1
|
Yang Y, Kong L, Ding Y, Xia L, Cao S, Song P. High SERS performance of functionalized carbon dots in the detection of dye contaminants. J Adv Res 2025; 68:89-98. [PMID: 38341031 PMCID: PMC11785907 DOI: 10.1016/j.jare.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION The long-term overuse of malachite green (MG) has potential carcinogenic, teratogenic, and mutagenic effects. The functional nanocomposite is novel and challenging to construct and implement through surface enhanced Raman scattering (SERS) strategy to reveal the contributions in application. OBJECTIVES The novel Ag-CDs (carbon dots)-PBA (phenyl boric acid) nanocomposite was constructed by a facile route to detect toxic MG molecule with high SERS sensitivity and good uniformity. METHODS The enhanced substrate used for the detection of MG has been successfully constructed using PBA modulated Ag-CDs on a structured surface with rich binding sites. RESULTS The fabricated Ag-CDs-PBA substrate can be used to analyze various probe molecules exhibiting high sensitivity, good signal reproducibility, and excellent stability. The mechanism between components has been proved by calculations originating from the plasmonic Ag and active electronic transmission among the bridging CDs and PBA via the close spatial π-π effect. In addition, the accelerated separation of electron-hole pairs was triggered to further improve the SERS activity of the hybrid via a bidirectional charge transfer (CT) process. Significantly, the Ag-CDs-PBA system shows distinctive selectivity, in which PBA can hinder the interference of other species without specific hydroxyl groups. CONCLUSION Based on this deeper insight on plasmon-mediated mechanism, the SERS substrate was successfully practiced for quantitative determination in real water and fish samples. The strategy developed promises to be a new sensor technology and has great potential for environmental and food safety applications.
Collapse
Affiliation(s)
- Yanqiu Yang
- Department of Physics, Liaoning University, Shenyang 110036, China
| | - Lingru Kong
- Department of Physics, Liaoning University, Shenyang 110036, China
| | - Yong Ding
- Department of Physics, Liaoning University, Shenyang 110036, China
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang 110036, China; Yingkou Institute of Technology, Yingkou 115014, China
| | - Shuo Cao
- Department of Physics, Liaoning University, Shenyang 110036, China
| | - Peng Song
- Department of Physics, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
2
|
Gao Y, Zhang Y, Ma Y, Li X, Wang Y, Chen H, Wan Y, Huang Z, Liu W, Wang P, Wang L, Lee CS, Li S. NIR-II-activated whole-cell vaccine with ultra-efficient semiconducting diradical oligomers for breast carcinoma growth and metastasis inhibition. Acta Pharm Sin B 2025; 15:1159-1170. [PMID: 40177542 PMCID: PMC11959919 DOI: 10.1016/j.apsb.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/20/2024] [Accepted: 10/15/2024] [Indexed: 04/05/2025] Open
Abstract
High-performance phototheranostics with combined photothermal therapy and photoacoustic imaging have been considered promising approaches for efficient cancer diagnosis and treatment. However, developing phototheranostic materials with efficient photothermal conversion efficiency (PCE), especially over the second near-infrared window (NIR-II, 1000-1700 nm), remains challenging. Herein, we report an ultraefficient NIR-II-activated nanomedicine with phototheranostic and vaccination capability for highly efficient in vivo tumor elimination and metastasis inhibition. The NIR-II nanomedicine of a semiconducting biradical oligomer with a motor-flexible design was demonstrated with a record-breaking PCE of 87% upon NIR-II excitation. This nanomedicine inherently features extraordinary photothermal stability, good biocompatibility, and excellent photoacoustic performance, contributing to high-contrast photoacoustic imaging in living mice and high-performance photothermal elimination of tumors. Moreover, a whole-cell vaccine based on a NIR-II nanomedicine with NIR-II-activated performance was further designed to remotely activate the antitumor immunologic memory and effectively inhibit tumor occurrence and metastasis in vivo, with good biosafety. Thus, this work paves a new avenue for designing NIR-II active semiconducting biradical materials as a promising theranostics platform and further promotes the development of NIR-II nanomedicine for personalized cancer treatment.
Collapse
Affiliation(s)
- Yijian Gao
- College of Pharmaceutical Sciences, the Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Yachao Zhang
- Key Laboratory of Biomedical Imaging Science and System, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Yujie Ma
- College of Pharmaceutical Sciences, the Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Xiliang Li
- College of Pharmaceutical Sciences, the Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Yu Wang
- College of Pharmaceutical Sciences, the Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Huan Chen
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Yingpeng Wan
- College of Pharmaceutical Sciences, the Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Zhongming Huang
- College of Pharmaceutical Sciences, the Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Weimin Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, Hong Kong SAR 999077, China
| | - Pengfei Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, Hong Kong SAR 999077, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Shengliang Li
- College of Pharmaceutical Sciences, the Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Song J, Kang M, Ji S, Ye S, Guo J. Research on Red/Near-Infrared Fluorescent Carbon Dots Based on Different Carbon Sources and Solvents: Fluorescence Mechanism and Biological Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:81. [PMID: 39852696 PMCID: PMC11767825 DOI: 10.3390/nano15020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025]
Abstract
Fluorescent carbon dots, especially red/near-infrared-emitting CDs, are becoming increasingly important in the field of biomedicine. This article reviews the synthesis, fluorescence mechanisms, and biological applications of R/NIR-CDs, emphasizing the importance of carbon source and solvent selection in controlling their optical properties. The formation process of CDs is classified, and the fluorescence mechanisms of CDs are summarized, involving carbon core states, surface states, molecular states, and cross-linking enhanced emission effects. This article also highlights the applications of R/NIR-CDs in bioimaging, biosensing, phototherapy, and drug delivery. The final section discusses challenges and prospects.
Collapse
Affiliation(s)
- Jun Song
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China; (J.S.); (M.K.); (S.J.)
- Medical Engineering and Technology College, Xinjiang Medical University, Urumqi 830011, China
| | - Minghao Kang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China; (J.S.); (M.K.); (S.J.)
| | - Shujian Ji
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China; (J.S.); (M.K.); (S.J.)
| | - Shuai Ye
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China; (J.S.); (M.K.); (S.J.)
- Medical Engineering and Technology College, Xinjiang Medical University, Urumqi 830011, China
| | - Jiaqing Guo
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China; (J.S.); (M.K.); (S.J.)
| |
Collapse
|
4
|
Xing Y, Jing R, Kang J, Li Y, Zhang H, Tang X, Jiang Z. Carbon-based Nanomaterials in Photothermal Therapy Guided by Photoacoustic Imaging: State of Knowledge and Recent Advances. Curr Med Chem 2025; 32:238-257. [PMID: 38529603 DOI: 10.2174/0109298673287448240311112523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 03/27/2024]
Abstract
Carbon-based nanomaterials (CBNM) have been widely used in various fields due to their excellent physicochemical properties. In particular, in the area of tumor diagnosis and treatment, researchers have frequently reported them for their potential fluorescence, photoacoustic (PA), and ultrasound imaging performance, as well as their photothermal, photodynamic, sonodynamic, and other therapeutic properties. As the functions of CBNM are increasingly developed, their excellent imaging properties and superior tumor treatment effects make them extremely promising theranostic agents. This review aims to integrate the considered and researched information in a specific field of this research topic and systematically present, summarize, and comment on the efforts made by authoritative scholars. In this review, we summarized the work exploring carbon-based materials in the field of tumor imaging and therapy, focusing on PA imaging-guided photothermal therapy (PTT) and discussing their imaging and therapeutic mechanisms and developments. Finally, the current challenges and potential opportunities of carbon-based materials for PA imaging-guided PTT are presented, and issues that researchers should be aware of when studying CBNM are provided.
Collapse
Affiliation(s)
- Yan Xing
- Department of Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Rui Jing
- School of Medical Technology, Analysis & Testing Center, Beijing Institute of Technology, Beijing, 100081, China
| | - Jun Kang
- School of Medical Technology, Analysis & Testing Center, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuwen Li
- School of Medical Technology, Analysis & Testing Center, Beijing Institute of Technology, Beijing, 100081, China
| | - Hui Zhang
- School of Medical Technology, Analysis & Testing Center, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoying Tang
- School of Medical Technology, Analysis & Testing Center, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhenqi Jiang
- School of Medical Technology, Analysis & Testing Center, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
5
|
Pechnikova NA, Domvri K, Porpodis K, Istomina MS, Iaremenko AV, Yaremenko AV. Carbon Quantum Dots in Biomedical Applications: Advances, Challenges, and Future Prospects. AGGREGATE 2024. [DOI: 10.1002/agt2.707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
ABSTRACTCarbon quantum dots (CQDs) represent a rapidly emerging class of nanomaterials with significant potential in biomedical applications due to their tunable fluorescence, high biocompatibility, and versatile functionalization. This review focuses on the recent progress in utilizing CQDs for drug delivery, bioimaging, biosensing, and cancer therapy. With their unique optical properties, such as tunable fluorescence, high quantum yield, and photostability, CQDs enable precise bioimaging and sensitive biosensing. Their small size, biocompatibility, and ease of surface functionalization allow for the development of targeted drug delivery systems, enhancing therapeutic precision and minimizing side effects. In cancer therapy, CQDs have shown potential in photodynamic and photothermal treatments by generating reactive oxygen species under light exposure, selectively targeting cancer cells while sparing healthy tissues. Furthermore, CQDs’ ability to penetrate biological barriers including the blood–brain barrier opens new possibilities for delivering therapeutic agents to hard‐to‐reach areas, such as tumors or diseased tissues. However, challenges such as optimizing synthesis, ensuring long‐term stability, and addressing safety concerns in biological environments remain critical hurdles. This review discusses current efforts to overcome these barriers and improve CQD performance in clinical settings, including scalable production methods and enhanced biocompatibility. As research progresses, CQDs are expected to play an important role in improving healthcare by offering more targeted treatment options and contributing to advancements in personalized medicine.
