine with improved survival rate and increased resistance to the adverse environment. Additionally, the progress in synthetic biology has created new opportunities for efficiently and purposefully designing and manipulating the probiotics. In this article, a brief overview of the types of probiotics for intestinal delivery, the current progress of different probiotic encapsulation strategies, including the chemical, physical, and genetic strategies and their combinations, and the emerging single-cell encapsulation strategies using nanocoating methods, is presented. The action mechanisms of probiotics that are responsible for eliciting beneficial effects are also briefly discussed. Finally, the therapeutic applications of engineered probiotics are discussed, and the future trends toward developing engineered probiotics with advanced features and improved health benefits are proposed.
Collapse
Affiliation(s)
- Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Zi-Xi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
12
|
Yuan Y, Chen L, Yang J, Zhou S, Fang Y, Zhang Q, Zhang N, Li Y, Yuan L, Jia F, Ni S, Xiang C. Enhanced homing of mesenchymal stem cells for in situ niche remodeling and bone regeneration. NANO RESEARCH 2024; 17:7449-7460. [DOI: 10.1007/s12274-024-6715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 09/09/2024]
|
13
|
Geng Z, Dong R, Li X, Xu X, Chen L, Han X, Liu D, Liu Y. Study on the Antibacterial Activity and Bone Inductivity of Nanosilver/PLGA-Coated TI-CU Implants. Int J Nanomedicine 2024; 19:6427-6447. [PMID: 38952675 PMCID: PMC11215459 DOI: 10.2147/ijn.s456906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/21/2024] [Indexed: 07/03/2024] Open
Abstract
Background Implants are widely used in the field of orthopedics and dental sciences. Titanium (TI) and its alloys have become the most widely used implant materials, but implant-associated infection remains a common and serious complication after implant surgery. In addition, titanium exhibits biological inertness, which prevents implants and bone tissue from binding strongly and may cause implants to loosen and fall out. Therefore, preventing implant infection and improving their bone induction ability are important goals. Purpose To study the antibacterial activity and bone induction ability of titanium-copper alloy implants coated with nanosilver/poly (lactic-co-glycolic acid) (NSPTICU) and provide a new approach for inhibiting implant-associated infection and promoting bone integration. Methods We first examined the in vitro osteogenic ability of NSPTICU implants by studying the proliferation and differentiation of MC3T3-E1 cells. Furthermore, the ability of NSPTICU implants to induce osteogenic activity in SD rats was studied by micro-computed tomography (micro-CT), hematoxylin-eosin (HE) staining, masson staining, immunohistochemistry and van gieson (VG) staining. The antibacterial activity of NSPTICU in vitro was studied with gram-positive Staphylococcus aureus (Sa) and gram-negative Escherichia coli (E. coli) bacteria. Sa was used as the test bacterium, and the antibacterial ability of NSPTICU implanted in rats was studied by gross view specimen collection, bacterial colony counting, HE staining and Giemsa staining. Results Alizarin red staining, alkaline phosphatase (ALP) staining, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis showed that NSPTICU promoted the osteogenic differentiation of MC3T3-E1 cells. The in vitro antimicrobial results showed that the NSPTICU implants exhibited better antibacterial properties. Animal experiments showed that NSPTICU can inhibit inflammation and promote the repair of bone defects. Conclusion NSPTICU has excellent antibacterial and bone induction ability, and has broad application prospects in the treatment of bone defects related to orthopedics and dental sciences.
Collapse
Affiliation(s)
- Zhaoli Geng
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, People’s Republic of China
- Department of Stomatology, Qingdao West Coast New Area People’s Hospital, Qingdao, Shandong, 266400, People’s Republic of China
| | - Renping Dong
- Department of Stomatology, Qingdao West Coast New Area People’s Hospital, Qingdao, Shandong, 266400, People’s Republic of China
| | - Xinlin Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Xinyi Xu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Lin Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Xu Han
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Dongxu Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, People’s Republic of China
| |
Collapse
|
14
|
Marzouq A, Morgenstein L, Huang-Zhu CA, Yudovich S, Atkins A, Grupi A, Van Lehn RC, Weiss S. Long-Chain Lipids Facilitate Insertion of Large Nanoparticles into Membranes of Small Unilamellar Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10477-10485. [PMID: 38710504 PMCID: PMC11272290 DOI: 10.1021/acs.langmuir.3c03471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Insertion of hydrophobic nanoparticles into phospholipid bilayers is limited to small particles that can incorporate into a hydrophobic membrane core between two lipid leaflets. Incorporation of nanoparticles above this size limit requires the development of challenging surface engineering methodologies. In principle, increasing the long-chain lipid component in the lipid mixture should facilitate incorporation of larger nanoparticles. Here, we explore the effect of incorporating very long phospholipids (C24:1) into small unilamellar vesicles on the membrane insertion efficiency of hydrophobic nanoparticles that are 5-11 nm in diameter. To this end, we improve an existing vesicle preparation protocol and utilized cryogenic electron microscopy imaging to examine the mode of interaction and evaluate the insertion efficiency of membrane-inserted nanoparticles. We also perform classical coarse-grained molecular dynamics simulations to identify changes in lipid membrane structural properties that may increase insertion efficiency. Our results indicate that long-chain lipids increase the insertion efficiency by preferentially accumulating near membrane-inserted nanoparticles to reduce the thermodynamically unfavorable disruption of the membrane.
Collapse
Affiliation(s)
- Adan Marzouq
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Lion Morgenstein
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
- Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Carlos A. Huang-Zhu
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Shimon Yudovich
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
- Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Ayelet Atkins
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Asaf Grupi
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
- Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Reid C. Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Shimon Weiss
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
- Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Han J, McClements DJ, Liu X, Liu F. Oral delivery of probiotics using single-cell encapsulation. Compr Rev Food Sci Food Saf 2024; 23:e13322. [PMID: 38597567 DOI: 10.1111/1541-4337.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 04/11/2024]
Abstract
Adequate intake of live probiotics is beneficial to human health and wellbeing because they can help treat or prevent a variety of health conditions. However, the viability of probiotics is reduced by the harsh environments they experience during passage through the human gastrointestinal tract (GIT). Consequently, the oral delivery of viable probiotics is a significant challenge. Probiotic encapsulation provides a potential solution to this problem. However, the production methods used to create conventional encapsulation technologies often damage probiotics. Moreover, the delivery systems produced often do not have the required physicochemical attributes or robustness for food applications. Single-cell encapsulation is based on forming a protective coating around a single probiotic cell. These coatings may be biofilms or biopolymer layers designed to protect the probiotic from the harsh gastrointestinal environment, enhance their colonization, and introduce additional beneficial functions. This article reviews the factors affecting the oral delivery of probiotics, analyses the shortcomings of existing encapsulation technologies, and highlights the potential advantages of single-cell encapsulation. It also reviews the various approaches available for single-cell encapsulation of probiotics, including their implementation and the characteristics of the delivery systems they produce. In addition, the mechanisms by which single-cell encapsulation can improve the oral bioavailability and health benefits of probiotics are described. Moreover, the benefits, limitations, and safety issues of probiotic single-cell encapsulation technology for applications in food and beverages are analyzed. Finally, future directions and potential challenges to the widespread adoption of single-cell encapsulation of probiotics are highlighted.
