1
|
Rasekh M, Arshad MS, Ahmad Z. Advances in Drug Delivery Integrated with Regenerative Medicine: Innovations, Challenges, and Future Frontiers. Pharmaceutics 2025; 17:456. [PMID: 40284451 PMCID: PMC12030587 DOI: 10.3390/pharmaceutics17040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Advances in drug delivery systems adapted with regenerative medicine have transformed healthcare by introducing innovative strategies to treat (and repair in many instances) disease-impacted regions of the human body. This review provides a comprehensive analysis of the latest developments and challenges in integrating drug delivery technologies with regenerative medicine. Recent advances in drug delivery technologies, including the design of biomaterials, localized delivery techniques, and controlled release systems guided by mathematical models, are explored to illustrate their role in enhancing therapeutic precision and efficacy. Additionally, regenerative medicine approaches are analyzed, with a focus on extracellular matrix components, stem cell-based therapies, and emerging strategies for organ regeneration in both soft and hard tissue and in vitro model engineering. In particular, the review also discusses the applications of cellular components, including stem cells, immune cells, endothelial cells, and specialized cells such as chondrocytes and osteoblasts, and highlights advancements in cell delivery methods and cell-cell interaction modulation. In addition, future directions and pivotal trends emphasizing the importance of interdisciplinary collaboration and cutting-edge innovations are provided to address successful therapeutic outcomes in regenerative medicine.
Collapse
Affiliation(s)
- Manoochehr Rasekh
- College of Engineering, Design and Physical Sciences, Brunel University of London, Uxbridge UB8 3PH, UK
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| |
Collapse
|
2
|
Hachim D, Hernández‐Cruz O, Foote JEJ, Wang R, Delahaye MW, Stuckey DJ, Feng Z, Wojciechowski JP, Salter LCB, Lin J, Harding SE, Stevens MM. Self-Doped and Biodegradable Glycosaminoglycan-PEDOT Conductive Hydrogels Facilitate Electrical Pacing of iPSC-Derived Cardiomyocytes. Adv Healthc Mater 2025; 14:e2403995. [PMID: 40018808 PMCID: PMC11973950 DOI: 10.1002/adhm.202403995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Conductive polymers hold promise in biomedical applications owing to their distinct conductivity characteristics and unique properties. However, incorporating these polymers into biomaterials poses challenges related to mechanical performance, electrical stability, and biodegradation. This study proposes an injectable hydrogel scaffold composed of a self-doped conductive polymer, constituted of a sulfated glycosaminoglycan (GAG) with side chains of PEDOT (poly 3,4-ethylenedioxythiophene). This brush copolymer is synthesized via oxidative polymerization from an EDOT monomer grafted onto the backbone of the sulfated GAG. The GAG backbone offers biodegradability, while sulfate groups act as acidic self-doping agents. Conductive hydrogels form through oxime crosslinking, initially existing as a liquid mixture that undergoes gelation within the tissue, allowing for injectability. The conductive hydrogels show tunable stiffness and gelation kinetics influenced by both concentration and pH, and exhibit adhesive properties. They showcase dual ionic and electronic conductivity, where sulfate groups in the GAG backbone act as doping moieties, enhancing conductivity and electrical stability. These properties of conductive hydrogels are associated with the facilitation of electrical pacing of iPSC-cardiomyocytes. Furthermore, hydrogels exhibit biodegradation and show evidence of biocompatibility, highlighting their potential for diverse biomedical applications.
Collapse
Affiliation(s)
- Daniel Hachim
- Department of MaterialsDepartment of Bioengineering and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
- School of PharmacyFaculty of Chemistry and PharmacyPontifical Catholic University of ChileAV. VICUNA MACKENNA 4860Santiago7820436Chile
| | - Olivia Hernández‐Cruz
- Department of MaterialsDepartment of Bioengineering and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
- National Heart and Lung InstituteImperial College LondonDu Cane RoadLondonW12 0NNUK
| | - James E. J. Foote
- Department of MaterialsDepartment of Bioengineering and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Richard Wang
- Department of MaterialsDepartment of Bioengineering and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Matthew W. Delahaye
- National Heart and Lung InstituteImperial College LondonDu Cane RoadLondonW12 0NNUK
| | - Daniel J. Stuckey
- Centre for Advanced Biomedical ImagingUniversity College London72 Huntley StreetLondonWC1E 6DDUK
| | - Zhiping Feng
- Centre for Advanced Biomedical ImagingUniversity College London72 Huntley StreetLondonWC1E 6DDUK
| | - Jonathan P. Wojciechowski
- Department of MaterialsDepartment of Bioengineering and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
- Department of PhysiologyAnatomy and GeneticsDepartment of Engineering ScienceKavli Institute for Nanoscience DiscoveryUniversity of OxfordSherrington RoadOxfordOX1 3QUUK
| | - Luke C. B. Salter
- Department of MaterialsDepartment of Bioengineering and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Junliang Lin
- Department of MaterialsDepartment of Bioengineering and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
- Department of PhysiologyAnatomy and GeneticsDepartment of Engineering ScienceKavli Institute for Nanoscience DiscoveryUniversity of OxfordSherrington RoadOxfordOX1 3QUUK
| | - Sian E. Harding
- National Heart and Lung InstituteImperial College LondonDu Cane RoadLondonW12 0NNUK
| | - Molly M. Stevens
- Department of MaterialsDepartment of Bioengineering and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
- Department of PhysiologyAnatomy and GeneticsDepartment of Engineering ScienceKavli Institute for Nanoscience DiscoveryUniversity of OxfordSherrington RoadOxfordOX1 3QUUK
| |
Collapse
|
3
|
Chhillar A, Jaiswal A. Hyaluronic Acid-Based Self-Healing Hydrogels for Diabetic Wound Healing. Adv Healthc Mater 2025; 14:e2404255. [PMID: 39722163 DOI: 10.1002/adhm.202404255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Indexed: 12/28/2024]
Abstract
Diabetic wounds, particularly diabetic foot ulcers (DFUs), are significant threats to human well-being due to their impaired healing from poor circulation and high blood sugar, increased risk of infection and potential for severe complications like amputation, all compounded by peripheral neuropathy and chronic inflammation. Most therapies and dressings for DFUs focus on one symptom at a time, however, multifunctional smart self-healing hydrogels can withstand multifactorial motional diabetic wounds. Motional wounds are easy-to-split wounds that experience tension, compression, and movement caused by stress now and then. Hyaluronic acid (HA) based self-healing hydrogels stand out among other biomaterials due to their ability to cover irregular wound surfaces, maintain a moist environment, repair themselves when ruptured, and exhibit excellent biocompatibility. These self-healing hydrogels can repair damages caused by movement and recover the functional properties during healing. These hydrogels can also act as therapeutic delivery vehicles and tissue regeneration systems. This review demonstrates the potential of HA-based self-healing hydrogels for diabetic wound healing. Due to its self-healing capabilities, these hydrogels offer a customized therapeutic approach for motional diabetic wounds. The review also critically examines the challenges and future directions for HA-based self-healing hydrogels in diabetic wound healing.