Collapse
Affiliation(s)
- Nadezhda A. Pechnikova
- Department of Biochemistry & Biotechnology University of Thessaly Volos Greece
- Laboratory of Chemical Engineering A’ Department of Chemical Engineering Faculty of Engineering Aristotle University of Thessaloniki Thessaloniki Greece
- Saint Petersburg Pasteur Institute Saint Petersburg Russia
| | - Kalliopi Domvri
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Laboratory of Histology‐Embryology School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Pathology Department George Papanikolaou Hospital Aristotle University of Thessaloniki Thessaloniki Greece
| | - Konstantinos Porpodis
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
| | - Maria S. Istomina
- Institute of Experimental Medicine Almazov National Medical Research Centre Saint‐Peterburg Russia
| | | | - Alexey V. Yaremenko
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Center for Nanomedicine Brigham and Women's Hospital, Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
6
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
7
|
Xue Q, Zeng S, Ren Y, Pan Y, Chen J, Chen N, Wong KKY, Song L, Fang C, Guo J, Xu J, Liu C, Zeng J, Sun L, Zhang H, Chen J. Relief of tumor hypoxia using a nanoenzyme amplifies NIR-II photoacoustic-guided photothermal therapy. BIOMEDICAL OPTICS EXPRESS 2024; 15:59-76. [PMID: 38223179 PMCID: PMC10783917 DOI: 10.1364/boe.499286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/16/2024]
Abstract
Hypoxia is a critical tumor microenvironment (TME) component. It significantly impacts tumor growth and metastasis and is known to be a major obstacle for cancer therapy. Integrating hypoxia modulation with imaging-based monitoring represents a promising strategy that holds the potential for enhancing tumor theranostics. Herein, a kind of nanoenzyme Prussian blue (PB) is synthesized as a metal-organic framework (MOF) to load the second near-infrared (NIR-II) small molecule dye IR1061, which could catalyze hydrogen peroxide to produce oxygen and provide a photothermal conversion element for photoacoustic imaging (PAI) and photothermal therapy (PTT). To enhance stability and biocompatibility, silica was used as a coating for an integrated nanoplatform (SPI). SPI was found to relieve the hypoxic nature of the TME effectively, thus suppressing tumor cell migration and downregulating the expression of heat shock protein 70 (HSP70), both of which led to an amplified NIR-II PTT effect in vitro and in vivo, guided by the NIR-II PAI. Furthermore, label-free multi-spectral PAI permitted the real-time evaluation of SPI as a putative tumor treatment. A clinical histological analysis confirmed the amplified treatment effect. Hence, SPI combined with PAI could offer a new approach for tumor diagnosing, treating, and monitoring.
Collapse
Affiliation(s)
- Qiang Xue
- Department of Ultrasound, Shenzhen People's Hospital, The Second Clinical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Silue Zeng
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yaguang Ren
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yingying Pan
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Medical Ultrasonics, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jianhai Chen
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ningbo Chen
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- The University of Hong Kong, Department of Electrical and Electronic Engineering, Hong Kong, China
| | - Kenneth K Y Wong
- The University of Hong Kong, Department of Electrical and Electronic Engineering, Hong Kong, China
| | - Liang Song
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chihua Fang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jinhan Guo
- Department of Ultrasound, Shenzhen People's Hospital, The Second Clinical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
| | - Jinfeng Xu
- Department of Ultrasound, Shenzhen People's Hospital, The Second Clinical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
| | - Chengbo Liu
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jie Zeng
- Department of Medical Ultrasonics, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Litao Sun
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Hai Zhang
- Department of Ultrasound, Shenzhen People's Hospital, The Second Clinical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
| | - Jingqin Chen
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
8
|
Alafeef M, Srivastava I, Aditya T, Pan D. Carbon Dots: From Synthesis to Unraveling the Fluorescence Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303937. [PMID: 37715112 DOI: 10.1002/smll.202303937] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/31/2023] [Indexed: 09/17/2023]
Abstract
Carbon dots (CDs) being a new type of carbon-based nanomaterial have attracted intensive interest from researchers owing to their excellent biophysical properties. CDs are a class of fluorescent carbon nanomaterials that have emerged as a promising alternative to traditional quantum dots and organic dyes in applications including bioimaging, sensing, and optoelectronics. CDs possess unique optical properties, such as tunable emission, facile synthesis, and low toxicity, making them attractive for many applications in biology, medicine, and environmental areas. The synthesis of CDs is achievable by a variety of methods, including bottom-up and top-down approaches, involving the use of different carbon sources and surface functionalization strategies. However, understanding the fluorescence mechanism of CDs remains a challenge. Various mechanistic models have been proposed to explain their origin of luminescence. This review summarizes the recent developments in the synthesis and functionalization of CDs and provides an overview of the current understanding of the fluorescence mechanism.
Collapse
Affiliation(s)
- Maha Alafeef
- Bioengineering Department, The University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Nuclear Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Materials Science and Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan
- Huck Institute of Life Sciences, Pennsylvania State University, State College, PA, 16801, USA
| | - Indrajit Srivastava
- Bioengineering Department, The University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Nuclear Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Materials Science and Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan
- Huck Institute of Life Sciences, Pennsylvania State University, State College, PA, 16801, USA
| | - Teresa Aditya
- Department of Nuclear Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Materials Science and Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan
- Huck Institute of Life Sciences, Pennsylvania State University, State College, PA, 16801, USA
| | - Dipanjan Pan
- Bioengineering Department, The University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Nuclear Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Materials Science and Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan
- Huck Institute of Life Sciences, Pennsylvania State University, State College, PA, 16801, USA
| |
Collapse
|
9
|
Gao Y, Liu Y, Li X, Wang H, Yang Y, Luo Y, Wan Y, Lee CS, Li S, Zhang XH. A Stable Open-Shell Conjugated Diradical Polymer with Ultra-High Photothermal Conversion Efficiency for NIR-II Photo-Immunotherapy of Metastatic Tumor. NANO-MICRO LETTERS 2023; 16:21. [PMID: 37982963 PMCID: PMC10660627 DOI: 10.1007/s40820-023-01219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/28/2023] [Indexed: 11/21/2023]
Abstract
Massive efforts have been concentrated on the advance of eminent near-infrared (NIR) photothermal materials (PTMs) in the NIR-II window (1000-1700 nm), especially organic PTMs because of their intrinsic biological safety compared with inorganic PTMs. However, so far, only a few NIR-II-responsive organic PTMs was explored, and their photothermal conversion efficiencies (PCEs) still remain relatively low. Herein, donor-acceptor conjugated diradical polymers with open-shell characteristics are explored for synergistically photothermal immunotherapy of metastatic tumors in the NIR-II window. By employing side-chain regulation, the conjugated diradical polymer TTB-2 with obvious NIR-II absorption was developed, and its nanoparticles realize a record-breaking PCE of 87.7% upon NIR-II light illustration. In vitro and in vivo experiments demonstrate that TTB-2 nanoparticles show good tumor photoablation with navigation of photoacoustic imaging in the NIR-II window, without any side-effect. Moreover, by combining with PD-1 antibody, the pulmonary metastasis of breast cancer is high-effectively prevented by the efficient photo-immunity effect. Thus, this study explores superior PTMs for cancer metastasis theranostics in the NIR-II window, offering a new horizon in developing radical-characteristic NIR-II photothermal materials.
Collapse
Affiliation(s)
- Yijian Gao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Ying Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xiliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Hui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, People's Republic of China
| | - Yuliang Yang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Yu Luo
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China.
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
10
|
Ye S, Zhang W, Shen Y, Han S, Hu H, Liang Y, Lin Z, Jin Y, Lawson T, Liu Y, Cai Z. Simultaneous Imaging and Photodynamic-Enhanced Photothermal Inhibition of Cancer Cells Using a Multifunctional System Combining Indocyanine Green and Polydopamine-Preloaded Upconversion Luminescent Nanoparticles. Macromol Rapid Commun 2023; 44:e2300298. [PMID: 37548089 DOI: 10.1002/marc.202300298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Indexed: 08/08/2023]
Abstract
This work introduces a novel multifunctional system called UPIPF (upconversion-polydopamine-indocyanine-polyethylene-folic) for upconversion luminescent (UCL) imaging of cancer cells using near-infrared (NIR) illumination. The system demonstrates efficient inhibition of human hepatoma (HepG2) cancer cells through a combination of NIR-triggered photodynamic therapy (PDT) and enhanced photothermal therapy (PTT). Initially, upconversion nanoparticles (UCNP) are synthesized using a simple thermal decomposition method. To improve their biocompatibility and aqueous dispersibility, polydopamine (PDA) is introduced to the UCNP via a ligand exchange technique. Indocyanine green (ICG) molecules are electrostatically attached to the surface of the UCNP-polydopamine (UCNP@PDAs) complex to enhance the PDT and PTT effects. Moreover, polyethylene glycol (PEG)-modified folic acid (FA) is incorporated into the UCNP-polydopamine-indocyanine-green (UCNP@PDA-ICGs) nanoparticles to enhance their targeting capability against cancer cells. The excellent UCL properties of these UCNP enable the final UCNP@PDA-ICG-PEG-FA nanoparticles (referred to as UPIPF) to serve as a potential candidate for efficient anticancer drug delivery, real-time imaging, and early diagnosis of cancer cells. Furthermore, the UPIPF system exhibits PDT-assisted PTT effects, providing a convenient approach for efficient cancer cell inhibition (more than 99% of cells are killed). The prepared UPIPF system shows promise for early diagnosis and simultaneous treatment of malignant cancers.