Collapse
Affiliation(s)
- Jiaqi Han
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| |
Collapse
|
16
|
Kavand A, Noverraz F, Gerber-Lemaire S. Recent Advances in Alginate-Based Hydrogels for Cell Transplantation Applications. Pharmaceutics 2024; 16:469. [PMID: 38675129 PMCID: PMC11053880 DOI: 10.3390/pharmaceutics16040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
With its exceptional biocompatibility, alginate emerged as a highly promising biomaterial for a large range of applications in regenerative medicine. Whether in the form of microparticles, injectable hydrogels, rigid scaffolds, or bioinks, alginate provides a versatile platform for encapsulating cells and fostering an optimal environment to enhance cell viability. This review aims to highlight recent studies utilizing alginate in diverse formulations for cell transplantation, offering insights into its efficacy in treating various diseases and injuries within the field of regenerative medicine.
Collapse
Affiliation(s)
| | | | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.K.); (F.N.)
| |
Collapse
|
17
|
Duan J, Chen Z, Liang X, Chen Y, Li H, Liu K, Gui L, Wang X, Li Y, Yang J. Engineering M2-type macrophages with a metal polyphenol network for peripheral artery disease treatment. Free Radic Biol Med 2024; 213:138-149. [PMID: 38218551 DOI: 10.1016/j.freeradbiomed.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Functional cell treatment for critical limb ischemia is limited by cell viability loss and dysfunction resulting from a harmful ischemic microenvironment. Metal-polyphenol networks have emerged as novel cell delivery vehicles for protecting cells from the detrimental ischemic microenvironment and prolonging the survival rate of cells in the ischemic microenvironment. M2 macrophages are closely related to tissue repair, and they secrete anti-inflammatory factors that contribute to lesion repair. However, these cells are easily metabolized in the body with low efficiency. Herein, M2 macrophages were decorated with a metal‒polyphenol network that contains copper ions and epigallocatechin gallate (Cu-EGCG@M2) to increase cell survival and therapeutic potential. Cu-EGCG@M2 synergistically promoted angiogenesis through the inherent angiogenesis effect of M2 macrophages and copper ions. We found that Cu-EGCG@M2 increased in vitro viability and strengthened the in vivo therapeutic effect on the ischemic hindlimbs of mice, which promoted the recovery of blood and muscle regeneration, resulting in superior limb salvage. These therapeutic effects were ascribed to the increased survival rate and therapeutic period of M2 macrophages, as well as the ameliorated microenvironment at the ischemic site. Additionally, Cu-EGCG exhibited antioxidant, anti-inflammatory, and proangiogenic effects. Our findings provide a feasible option for cell-based treatment of CLI.
Collapse
Affiliation(s)
- Jianwei Duan
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Zuoguan Chen
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Xiaoyu Liang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China; Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Nankai University Affiliated Third Center Hospital, Tianjin ECMO Treatment and Training Base, Artificial Cell Engineering Technology Research Center, Tianjin, 300170, PR China
| | - Youlu Chen
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Huiyang Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Kaijing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Liang Gui
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Xiaoli Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China.
| | - Jing Yang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China.
| |
Collapse
|
18
|
Chew CH, Lee HL, Chen AL, Huang WT, Chen SM, Liu YL, Chen CC. Review of electrospun microtube array membrane (MTAM)-a novel new class of hollow fiber for encapsulated cell therapy (ECT) in clinical applications. J Biomed Mater Res B Appl Biomater 2024; 112:e35348. [PMID: 38247238 DOI: 10.1002/jbm.b.35348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/14/2023] [Indexed: 01/23/2024]
Abstract
Encapsulated cell therapy (ECT) shows significant potential for treating neurodegenerative disorders including Alzheimer's and Parkinson's, which currently lack curative medicines and must be managed symptomatically. This novel technique encapsulates functional cells with a semi-permeable membrane, providing protection while enabling critical nutrients and therapeutic substances to pass through. Traditional ECT procedures, on the other hand, pose difficulties in terms of cell survival and retrieval. We introduce the Microtube Array Membrane (MTAM), a revolutionary technology that solves these constraints, in this comprehensive overview. Microtube Array Membrane has distinct microstructures that improve encapsulated cells' long-term viability by combining the advantages of macro and micron scales. Importantly, the MTAM platform improves biosafety by allowing the entire encapsulated unit to be retrieved in the event of an adverse reaction. Our findings show that MTAM-based ECT has a great potential in a variety of illness situations. For cancer treatment, hybridoma cells secreting anti-CEACAM 6 antibodies inhibit triple-negative breast cancer cell lines for an extended period of time. In animal brain models of Alzheimer's disease, hybridoma cells secreting anti-pTau antibodies successfully reduce pTau buildup, accompanied by improvements in memory performance. In mouse models, MTAM-encapsulated primary cardiac mesenchymal stem cells dramatically improve overall survival and heart function. These findings illustrate the efficacy and adaptability of MTAM-based ECT in addressing major issues such as immunological isolation, cell viability, and patient safety. We provide new possibilities for the treatment of neurodegenerative illnesses and other conditions by combining the potential of ECT with MTAM. Continued research and development in this subject has a lot of promise for developing cell therapy and giving hope to people suffering from chronic diseases.
Collapse
Affiliation(s)
- Chee Ho Chew
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Research and Marketing Department, MTAMTech Corporation, Taipei, Taiwan
| | - Hsin-Lun Lee
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Amanda Lin Chen
- Immune Deficiency Cellular Therapy Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Wan-Ting Huang
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Research and Marketing Department, MTAMTech Corporation, Taipei, Taiwan
| | - Shu-Mei Chen
- Division of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yen-Lin Liu
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chien-Chung Chen
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Research and Marketing Department, MTAMTech Corporation, Taipei, Taiwan
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- The PhD Program for Translational Medicine, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
19
|
Dortaj H, Azarpira N, Pakbaz S. Insight to Biofabrication of Liver Microtissues for Disease Modeling: Challenges and Opportunities. Curr Stem Cell Res Ther 2024; 19:1303-1311. [PMID: 37846577 DOI: 10.2174/011574888x257744231009071810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/26/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023]
Abstract
In the last decade, liver diseases with high mortality rates have become one of the most important health problems in the world. Organ transplantation is currently considered the most effective treatment for compensatory liver failure. An increasing number of patients and shortage of donors has led to the attention of reconstructive medicine methods researchers. The biggest challenge in the development of drugs effective in chronic liver disease is the lack of a suitable preclinical model that can mimic the microenvironment of liver problems. Organoid technology is a rapidly evolving field that enables researchers to reconstruct, evaluate, and manipulate intricate biological processes in vitro. These systems provide a biomimetic model for studying the intercellular interactions necessary for proper organ function and architecture in vivo. Liver organoids, formed by the self-assembly of hepatocytes, are microtissues and can exhibit specific liver characteristics for a long time in vitro. Hepatic organoids are identified as an impressive tool for evaluating potential cures and modeling liver diseases. Modeling various liver diseases, including tumors, fibrosis, non-alcoholic fatty liver, etc., allows the study of the effects of various drugs on these diseases in personalized medicine. Here, we summarize the literature relating to the hepatic stem cell microenvironment and the formation of liver Organoids.