Collapse
Affiliation(s)
- Anish Chhillar
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
4
|
Lacroce E, Nunziata G, Cianniello F, Limiti E, Rainer A, Vangosa FB, Sacchetti A, Sponchioni M, Rossi F. Amphiphilic pH-responsive core-shell nanoparticles can increase the performances of cellulose-based drug delivery systems. Int J Biol Macromol 2024; 283:137659. [PMID: 39561822 DOI: 10.1016/j.ijbiomac.2024.137659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
Polymer and nanoparticles (NPs) together are able to form nanocomposite materials that combine the beneficial properties of the traditional single systems. In this work, we propose a stimuli-responsive nanocomposite system which combines pH-responsive NPs with cellulose. Ring opening polymerization (ROP) followed by two reversible addition-fragmentation chain transfer (RAFT) polymerization steps were performed to synthetize ((PHEMA-graft-LA12)-co-PMAA)-b-PDEGMA copolymer characterized by tailored molecular weights and low polydispersity values. Uniform NPs were obtained by nanoprecipitation of the so-obtained copolymer in water. Moreover, drug release studies (using rhodamine b, fluorescein isothiocyanate, pyrene and 5-fluorouracil) at different pHs demonstrated the pH-responsivity of NPs, revealing a significant improvement of hydrophobic molecules release at acidic conditions. In vitro tests verified the biocompatibility of NPs and the efficacy in decreasing cancer cell viability. Finally, NPs were loaded into hydroxypropylmethyl-cellulose-C12 matrix to obtain the final polymer-NPs composite system. The composite systems showed the ability to sustain the release of low steric hindrance drugs loaded with NPs and high steric hindrance ones loaded within the polymeric network. Overall, the proposed pH-responsive drug delivery system represents a co-delivery device which could be applied for localized treatment in different combined therapeutic program.
Collapse
Affiliation(s)
- Elisa Lacroce
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Giuseppe Nunziata
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Francesca Cianniello
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Emanuele Limiti
- Deptartment of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; Institute of Nanotechnology (NANOTEC), National Research Council, via Monteroni, 73100 Lecce, Italy
| | - Alberto Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, via Álvaro del Portillo 200, 00128 Rome, Italy
| | - Francesco Briatico Vangosa
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Alessandro Sacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| |
Collapse
|
5
|
Wang W, Tai S, Tao J, Yang L, Cheng X, Zhou J. Innovative hydrogel-based therapies for ischemia-reperfusion injury: bridging the gap between pathophysiology and treatment. Mater Today Bio 2024; 29:101295. [PMID: 39493810 PMCID: PMC11528235 DOI: 10.1016/j.mtbio.2024.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/21/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) commonly occurs in clinical settings, particularly in medical practices such as organ transplantation, cardiopulmonary resuscitation, and recovery from acute trauma, posing substantial challenges in clinical therapies. Current systemic therapies for IRI are limited by poor drug targeting, short efficacy, and significant side effects. Owing to their exceptional biocompatibility, biodegradability, excellent mechanical properties, targeting capabilities, controlled release potential, and properties mimicking the extracellular matrix (ECM), hydrogels not only serve as superior platforms for therapeutic substance delivery and retention, but also facilitate bioenvironment cultivation and cell recruitment, demonstrating significant potential in IRI treatment. This review explores the pathological processes of IRI and discusses the roles and therapeutic outcomes of various hydrogel systems. By categorizing hydrogel systems into depots delivering therapeutic agents, scaffolds encapsulating mesenchymal stem cells (MSCs), and ECM-mimicking hydrogels, this article emphasizes the selection of polymers and therapeutic substances, and details special crosslinking mechanisms and physicochemical properties, as well as summarizes the application of hydrogel systems for IRI treatment. Furthermore, it evaluates the limitations of current hydrogel treatments and suggests directions for future clinical applications.
Collapse
Affiliation(s)
- Weibo Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Supeng Tai
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Junyue Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Lexing Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xi Cheng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
6
|
Li H, Iyer KS, Bao L, Zhai J, Li JJ. Advances in the Development of Granular Microporous Injectable Hydrogels with Non-spherical Microgels and Their Applications in Tissue Regeneration. Adv Healthc Mater 2024; 13:e2301597. [PMID: 37499268 DOI: 10.1002/adhm.202301597] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Granular microporous hydrogels are emerging as effective biomaterial scaffolds for tissue engineering due to their improved characteristics compared to traditional nanoporous hydrogels, which better promote cell viability, cell migration, cellular/tissue infiltration, and tissue regeneration. Recent advances have resulted in the development of granular hydrogels made of non-spherical microgels, which compared to those made of spherical microgels have higher macroporosity, more stable mechanical properties, and better ability to guide the alignment and differentiation of cells in anisotropic tissue. The development of these hydrogels as an emerging research area is attracting increasing interest in regenerative medicine. This review first summarizes the fabrication techniques available for non-spherical microgels with different aspect-ratios. Then, it introduces the development of granular microporous hydrogels made of non-spherical microgels, their physicochemical characteristics, and their applications in tissue regeneration. The limitations and future outlook of research on microporous granular hydrogels are also critically discussed.
Collapse
Affiliation(s)
- Haiyan Li
- Chemical and Environment Engineering Department, School of Engineering, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Keerthi Subramanian Iyer
- Chemical and Environment Engineering Department, School of Engineering, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Lei Bao
- Chemical and Environment Engineering Department, School of Engineering, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
7
|
Singhal R, Sarangi MK, Rath G. Injectable Hydrogels: A Paradigm Tailored with Design, Characterization, and Multifaceted Approaches. Macromol Biosci 2024; 24:e2400049. [PMID: 38577905 DOI: 10.1002/mabi.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Biomaterials denoting self-healing and versatile structural integrity are highly curious in the biomedicine segment. The injectable and/or printable 3D printing technology is explored in a few decades back, which can alter their dimensions temporarily under shear stress, showing potential healing/recovery tendency with patient-specific intervention toward the development of personalized medicine. Thus, self-healing injectable hydrogels (IHs) are stunning toward developing a paradigm for tissue regeneration. This review comprises the designing of IHs, rheological characterization and stability, several benchmark consequences for self-healing IHs, their translation into tissue regeneration of specific types, applications of IHs in biomedical such as anticancer and immunomodulation, wound healing and tissue/bone regeneration, antimicrobial potentials, drugs, gene and vaccine delivery, ocular delivery, 3D printing, cosmeceuticals, and photothermal therapy as well as in other allied avenues like agriculture, aerospace, electronic/electrical industries, coating approaches, patents associated with therapeutic/nontherapeutic avenues, and numerous futuristic challenges and solutions.