Collapse
Affiliation(s)
- Sihao Ye
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Wenjing Zhang
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yao Shen
- Department of Gastroenterology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Shuai Han
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Hai Hu
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yuexiang Liang
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zijian Lin
- Department of Gastroenterology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yuepeng Jin
- National Key Clinical Specialty (General Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Tom Lawson
- School of Mathematical and Physical Sciences, ARC Centre of Excellence for Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, NSW, 2109, Australia
| | - Yong Liu
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zhenzhai Cai
- Department of Gastroenterology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
11
|
Ma C, Kuang X, Chen M, Menozzi L, Jiang L, Zhou Q, Zhang YS, Yao J. Multiscale photoacoustic tomography using reversibly switchable thermochromics. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:082804. [PMID: 36817549 PMCID: PMC9932525 DOI: 10.1117/1.jbo.28.8.082804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
SIGNIFICANCE Based on acoustic detection of optical absorption, photoacoustic tomography (PAT) allows functional and molecular imaging beyond the optical diffusion limit with high spatial resolution. However, multispectral functional and molecular PAT is often limited by decreased spectroscopic accuracy and reduced detection sensitivity in deep tissues, mainly due to wavelength-dependent optical attenuation and inaccurate acoustic inversion. AIM Previous work has demonstrated that reversible color-shifting can drastically improve the detection sensitivity of PAT by suppressing nonswitching background signals. We aim to develop a new color switching-based PAT method using reversibly switchable thermochromics (ReST). APPROACH We developed a family of ReST with excellent water dispersion, biostability, and temperature-controlled color changes by surface modification of commercial thermochromic microcapsules with the hydrophilic polysaccharide alginate. RESULTS The optical absorbance of the ReST was switched on and off repeatedly by modulating the surrounding temperature, allowing differential photoacoustic detection that effectively suppressed the nonswitching background signal and substantially improved image contrast and detection sensitivity. We demonstrate reversible thermal-switching imaging of ReST in vitro and in vivo using three PAT modes at different length scales. CONCLUSIONS ReST-enabled PAT is a promising technology for high-sensitivity deep tissue imaging of molecular activity in temperature-related biomedical applications, such as cancer thermotherapy.
Collapse
Affiliation(s)
- Chenshuo Ma
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Xiao Kuang
- Brigham and Women’s Hospital, Harvard Medical School, Division of Engineering in Medicine, Department of Medicine, Cambridge, Massachusetts, United States
| | - Maomao Chen
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Luca Menozzi
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Laiming Jiang
- University of Southern California, Department of Biomedical Engineering and USC Roski Eye Institute, Los Angeles, California, United States
| | - Qifa Zhou
- University of Southern California, Department of Biomedical Engineering and USC Roski Eye Institute, Los Angeles, California, United States
| | - Yu Shrike Zhang
- Brigham and Women’s Hospital, Harvard Medical School, Division of Engineering in Medicine, Department of Medicine, Cambridge, Massachusetts, United States
| | - Junjie Yao
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| |
Collapse
|
12
|
Jagannath A, Li Y, Cong H, Hassan J, Gonzalez G, Wang W, Zhang N, Gilchrist MD. UV-Assisted Hyperbranched Poly(β-amino ester) Modification of a Silica Membrane for Two-Step Microfluidic DNA Extraction from Blood. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37319124 DOI: 10.1021/acsami.3c03523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Integrating nucleic acid extraction in amplification-based point-of-care diagnostics will be a significant feature for next-generation point-of-care virus detection devices. However, extracting DNA efficiently on a microfluidic chip poses many technological and commercialization challenges, including manual steps, multiple instruments, pretreatment processes, and the use of organic solvents (ethanol, IPA) that inhibit detection, which is not viable with routine testing such as viral load monitoring of transplant patients for post-operative care. This paper presents a microfluidic system capable of two-step DNA extraction from blood using a UV-assisted hyperbranched poly(β-amino ester) (HPAE)-modified silica membrane for cytomegalovirus (CMV) detection in a rapid and instrument-free manner without the presence of amplification inhibitors. HPAEs of varying branch ratios were synthesized, screened, and coated on a silica membrane and bonded between two layers of poly(methyl methacrylate) (PMMA) substrates. Our system could selectively extract DNA from blood with an efficiency of 94% and a lower limit viral load of 300 IU/mL in 20 min. The extracted DNA was used as the template for real-time loop-mediated isothermal amplification (LAMP)-based detection of CMV and was found to produce a fluorescent signal intensity that was comparable with commercially extracted templates. This system can be integrated easily with a nucleic acid amplification system and used for routine rapid testing of viral load in patient blood samples.
Collapse
Affiliation(s)
- Akshaya Jagannath
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yinghao Li
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hengji Cong
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jaythoon Hassan
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gabriel Gonzalez
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo 001-0020, Japan
| | - Wenxin Wang
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nan Zhang
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- MiNAN Technologies Ltd., NovaUCD, Belfield, Dublin 4, Ireland
| | - Michael D Gilchrist
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- MiNAN Technologies Ltd., NovaUCD, Belfield, Dublin 4, Ireland
| |
Collapse
|
13
|
Li J, Wang S, Fontana F, Tapeinos C, Shahbazi MA, Han H, Santos HA. Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioact Mater 2023; 23:471-507. [PMID: 36514388 PMCID: PMC9727595 DOI: 10.1016/j.bioactmat.2022.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/11/2022] Open
Abstract
Remarkable progress in phototherapy has been made in recent decades, due to its non-invasiveness and instant therapeutic efficacy. In addition, with the rapid development of nanoscience and nanotechnology, phototherapy systems based on nanoparticles or nanocomposites also evolved as an emerging hotspot in nanomedicine research, especially in cancer. In this review, first we briefly introduce the history of phototherapy, and the mechanisms of phototherapy in cancer treatment. Then, we summarize the representative development over the past three to five years in nanoparticle-based phototherapy and highlight the design of the innovative nanoparticles thereof. Finally, we discuss the feasibility and the potential of the nanoparticle-based phototherapy systems in clinical anticancer therapeutic applications, aiming to predict future research directions in this field. Our review is a tutorial work, aiming at providing useful insights to researchers in the field of nanotechnology, nanoscience and cancer.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Shiqi Wang
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Flavia Fontana
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Christos Tapeinos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Huijie Han
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Hélder A Santos
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
14
|
Arcudi F, Đorđević L. Supramolecular Chemistry of Carbon-Based Dots Offers Widespread Opportunities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300906. [PMID: 37078923 DOI: 10.1002/smll.202300906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Carbon dots are an emerging class of nanomaterials that has recently attracted considerable attention for applications that span from biomedicine to energy. These photoluminescent carbon nanoparticles are defined by characteristic sizes of <10 nm, a carbon-based core and various functional groups at their surface. Although the surface groups are widely used to establish non-covalent bonds (through electrostatic interactions, coordinative bonds, and hydrogen bonds) with various other (bio)molecules and polymers, the carbonaceous core could also establish non-covalent bonds (ππ stacking or hydrophobic interactions) with π-extended or apolar compounds. The surface functional groups, in addition, can be modified by various post-synthetic chemical procedures to fine-tune the supramolecular interactions. Our contribution categorizes and analyzes the interactions that are commonly used to engineer carbon dots-based materials and discusses how they have allowed preparation of functional assemblies and architectures used for sensing, (bio)imaging, therapeutic applications, catalysis, and devices. Using non-covalent interactions as a bottom-up approach to prepare carbon dots-based assemblies and composites can exploit the unique features of supramolecular chemistry, which include adaptability, tunability, and stimuli-responsiveness due to the dynamic nature of the non-covalent interactions. It is expected that focusing on the various supramolecular possibilities will influence the future development of this class of nanomaterials.
Collapse
Affiliation(s)
- Francesca Arcudi
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| | - Luka Đorđević
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| |
Collapse
|
15
|
Asil SM, Guerrero ED, Bugarini G, Cayme J, De Avila N, Garcia J, Hernandez A, Mecado J, Madero Y, Moncayo F, Olmos R, Perches D, Roman J, Salcido-Padilla D, Sanchez E, Trejo C, Trevino P, Nurunnabi M, Narayan M. Theranostic applications of multifunctional carbon nanomaterials. VIEW 2023; 4:20220056. [PMID: 37426287 PMCID: PMC10328449 DOI: 10.1002/viw.20220056] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
Nanobiotechnology is one of the leading research areas in biomedical science, developing rapidly worldwide. Among various types of nanoparticles, carbon nanomaterials (CNMs) have attracted a great deal of attention from the scientific community, especially with respect to their prospective application in the field of disease diagnosis and therapy. The unique features of these nanomaterials, including favorable size, high surface area, and electrical, structural, optical, and chemical properties, have provided an excellent opportunity for their utilization in theranostic systems. Carbon nanotubes, carbon quantum dots, graphene, and fullerene are the most employed CNMs in biomedical fields. They have been considered safe and efficient for non-invasive diagnostic techniques such as fluorescence imaging, magnetic resonance imaging, and biosensors. Various functionalized CNMs exhibit a great capacity to improve cell targeting of anti-cancer drugs. Due to their thermal properties, they have been extensively used in cancer photothermal and photodynamic therapy assisted by laser irradiation and CNMs. CNMs also can cross the blood-brain barrier and have the potential to treat various brain disorders, for instance, neurodegenerative diseases, by removing amyloid fibrils. This review has summarized and emphasized on biomedical application of CNMs and their recent advances in diagnosis and therapy.