Collapse
Affiliation(s)
- Hengameh Dortaj
- Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
Yang F, Shang S, Qi M, Xiang Y, Wang L, Wang X, Lin T, Hao D, Chen J, Liu J, Wu Q. Yeast glucan particles: An express train for oral targeted drug delivery systems. Int J Biol Macromol 2023; 253:127131. [PMID: 37776921 DOI: 10.1016/j.ijbiomac.2023.127131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
As an emerging drug delivery vehicle, yeast glucan particles (YGPs) derived from yeast cells could be specifically taken up by macrophages. Therefore, these vehicles could rely on the recruitment of macrophages at the site of inflammation and tumors to enable targeted imaging and drug delivery. This review summarizes recent advances in the application of YGPs in oral targeted delivery systems, covering the basic structure of yeast cells, methods for pre-preparation, drug encapsulation and characterization. The mechanism and validation of the target recognition interaction of YGPs with macrophages are highlighted, and some inspiring cases are presented to show that yeast cells have promising applications. The future chances and difficulties that YGPs will confront are also emphasized throughout this essay. YGPs are not only the "armor" but also the "compass" of drugs in the process of targeted drug transport. This system is expected to provide a new idea about the oral targeted delivery of anti-inflammatory and anti-tumor drugs, and furthermore offer an effective delivery strategy for targeted therapy of other macrophage-related diseases.
Collapse
Affiliation(s)
- Fan Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shang Shang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengfei Qi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yajinjing Xiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lingmin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinyi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tao Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Doudou Hao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiajia Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jia Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Qing Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
21
|
Xu X, Moreno S, Gentzel M, Zhang K, Wang D, Voit B, Appelhans D. Biomimetic Protocells Featuring Macrophage-Like Capture and Digestion of Protein Pathogens. SMALL METHODS 2023; 7:e2300257. [PMID: 37599260 DOI: 10.1002/smtd.202300257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/11/2023] [Indexed: 08/22/2023]
Abstract
Modern medical research develops interest in sophisticated artificial nano- and microdevices for future treatment of human diseases related to biological dysfunctions. This covers the design of protocells capable of mimicking the structure and functionality of eukaryotic cells. The authors use artificial organelles based on trypsin-loaded pH-sensitive polymeric vesicles to provide macrophage-like digestive functions under physiological conditions. Herein, an artificial cell is established where digestive artificial organelles (nanosize) are integrated into a protocell (microsize). With this method, mimicking crossing of different biological barriers, capture of model protein pathogens, and compartmentalized digestive function are possible. This allows the integration of different components (e.g., dextran as stabilizing block) and the diffusion of pathogens in simulated cytosolic environment under physiological conditions. An integrated characterization approach is carried out, with identifying electrospray ionization mass spectrometry as an excellent detection method for the degradation of a small peptide such as β-amyloid. The degradation of model enzymes is measured by enzyme activity assays. This work is an important contribution to effective biomimicry with the design of cell-like functions having potential for therapeutic action.
Collapse
Affiliation(s)
- Xiaoying Xu
- Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany
| | - Marc Gentzel
- Center for Molecular and Cellular Bioengineering (CMCB), Core Facility Mass Spectrometry & Proteomics, Technische Universität Dresden, 01307, Dresden, Germany
| | - Kehu Zhang
- Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Dishi Wang
- Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany
| |
Collapse
|
22
|
Passos Gibson V, Tahiri H, Yang C, Phan QT, Banquy X, Hardy P. Hyaluronan decorated layer-by-layer assembled lipid nanoparticles for miR-181a delivery in glioblastoma treatment. Biomaterials 2023; 302:122341. [PMID: 37778056 DOI: 10.1016/j.biomaterials.2023.122341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal primary brain cancer. Current pharmacological interventions marginally increase the 12-month overall survival of patients with GBM. Among the novel therapeutic strategies being pursued, micro-RNAs, a class of non-coding RNAs, are receiving considerable attention for their regulation of several pathways implicated in tumorigenesis and survival. Notably, microRNA-181a-5p (miR-181a) has consistently been reported to be downregulated in GBM clinical samples, and its overexpression negatively affects tumor growth both in vitro and in vivo. To improve the delivery of miR-181a to GBM cells, we sought to develop a modified lipid-based nanocarrier capable of encapsulating and delivering miR-181a to GBM cells in vitro and in vivo. Optimized ionizable-lipid containing lipid nanoparticles (LNP) were constructed by covering the miR-181a-loaded LNP with alternating layers of miR-181a, poly-l-arginine and hyaluronic acid through the layer-by-layer technique. The resulting hyaluronan-decorated lipid nanoparticles (HA-LNP) targeted GBM cells more efficiently than non-modified LNP and mediated siRNA and miRNA transfection in vitro. Finally, delivery of miR-181a by HA-LNP induced significant cellular death of U87 GBM cells in vitro and delayed tumor growth in an in vivo subcutaneous tumor model.
Collapse
Affiliation(s)
- Victor Passos Gibson
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, H3C 3J7, Canada; Research Center of CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Houda Tahiri
- Research Center of CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Chun Yang
- Research Center of CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Quoc Thang Phan
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Pierre Hardy
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, H3C 3J7, Canada; Research Center of CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada; Department of Pediatrics, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
23
|
Lee K, Davis B, Wang X, Mirg S, Wen C, Abune L, Peterson BE, Han L, Chen H, Wang H, Szczesny SE, Lei Y, Kothapalli SR, Wang Y. Nanoparticle-Decorated Biomimetic Extracellular Matrix for Cell Nanoencapsulation and Regulation. Angew Chem Int Ed Engl 2023; 62:e202306583. [PMID: 37277318 PMCID: PMC10526972 DOI: 10.1002/anie.202306583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/07/2023]
Abstract
Cell encapsulation has been studied for various applications ranging from cell transplantation to biological production. However, current encapsulation technologies focus on cell protection rather than cell regulation that is essential to most if not all cell-based applications. Here we report a method for cell nanoencapsulation and regulation using an ultrathin biomimetic extracellular matrix as a cell nanocapsule to carry nanoparticles (CN2 ). This method allows high-capacity nanoparticle retention at the vicinity of cell surfaces. The encapsulated cells maintain high viability and normal metabolism. When gold nanoparticles (AuNPs) are used as a model to decorate the nanocapsule, light irradiation transiently increases the temperature, leading to the activation of the heat shock protein 70 (HSP70) promoter and the regulation of reporter gene expression. As the biomimetic nanocapsule can be decorated with any or multiple NPs, CN2 is a promising platform for advancing cell-based applications.
Collapse
Affiliation(s)
- Kyungsene Lee
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Brandon Davis
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xuelin Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shubham Mirg
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Connie Wen
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lidya Abune
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Benjamin E Peterson
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Li Han
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Haoyang Chen
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Spencer E Szczesny
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yuguo Lei
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
24
|
Sun Q, Yin S, He Y, Cao Y, Jiang C. Biomaterials and Encapsulation Techniques for Probiotics: Current Status and Future Prospects in Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2185. [PMID: 37570503 PMCID: PMC10421492 DOI: 10.3390/nano13152185] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Probiotics have garnered significant attention in recent years due to their potential advantages in diverse biomedical applications, such as acting as antimicrobial agents, aiding in tissue repair, and treating diseases. These live bacteria must exist in appropriate quantities and precise locations to exert beneficial effects. However, their viability and activity can be significantly impacted by the surrounding tissue, posing a challenge to maintain their stability in the target location for an extended duration. To counter this, researchers have formulated various strategies that enhance the activity and stability of probiotics by encapsulating them within biomaterials. This approach enables site-specific release, overcoming technical impediments encountered during the processing and application of probiotics. A range of materials can be utilized for encapsulating probiotics, and several methods can be employed for this encapsulation process. This article reviews the recent advancements in probiotics encapsulated within biomaterials, examining the materials, methods, and effects of encapsulation. It also provides an overview of the hurdles faced by currently available biomaterial-based probiotic capsules and suggests potential future research directions in this field. Despite the progress achieved to date, numerous challenges persist, such as the necessity for developing efficient, reproducible encapsulation methods that maintain the viability and activity of probiotics. Furthermore, there is a need to design more robust and targeted delivery vehicles.