Collapse
Affiliation(s)
- Rishika Singhal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, 751030, India
| |
Collapse
|
8
|
Li Y, Song W, Kong L, He Y, Li H. Injectable and Microporous Microgel-Fiber Granular Hydrogel Loaded with Bioglass and siRNA for Promoting Diabetic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309599. [PMID: 38054634 DOI: 10.1002/smll.202309599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/23/2023] [Indexed: 12/07/2023]
Abstract
Injectable hydrogels find extensive application in the treatment of diabetic wound healing. However, traditional bulk hydrogels are significantly limited due to their nano-porous structure, which obstructs cell migration and tissue infiltration. Moreover, regulating inflammation and matrix metalloproteinase -9 (MMP-9) expression in diabetic wounds is crucial for enhancing wound healing. This study marks the first instance of introducing an efficient, scalable, and simple method for producing microfiber-gel granules encapsulating bioceramics powders. Utilizing this method, an injectable microporous granular microgel-fiber hydrogel (MFgel) is successfully developed by assembling microgel-fibers made from hyaluronic acid (HA) and sodium alginate (SA) loaded with small interfering RNA (siRNA) and bioglass (BG) particles. Compared to traditional hydrogels (Tgel), MFgel possesses a highly interconnected network with micron-sized pores, demonstrating favorable properties for cell adhesion and penetration in in vitro experiments. Additionally, MFgel exhibits a higher compressive modulus and superior mechanical stability. When implanted subcutaneously in mice, MFgel promotes cellular and tissue infiltration, facilitating cell proliferation. Furthermore, when applied to skin defects in diabetic rats, MFgel not only effectively regulates inflammation and suppresses MMP-9 expression but also enhances angiogenesis and collagen deposition, thereby significantly accelerating diabetic wound healing. Taken together, this hydrogel possesses great potential in diabetic wound healing applications.
Collapse
Affiliation(s)
- Ying Li
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 600 Yishan Road, Shanghai, 200233, China
| | - Wei Song
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Lingzhi Kong
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yaohua He
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- Department of Orthopedic Surgery, Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, 201500, China
| | - Haiyan Li
- Chemical and Environment Engineering Department, School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| |
Collapse
|
9
|
Wang ZX, Chen X, Liu X, Li WZ, Ye YY, Xu SY, Zhang H, Wang XQ. Chaotropic Effect-Induced Self-Assembly of the Malachite Green and Boron Cluster for Toxicity Regulation and Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55486-55494. [PMID: 37995715 DOI: 10.1021/acsami.3c13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Malachite green (MG), a toxic antibacterial agent, is widely used in the farming industry. Effectively regulating the biotoxicity of this highly water-soluble cationic dye is challenging. Here, we present a novel strategy to reduce the biotoxicity of MG through the self-assembly of MG and the closo-dodecaborate cluster ([B12H12]2-) driven by the chaotropic effect. [B12H12]2- and MG in an aqueous solution can rapidly form an insoluble cubic-type supramolecular complex (B12-MG), and the original toxicity of MG is completely suppressed. Surprisingly, this supramolecular complex, B12-MG, has a strong UV-vis absorption peak at 600-800 nm and significant photothermal conversion efficiency under 660 nm laser irradiation. On this basis, B12-MG, the supramolecular complex, can be used as an efficient photothermal agent for antimicrobial photothermal therapy (PTT) both in vitro and in vivo. As a molecular chaperone of MG, [B12H12]2- not only can be applied as an antidote to regulate the biotoxicity of MG but also provides a novel method for the construction of photothermal agents for PTT based on the chaotropic effect.
Collapse
Affiliation(s)
- Zi-Xin Wang
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Xiaofang Chen
- Department of Infectious Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, P. R. China
| | - Xinyu Liu
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Wen-Zhen Li
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Yu-Yuan Ye
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Shi-Yuan Xu
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Haibo Zhang
- National Demonstration Center for Experimental Chemistry; Engineering Research Center of Organosilicon Compounds Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiao-Qiang Wang
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| |
Collapse
|
10
|
d'Aquino AI, Maikawa CL, Nguyen LT, Lu K, Hall IA, Jons CK, Kasse CM, Yan J, Prossnitz AN, Chang E, Baker SW, Hovgaard L, Steensgaard DB, Andersen HB, Simonsen L, Appel EA. Use of a biomimetic hydrogel depot technology for sustained delivery of GLP-1 receptor agonists reduces burden of diabetes management. Cell Rep Med 2023; 4:101292. [PMID: 37992687 PMCID: PMC10694761 DOI: 10.1016/j.xcrm.2023.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/02/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone and neurotransmitter secreted from intestinal L cells in response to nutrients to stimulate insulin and block glucagon secretion in a glucose-dependent manner. Long-acting GLP-1 receptor agonists (GLP-1 RAs) have become central to treating type 2 diabetes (T2D); however, these therapies are burdensome, as they must be taken daily or weekly. Technological innovations that enable less frequent administrations would reduce patient burden and increase patient compliance. Herein, we leverage an injectable hydrogel depot technology to develop a GLP-1 RA drug product capable of months-long GLP-1 RA delivery. Using a rat model of T2D, we confirm that one injection of hydrogel-based therapy sustains exposure of GLP-1 RA over 42 days, corresponding to a once-every-4-months therapy in humans. Hydrogel therapy maintains management of blood glucose and weight comparable to daily injections of a leading GLP-1 RA drug. This long-acting GLP-1 RA treatment is a promising therapy for more effective T2D management.