Collapse
Affiliation(s)
- Shima Masoudi Asil
- Department of Environmental Science and Engineering, The University of Texas at El Paso, El Paso, Texas, USA
| | - Erick Damian Guerrero
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Georgina Bugarini
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Joshua Cayme
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Nydia De Avila
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Jaime Garcia
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Adrian Hernandez
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Julia Mecado
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Yazeneth Madero
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Frida Moncayo
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Rosario Olmos
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - David Perches
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Jacob Roman
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Diana Salcido-Padilla
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Efrain Sanchez
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Christopher Trejo
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Paulina Trevino
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas, USA
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas, USA
| |
Collapse
|
16
|
Cui F, Liu J, Zhang T, Pang S, Yu H, Xu N. Low-dimensional nanomaterials as an emerging platform for cancer diagnosis and therapy. Front Bioeng Biotechnol 2023; 11:1101673. [PMID: 36741768 PMCID: PMC9892763 DOI: 10.3389/fbioe.2023.1101673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
The burden of cancer is increasing, being widely recognized as one of the main reasons for deaths among humans. Despite the tremendous efforts that have been made worldwide to stem the progression and metastasis of cancer, morbidity and mortality in malignant tumors have been clearly rising and threatening human health. In recent years, nanomedicine has come to occupy an increasingly important position in precision oncotherapy, which improves the diagnosis, treatment, and long-term prognosis of cancer. In particular, LDNs with distinctive physicochemical capabilities have provided great potential for advanced biomedical applications, attributed to their large surface area, abundant surface binding sites, and good cellular permeation properties. In addition, LDNs can integrate CT/MR/US/PAI and PTT/PDT/CDT/NDDS into a multimodal theranostic nanoplatform, enabling targeted therapy and efficacy assessments for cancer. This review attempts to concisely summarize the classification and major properties of LDNs. Simultaneously, we particularly emphasize their applications in the imaging, diagnosis, and treatment of cancerous diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Nannan Xu
- *Correspondence: Jianhua Liu, ; Nannan Xu,
| |
Collapse
|
17
|
Zhu H, Li B, Yu Chan C, Low Qian Ling B, Tor J, Yi Oh X, Jiang W, Ye E, Li Z, Jun Loh X. Advances in Single-component inorganic nanostructures for photoacoustic imaging guided photothermal therapy. Adv Drug Deliv Rev 2023; 192:114644. [PMID: 36493906 DOI: 10.1016/j.addr.2022.114644] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/02/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Phototheranostic based on photothermal therapy (PTT) and photoacoustic imaging (PAI), as one of avant-garde medical techniques, have sparked growing attention because it allows noninvasive, deeply penetrative, and highly selective and effective therapy. Among a variety of phototheranostic nanoagents, single-component inorganic nanostructures are found to be novel and attractive PAI and PTT combined nanotheranostic agents and received tremendous attention, which not only exhibit structural controllability, high tunability in physiochemical properties, size-dependent optical properties, high reproducibility, simple composition, easy functionalization, and simple synthesis process, but also can be endowed with multiple therapeutic and imaging functions, realizing the superior therapy result along with bringing less foreign materials into body, reducing systemic side effects and improving the bioavailability. In this review, according to their synthetic components, conventional single-component inorganic nanostructures are divided into metallic nanostructures, metal dichalcogenides, metal oxides, carbon based nanostructures, upconversion nanoparticles (UCNPs), metal organic frameworks (MOFs), MXenes, graphdiyne and other nanostructures. On the basis of this category, their detailed applications in PAI guide PTT of tumor treatment are systematically reviewed, including synthesis strategies, corresponding performances, and cancer diagnosis and therapeutic efficacy. Before these, the factors to influence on photothermal effect and the principle of in vivo PAI are briefly presented. Finally, we also comprehensively and thoroughly discussed the limitation, potential barriers, future perspectives for research and clinical translation of this single-component inorganic nanoagent in biomedical therapeutics.
Collapse
Affiliation(s)
- Houjuan Zhu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Bofan Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research) Singapore 138634, Singapore
| | - Chui Yu Chan
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Beverly Low Qian Ling
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Jiaqian Tor
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Xin Yi Oh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Wenbin Jiang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research) Singapore 138634, Singapore.
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research) Singapore 138634, Singapore.
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore.
| |
Collapse
|
18
|
Sengar P, Chauhan K, Hirata GA. Progress on carbon dots and hydroxyapatite based biocompatible luminescent nanomaterials for cancer theranostics. Transl Oncol 2022; 24:101482. [PMID: 35841822 PMCID: PMC9293661 DOI: 10.1016/j.tranon.2022.101482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Biocompatible carbon dots (CDs) and nanohydroxyapatite (nHA) have attracted much attention for the development of optical imaging probes. This review discusses the development of CD and nHA based nanomaterials as multifunctional agents for cancer theranostics. The effect of synthesis strategies and doping on photoluminescent properties along with tuning of emission in biological window has been briefly reviewed. The cancer targeting strategies, biocompatibility and biodistribution of CDs and nHA based luminescent probes is discussed. A summary of current challenges and future perspectives is provided.
Despite the significant advancement in cancer diagnosis and therapy, a huge burden remains. Consequently, much research has been diverted on the development of multifunctional nanomaterials for improvement in conventional diagnosis and therapy. Luminescent nanomaterials offer a versatile platform for the development of such materials as their intrinsic photoluminescence (PL) property offers convergence of diagnosis as well as therapy at the same time. However, the clinical translation of nanomaterials faces various challenges, including biocompatibility and cost-effective scale up production. Thus, luminescent materials with facile synthesis approach along with intrinsic biocompatibility and anticancerous activity hold significant importance. As a result, carbon dots (CDs) and nanohydroxyapatite (nHA) have attracted much attention for the development of optical imaging probes. CDs are the newest members of the carbonaceous nanomaterials family that possess intrinsic luminescent and therapeutic properties, making them a promising candidate for cancer theranostic. Additionally, nHA is an excellent bioactive material due to its compositional similarity to the human bone matrix. The nHA crystal can efficiently host rare-earth elements to attain luminescent property, which can further be implemented for cancer theranostic applications. Herein, the development of CDs and nHA based nanomaterials as multifunctional agents for cancer has been briefly discussed. The emphasis has been given to different synthesis strategies leading to different morphologies and tunable PL spectra, followed by their diverse applications as biocompatible theranostic agents. Finally, the review has been summarized with the current challenges and future perspectives.
Collapse
Affiliation(s)
- Prakhar Sengar
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México Ensenada, Baja California C.P. 22860, México
| | - Kanchan Chauhan
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México Ensenada, Baja California C.P. 22860, México
| | - Gustavo A Hirata
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México Ensenada, Baja California C.P. 22860, México.
| |
Collapse
|
19
|
Wang B, Cai H, Waterhouse GIN, Qu X, Yang B, Lu S. Carbon Dots in Bioimaging, Biosensing and Therapeutics: A Comprehensive Review. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200012] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Boyang Wang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Huijuan Cai
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | | | - Xiaoli Qu
- Erythrocyte Biology Laboratory School of Life Sciences Zhengzhou University Zhengzhou 450001 China
| | - Bai Yang
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Siyu Lu
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| |
Collapse
|
20
|
Wang Y, Sun X, Han Y, Wang K, Cheng L, Sun Y, Besenbacher F, Yu M. Au@MnSe 2 Core-Shell Nanoagent Enabling Immediate Generation of Hydroxyl Radicals and Simultaneous Glutathione Deletion Free of Pre-Reaction for Chemodynamic-Photothermo-Photocatalytic Therapy with Significant Immune Response. Adv Healthc Mater 2022; 11:e2200041. [PMID: 35481899 DOI: 10.1002/adhm.202200041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/29/2022] [Indexed: 11/08/2022]
Abstract
As a typical tumor microenvironment-responsive therapy, chemodynamic therapy (CDT), producing hydroxyl radicals (• OH) to eliminate tumor cells, has demonstrated great promise. Nevertheless, there are still major challenges: • OH generated from endogenous H2 O2 is usually insufficient; the CDT effect is strongly dependent on the pre-reaction with glutathione. Addressing the challenges, Au@MnSe2 core-shell nanoagent for synergetic chemodynamic-photothermo-photocatalytic therapy combined with tetramodal imaging, including magnetic resonance imaging, computed tomography, photoacoustic, and infrared thermal imaging is reported. Distinct from the reported glutathione-depleting agents, Mn2+ in MnSe2 allows immediate generation of • OH, independent of pre-reaction. Meanwhile, Mn3+ consumes glutathione by its conversion to Mn2+ . The Au-MnSe2 combination promotes photothermal conversion and photocatalytic reaction, resulting in largely enhanced • OH generation from endogenous H2 O2 and significant hyperthermia. Meanwhile, immune response is effectively activated: the intratumoral expression of programmed cell death-1 and proinflammatory cytokines increase to 4-7 folds; the cytotoxic and helper T lymphocytes cells in the tumor area increase to more than 2.5-folds; an evident, temporary systemic immunostimulatory effect is demonstrated. High tumor inhibition rate (≈97.3%) and greatly prolonged survival are obtained. This highly-integrated design coordinating three different therapies with four different imaging modals provide new possibilities for high-performance theranostic nanoagents.