Collapse
Affiliation(s)
- Qiqi Sun
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
| | - Sheng Yin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yingxu He
- School of Computing, National University of Singapore, Singapore 119077, Singapore;
| | - Yi Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210000, China
| |
Collapse
|
25
|
Abstract
Pathological hair loss (also known as alopecia) and shortage of hair follicle (HF) donors have posed an urgent requirement for HF regeneration. With the revelation of mechanisms in tissue engineering, the proliferation of HFs in vitro has achieved more promising trust for the treatments of alopecia and other skin impairments. Theoretically, HF organoids have great potential to develop into native HFs and attachments such as sweat glands after transplantation. However, since the rich extracellular matrix (ECM) deficiency, the induction characteristics of skin-derived cells gradually fade away along with their trichogenic capacity after continuous cell passaging in vitro. Therefore, ECM-mimicking support is an essential prelude before HF transplantation is implemented. This review summarizes the status of providing various epidermal and dermal cells with a three-dimensional (3D) scaffold to support the cell homeostasis and better mimic in vivo environments for the sake of HF regeneration. HF-relevant cells including dermal papilla cells (DPCs), hair follicle stem cells (HFSCs), and mesenchymal stem cells (MSCs) are able to be induced to form HF organoids in the vitro culture system. The niche microenvironment simulated by different forms of biomaterial scaffold can offer the cells a network of ordered growth environment to alleviate inductivity loss and promote the expression of functional proteins. The scaffolds often play the role of ECM substrates and bring about epithelial-mesenchymal interaction (EMI) through coculture to ensure the functional preservation of HF cells during in vitro passage. Functional HF organoids can be formed either before or after transplantation into the dermis layer. Here, we review and emphasize the importance of 3D culture in HF regeneration in vitro. Finally, the latest progress in treatment trials and critical analysis of the properties and benefits of different emerging biomaterials for HF regeneration along with the main challenges and prospects of HF regenerative approaches are discussed.
Collapse
Affiliation(s)
- Wei Zheng
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P.R. China
| | - Chang-Hua Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P.R. China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
| |
Collapse
|
26
|
Zarali M, Sadeghi A, Jafari SM, Ebrahimi M, Sadeghi Mahoonak A. Enhanced viability and improved in situ antibacterial activity of the probiotic LAB microencapsulated layer-by-layer in alginate beads coated with nisin. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
27
|
Lei X, Hu Q, Ge H, Zhang X, Ru X, Chen Y, Hu R, Feng H, Deng J, Huang Y, Li W. A redox-reactive delivery system via neural stem cell nanoencapsulation enhances white matter regeneration in intracerebral hemorrhage mice. Bioeng Transl Med 2023; 8:e10451. [PMID: 36925711 PMCID: PMC10013746 DOI: 10.1002/btm2.10451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/25/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Intracerebral hemorrhage (ICH) poses a great threat to human health because of its high mortality and morbidity. Neural stem cell (NSC) transplantation is promising for treating white matter injury following ICH to promote functional recovery. However, reactive oxygen species (ROS)-induced NSC apoptosis and uncontrolled differentiation hindered the effectiveness of the therapy. Herein, we developed a single-cell nanogel system by layer-by-layer (LbL) hydrogen bonding of gelatin and tannic acid (TA), which was modified with a boronic ester-based compound linking triiodothyronine (T3). In vitro, NSCs in nanogel were protected from ROS-induced apoptosis, with apoptotic signaling pathways downregulated. This process of ROS elimination by material shell synergistically triggered T3 release to induce NSC differentiation into oligodendrocytes. Furthermore, in animal studies, ICH mice receiving nanogels performed better in behavioral evaluation, neurological scaling, and open field tests. These animals exhibited enhanced differentiation of NSCs into oligodendrocytes and promoted white matter tract regeneration on Day 21 through activation of the αvβ3/PI3K/THRA pathway. Consequently, transplantation of LbL(T3) nanogels largely resolved two obstacles in NSC therapy synergistically: low survival and uncontrolled differentiation, enhancing white matter regeneration and behavioral performance of ICH mice. As expected, nanoencapsulation with synergistic effects would efficiently provide hosts with various biological benefits and minimize the difficulty in material fabrication, inspiring next-generation material design for tackling complicated pathological conditions.
Collapse
Affiliation(s)
- Xuejiao Lei
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Quan Hu
- Department of EmergencyAffiliated Hospital, Zunyi Medical UniversityZunyiGuizhouChina
| | - Hongfei Ge
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Xuyang Zhang
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Xufang Ru
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Yujie Chen
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Rong Hu
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Hua Feng
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Jun Deng
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease ProteomicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Yan Huang
- Institute of Materia Medica and Department of PharmaceuticsCollege of Pharmacy, Third Military Medical University (Army Medical University)ChongqingChina
| | - Wenyan Li
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| |
Collapse
|
28
|
Petroni S, Tagliaro I, Antonini C, D’Arienzo M, Orsini SF, Mano JF, Brancato V, Borges J, Cipolla L. Chitosan-Based Biomaterials: Insights into Chemistry, Properties, Devices, and Their Biomedical Applications. Mar Drugs 2023; 21:md21030147. [PMID: 36976196 PMCID: PMC10059909 DOI: 10.3390/md21030147] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Chitosan is a marine-origin polysaccharide obtained from the deacetylation of chitin, the main component of crustaceans’ exoskeleton, and the second most abundant in nature. Although this biopolymer has received limited attention for several decades right after its discovery, since the new millennium chitosan has emerged owing to its physicochemical, structural and biological properties, multifunctionalities and applications in several sectors. This review aims at providing an overview of chitosan properties, chemical functionalization, and the innovative biomaterials obtained thereof. Firstly, the chemical functionalization of chitosan backbone in the amino and hydroxyl groups will be addressed. Then, the review will focus on the bottom-up strategies to process a wide array of chitosan-based biomaterials. In particular, the preparation of chitosan-based hydrogels, organic–inorganic hybrids, layer-by-layer assemblies, (bio)inks and their use in the biomedical field will be covered aiming to elucidate and inspire the community to keep on exploring the unique features and properties imparted by chitosan to develop advanced biomedical devices. Given the wide body of literature that has appeared in past years, this review is far from being exhaustive. Selected works in the last 10 years will be considered.
Collapse
Affiliation(s)
- Simona Petroni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Irene Tagliaro
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | | | - Sara Fernanda Orsini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | - João F. Mano
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Virginia Brancato
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - João Borges
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (J.B.); (L.C.); Tel.: +351-234372585 (J.B.); +39-0264483460 (L.C.)
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
- Correspondence: (J.B.); (L.C.); Tel.: +351-234372585 (J.B.); +39-0264483460 (L.C.)
| |
Collapse
|
29
|
Han SY, Nguyen DT, Kim BJ, Kim N, Kang EK, Park JH, Choi IS. Cytoprotection of Probiotic Lactobacillus acidophilus with Artificial Nanoshells of Nature-Derived Eggshell Membrane Hydrolysates and Coffee Melanoidins in Single-Cell Nanoencapsulation. Polymers (Basel) 2023; 15:polym15051104. [PMID: 36904345 PMCID: PMC10007236 DOI: 10.3390/polym15051104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
One-step fabrication method for thin films and shells is developed with nature-derived eggshell membrane hydrolysates (ESMHs) and coffee melanoidins (CMs) that have been discarded as food waste. The nature-derived polymeric materials, ESMHs and CMs, prove highly biocompatible with living cells, and the one-step method enables cytocompatible construction of cell-in-shell nanobiohybrid structures. Nanometric ESMH-CM shells are formed on individual probiotic Lactobacillus acidophilus, without any noticeable decrease in viability, and the ESMH-CM shells effectively protected L. acidophilus in the simulated gastric fluid (SGF). The cytoprotection power is further enhanced by Fe3+-mediated shell augmentation. For example, after 2 h of incubation in SGF, the viability of native L. acidophilus is 30%, whereas nanoencapsulated L. acidophilus, armed with the Fe3+-fortified ESMH-CM shells, show 79% in viability. The simple, time-efficient, and easy-to-process method developed in this work would contribute to many technological developments, including microbial biotherapeutics, as well as waste upcycling.