Collapse
Affiliation(s)
- Andrea I d'Aquino
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94025, USA
| | - Caitlin L Maikawa
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Leslee T Nguyen
- Department of Biochemistry, Stanford University, Palo Alto, CA 94305, USA
| | - Katie Lu
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Ian A Hall
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Carolyn K Jons
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94025, USA
| | - Catherine M Kasse
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94025, USA
| | - Jerry Yan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander N Prossnitz
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94025, USA
| | - Enmian Chang
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94025, USA
| | - Sam W Baker
- Department of Comparative Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Lars Hovgaard
- Department of Biophysics and Formulations, Global Research Technologies, Novo Nordisk Park, 2760 Maaloev, Denmark
| | - Dorte B Steensgaard
- Department of Biophysics and Formulations, Global Research Technologies, Novo Nordisk Park, 2760 Maaloev, Denmark
| | - Hanne B Andersen
- Department of Biophysics and Formulations, Global Research Technologies, Novo Nordisk Park, 2760 Maaloev, Denmark
| | - Lotte Simonsen
- Department of Obesity Research, Global Drug Discovery, Novo Nordisk Park, 2760 Maaloev, Denmark
| | - Eric A Appel
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94025, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics (Endocrinology), Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Wu Y, Li Y, Han R, Long Z, Si P, Zhang D. Dual-Cross-Linked PEI/PVA Hydrogel for pH-Responsive Drug Delivery. Biomacromolecules 2023; 24:5364-5370. [PMID: 37906107 DOI: 10.1021/acs.biomac.3c00824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Herein, a pH-responsive dual cross-linked hydrogel for controlled drug release is presented. The hydrogel was constructed with reversible borate ester bonds and crystalline poly(vinyl alcohol). By changing the environmental pH, its physicochemical characteristics, including rheological properties, mechanical properties, microstructural features, and the biocompatibility of the gels, were evaluated. The gels at tumor acidic conditions exhibited swelling and lower compressive strength and modulus than those in a physiological environment, which was attributed to the pH-responsive borate ester bonds and the protonation of amine groups on the PEI polyelectrolyte. Importantly, the drug-encapsulated biocompatible hydrogel showed sustained and increased release under an acidic environment, and it followed the Fickian diffusion mechanism. Therefore, it exemplifies that borate ester bond-based pH-responsive biomaterials have high promise in biomedical research, especially for drug delivery.
Collapse
Affiliation(s)
- Yun Wu
- College of Textile Science and Engineering Jiangnan University 1800 Lihu Avenue, Wuxi 214222, China
| | - Yunxiao Li
- College of Textile Science and Engineering Jiangnan University 1800 Lihu Avenue, Wuxi 214222, China
| | - Ruiting Han
- College of Textile Science and Engineering Jiangnan University 1800 Lihu Avenue, Wuxi 214222, China
| | - Zhu Long
- College of Textile Science and Engineering Jiangnan University 1800 Lihu Avenue, Wuxi 214222, China
| | - Pengxiang Si
- College of Textile Science and Engineering Jiangnan University 1800 Lihu Avenue, Wuxi 214222, China
| | - Dan Zhang
- College of Textile Science and Engineering Jiangnan University 1800 Lihu Avenue, Wuxi 214222, China
| |
Collapse
|
12
|
Dobashi Y, Ku JC, Ramjist J, Pasarikovski C, Walus K, Madden JDW, Yang VXD. Photomodulated Extrusion as a Localized Endovascular Hydrogel Deposition Method. Adv Healthc Mater 2023; 12:e2202632. [PMID: 36681868 PMCID: PMC11468792 DOI: 10.1002/adhm.202202632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/10/2023] [Indexed: 01/23/2023]
Abstract
Minimally invasive endovascular embolization is used to treat a wide range of diseases in neurology, oncology, and trauma where the vascular morphologies and corresponding hemodynamics vary greatly. Current techniques based on metallic coils, flow diverters, liquid embolics, and suspended microspheres are limited in their ability to address a wide variety of vasculature and can be plagued by complications including distal migration, compaction, and inappropriate vascular remodeling. Further, these endovascular devices currently offer limited therapeutic functions beyond flow control such as drug delivery. Herein, a novel in situ microcatheter-based photomodulated extrusion approach capable of dynamically tuning the physical and morphological properties of injectable hydrogels, optimizing for local hemodynamic environment and vascular morphology, is proposed and demonstrated. A shear thinning and photoactivated poly(ethylene glycol diacrylate)-nanosilicate (PEGDA-nSi) hydrogel is used to demonstrate multiple extrusion modes which are controlled by photokinetics and device configurations. Real-time photomodulation of injected hydrogel viscosity and modulus is successfully used for embolization in various vasculatures, including high-flow large vessels and arterial-to-arterial capillary shunts. Furthermore, a generalizable therapeutic delivery platform is proposed by demonstrating a core-shell structured extrusion encapsulating doxorubicin to achieve a more sustained release compared to unencapsulated payload.
Collapse
Affiliation(s)
- Yuta Dobashi
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioM5S 1A1Canada
- Sunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
| | - Jerry C. Ku
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioM5S 1A1Canada
- Sunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
- Division of NeurosurgeryDepartment of SurgeryUniversity of TorontoTorontoOntarioM5S 1A1Canada
| | - Joel Ramjist
- Sunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
| | - Christopher Pasarikovski
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioM5S 1A1Canada
- Sunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
- Division of NeurosurgeryDepartment of SurgeryUniversity of TorontoTorontoOntarioM5S 1A1Canada
| | - Konrad Walus
- Department of Electrical and Computer EngineeringSchool of Biomedical EngineeringUniversity of British ColumbiaVancouverBritish ColumbiaV6T 1Z4Canada
| | - John D. W. Madden
- Department of Electrical and Computer EngineeringSchool of Biomedical EngineeringUniversity of British ColumbiaVancouverBritish ColumbiaV6T 1Z4Canada
| | - Victor X. D. Yang
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioM5S 1A1Canada
- Division of NeurosurgeryDepartment of SurgeryUniversity of TorontoTorontoOntarioM5S 1A1Canada
| |
Collapse
|
13
|
Cao Z, Chen Y, Bai S, Zheng Z, Liu Y, Gui S, Shan S, Wu J, He N. In situ formation of injectable organogels for punctal occlusion and sustained release of therapeutics: design, preparation, in vitro and in vivo evaluation. Int J Pharm 2023; 638:122933. [PMID: 37030642 DOI: 10.1016/j.ijpharm.2023.122933] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/18/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
The treatment of dry eye mainly includes instillation of cyclosporine A (CsA) nanoemulsion or the use of punctal plugs. Therefore, in this study, a novel injectable in situ organogel plug was developed using CsA as a model drug, stearic acid, injectable soybean oil, and N-methyl-2-pyrrolidinone (NMP) (1.25:10:0.6, w/v/v) as gel materials, to provide a dual mechanism for dry eye treatment. The formulated CsA injectable in situ organogel (CsA-OG) was evaluated in terms of stability, in vitro release, rheology, ocular irritation, punctal occlusion tests, and ocular distribution assessment. In vivo ocular distribution investigations showed that CsA-OG achieved considerably higher Cmax (1.94, 1.92 and 1.97-fold respectively) and AUC0-72h in the cornea, conjunctiva, and sclera (2.49, 2.27 and 2.15-fold respectively) than ciclosporin eye drops (p < 0.05). In vitro model evaluation demonstrated significant decrease in flow flux to 52.78% at 2 min after CsA-OG injection. According to evaluation of the in vivo model, the organogel plug can completely block the lacrimal passages and greatly decrease the lacrimal drainage rate (p < 0.05). The above results suggest that these intracanalicular CsA-OG plugs can offer more extensive clinical applications than existing lacrimal drainage plugs and may act as a drug delivery system.