Collapse
Affiliation(s)
- Yuanlin Wang
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
- iNANO and Department of Physics and Astronomy Aarhus University Aarhus 8000 Denmark
| | - Xiang Sun
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Yaqian Han
- Condensed Matter Science and Technology Institute School of Instrumentation Science and Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Kai Wang
- Department of Medical Imaging The Fourth Affiliated Hospital of the Harbin Medical University Harbin 150001 P. R. China
| | - Lixin Cheng
- Department of Medical Imaging The Fourth Affiliated Hospital of the Harbin Medical University Harbin 150001 P. R. China
| | - Ye Sun
- Condensed Matter Science and Technology Institute School of Instrumentation Science and Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Flemming Besenbacher
- iNANO and Department of Physics and Astronomy Aarhus University Aarhus 8000 Denmark
| | - Miao Yu
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| |
Collapse
|
21
|
Biophysical characterization and in vitro imaging of carbonized MOFs. Biochem Biophys Res Commun 2022; 608:116-121. [PMID: 35397423 DOI: 10.1016/j.bbrc.2022.03.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
Nanoparticles have been widely used in biological imaging and treatments of various diseases, especially for studies of tumors, due to their high efficiency in drug delivery and many other functions. Metal-organic frameworks have been an important research area in recent years because of advantages such as large apertures, adjustable structural compositions, adjustable sizes, multifunctionality, high drug loading, good biocompatibility and so on, and they show promise as multifunctional drug carriers. In this study, a carbonized MOF with photothermal therapeutic potential and dual-mode imaging capability was prepared. The biophysical properties of MIL-100 and C-MIL nanoparticles were determined, such as particle size, zeta potential and saturation magnetization strength. CCK-8 cell assays and mouse HE sections confirmed that C-MIL nanoparticles have good in vitro and in vivo biocompatibility. The solution temperature of C-MIL nanoparticles reached 58.1 °C during sustained laser irradiation at 808 nm, which confirmed the photothermal potential of the nanoparticles. Moreover, in biological imaging, C-MIL nanoparticles showed the ability to support in vitro nuclear magnetic and photoacoustic dual-mode imaging. C-MIL nanoparticles provide new options for tumor therapy, drug delivery and biological imaging.
Collapse
|
22
|
Liu H, Mo L, Chen H, Chen C, Wu J, Tang Z, Guo Z, Hu C, Liu Z. Carbon Dots with Intrinsic Bioactivities for Photothermal Optical Coherence Tomography, Tumor-Specific Therapy and Postoperative Wound Management. Adv Healthc Mater 2022; 11:e2101448. [PMID: 34937144 DOI: 10.1002/adhm.202101448] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/13/2021] [Indexed: 12/26/2022]
Abstract
Carbon dots (CDs) are considered as promising candidates with superior biocompatibilities for multimodel cancer theranostics. However, incorporation of exogenous components, such as targeting molecules and chemo/photo therapeutic drugs, is often required to improve the therapeutic efficacy. Herein, an "all-in-one" CDs that exhibit intrinsic bioactivities for bioimaging, potent tumor therapy, and postoperative management is proposed. The multifunctional CDs derived from gallic acid and tyrosine (GT-CDs) consist of a graphitized carbon core and N, O-rich functional groups, which endow them with a high near-infrared (NIR) photothermal conversion efficiency of 33.9% and tumor-specific cytotoxicity, respectively. A new imaging modality, photothermal optical coherence tomography, is introduced using GT-CDs as the contrast agent, offering the micrometer-scale resolution 3D tissue morphology of tumor. For cancer therapy, GT-CDs initiate the intracellular generation of reactive oxygen species in tumor cells but not normal cells, further induce the mitochondrial collapse and subsequent tumor cellular apoptosis. Combined with NIR photothermal treatment, synergistic antitumor therapy is achieved in vitro and in vivo. GT-CDs also promote the healing process of bacteria-contaminated skin wound, demonstrating their potential to prevent postoperative infection. The integrated theranostic strategy based on versatile GT-CDs supplies an alternative easy-to-handle pattern for disease management.
Collapse
Affiliation(s)
- Hao Liu
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 China
| | - Luoqi Mo
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 China
- College of Materials and Energy South China Agricultural University Guangzhou 510642 China
| | - Haolin Chen
- Department of Hematology The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen 518107 China
| | - Chao Chen
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 China
| | - Jiayi Wu
- School of Physics and Telecommunication Engineering South China Normal University Guangzhou 510006 China
| | - Zhilie Tang
- School of Physics and Telecommunication Engineering South China Normal University Guangzhou 510006 China
| | - Zhouyi Guo
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 China
| | - Chaofan Hu
- College of Materials and Energy South China Agricultural University Guangzhou 510642 China
| | - Zhiming Liu
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes College of Biophotonics South China Normal University Guangzhou 510631 China
| |
Collapse
|
23
|
Ðorđević L, Arcudi F, Cacioppo M, Prato M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. NATURE NANOTECHNOLOGY 2022; 17:112-130. [PMID: 35173327 DOI: 10.1038/s41565-021-01051-7] [Citation(s) in RCA: 359] [Impact Index Per Article: 119.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Photoluminescent carbon nanoparticles, or carbon dots, are an emerging class of materials that has recently attracted considerable attention for biomedical and energy applications. They are defined by characteristic sizes of <10 nm, a carbon-based core and the possibility to add various functional groups at their surface for targeted applications. These nanomaterials possess many interesting physicochemical and optical properties, which include tunable light emission, dispersibility and low toxicity. In this Review, we categorize how chemical tools impact the properties of carbon dots. We look for pre- and postsynthetic approaches for the preparation of carbon dots and their derivatives or composites. We then showcase examples to correlate structure, composition and function and use them to discuss the future development of this class of nanomaterials.
Collapse
Affiliation(s)
- Luka Ðorđević
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Trieste, Italy.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Francesca Arcudi
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Trieste, Italy.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Michele Cacioppo
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Trieste, Italy
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia San Sebastián, Spain
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Trieste, Italy.
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia San Sebastián, Spain.
- Basque Foundation for Science, Ikerbasque, Bilbao, Spain.
| |
Collapse
|
24
|
Huang C, Guan X, Lin H, Liang L, Miao Y, Wu Y, Bao H, Wu X, Shen A, Wei M, Huang J. Efficient Photoacoustic Imaging With Biomimetic Mesoporous Silica-Based Nanoparticles. Front Bioeng Biotechnol 2021; 9:762956. [PMID: 34917596 PMCID: PMC8669651 DOI: 10.3389/fbioe.2021.762956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Indocyanine green (ICG), a near-infrared (NIR) fluorescent dye approved by the Food and Drug Administration (FDA), has been extensively used as a photoacoustic (PA) probe for PA imaging. However, its practical application is limited by poor photostability in water, rapid body clearance, and non-specificity. Herein, we fabricated a novel biomimetic nanoprobe by coating ICG-loaded mesoporous silica nanoparticles with the cancer cell membrane (namely, CMI) for PA imaging. This probe exhibited good dispersion, large loading efficiency, good biocompatibility, and homologous targeting ability to Hela cells in vitro. Furthermore, the in vivo and ex vivo PA imaging on Hela tumor-bearing nude mice demonstrated that CMI could accumulate in tumor tissue and display a superior PA imaging efficacy compared with free ICG. All these results demonstrated that CMI might be a promising contrast agent for PA imaging of cervical carcinoma.
Collapse
Affiliation(s)
- Chuangjia Huang
- Department of Cardiology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoling Guan
- Department of Cardiology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hui Lin
- Department of Oncology, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Foshan, China
| | - Lu Liang
- Department of Cardiology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yingling Miao
- Department of Cardiology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yueheng Wu
- School of Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| | - Huiqiong Bao
- School of Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| | - Xiaodan Wu
- Department of Cardiology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ao Shen
- Department of Cardiology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Minyan Wei
- Department of Cardiology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jionghua Huang
- Department of Cardiology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
25
|
Li D, Ushakova EV, Rogach AL, Qu S. Optical Properties of Carbon Dots in the Deep-Red to Near-Infrared Region Are Attractive for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102325. [PMID: 34365728 DOI: 10.1002/smll.202102325] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/07/2021] [Indexed: 05/02/2023]
Abstract
Carbon dots (CDs) represent a recently emerged class of luminescent materials with a great potential for biomedical theranostics, and there are a lot of efforts to shift their absorption and emission toward deep-red (DR) to near-infrared (NIR) region falling in the biological transparency window. This review offers comprehensive insights into the synthesis strategies aimed to achieve this goal, and the current approaches of modulating the optical properties of CDs over the DR to NIR region. The underlying mechanisms of their absorption, photoluminescence, and chemiluminescence, as well as the related photophysical processes of photothermal conversion and formation of reactive oxygen species are considered. The already available biomedical applications of CDs, such as in the photoacoustic imaging and photothermal therapy, photodynamic therapy, and their use as bioimaging agents and drug carriers are then shortly summarized.
Collapse
Affiliation(s)
- Di Li
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Elena V Ushakova
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101, Russia
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Songnan Qu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, P. R. China
| |
Collapse
|
26
|
Kim D, Jo G, Chae Y, Subramani S, Lee BY, Kim EJ, Ji MK, Sim U, Hyun H. Bioinspired Camellia japonica carbon dots with high near-infrared absorbance for efficient photothermal cancer therapy. NANOSCALE 2021; 13:14426-14434. [PMID: 34473179 DOI: 10.1039/d1nr03999g] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since carbon dots (CDs) exhibit excellent biocompatibility, low cytotoxicity, near-infrared (NIR) absorbance, and superior photostability, many types of CDs are considered as powerful candidates for photothermal therapy (PTT) applications. However, the development of a desirable CD is still difficult due to insufficient photothermal conversion, thus resulting in the use of high laser power densities at a high dose of CDs for the PTT effect. Herein, bioinspired sulfur-doped CDs (S-CDs) with strong NIR absorbance were prepared from Camellia japonica flowers via a facile hydrothermal method for enhancing the photothermal conversion efficiency. The as-prepared S-CDs exhibited various advantages including cost-effective preparation, good water-solubility, high biocompatibility, intense NIR absorption, and excellent photothermal effect with robust photostability. Most importantly, the optimal low dose of S-CDs (45 μg mL-1) successfully led to efficient PTT performance with a high photothermal conversion efficiency (55.4%) under moderate laser power (808 nm, 1.1 W cm-2) for safe and effective cancer therapy.