Collapse
Affiliation(s)
- Sang Yeong Han
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Duc Tai Nguyen
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Beom Jin Kim
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
- Correspondence: (B.J.K.); (I.S.C.)
| | - Nayoung Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Eunhye K. Kang
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Insung S. Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
- Correspondence: (B.J.K.); (I.S.C.)
| |
Collapse
|
30
|
Saberi Riseh R, Hassanisaadi M, Vatankhah M, Kennedy JF. Encapsulating biocontrol bacteria with starch as a safe and edible biopolymer to alleviate plant diseases: A review. Carbohydr Polym 2023; 302:120384. [PMID: 36604062 DOI: 10.1016/j.carbpol.2022.120384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Healthy foods with few artificial additives are in high demand among consumers. Preserving conventional pesticides, frequently used as chemicals to control phytopathogens, is challenging. Therefore, we proposed an innovative approach to protect agricultural products in this review. Biocontrol bacteria are safe alternatives with low stability and low efficiency in the free-form formulation. The encapsulation technique for covering active compounds (e.g., antimicrobials) represents a more efficient protection technology because encapsulation causes the controlled release of bioactive materials and reduces the application doses. Of the biopolymers able to form a capsule, starch exhibits several advantages, such as its ready availability, cost-effectively, edible, colorless, and tasteless. Nevertheless, the poor mechanical properties of starch can be improved with other edible biopolymers. In addition, applying formulations incorporated with more than one antimicrobial material offers synergistic effects. This review presented the starch-based capsules used to enclose antimicrobial agents as effective tools against phytopathogens.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran; Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, 7618411764 Kerman, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
31
|
Wang W, Shi J, Qu K, Zhang X, Jiang W, Huang Z, Guo Z. Composite film with adjustable number of layers for slow release of humic acid and soil remediation. ENVIRONMENTAL RESEARCH 2023; 218:114949. [PMID: 36495960 DOI: 10.1016/j.envres.2022.114949] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/29/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
In this study, to improve the soil amendment performance of film materials, composite films with the adjustable number of layers and controlled slow-release time were prepared using sodium alginate (SA), chitosan (CS) and activated charcoal (AC) as raw materials. The prepared multilayer films exhibited a wide pH response range and excellent slow-release time. The cumulative release of humic acid (HA) increased from 19.87 ± 0.98% to 66.72 ± 1.06% with increasing the pH from 4.0 to 10.0 after 700 h of slow-release. In addition, after 50 d of remediation in red soil, plantation soil, and saline soil, the NH4+-N, Olsen-P, Olsen-K, and organic matter contents in the three soils were increased by 2.91-28.62 mg/kg, 46.97-70.43 mg/kg, 55.89-77.01 mg/kg, and 12.47-22.52 g/kg, respectively, and were able to provide sustained crop growth promotion effect. This study demonstrates the promising application of multilayer film in soil remediation and agricultural production.
Collapse
Affiliation(s)
- Weicong Wang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Junming Shi
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Keqi Qu
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Xinrui Zhang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Wenjing Jiang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Zhanhua Huang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Zhanhu Guo
- Department of Chemical and Bimolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA; Integrated Composites Lab (ICL), Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK.
| |
Collapse
|
32
|
Xie W, Li H, Yu H, Zhou H, Guo A, Yao Q, Zhang L, Zhao Y, Tian H, Li L. A thermosensitive Pickering gel emulsion with a high oil-water ratio for long-term X-ray imaging and permanent embolization of arteries. NANOSCALE 2023; 15:1835-1848. [PMID: 36602166 DOI: 10.1039/d2nr05963k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Iodized oil has an excellent X-ray imaging effect, but it shows poor embolization performance. When used as an embolic agent, it is easily washed off by the blood flow and eliminated from the body. Therefore, it is essential to use iodized oil in combination with solid embolic agents such as gelatin sponge or to perform multiple embolization procedures to achieve the therapeutic effect. In the present study, a poly(N-isopropyl acrylamide)-co-acrylic acid (PNCAA) temperature-sensitive nanogel was synthesized by emulsion polymerization; the nanogel was then emulsified with iodized oil to prepare a thermosensitive iodized oil Pickering gel emulsion (TIPE). The oil-water (O/W) ratio of an O/W emulsion system can reach 4 : 6. When injected into the body, TIPE transforms into a nonflowing coagulated state at physiological temperature; the iodized oil is locked in the emulsion structure, thereby achieving local embolization and continuous imaging effects, which not only retain the X-ray imaging effect of the iodized oil but also improve its embolization effect. Subsequently, we further evaluated renal artery embolization in a normal rabbit renal artery model, and the results showed that TIPE shows a long-term conformal embolization performance and excellent long-term X-ray imaging ability.
Collapse
Affiliation(s)
- Wenjing Xie
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China.
| | - Han Li
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen 518035, Guangdong, China
| | - Houqiang Yu
- Department of Mathematics and Statistics, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Hongfu Zhou
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China.
| | - Anran Guo
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China.
| | - Qing Yao
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Ling Zhang
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China.
| | - Yongsheng Zhao
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen 518035, Guangdong, China.
| | - Hongan Tian
- Department of Radiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, P. R. China.
| | - Ling Li
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China.
| |
Collapse
|
33
|
Li S, Fan L, Li S, Sun X, Di Q, Zhang H, Li B, Liu X. Validation of Layer-By-Layer Coating as a Procedure to Enhance Lactobacillus plantarum Survival during In Vitro Digestion, Storage, and Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1701-1712. [PMID: 36622380 DOI: 10.1021/acs.jafc.2c07139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Probiotics are sensitive to phenolic antibacterial components and the extremely acidic environment of blueberry juices. Layer-by-layer (LbL) coating using whey protein isolate fibrils (WPIFs) and sodium alginate (ALG), carboxymethyl cellulose (CMC), or xanthan gum (XG) was developed to improve the survival rate of Lactobacillus plantarum 90 (LP90) in simulated digestion, storage, and fermented blueberry juices. The LbL-coated LP90 remained at 6.65 log CFU/mL after 48 h of fermentation. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) indicated that dense and rough wall networks were formed on the surface of LP90, maintaining the integrity of LP90 cells after the coating. Stability evaluation showed that the LbL-coated LP90 had a much higher survival rate in the processes of simulated gastrointestinal digestion and storage. The formation mechanism of the LbL coating process was further explored, which indicated that electrostatic interactions and hydrogen bonding were involved. The LbL coating approach has great potential to protect and deliver probiotics in food systems.