Collapse
Affiliation(s)
- Ziqin Cao
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yangnan Chen
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shaoyun Bai
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhiyun Zheng
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, China.
| | - Yan Liu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, China
| | - Shuang Shan
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiabao Wu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ning He
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, China.
| |
Collapse
|
14
|
Sreedevi Madhavikutty A, Singh Chandel AK, Tsai CC, Inagaki NF, Ohta S, Ito T. pH responsive cationic guar gum-borate self-healing hydrogels for muco-adhesion. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2175586. [PMID: 36896456 PMCID: PMC9990695 DOI: 10.1080/14686996.2023.2175586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/22/2023] [Accepted: 01/29/2023] [Indexed: 06/08/2023]
Abstract
We developed a new muco-adhesive hydrogel composed of cationic guar gum (CGG) and boric acid (BA). The CGG-BA precursor solution of 0.5-2% w/v concentration exhibited fluidity at low pH (3-5), while gelation occurred within 1 min at physiological pH (7-8) conditions. Scanning electron microscopy and Fourier-transform infrared spectroscopy results confirmed the change in physical and chemical behavior, respectively, with change in pH. The pH-responsive self-healing ability was analyzed through microscopy and rheology. CGG-BA hydrogels showed good self-healing property at pH 7.4. The in vitro biocompatibility test of the hydrogel studied using NIH3T3 and NHEK cells showed that it was non-toxic at concentrations of CGG-BA below 2% w/v. Ex vivo mucoadhesive tests confirmed the hydrogel's potential for use as a muco-adhesive. Burst pressure tests were conducted using pig esophageal mucosa and the results showed that at pH 7.4, 1% w/v CGG-BA self-healable hydrogel resisted about 8 ± 2 kPa pressure, comparable to that of Fibrin glue. This was higher than that at solution (pH 5) and brittle gel (pH 10) conditions. To confirm the good adhesive strength of the self-healable hydrogels, lap shear tests conducted, resulted in adhesive strengths measured in the range of 1.0 ± 0.5-2.0 ± 0.6 kPa, which was also comparable to fibrin glue control 1.8 ± 0.6 kPa. Hydrogel weight measurements showed that 40-80% gel lasted under physiological conditions for 10 h. The results suggest that CGG-BA hydrogel has potential as a pH responsive mucosal protectant biomaterial.
Collapse
Affiliation(s)
| | - Arvind K. Singh Chandel
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ching-Cheng Tsai
- Department of Bioengineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Natsuko F. Inagaki
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Seiichi Ohta
- Department of Chemical System Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Department of Bioengineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Taichi Ito
- Department of Chemical System Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Bioengineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
15
|
Nichifor M. Role of Hydrophobic Associations in Self-Healing Hydrogels Based on Amphiphilic Polysaccharides. Polymers (Basel) 2023; 15:polym15051065. [PMID: 36904306 PMCID: PMC10005649 DOI: 10.3390/polym15051065] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Self-healing hydrogels have the ability to recover their original properties after the action of an external stress, due to presence in their structure of reversible chemical or physical cross-links. The physical cross-links lead to supramolecular hydrogels stabilized by hydrogen bonds, hydrophobic associations, electrostatic interactions, or host-guest interactions. Hydrophobic associations of amphiphilic polymers can provide self-healing hydrogels with good mechanical properties, and can also add more functionalities to these hydrogels by creating hydrophobic microdomains inside the hydrogels. This review highlights the main general advantages brought by hydrophobic associations in the design of self-healing hydrogels, with a focus on hydrogels based on biocompatible and biodegradable amphiphilic polysaccharides.
Collapse
Affiliation(s)
- Marieta Nichifor
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania
| |
Collapse
|
16
|
Dâ Aquino AI, Maikawa CL, Nguyen LT, Lu K, Hall IA, Prossnitz AN, Chang E, Baker SW, Kasse CM, Jons CK, Yan J, Hovgaard L, Steensgaard DB, Andersen HB, Simonsen L, Appel EA. Sustained Delivery of GLP-1 Receptor Agonists from Injectable Biomimetic Hydrogels Improves Treatment of Diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.28.526057. [PMID: 36778223 PMCID: PMC9915491 DOI: 10.1101/2023.01.28.526057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone and neurotransmitter secreted from intestinal L-cells in response to nutrients to stimulate insulin and block glucagon secretion in a glucose-dependent manner. GLP-1 in itself is rapidly degraded, but long-acting GLP-1 receptor agonists (GLP-1 RAs) have become central in the treatment of T2D because of the beneficial effects extending also beyond glucose control. Currently, these therapeutics must be injected either daily or weekly or taken daily orally, leaving room for technological innovations that enable less frequent administrations, which will reduce patient burden and increase patient compliance. An ideal GLP-1 RA drug product would provide continuous therapy for upwards of four months from a single administration to match the cadence with which T2D patients typically visit their physician. In this work, we leveraged an injectable hydrogel depot technology to develop a long-acting GLP-1 RA drug product. By modulating the hydrogel properties to tune GLP-1 RA retention within the hydrogel depot, we engineered formulations capable of months-long GLP-1 RA delivery. Using a rat model of T2D, we confirmed that a single injection of hydrogel-based therapies exhibits sustained exposure of GLP-1 RA over 42 days, corresponding to a once-every four month therapy in humans. Moreover, these hydrogel therapies maintained optimal management of blood glucose and weight comparable to daily injections of a leading GLP-1 RA drug molecule. The pharmacokinetics and pharmacodynamics of these hydrogel-based long-acting GLP-1 RA treatments are promising for development of novel therapies reducing treatment burden for more effective management of T2D.