Collapse
Affiliation(s)
- Dohun Kim
- Department of Materials Science & Engineering, Engineering Research Center, Chonnam National University, Gwangju 61186, South Korea.
- Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 61186, South Korea
- Future Energy Engineering Convergence, College of AI Convergence, Chonnam National University, Gwangju 61186, South Korea
| | - Gayoung Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, South Korea.
| | - Yujin Chae
- Department of Materials Science & Engineering, Engineering Research Center, Chonnam National University, Gwangju 61186, South Korea.
- Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 61186, South Korea
- Future Energy Engineering Convergence, College of AI Convergence, Chonnam National University, Gwangju 61186, South Korea
| | - Surendran Subramani
- Department of Materials Science & Engineering, Engineering Research Center, Chonnam National University, Gwangju 61186, South Korea.
- Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 61186, South Korea
- Future Energy Engineering Convergence, College of AI Convergence, Chonnam National University, Gwangju 61186, South Korea
| | - Bo Young Lee
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, South Korea.
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, South Korea
| | - Eun Jeong Kim
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, South Korea.
| | - Min-Kyung Ji
- Department of Materials Science & Engineering, Engineering Research Center, Chonnam National University, Gwangju 61186, South Korea.
- Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 61186, South Korea
- Future Energy Engineering Convergence, College of AI Convergence, Chonnam National University, Gwangju 61186, South Korea
| | - Uk Sim
- Department of Materials Science & Engineering, Engineering Research Center, Chonnam National University, Gwangju 61186, South Korea.
- Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 61186, South Korea
- Future Energy Engineering Convergence, College of AI Convergence, Chonnam National University, Gwangju 61186, South Korea
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, South Korea.
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, South Korea
| |
Collapse
|
27
|
Wang B, Song H, Qu X, Chang J, Yang B, Lu S. Carbon dots as a new class of nanomedicines: Opportunities and challenges. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214010] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Zhao L, Jiang M, Xu Z, Sun F, Wu X, Zhang M, Guan X, Ma J, Zhang W. Selective thermotherapy of tumor by self-regulating photothermal conversion system. J Colloid Interface Sci 2021; 605:752-765. [PMID: 34365311 DOI: 10.1016/j.jcis.2021.07.134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
One major challenge of photothermal therapy (PTT) is achieving thermal ablation of the tumor without damaging the normal cells and tissues. Here, we designed a self-regulating photothermal conversion system for selective thermotherapy based on self-assembling gold nanoparticles (S-AuNPs) and investigated the selectivity effect using a novel home-made in vitro selective photothermal transformation model and an in vivo skin damaging assessment model. In the in vitro selective photothermal transformation model, laser irradiation selectively increased the temperature of the internal microenvironment (pH 5.5) and resulted in an obvious temperature difference (ΔT ≥ 5 °C) with that of the external environment (pH 7.4). More importantly, in the in vivo skin damaging assessment model, S-AuNPs achieved good tumor inhibition without damaging the normal skin tissue compared with the conventional photothermal material. This work provides not only a novel validation protocol for tumor thermotherapy to achieve the biosafety of specifically killing tumor cells and normal tissue but also an evaluation methodology for other precise therapy for cancers.
Collapse
Affiliation(s)
- Liping Zhao
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Mingxia Jiang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Zhilu Xu
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Fengshuo Sun
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xinghan Wu
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Mogen Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, Shandong, China
| | - Xiuwen Guan
- College of Pharmacy, Weifang Medical University, Weifang 261053, China; Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China; Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| | - Jinlong Ma
- College of Pharmacy, Weifang Medical University, Weifang 261053, China; Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China; Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China.
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China; Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China; Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
29
|
Mauro N, Utzeri MA, Varvarà P, Cavallaro G. Functionalization of Metal and Carbon Nanoparticles with Potential in Cancer Theranostics. Molecules 2021; 26:3085. [PMID: 34064173 PMCID: PMC8196792 DOI: 10.3390/molecules26113085] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/19/2023] Open
Abstract
Cancer theranostics is a new concept of medical approach that attempts to combine in a unique nanoplatform diagnosis, monitoring and therapy so as to provide eradication of a solid tumor in a non-invasive fashion. There are many available solutions to tackle cancer using theranostic agents such as photothermal therapy (PTT) and photodynamic therapy (PDT) under the guidance of imaging techniques (e.g., magnetic resonance-MRI, photoacoustic-PA or computed tomography-CT imaging). Additionally, there are several potential theranostic nanoplatforms able to combine diagnosis and therapy at once, such as gold nanoparticles (GNPs), graphene oxide (GO), superparamagnetic iron oxide nanoparticles (SPIONs) and carbon nanodots (CDs). Currently, surface functionalization of these nanoplatforms is an extremely useful protocol for effectively tuning their structures, interface features and physicochemical properties. This approach is much more reliable and amenable to fine adjustment, reaching both physicochemical and regulatory requirements as a function of the specific field of application. Here, we summarize and compare the most promising metal- and carbon-based theranostic tools reported as potential candidates in precision cancer theranostics. We focused our review on the latest developments in surface functionalization strategies for these nanosystems, or hybrid nanocomposites consisting of their combination, and discuss their main characteristics and potential applications in precision cancer medicine.
Collapse
Affiliation(s)
- Nicolò Mauro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Mara Andrea Utzeri
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Paola Varvarà
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Gennara Cavallaro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
- Advanced Technologies Network Center, University of Palermo, Viale delle Scienze, Ed. 18, 90128 Palermo, Italy
| |
Collapse
|
30
|
Zhao Y, He B, Liu E, Li J, Wang L, Chen S, Chen Y, Tan Z, Ng KW, Wang S, Tang Z, Qu S. Aluminum-Based Surface Polymerization on Carbon Dots with Aggregation-Enhanced Luminescence. J Phys Chem Lett 2021; 12:4530-4536. [PMID: 33961442 DOI: 10.1021/acs.jpclett.1c01240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aggregation-induced luminescence quenching of carbon nanodots (CDs) is the main obstacle for their applications in solid-state light emitting devices. Herein, we developed a one-step synthesis of solid-state emissive CDs with surface aluminum-based polymerization by adding AlCl3 in citric acid and urea via a microwave-heating dehydration process. Due to the strong coordination ability of Al ions with N and O atoms, considerable steric hindrance of Al-based cross-linked polymerization was introduced on the surface of the CDs, which not only avoided aggregation of the green emissive carbon cores but also facilitated efficient energy transfer from the blue emissive polymerized surface to the green emissive carbon cores in aggregates, leading to enhanced green emissions with a photoluminescence quantum yield (PLQY) of 72.7% in the solid state.
Collapse
Affiliation(s)
- Yunyang Zhao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa 999078, Macau, SAR P. R. China
| | - Bingchen He
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa 999078, Macau, SAR P. R. China
| | - Enshan Liu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa 999078, Macau, SAR P. R. China
| | - Jielei Li
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa 999078, Macau, SAR P. R. China
| | - Liming Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa 999078, Macau, SAR P. R. China
| | - Shi Chen
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa 999078, Macau, SAR P. R. China
| | - Yeqing Chen
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Zhan'ao Tan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Kar Wei Ng
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa 999078, Macau, SAR P. R. China
| | - Shuangpeng Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa 999078, Macau, SAR P. R. China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa 999078, Macau, SAR P. R. China
| | - Songnan Qu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa 999078, Macau, SAR P. R. China
| |
Collapse
|
31
|
Wu H, Xu H, Shi Y, Yuan T, Meng T, Zhang Y, Xie W, Li X, Li Y, Fan L. Recent Advance in Carbon Dots: From Properties to Applications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hao Wu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Huimin Xu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Yuxin Shi
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Ting Yuan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Ting Meng
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Yang Zhang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Wenjing Xie
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Xiaohong Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Yunchao Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Louzhen Fan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| |
Collapse
|
32
|
Liu J, Li R, Yang B. Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS CENTRAL SCIENCE 2020; 6:2179-2195. [PMID: 33376780 PMCID: PMC7760469 DOI: 10.1021/acscentsci.0c01306] [Citation(s) in RCA: 630] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Indexed: 05/07/2023]
Abstract
Carbon dots (CDs), as a new type of carbon-based nanomaterial, have attracted broad research interest for years, because of their diverse physicochemical properties and favorable attributes like good biocompatibility, unique optical properties, low cost, ecofriendliness, abundant functional groups (e.g., amino, hydroxyl, carboxyl), high stability, and electron mobility. In this Outlook, we comprehensively summarize the classification of CDs based on the analysis of their formation mechanism, micro-/nanostructure and property features, and describe their synthetic methods and optical properties including strong absorption, photoluminescence, and phosphorescence. Furthermore, the recent significant advances in diverse applications, including optical (sensor, anticounterfeiting), energy (light-emitting diodes, catalysis, photovoltaics, supercapacitors), and promising biomedicine, are systematically highlighted. Finally, we envisage the key issues to be challenged, future research directions, and perspectives to show a full picture of CDs-based materials.