Collapse
Affiliation(s)
- Siyuan Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
- College of Food Science, Shenyang Agricultural University, Shenyang110866, China
| | - Linlin Fan
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
| | - Shuangjian Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
| | - Xiaochen Sun
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
| | - Qingru Di
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
- College of Food Science, Shenyang Agricultural University, Shenyang110866, China
| | - Hui Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang110866, China
| | - Xiaoli Liu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
- College of Food Science, Shenyang Agricultural University, Shenyang110866, China
| |
Collapse
|
34
|
Liu Y, Yuan H, Liu Y, Chen C, Tang Z, Huang C, Ning Z, Lu T, Wu Z. Multifunctional nanoparticle-VEGF modification for tissue-engineered vascular graft to promote sustained anti-thrombosis and rapid endothelialization. Front Bioeng Biotechnol 2023; 11:1109058. [PMID: 36733971 PMCID: PMC9887191 DOI: 10.3389/fbioe.2023.1109058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Purpose: The absence of a complete endothelial cell layer is a well-recognized reason leading to small-diameter tissue-engineered vascular graft failure. Here we reported a multifunctional system consisting of chitosan (CS), Arg-Glu-Asp-Val (REDV) peptide, heparin, and vascular endothelial growth factor (VEGF) to achieve sustained anti-thrombosis and rapid endothelialization for decellularized and photo-oxidized bovine internal mammary arteries (DP-BIMA). Methods: CS-REDV copolymers were synthesized via a transglutaminase (TGase) catalyzed reaction. CS-REDV-Hep nanoparticles were formed by electrostatic self-assembly and loaded on the DP-BIMA. The quantification of released heparin and vascular endothelial growth factor was detected. Hemolysis rate, platelets adhesion, endothelial cell (EC) adhesion and proliferation, and MTT assay were performed in vitro. The grafts were then tested in a rabbit abdominal aorta interposition model for 3 months. The patency rates were calculated and the ECs regeneration was investigated by immunofluorescence staining of CD31, CD144, and eNOS antibodies. Results: The nanoparticle-VEGF system (particle size: 61.8 ± 18.3 nm, zeta-potential: +13.2 mV, PDI: .108) showed a sustained and controlled release of heparin and VEGF for as long as 1 month and exhibited good biocompatibility, a lower affinity for platelets, and a higher affinity for ECs in vitro. The nanoparticle-VEGF immobilized BIMA achieved 100% and 83.3% patency in a rabbit abdominal interposition model during 1 and 3 months, respectively, without any thrombogenicity and showed CD31, CD144, eNOS positive cell adhesion as early as 1 day. After 3 months, CD31, CD144, and eNOS positive cells covered almost the whole luminal surface of the grafts. Conclusion: The results demonstrated that the multifunctional nanoparticle-VEGF system can enhance the anti-thrombosis property and promote rapid endothelialization of small-diameter tissue-engineered vascular grafts. Utilizing nanoparticles to combine different kinds of biomolecules is an appropriate technology to improve the long-term patency of small-diameter tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Yalin Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Haoyong Yuan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Yuhong Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Chunyang Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Zhenjie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Can Huang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Zuodong Ning
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China
| | - Ting Lu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China,*Correspondence: Ting Lu, ; Zhongshi Wu,
| | - Zhongshi Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, China,*Correspondence: Ting Lu, ; Zhongshi Wu,
| |
Collapse
|
35
|
Tan C, Dima C, Huang M, Assadpour E, Wang J, Sun B, Kharazmi MS, Jafari SM. Advanced CaCO3-derived delivery systems for bioactive compounds. Adv Colloid Interface Sci 2022; 309:102791. [DOI: 10.1016/j.cis.2022.102791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
|
36
|
Biswas S, Melton LD, Nelson ARJ, Le Brun AP, Heinrich F, McGillivray DJ, Xu AY. The Assembly Mechanism and Mesoscale Architecture of Protein-Polysaccharide Complexes Formed at the Solid-liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12551-12561. [PMID: 36194692 DOI: 10.1021/acs.langmuir.2c02003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein-polysaccharide composite materials have generated much interest due to their potential use in medical science and biotechnology. A comprehensive understanding of the assembly mechanism and the mesoscale architecture is needed for fabricating protein-polysaccharide composite materials with desired properties. In this study, complex assemblies were built on silica surfaces through a layer-by-layer (LbL) approach using bovine beta-lactoglobulin variant A (βLgA) and pectin as model protein and polysaccharide, respectively. We demonstrated the combined use of quartz crystal microbalance with dissipation monitoring (QCM-D) and neutron reflectometry (NR) for elucidating the assembly mechanism as well as the internal architecture of the protein-polysaccharide complexes formed at the solid-liquid interface. Our results show that βLgA and pectin interacted with each other and formed a cohesive matrix structure at the interface consisting of intertwined pectin chains that were cross-linked by βLgA-rich domains. Although the complexes were fabricated in an LbL fashion, the complexes appeared to be relatively homogeneous with βLgA and pectin molecules spatially distributed within the matrix structure. Our results also demonstrate that the density of βLgA-pectin complex assemblies increased with both the overall and local charge density of pectin molecules. Therefore, the physical properties of the protein-polysaccharide matrix structure, including density and level of hydration, can be tuned by using polysaccharides with varying charge patterns, thus promoting the development of composite materials with desired properties.
Collapse
Affiliation(s)
- Shanta Biswas
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana70803, United States
| | - Laurence D Melton
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland1142, New Zealand
| | - Andrew R J Nelson
- Australian Centre for Neutron Scattering, ANSTO, Locked Bag 2001, Kirrawee DC, New South Wales2232, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, ANSTO, Locked Bag 2001, Kirrawee DC, New South Wales2232, Australia
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania15213, United States
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland20899, United States
| | - Duncan J McGillivray
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland1142, New Zealand
| | - Amy Y Xu
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana70803, United States
| |
Collapse
|
37
|
Stem cell microencapsulation maintains stemness in inflammatory microenvironment. Int J Oral Sci 2022; 14:48. [PMID: 36216801 PMCID: PMC9551082 DOI: 10.1038/s41368-022-00198-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 04/26/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
Maintaining the stemness of the transplanted stem cell spheroids in an inflammatory microenvironment is challenging but important in regenerative medicine. Direct delivery of stem cells to repair periodontal defects may yield suboptimal effects due to the complexity of the periodontal inflammatory environment. Herein, stem cell spheroid is encapsulated by interfacial assembly of metal-phenolic network (MPN) nanofilm to form a stem cell microsphere capsule. Specifically, periodontal ligament stem cells (PDLSCs) spheroid was coated with FeIII/tannic acid coordination network to obtain spheroid@[FeIII-TA] microcapsules. The formed biodegradable MPN biointerface acted as a cytoprotective barrier and exhibited antioxidative, antibacterial and anti-inflammatory activities, effectively remodeling the inflammatory microenvironment and maintaining the stemness of PDLSCs. The stem cell microencapsulation proposed in this study can be applied to multiple stem cells with various functional metal ion/polyphenol coordination, providing a simple yet efficient delivery strategy for stem cell stemness maintenance in an inflammatory environment toward a better therapeutic outcome.
Collapse
|
38
|
Cini N, Calisir F. Layer-by-layer self-assembled emerging systems for nanosized drug delivery. Nanomedicine (Lond) 2022; 17:1961-1980. [PMID: 36645082 DOI: 10.2217/nnm-2022-0254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
New frontiers in the development of stimuli-responsive surfaces that offer switchable properties according to the end-use application have added a new dimension to the design of drug-delivery systems (DDS). In this respect, layer-by-layer (LbL) self-assembled technologies have attracted interest in nano-DDS (NDDS) design due to the advantage of encapsulating different drug types either individually or in multiple formulations as an easy-to-apply and cost-effective strategy. LbL-based microcapsules and core-shell structures in the form of polyelectrolyte multilayers (PEMs) have been proposed as versatile vehicles for NDDS over the last quarter. This review aims to provide a global view of LbL-PEMs used as templates in NDDS for the last 5 years with an emphasis on emerging drug loading and release strategies.