Collapse
|
17
|
Chen X, Zhu L, Wang X, Xiao J. Insight into Heart-Tailored Architectures of Hydrogel to Restore Cardiac Functions after Myocardial Infarction. Mol Pharm 2023; 20:57-81. [PMID: 36413809 DOI: 10.1021/acs.molpharmaceut.2c00650] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With permanent heart muscle injury or death, myocardial infarction (MI) is complicated by inflammatory, proliferation and remodeling phases from both the early ischemic period and subsequent infarct expansion. Though in situ re-establishment of blood flow to the infarct zone and delays of the ventricular remodeling process are current treatment options of MI, they fail to address massive loss of viable cardiomyocytes while transplanting stem cells to regenerate heart is hindered by their poor retention in the infarct bed. Equipped with heart-specific mimicry and extracellular matrix (ECM)-like functionality on the network structure, hydrogels leveraging tissue-matching biomechanics and biocompatibility can mechanically constrain the infarct and act as localized transport of bioactive ingredients to refresh the dysfunctional heart under the constant cyclic stress. Given diverse characteristics of hydrogel including conductivity, anisotropy, adhesiveness, biodegradability, self-healing and mechanical properties driving local cardiac repair, we aim to investigate and conclude the dynamic balance between ordered architectures of hydrogels and the post-MI pathological milieu. Additionally, our review summarizes advantages of heart-tailored architectures of hydrogels in cardiac repair following MI. Finally, we propose challenges and prospects in clinical translation of hydrogels to draw theoretical guidance on cardiac repair and regeneration after MI.
Collapse
Affiliation(s)
- Xuerui Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Liyun Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xu Wang
- Hangzhou Medical College, Binjiang Higher Education Park, Binwen Road 481, Hangzhou 310053, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
18
|
Torres-Ortega PV, Del Campo-Montoya R, Plano D, Paredes J, Aldazabal J, Luquin MR, Santamaría E, Sanmartín C, Blanco-Prieto MJ, Garbayo E. Encapsulation of MSCs and GDNF in an Injectable Nanoreinforced Supramolecular Hydrogel for Brain Tissue Engineering. Biomacromolecules 2022; 23:4629-4644. [DOI: 10.1021/acs.biomac.2c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pablo Vicente Torres-Ortega
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008Pamplona, Spain
| | - Rubén Del Campo-Montoya
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008Pamplona, Spain
| | - Jacobo Paredes
- Tecnun, School of Engineering, University of Navarra, C/Manuel de Lardizábal 15, 20018San Sebastián, Spain
| | - Javier Aldazabal
- Tecnun, School of Engineering, University of Navarra, C/Manuel de Lardizábal 15, 20018San Sebastián, Spain
| | - María-Rosario Luquin
- Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008Pamplona, Spain
- Department of Neurology and Neurosciences, Clínica Universidad de Navarra, Pamplona, C/Pío XII 36, 31008Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdisNa), 31008Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008Pamplona, Spain
| | - María J. Blanco-Prieto
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008Pamplona, Spain
| | - Elisa Garbayo
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008Pamplona, Spain
| |
Collapse
|
19
|
Del Campo-Montoya R, Luquin MR, Puerta E, Garbayo E, Blanco-Prieto M. Hydrogels for Brain Repair: Application to Parkinson's Disease. Expert Opin Drug Deliv 2022; 19:1521-1537. [PMID: 36240170 DOI: 10.1080/17425247.2022.2136161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Parkinson's disease is the second most common neurodegenerative disease. Currently, there are no curative therapies, with only symptomatic treatment available. One of the principal reasons for the lack of treatments is the problem of delivering drugs to the brain, mainly due to the blood-brain barrier. Hydrogels are presented as ideal platforms for delivering treatments to the brain ranging from small molecules to cell replacement therapies. AREAS COVERED The potential application of hydrogel-based therapies for Parkinson's disease is addressed. The desirable composition and mechanical properties of these therapies for brain application are discussed, alongside the preclinical research available with hydrogels in Parkinson's disease. Lastly, translational and manufacturing challenges are presented. EXPERT OPINION Parkinson's disease urgently needs novel therapies to delay its progression and for advanced stages, at which conventional therapies fail to control motor symptoms. Neurotrophic factor-loaded hydrogels with stem cells offer one of the most promising therapies. This approach may increase the striatal dopamine content while protecting and promoting the differentiation of stem cells although the generation of synapses between engrafted and host cells remains an issue to overcome. Other challenges to consider are related to the route of administration of hydrogels and their large-scale production, required to accelerate their translation toward the clinic.
Collapse
Affiliation(s)
| | | | | | - E Garbayo
- University of navarra, pamplona, 31008 spain
| | | |
Collapse
|
20
|
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
21
|
Correa S, Grosskopf AK, Klich JH, Hernandez HL, Appel EA. Injectable Liposome-based Supramolecular Hydrogels for the Programmable Release of Multiple Protein Drugs. MATTER 2022; 5:1816-1838. [PMID: 35800848 PMCID: PMC9255852 DOI: 10.1016/j.matt.2022.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Directing biological functions is at the heart of next-generation biomedical initiatives in tissue and immuno-engineering. However, the ambitious goal of engineering complex biological networks requires the ability to precisely perturb specific signaling pathways at distinct times and places. Using lipid nanotechnology and the principles of supramolecular self-assembly, we developed an injectable liposomal nanocomposite hydrogel platform to precisely control the release of multiple protein drugs. By integrating modular lipid nanotechnology into a hydrogel, we introduced multiple mechanisms of release based on liposome surface chemistry. To validate the utility of this system for multi-protein delivery, we demonstrated synchronized, sustained, and localized release of IgG antibody and IL-12 cytokine in vivo, despite the significant size differences between these two proteins. Overall, liposomal hydrogels are a highly modular platform technology with the ability the mediate orthogonal modes of protein release and the potential to precisely coordinate biological cues both in vitro and in vivo.