Collapse
Affiliation(s)
- Junjun Liu
- State Key Laboratory of Supramolecular
Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Rui Li
- State Key Laboratory of Supramolecular
Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular
Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
33
|
Surface chemistry tuning the selectivity of carbon nanodots towards Hg 2+ recognition. Anal Chim Acta 2020; 1146:33-40. [PMID: 33461717 DOI: 10.1016/j.aca.2020.12.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/09/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022]
Abstract
Fluorescence quenching of carbon nanodots by metal ions has been extensively applied for the determination of oligonucleotides, proteins, small molecules and metal ions. However, the problem of poor selectivity originating from the coordination of surface oxygen-containing groups to many kinds of metal ions has limited the prosperity of carbon nanodots in detection field. Herein, the specific recognition of carbon nanodots to Hg2+ is controlled by rational regulation of the surface structure of carbon nanodots. Passivation of the surface carboxyl and hydroxyl groups plays a decisive role in inhibiting the binding of metal ions with carbon nanodots. Upon the attachment of Hg2+ specific recognition unit, carbon nanodots exhibited a high selectivity to Hg2+. This work facilitates to rationally design the surface structure of carbon nanodots to obtain the desirable selective recognition ability.
Collapse
|
34
|
Ji DK, Reina G, Guo S, Eredia M, Samorì P, Ménard-Moyon C, Bianco A. Controlled functionalization of carbon nanodots for targeted intracellular production of reactive oxygen species. NANOSCALE HORIZONS 2020; 5:1240-1249. [PMID: 32555842 DOI: 10.1039/d0nh00300j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Controlled intracellular release of exogenous reactive oxygen species (ROS) is an innovative and efficient strategy for cancer treatment. Well-designed materials, which can produce ROS in targeted cells, minimizing side effects, still need to be explored as new generation nanomedicines. Here, red-emissive carbon nanodots (CNDs) with intrinsic theranostic properties are devised, and further modified with folic acid (FA) ligand through a controlled covalent functionalization for targeted cell imaging and intracellular production of ROS. We demonstrated that covalent functionalization is an effective strategy to prevent the aggregation of the dots, leading to superior colloidal stability, enhanced luminescence and ROS generation. Indeed, the functional nanodots possess a deep-red emission and good dispersibility under physiological conditions. Importantly, they show excellent targeting properties and generation of high levels of ROS under 660 nm laser irradiation, leading to efficient cell death. These unique properties enable FA-modified carbon nanodots to act as a multifunctional nanoplatform for simultaneous targeted imaging and efficient photodynamic therapy to induce cancer cell death.
Collapse
Affiliation(s)
- Ding-Kun Ji
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France.
| | | | | | | | | | | | | |
Collapse
|
35
|
Wang Z, Sun X, Huang T, Song J, Wang Y. A Sandwich Nanostructure of Gold Nanoparticle Coated Reduced Graphene Oxide for Photoacoustic Imaging-Guided Photothermal Therapy in the Second NIR Window. Front Bioeng Biotechnol 2020; 8:655. [PMID: 32695755 PMCID: PMC7338568 DOI: 10.3389/fbioe.2020.00655] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
We explore a sandwich-type gold nanoparticle coated reduced graphene oxide (rGO-AuNP) as an effective nanotheranostic platform for the second near-infrared (NIR-II) window photoacoustic (PA) imaging-guided photothermal therapy (PTT) in ovarian cancer. The PEG was loaded onto the AuNPs surface to increase the stability of nanostructure. The forming rGO-AuNPs- PEG revealed very strong SERS signal, NIR-II PA signal and high photothermal efficiency against tumor upon 1,061 nm laser irradiation. The prominent performance was attributed to the plasmonic coupling of AuNPs, and the enhanced response of rGO and the plasmonic AuNP. Thus, our study demonstrates that the rGO-AuNP nanocomposite could promise to be a potential photothermal agent and pave the way for the diagnosis and therapy of ovarian cancer in the future.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiao Sun
- Department of Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Ting Huang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry, Fuzhou University, Fuzhou, China
| | - Yudong Wang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| |
Collapse
|
36
|
Han Y, Qu B, Li J, Zhang X, Peng X, Li W, Zhang R. A simple POM clusters for in vivo NIR-II photoacoustic imaging-guided NIR-II photothermal therapy. J Inorg Biochem 2020; 209:111121. [PMID: 32505013 DOI: 10.1016/j.jinorgbio.2020.111121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 01/13/2023]
Abstract
Photoacoustic (PA) imaging in the second near-infrared (NIR-II) window exhibits enhanced deep-tissue imaging capability. Likely, cancer therapy in the NIR-II window could provide deeper penetration depth and higher exposure to laser over NIR-I. However, the traditional application of excitation light is still in the NIR-I window. In view of the excellent imaging and therapeutic capabilities of NIR-II window, we have demonstrated a simple polyoxometalate (POM) clusters (molecular formula: (Na)n(PMo12O40) or (NH4+)n(PMo12O40)), which integrates NIR-II photoacoustic imaging and NIR-II photothermal therapy into an "all-in-one" theranostic nanoplatform, and could be used for PA imaging-guided photothermal therapy in the NIR-II window. In vivo experiments demonstrate that the POM clusters with good water solubility and biocompatibility were effective to kill tumor without recurrence and metastasis under 1064 nm laser illumination.
Collapse
Affiliation(s)
- Yahong Han
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Imaging Department of the Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Botao Qu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Imaging Department of the Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Juan Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xiaomin Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xiaoyang Peng
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Weihua Li
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, PR China.
| | - Ruiping Zhang
- Imaging Department of the Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| |
Collapse
|
37
|
Ni J, Song J, Wang B, Hua H, Zhu H, Guo X, Xiong S, Zhao Y. Dendritic cell vaccine for the effective immunotherapy of breast cancer. Biomed Pharmacother 2020; 126:110046. [PMID: 32145586 DOI: 10.1016/j.biopha.2020.110046] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 01/21/2023] Open
Abstract
Cancer vaccine is widely considered as a powerful tool in immunotherapy. In particular, the effective antigen processing and presentation natures of dendritic cell (DC) have made it a promising target for the development of therapeutic vaccine for cancer treatment. Here in our study, a versatile cancer cell membrane (CCM) coated calcium carbonate (CC) nanoparticles (MC) that capable of generating in situ tumor-associated antigens (TAAs) for DC vaccination is developed. Low-dose doxorubicin hydrochloride (Dox) could be encapsulated in the CC core of MC to trigger immunogenic cell death (ICD) while chlorins e6 (Ce6), a commonly adopted photosensitizer, was loaded in the CCM of MC for effective photodynamic therapy (PDT) through the generation of reactive oxygen species (ROS) to finally construct the vaccine (MC/Dox/Ce6). Most importantly, our in-depth study revealed the treatment of MC/Dox/Ce6 was able to elicit TAAs population and DC recruitment, triggering the following immune response cascade. In particular, the recruited DC cells could be stimulated in situ for effective vaccinations. Both in vitro and in vivo experiments suggested the capability of this all-in-one DDS to enhance DCs maturation to finally result in effective inhibition of both primary and distant growth of breast cancer upon single administration of low dose Dox and Ce6.
Collapse
Affiliation(s)
- Jiang Ni
- Department of Pharmacy, The Affiliated Hospital of Jiangnan University (Original Area of Wuxi Third People's Hospital), China
| | - Jinfang Song
- Department of Pharmacy, The Affiliated Hospital of Jiangnan University (Original Area of Wuxi Third People's Hospital), China
| | - Bei Wang
- Department of Pharmacy, The Affiliated Hospital of Jiangnan University (Original Area of Wuxi Third People's Hospital), China
| | - Haiying Hua
- Department of Pharmacy, The Affiliated Hospital of Jiangnan University (Original Area of Wuxi Third People's Hospital), China
| | - Huanhuan Zhu
- Department of Pharmacy, The Affiliated Hospital of Jiangnan University (Original Area of Wuxi Third People's Hospital), China
| | - Xiaoqiang Guo
- Department of Pharmacy, The Affiliated Hospital of Jiangnan University (Original Area of Wuxi Third People's Hospital), China
| | - Shuming Xiong
- Department of Pharmacy, The Affiliated Hospital of Jiangnan University (Original Area of Wuxi Third People's Hospital), China
| | - Yiqing Zhao
- Department of Pharmacy, The Affiliated Hospital of Jiangnan University (Original Area of Wuxi Third People's Hospital), China.
| |
Collapse
|
38
|
Zada S, Dai W, Kai Z, Lu H, Meng X, Zhang Y, Cheng Y, Yan F, Fu P, Zhang X, Dong H. Algae Extraction Controllable Delamination of Vanadium Carbide Nanosheets with Enhanced Near-Infrared Photothermal Performance. Angew Chem Int Ed Engl 2020; 59:6601-6606. [PMID: 31994305 DOI: 10.1002/anie.201916748] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/27/2020] [Indexed: 01/09/2023]
Abstract
The two-dimensional (2D) vanadium carbide (V2 C) MXene has shown great potential as a photothermal agent (PTA) for photothermal therapy (PTT). However, the use of V2 C in PTT is limited by the harsh synthesis condition and low photothermal conversion efficiency (PTCE). Herein, we report a completely different green delamination method using algae extraction to intercalate and delaminate V2 AlC to produce mass V2 C nanosheets (NSs) with a high yield (90 %). The resulting V2 C NSs demonstrated good structural integrity and remarkably high absorption in near infrared (NIR) region with a PTCE as high as 48 %. Systemic in vitro and in vivo studies demonstrate that the V2 C NSs can serve as efficient PTA for photoacoustic (PA) and magnetic resonance imaging (MRI)-guided PTT of cancer. This work provides a cost-effective, environment-friendly, and high-yielding disassembly approach of MAX, opening a new avenue to develop MXenes with desirable properties for a myriad of applications.