Collapse
Affiliation(s)
- Nejla Cini
- Istanbul Technical University, Science and Letters Faculty, Chemistry Department, Maslak, Istanbul, 34469, Turkiye
| | - Ferah Calisir
- Istanbul Technical University, Science and Letters Faculty, Chemistry Department, Maslak, Istanbul, 34469, Turkiye
| |
Collapse
|
39
|
Yu Y, Appadoo V, Ren J, Hacker TA, Liu B, Lynn DM. pH-Responsive Polyelectrolyte Coatings that Enable Catheter-Mediated Transfer of DNA to the Arterial Wall in Short and Clinically Relevant Inflation Times. ACS Biomater Sci Eng 2022; 8:4377-4389. [PMID: 36121432 DOI: 10.1021/acsbiomaterials.2c00707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the design and characterization of pH-responsive polymer coatings that enable catheter balloon-mediated transfer of DNA to arterial tissue in short, clinically relevant inflation times. Our approach exploits the pH-dependent ionization of poly(acrylic acid) (PAA) to promote disassembly and release of plasmid DNA from polyelectrolyte multilayers. We characterized the contact transfer of multilayers composed of PAA, plasmid DNA, and linear poly(ethyleneimine) (LPEI) identified as promising in prior studies on the delivery of DNA to arterial tissue. In contrast to thinner films evaluated previously, we found thicker coatings composed of 32 repeating (LPEI/PAA/LPEI/DNA)x tetralayers to swell substantially in physiologically relevant media (in PBS; pH = 7.4). In some cases, these coatings also disintegrated or delaminated rapidly from their underlying substrates, suggesting the potential for enhanced balloon-mediated transfer. We developed a technically straightforward agarose gel-based hole-insertion model to characterize factors (inflation time, lumen size, etc.) that influence contact transfer of DNA when film-coated balloons are inflated into contact with soft surfaces. Those studies and the results of in vivo experiments using small animal (rat) and large animal (pig) models of peripheral arterial injury revealed catheters coated with these materials to promote robust contact transfer of DNA to soft hydrogel surfaces and the luminal surfaces of arterial tissue using inflation times as short as 30 s. These short inflation times are relevant in the context of clinical vascular interventions in peripheral arteries. Additional studies demonstrated that contact transfer of DNA using these short times can promote subsequent dissemination and transport of DNA to the medial tissue layer, suggesting the potential for use in therapeutically relevant applications of balloon-mediated gene transfer.
Collapse
Affiliation(s)
- Yan Yu
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Visham Appadoo
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Jun Ren
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Timothy A Hacker
- Cardiovascular Research Center, University of Wisconsin-Madison, 600 Highland Ave., Madison, Wisconsin 53792, United States
| | - Bo Liu
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - David M Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States.,Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
40
|
Neekhra S, Pandith JA, Mir NA, Manzoor A, Ahmad S, Ahmad R, Sheikh RA. Innovative approaches for microencapsulating bioactive compounds and probiotics: An updated review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Somya Neekhra
- Department of Food Engineering and Technology, Institute of Engineering and Technology Bundelkhand University Jhansi India
| | - Junaid Ahmad Pandith
- Department of Post‐Harvest Engineering and Technology, Faculty of Agriculture Aligarh Muslim University Aligarh India
| | - Nisar A. Mir
- Department of Biotechnology Engineering and Food Technology, University Institute of Engineering Chandigarh University Mohali Punjab India
| | - Arshied Manzoor
- Department of Post‐Harvest Engineering and Technology, Faculty of Agriculture Aligarh Muslim University Aligarh India
| | - Saghir Ahmad
- Department of Post‐Harvest Engineering and Technology, Faculty of Agriculture Aligarh Muslim University Aligarh India
| | - Rizwan Ahmad
- Department of Post‐Harvest Engineering and Technology, Faculty of Agriculture Aligarh Muslim University Aligarh India
| | - Rayees Ahmad Sheikh
- Department of Chemistry government Degree College Pulwama Jammu and Kashmir India
| |
Collapse
|
41
|
Lee H, Park J, Kim N, Youn W, Yun G, Han SY, Nguyen DT, Choi IS. Cell-in-Catalytic-Shell Nanoarchitectonics: Catalytic Empowerment of Individual Living Cells by Single-Cell Nanoencapsulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201247. [PMID: 35641454 DOI: 10.1002/adma.202201247] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Cell-in-shell biohybrid structures, synthesized by encapsulating individual living cells with exogenous materials, have emerged as exciting functional entities for engineered living materials, with emergent properties outside the scope of biochemical modifications. Artificial exoskeletons have, to date, provided physicochemical shelters to the cells inside in the first stage of technological development, and further advances in the field demand catalytically empowered, cellular hybrid systems that augment the biological functions of cells and even introduce completely new functions to the cells. This work describes a facile and generalizable strategy for empowering living cells with extrinsic catalytic capability through nanoencapsulation of living cells with a supramolecular metal-organic complex of Fe3+ and benzene-1,3,5-tricarboxylic acid (BTC). A series of enzymes are embedded in situ, without loss of catalytic activity, in the Fe3+ -BTC shells, not to mention the superior characteristics of cytocompatible and rapid shell-forming processes. The nanoshell enhances the catalytic efficiency of multienzymatic cascade reactions by confining reaction intermediates to its internal voids and the nanoencapsulated cells acquire exogenous biochemical functions, including enzymatic cleavage of lethal octyl-β-d-glucopyranoside into d-glucose, with autonomous cytoprotection. The system will provide a versatile, nanoarchitectonic tool for interfacing biological cells with functional materials, especially for catalytic bioempowerment of living cells.
Collapse
Affiliation(s)
- Hojae Lee
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Joohyouck Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Nayoung Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Wongu Youn
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Gyeongwon Yun
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Sang Yeong Han
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Duc Tai Nguyen
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| |
Collapse
|
42
|
Biomimetic mineralization: An emerging organism engineering strategy for biomedical applications. J Inorg Biochem 2022; 232:111815. [DOI: 10.1016/j.jinorgbio.2022.111815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 04/02/2022] [Indexed: 11/21/2022]
|
43
|
Zhang X, Hu H, Huang X, Yin Y, Wang S, Jiao S, Liu Z, Zheng Y. Protective Mechanism of a Layer-by-Layer-Assembled Artificial Cell Wall on Probiotics. J Phys Chem B 2022; 126:1933-1940. [PMID: 35200022 DOI: 10.1021/acs.jpcb.1c09282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Constructing an artificial cell wall (AFCW) based on the layer-by-layer assembly of polymer films to protect probiotics in harsh conditions is highly desirable. Early findings showed that encapsulating yeast cells by an AFCW improved the cell viability by 50% in antibiotic solution. However, the detailed molecular interaction mechanism remains unclear by experiments. Herein, two ciprofloxacin (CPFX) permeation models, including models 1 and 2 that were, respectively, composed of just the yeast cell membrane and the AFCW coating cell membrane, were investigated by molecular dynamics simulations. The free energy profiles delineating the permeation process of CPFX reveal that the permeation of CPFX through the cell membrane of model 2 is more difficult than through that of model 1. The analysis results show that the AFCW leads to two sharp increases in free energy barriers, amounting to 8.9 and 6.2 kcal/mol, thereby reducing the penetrating rate of CPFX into the cell membrane. Moreover, decomposition of the potentials of mean force into free energy components suggested that the electrostatic interactions of CPFX with the AFCW predominantly contributed to the high free energy barriers. The current results provide a good understanding of the protective mechanism of the self-assembled cell walls against CPFX and help to design other AFCWs.