Collapse
Affiliation(s)
- Santiago Correa
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
- These authors contributed equally
| | - Abigail K. Grosskopf
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- These authors contributed equally
| | - John H. Klich
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Hector Lopez Hernandez
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | - Eric A. Appel
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Department of Pediatrics – Endocrinology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
- Lead contact
| |
Collapse
|
22
|
Qi X, Huang Y, You S, Xiang Y, Cai E, Mao R, Pan W, Tong X, Dong W, Ye F, Shen J. Engineering Robust Ag-Decorated Polydopamine Nano-Photothermal Platforms to Combat Bacterial Infection and Prompt Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106015. [PMID: 35191211 PMCID: PMC9008420 DOI: 10.1002/advs.202106015] [Citation(s) in RCA: 232] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 05/02/2023]
Abstract
Polydopamine (PDA) nanoparticles have emerged as an attractive biomimetic photothermal agent in photothermal antibacterial therapy due to their ease of synthesis, good biodegradability, long-term safety, and excellent photostability. However, the therapeutic effects of PDA nanoparticles are generally limited by the low photothermal conversion efficiency (PCE). Herein, PDA@Ag nanoparticles are synthesized via growing Ag on the surface of PDA nanoparticles and then encapsulated into a cationic guar gum (CG) hydrogel network. The optimized CG/PDA@Ag platform exhibits a high PCE (38.2%), which is more than two times higher than that of pure PDA (16.6%). More importantly, the formulated CG/PDA@Ag hydrogel with many active groups can capture and kill bacteria through effective interactions between hydrogel and bacteria, thereby benefiting the antibacterial effect. As anticipated, the designed CG/PDA@Ag system combined the advantages of PDA@Ag nanoparticles (high PCE) and hydrogel (preventing aggregation of PDA@Ag nanoparticles and possessing inherent antibacterial ability) is demonstrated to have superior antibacterial efficacy both in vitro and in vivo. This study develops a facile approach to boost the PCE of PDA for photothermal antibacterial therapy, providing a significant step forward in advancing the application of PDA nano-photothermal agents.
Collapse
Affiliation(s)
- Xiaoliang Qi
- State Key Laboratory of OphthalmologyOptometry and Vision ScienceSchool of Ophthalmology and OptometrySchool of Biomedical EngineeringWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Yijing Huang
- School of Chemical EngineeringNanjing University of Science and TechnologyNanjingJiangsu210094China
| | - Shengye You
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Yajing Xiang
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Erya Cai
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Ruiting Mao
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Wenhao Pan
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Xianqin Tong
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Wei Dong
- School of Chemical EngineeringNanjing University of Science and TechnologyNanjingJiangsu210094China
| | - Fangfu Ye
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Jianliang Shen
- State Key Laboratory of OphthalmologyOptometry and Vision ScienceSchool of Ophthalmology and OptometrySchool of Biomedical EngineeringWenzhou Medical UniversityWenzhouZhejiang325027China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouZhejiang325001China
| |
Collapse
|
23
|
Rita Singh, Antaryami Singh. Radiation Synthesis of Hydrogels with Silver Nanoparticles for Use as an Antimicrobial Burn Wound Dressing. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422020117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
van der Ven CFT, Tibbitt MW, Conde J, van Mil A, Hjortnaes J, Doevendans PA, Sluijter JPG, Aikawa E, Langer RS. Controlled delivery of gold nanoparticle-coupled miRNA therapeutics via an injectable self-healing hydrogel. NANOSCALE 2021; 13:20451-20461. [PMID: 34817483 PMCID: PMC8675028 DOI: 10.1039/d1nr04973a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Differential expression of microRNAs (miRNAs) plays a role in many diseases, including cancer and cardiovascular diseases. Potentially, miRNAs could be targeted with miRNA-therapeutics. Sustained delivery of these therapeutics remains challenging. This study couples miR-mimics to PEG-peptide gold nanoparticles (AuNP) and loads these AuNP-miRNAs in an injectable, shear thinning, self-assembling polymer nanoparticle (PNP) hydrogel drug delivery platform to improve delivery. Spherical AuNPs coated with fluorescently labelled miR-214 are loaded into an HPMC-PEG-b-PLA PNP hydrogel. Release of AuNP/miRNAs is quantified, AuNP-miR-214 functionality is shown in vitro in HEK293 cells, and AuNP-miRNAs are tracked in a 3D bioprinted human model of calcific aortic valve disease (CAVD). Lastly, biodistribution of PNP-AuNP-miR-67 is assessed after subcutaneous injection in C57BL/6 mice. AuNP-miRNA release from the PNP hydrogel in vitro demonstrates a linear pattern over 5 days up to 20%. AuNP-miR-214 transfection in HEK293 results in 33% decrease of Luciferase reporter activity. In the CAVD model, AuNP-miR-214 are tracked into the cytoplasm of human aortic valve interstitial cells. Lastly, 11 days after subcutaneous injection, AuNP-miR-67 predominantly clears via the liver and kidneys, and fluorescence levels are again comparable to control animals. Thus, the PNP-AuNP-miRNA drug delivery platform provides linear release of functional miRNAs in vitro and has potential for in vivo applications.
Collapse
Affiliation(s)
- Casper F T van der Ven
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
- Center of Excellence in Cardiovascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Woman's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston 02115, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge 02142, MA, USA
| | - Mark W Tibbitt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge 02142, MA, USA
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - João Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Alain van Mil
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
- Netherlands Heart Institute, Moreelsepark 1, 3511 EP Utrecht, the Netherlands
| | - Jesper Hjortnaes
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
- Netherlands Heart Institute, Moreelsepark 1, 3511 EP Utrecht, the Netherlands
| | - Joost P G Sluijter
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Elena Aikawa
- Center of Excellence in Cardiovascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Woman's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston 02115, MA, USA
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 3 Blackfan Circle, Boston 02115, MA, USA.
| | - Robert S Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge 02142, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, Cambridge 02142, MA, USA.
| |
Collapse
|
25
|
Mohapatra S, Mirza MA, Hilles AR, Zakir F, Gomes AC, Ansari MJ, Iqbal Z, Mahmood S. Biomedical Application, Patent Repository, Clinical Trial and Regulatory Updates on Hydrogel: An Extensive Review. Gels 2021; 7:207. [PMID: 34842705 PMCID: PMC8628667 DOI: 10.3390/gels7040207] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogels are known for their leading role in biomaterial systems involving pharmaceuticals that fascinate material scientists to work on the wide variety of biomedical applications. The physical and mechanical properties of hydrogels, along with their biodegradability and biocompatibility characteristics, have made them an attractive and flexible tool with various applications such as imaging, diagnosis and treatment. The water-cherishing nature of hydrogels and their capacity to swell-contingent upon a few ecological signals or the simple presence of water-is alluring for drug conveyance applications. Currently, there are several problems relating to drug delivery, to which hydrogel may provide a possible solution. Hence, it is pertinent to collate updates on hydrogels pertaining to biomedical applications. The primary objective of this review article is to garner information regarding classification, properties, methods of preparations, and of the polymers used with particular emphasis on injectable hydrogels. This review also covers the regulatory and other commerce specific information. Further, it enlists several patents and clinical trials of hydrogels with related indications and offers a consolidated resource for all facets associated with the biomedical hydrogels.