Collapse
Affiliation(s)
- Shah Zada
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, P. R. China
| | - Wenhao Dai
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, P. R. China
| | - Zhang Kai
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, P. R. China
| | - Huiting Lu
- School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, P. R. China
| | - Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, P. R. China
| | - Yiyi Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, P. R. China
| | - Yaru Cheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, P. R. China
| | - Fang Yan
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, P. R. China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, 58 Renmin Avenue, Meilan District Haikou, Hainan Province, 570228, P. R. China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, P. R. China.,School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, P. R. China
| |
Collapse
|
39
|
Zada S, Dai W, Kai Z, Lu H, Meng X, Zhang Y, Cheng Y, Yan F, Fu P, Zhang X, Dong H. Algae Extraction Controllable Delamination of Vanadium Carbide Nanosheets with Enhanced Near‐Infrared Photothermal Performance. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916748] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shah Zada
- Beijing Key Laboratory for Bioengineering and Sensing TechnologyResearch Centre for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science & Technology Beijing 30 Xueyuan Road Beijing 100083 P. R. China
| | - Wenhao Dai
- Beijing Key Laboratory for Bioengineering and Sensing TechnologyResearch Centre for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science & Technology Beijing 30 Xueyuan Road Beijing 100083 P. R. China
| | - Zhang Kai
- Beijing Key Laboratory for Bioengineering and Sensing TechnologyResearch Centre for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science & Technology Beijing 30 Xueyuan Road Beijing 100083 P. R. China
| | - Huiting Lu
- School of Chemistry and Biological EngineeringUniversity of Science & Technology Beijing 30 Xueyuan Road Beijing 100083 P. R. China
| | - Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing TechnologyResearch Centre for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science & Technology Beijing 30 Xueyuan Road Beijing 100083 P. R. China
| | - Yiyi Zhang
- Beijing Key Laboratory for Bioengineering and Sensing TechnologyResearch Centre for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science & Technology Beijing 30 Xueyuan Road Beijing 100083 P. R. China
| | - Yaru Cheng
- Beijing Key Laboratory for Bioengineering and Sensing TechnologyResearch Centre for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science & Technology Beijing 30 Xueyuan Road Beijing 100083 P. R. China
| | - Fang Yan
- Beijing Key Laboratory for Bioengineering and Sensing TechnologyResearch Centre for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science & Technology Beijing 30 Xueyuan Road Beijing 100083 P. R. China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University 58 Renmin Avenue Meilan District Haikou Hainan Province 570228 P. R. China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing TechnologyResearch Centre for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science & Technology Beijing 30 Xueyuan Road Beijing 100083 P. R. China
- School of Biomedical EngineeringHealth Science CentreShenzhen University Shenzhen Guangdong 518060 P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing TechnologyResearch Centre for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science & Technology Beijing 30 Xueyuan Road Beijing 100083 P. R. China
| |
Collapse
|
40
|
Su W, Guo R, Yuan F, Li Y, Li X, Zhang Y, Zhou S, Fan L. Red-Emissive Carbon Quantum Dots for Nuclear Drug Delivery in Cancer Stem Cells. J Phys Chem Lett 2020; 11:1357-1363. [PMID: 32017568 DOI: 10.1021/acs.jpclett.9b03891] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Large doses of anticancer drugs entering cancer cell nuclei are found to be effective at killing cancer cells and increasing chemotherapeutic effectiveness. Here we report red-emissive carbon quantum dots, which can enter into the nuclei of not only cancer cells but also cancer stem cells. After doxorubicin was loaded at the concentration of 30 μg/mL on the surfaces of carbon quantum dots, the average cell viability of HeLa cells was decreased to only 21%, while it was decreased to 50% for free doxorubicin. The doxorubicin-loaded carbon quantum dots also exhibited a good therapeutic effect by eliminating cancer stem cells. This work provides a potential strategy for developing carbon quantum-dot-based anticancer drug carriers for effective eradication of cancers.
Collapse
Affiliation(s)
- Wen Su
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education , Beijing Normal University , Beijing 100875 , China
| | - Ruihua Guo
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education , Beijing Normal University , Beijing 100875 , China
| | - Fanglong Yuan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education , Beijing Normal University , Beijing 100875 , China
| | - Yunchao Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education , Beijing Normal University , Beijing 100875 , China
| | - Xiaohong Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education , Beijing Normal University , Beijing 100875 , China
| | - Yang Zhang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education , Beijing Normal University , Beijing 100875 , China
| | - Shixin Zhou
- Department of Cell Biology, School of Basic Medicine , Peking University Health Science Center , Beijing 100191 , China
| | - Louzhen Fan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education , Beijing Normal University , Beijing 100875 , China
| |
Collapse
|
41
|
Jung D, Park S, Lee C, Kim H. Recent Progress on Near-Infrared Photoacoustic Imaging: Imaging Modality and Organic Semiconducting Agents. Polymers (Basel) 2019; 11:E1693. [PMID: 31623160 PMCID: PMC6836006 DOI: 10.3390/polym11101693] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
Over the past few decades, the photoacoustic (PA) effect has been widely investigated, opening up diverse applications, such as photoacoustic spectroscopy, estimation of chemical energies, or point-of-care detection. Notably, photoacoustic imaging (PAI) has also been developed and has recently received considerable attention in bio-related or clinical imaging fields, as it now facilitates an imaging platform in the near-infrared (NIR) region by taking advantage of the significant advancement of exogenous imaging agents. The NIR PAI platform now paves the way for high-resolution, deep-tissue imaging, which is imperative for contemporary theragnosis, a combination of precise diagnosis and well-timed therapy. This review reports the recent progress on NIR PAI modality, as well as semiconducting contrast agents, and outlines the trend in current NIR imaging and provides further direction for the prospective development of PAI systems.
Collapse
Affiliation(s)
- Doyoung Jung
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Suhyeon Park
- Interdisciplinary Program of Molecular Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Changho Lee
- Interdisciplinary Program of Molecular Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School & Hwasun Hospital, 264, Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do 58128, Korea.
| | - Hyungwoo Kim
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| |
Collapse
|
42
|
Arcudi F, Đorđević L, Prato M. Design, Synthesis, and Functionalization Strategies of Tailored Carbon Nanodots. Acc Chem Res 2019; 52:2070-2079. [PMID: 31335113 DOI: 10.1021/acs.accounts.9b00249] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the past decades, considerable efforts have been devoted to synthesizing nanostructured materials with specific properties that ultimately shape their function. In the carbon nanotechnology era, for nanomaterials such as fullerenes, carbon nanotubes, and graphene, the main focus has been on the organic functionalization of these nanostructures, in order to tailor their processability and applicability. Carbon-based dots, quasi-spherical nanoparticles with a shape under 10 nm, have popped up into this context especially due to their versatile synthesis and intriguing properties, mainly their fluorescence emission. Even though they were discovered through the top-down route of cutting large carbon nanostructures, in recent years the ease and flexibility of the bottom-up synthesis have allowed this carbon-based class of nanomaterials to advance at a striking pace. However, the fast speed of research and publication rate have caused a few issues that affect their classification, purity criteria, and fluorescence mechanisms. As these are being progressively addressed, the true potential and applicability of this nanomaterial has started to unravel. In this Ariticle, we describe our efforts toward the synthesis, purification, characterization, and applications of carbon nanodots. Special attention was dedicated to designing and customizing the optoelectronic properties of these nanomaterials, as well as their applications in hybrid and composite systems. Our approach is centered on a bottom-up, microwave-assisted hydrothermal synthesis. We have successfully exploited a multicomponent synthetic approach, using arginine and ethylenediamine as starting materials. By controlling the reaction conditions, in just 3 min, blue-emitting carbon nanodots become accessible. We have improved this approach by designing and tuning the emissive, electrochemical, and chiroptical properties of these nanoforms. On the other hand, we have used postfunctionalization reactions as a tool for conjugation with suitable partners and for further tuning the surface chemistry. The combination of these two approaches has produced a number of carbon nanodots that can be investigated in fields ranging from biology to materials chemistry and in applications spanning from nanomedicine to energy conversion.
Collapse
Affiliation(s)
- Francesca Arcudi
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, Via Licio Giorgieri 1, University of Trieste, 34127 Trieste, Italy
| | - Luka Đorđević
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, Via Licio Giorgieri 1, University of Trieste, 34127 Trieste, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, Via Licio Giorgieri 1, University of Trieste, 34127 Trieste, Italy
- Carbon Bionanotechnology Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
- Basque Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| |
Collapse
|
43
|
Gargiulo S, Albanese S, Mancini M. State-of-the-Art Preclinical Photoacoustic Imaging in Oncology: Recent Advances in Cancer Theranostics. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:5080267. [PMID: 31182936 PMCID: PMC6515147 DOI: 10.1155/2019/5080267] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023]
Abstract
The optical imaging plays an increasing role in preclinical studies, particularly in cancer biology. The combined ultrasound and optical imaging, named photoacoustic imaging (PAI), is an emerging hybrid technique for real-time molecular imaging in preclinical research and recently expanding into clinical setting. PAI can be performed using endogenous contrast, particularly from oxygenated and deoxygenated hemoglobin and melanin, or exogenous contrast agents, sometimes targeted for specific biomarkers, providing comprehensive morphofunctional and molecular information on tumor microenvironment. Overall, PAI has revealed notable opportunities to improve knowledge on tumor pathophysiology and on the biological mechanisms underlying therapy. The aim of this review is to introduce the principles of PAI and to provide a brief overview of current PAI applications in preclinical research, highlighting also on recent advances in clinical translation for cancer diagnosis, staging, and therapy.
Collapse
Affiliation(s)
- Sara Gargiulo
- Institute of Biostructure and Bioimaging of National Council of Research, Naples 80145, Italy
| | - Sandra Albanese
- Institute of Biostructure and Bioimaging of National Council of Research, Naples 80145, Italy
| | - Marcello Mancini
- Institute of Biostructure and Bioimaging of National Council of Research, Naples 80145, Italy
| |
Collapse
|