Collapse
Affiliation(s)
- Xia Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hanjiao Hu
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| | - Xin Huang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yanzhen Yin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.,Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| | - Shuangshuang Wang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| | - Shufei Jiao
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| | - Zijie Liu
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| | - Yunying Zheng
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| |
Collapse
|
44
|
Guo Z, Zhang L, Yang Q, Peng R, Yuan X, Xu L, Wang Z, Chen F, Huang H, Liu Q, Tan W. Manipulation of Multiple Cell–Cell Interactions by Tunable DNA Scaffold Networks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhenzhen Guo
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Lili Zhang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Qiuxia Yang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Ruizi Peng
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
| | - Xi Yuan
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Liujun Xu
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Zhimin Wang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Fengming Chen
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Huidong Huang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Qiaoling Liu
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
- Institute of Molecular Medicine (IMM) Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
45
|
Li W, Lei X, Feng H, Li B, Kong J, Xing M. Layer-by-Layer Cell Encapsulation for Drug Delivery: The History, Technique Basis, and Applications. Pharmaceutics 2022; 14:pharmaceutics14020297. [PMID: 35214030 PMCID: PMC8874529 DOI: 10.3390/pharmaceutics14020297] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/28/2021] [Accepted: 01/24/2022] [Indexed: 12/17/2022] Open
Abstract
The encapsulation of cells with various polyelectrolytes through layer-by-layer (LbL) has become a popular strategy in cellular function engineering. The technique sprang up in 1990s and obtained tremendous advances in multi-functionalized encapsulation of cells in recent years. This review comprehensively summarized the basis and applications in drug delivery by means of LbL cell encapsulation. To begin with, the concept and brief history of LbL and LbL cell encapsulation were introduced. Next, diverse types of materials, including naturally extracted and chemically synthesized, were exhibited, followed by a complicated basis of LbL assembly, such as interactions within multilayers, charge distribution, and films morphology. Furthermore, the review focused on the protective effects against adverse factors, and bioactive payloads incorporation could be realized via LbL cell encapsulation. Additionally, the payload delivery from cell encapsulation system could be adjusted by environment, redox, biological processes, and functional linkers to release payloads in controlled manners. In short, drug delivery via LbL cell encapsulation, which takes advantage of both cell grafts and drug activities, will be of great importance in basic research of cell science and biotherapy for various diseases.
Collapse
Affiliation(s)
- Wenyan Li
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Xuejiao Lei
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Hua Feng
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
- Correspondence: (J.K.); (M.X.)
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5V6, Canada
- Correspondence: (J.K.); (M.X.)
| |
Collapse
|
46
|
Al-Domi D, Bozeya A, Al-Fandi M. Development of an Insulin Nano-Delivery System through Buccal Administration. Curr Drug Deliv 2022; 19:889-901. [PMID: 35023456 DOI: 10.2174/1567201819666220112121115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
AIM To develop a new nano-delivery system for insulin buccal administration. BACKGROUND Biodegradable polymeric nanoparticles (PNPs) had viewed countless breakthroughs in drug delivery systems. The main objective of PNPs application in delivering and carrying different promising drugs is to make sure that the drugs being delivered to their action sites. As a result maximizing the desired effect and overcoming their limitations and drawbacks. OBJECTIVES The main goals of this study were to produce an insulin consumable nano-delivery system for buccal administration and enhance the mucoadhesive effect in sustaining insulin release. METHODS Water in oil in water (W-O-W) microemulsion solvent evaporation technique was used for the preparation of nanoparticles consisting from positively charged poly (D, L-lactide-co-glycolide) coated with chitosan and loaded with insulin. Later, a consumable buccal film was prepared by the spin coating method and loaded with the previously prepared nanoparticles. RESULTS The newly prepared nanoparticle was assessed in terms of size, charge and surface morphology using a Scanning Electron Microscope (SEM), zeta potential, Atomic Force Microscope (AFM), and Fourier Transform Infra-red (FTIR) spectroscopy. An in-vitro investigation of the insulin release, from nanoparticles and buccal film, demonstrated controlled as well as sustained delivery over 6 hrs. The cumulative insulin release decreased to about (28.9%) with buccal film in comparing with the nanoparticle (50 %). CONCLUSION The buccal film added another barrier for insulin release. Therefore, the release was sustained.
Collapse
Affiliation(s)
- Diaa Al-Domi
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ayat Bozeya
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohamed Al-Fandi
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
47
|
Zhang Z, Zeng J, Groll J, Matsusaki M. Layer-by-layer assembly methods and their biomedical applications. Biomater Sci 2022; 10:4077-4094. [DOI: 10.1039/d2bm00497f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Various biomedical applications arising due to the development of different LbL assembly methods with unique process properties.
Collapse
Affiliation(s)
- Zhuying Zhang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Fellow of Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB) and Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
48
|
Ladeira B, Custodio C, Mano J. Core-Shell Microcapsules: Biofabrication and Potential Applications in Tissue Engineering and Regenerative Medicine. Biomater Sci 2022; 10:2122-2153. [DOI: 10.1039/d1bm01974k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The construction of biomaterial scaffolds that accurately recreate the architecture of living tissues in vitro is a major challenge in the field of tissue engineering and regenerative medicine. Core-shell microcapsules...
Collapse
|
49
|
Hong Y, Zhong W, Zhang M, Zhao H. Polymerization-Induced Interfacial Self-Assembly: A Powerful Tool for the Synthesis of Micro-sized Hollow Capsules. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yanhang Hong
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wen Zhong
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
50
|
Kotliarevski L, Mani KA, Feldbaum RA, Yaakov N, Belausov E, Zelinger E, Ment D, Mechrez G. Single-Conidium Encapsulation in Oil-in-Water Pickering Emulsions at High Encapsulation Yield. Front Chem 2021; 9:726874. [PMID: 34912776 PMCID: PMC8666500 DOI: 10.3389/fchem.2021.726874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
This study presents an individual encapsulation of fungal conidia in an oil-in-water Pickering emulsion at a single-conidium encapsulation yield of 44%. The single-conidium encapsulation yield was characterized by analysis of confocal microscopy micrographs. Mineral oil-in-water emulsions stabilized by amine-functionalized titania dioxide (TiO2-NH2 or titania-NH2) particles were prepared. The structure and the stability of the emulsions were investigated at different compositions by confocal microscopy and a LUMiSizer® respectively. The most stable emulsions with a droplet size suitable for single-conidium encapsulation were further studied for their individual encapsulation capabilities. The yields of individual encapsulation in the emulsions; i.e., the number of conidia that were individually encapsulated out of the total number of conidia, were characterized by confocal microscopy assay. This rapid, easy to use approach to single-conidium encapsulation, which generates a significantly high yield with eco-friendly titania-based emulsions, only requires commonly used emulsification and agitation methods.
Collapse
Affiliation(s)
- Liliya Kotliarevski
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel.,Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Karthik Ananth Mani
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel.,Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Reut Amar Feldbaum
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel
| | - Noga Yaakov
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel
| | - Eduard Belausov
- Department of Ornamental Plants and Agricultural Biotechnology, Institute of Plant Science, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel
| | - Einat Zelinger
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel
| | - Guy Mechrez
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel
| |
Collapse
|