Collapse
Affiliation(s)
- Sradhanjali Mohapatra
- Department of Pharmaceutics, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India; (S.M.); (M.A.M.)
| | - Mohd. Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India; (S.M.); (M.A.M.)
| | - Ayah Rebhi Hilles
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia;
| | - Foziyah Zakir
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India;
| | - Andreia Castro Gomes
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India; (S.M.); (M.A.M.)
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
26
|
Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, Appel EA. Translational Applications of Hydrogels. Chem Rev 2021; 121:11385-11457. [PMID: 33938724 PMCID: PMC8461619 DOI: 10.1021/acs.chemrev.0c01177] [Citation(s) in RCA: 456] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Advances in hydrogel technology have unlocked unique and valuable capabilities that are being applied to a diverse set of translational applications. Hydrogels perform functions relevant to a range of biomedical purposes-they can deliver drugs or cells, regenerate hard and soft tissues, adhere to wet tissues, prevent bleeding, provide contrast during imaging, protect tissues or organs during radiotherapy, and improve the biocompatibility of medical implants. These capabilities make hydrogels useful for many distinct and pressing diseases and medical conditions and even for less conventional areas such as environmental engineering. In this review, we cover the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogels, and how they relate to translational applications in medicine and the environment. We pay close attention to how the development of contemporary hydrogels requires extensive interdisciplinary collaboration to accomplish highly specific and complex biological tasks that range from cancer immunotherapy to tissue engineering to vaccination. We complement our discussion of preclinical and clinical development of hydrogels with mechanical design considerations needed for scaling injectable hydrogel technologies for clinical application. We anticipate that readers will gain a more complete picture of the expansive possibilities for hydrogels to make practical and impactful differences across numerous fields and biomedical applications.
Collapse
Affiliation(s)
- Santiago Correa
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Abigail K. Grosskopf
- Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Hector Lopez Hernandez
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Doreen Chan
- Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anthony C. Yu
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Eric A. Appel
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
- Bioengineering, Stanford University, Stanford, California 94305, United States
- Pediatric
Endocrinology, Stanford University School
of Medicine, Stanford, California 94305, United States
- ChEM-H Institute, Stanford
University, Stanford, California 94305, United States
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
27
|
Madhavikutty AS, Ohta S, Chandel AKS, Qi P, Ito T. Analysis of Endoscopic Injectability and Post-Ejection Dripping of Yield Stress Fluids: Laponite, Carbopol and Xanthan Gum. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2021; 54:500-511. [DOI: 10.1252/jcej.21we018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
| | - Seiichi Ohta
- Institute of Engineering Innovation, The University of Tokyo
| | | | - Pan Qi
- Center for Disease Biology and Integrative Medicine, The University of Tokyo
| | - Taichi Ito
- Center for Disease Biology and Integrative Medicine, The University of Tokyo
| |
Collapse
|
28
|
Liu M, Wu C, Ke L, Li Z, Wu YL. Emerging Biomaterials-Based Strategies for Inhibiting Vasculature Function in Cancer Therapy. SMALL METHODS 2021; 5:e2100347. [PMID: 34927997 DOI: 10.1002/smtd.202100347] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Indexed: 06/14/2023]
Abstract
The constant feeding of oxygen and nutrients through the blood vasculature has a vital role in maintaining tumor growth. Interestingly, recent endeavors have shown that nanotherapeutics with the strategy to block tumor blood vessels feeding nutrients and oxygen for starvation therapy can be helpful in cancer treatment. However, this field has not been detailed. Hence, this review will present an exhaustive summary of the existing biomaterial based strategies to disrupt tumor vascular function for effective cancer treatment, including hydrogel or nanogel-mediated local arterial embolism, thrombosis activator loaded nano-material-mediated vascular occlusion and anti-vascular drugs that block tumor vascular function, which may be beneficial to the design of anti-cancer nanomedicine by targeting the tumor vascular system.
Collapse
Affiliation(s)
- Minting Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Lingjie Ke
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhiguo Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
29
|
Roth G, Saouaf OM, Smith AAA, Gale EC, Hernández MA, Idoyaga J, Appel EA. Prolonged Codelivery of Hemagglutinin and a TLR7/8 Agonist in a Supramolecular Polymer-Nanoparticle Hydrogel Enhances Potency and Breadth of Influenza Vaccination. ACS Biomater Sci Eng 2021; 7:1889-1899. [PMID: 33404236 PMCID: PMC8153386 DOI: 10.1021/acsbiomaterials.0c01496] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
The sustained release of vaccine cargo has been shown to improve humoral immune responses to challenging pathogens such as influenza. Extended codelivery of antigen and adjuvant prolongs germinal center reactions, thus improving antibody affinity maturation and the ability to neutralize the target pathogen. Here, we develop an injectable, physically cross-linked polymer-nanoparticle (PNP) hydrogel system to prolong the local codelivery of hemagglutinin and a toll-like receptor 7/8 agonist (TLR7/8a) adjuvant. By tethering the TLR7/8a to a NP motif within the hydrogels (TLR7/8a-NP), the dynamic mesh of the PNP hydrogels enables codiffusion of the adjuvant and protein antigen (hemagglutinin), therefore enabling sustained codelivery of these two physicochemically distinct molecules. We show that subcutaneous delivery of PNP hydrogels carrying hemagglutinin and TLR7/8a-NP in mice improves the magnitude and duration of antibody titers in response to a single injection vaccination compared to clinically used adjuvants. Furthermore, the PNP gel-based slow delivery of influenza vaccines led to increased breadth of antibody responses against future influenza variants, including a future pandemic variant, compared to clinical adjuvants. In summary, this work introduces a simple and effective vaccine delivery platform that increases the potency and durability of influenza subunit vaccines.
Collapse
Affiliation(s)
- Gillie
A. Roth
- Department
of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
| | - Olivia M. Saouaf
- Department
of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Anton A. A. Smith
- Department
of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Emily C. Gale
- Department
of Biochemistry, Stanford University School
of Medicine, 279 Campus Drive, Stanford, California 94305, United States
| | - Marcela Alcántara Hernández
- Department
of Microbiology & Immunology, Stanford
University School of Medicine, 299 Campus Drive, Stanford, California 94305, United States
- Program
in Immunology, Stanford University School
of Medicine, 240 Pasteur Drive, Stanford, California 94305, United States
| | - Juliana Idoyaga
- Department
of Microbiology & Immunology, Stanford
University School of Medicine, 299 Campus Drive, Stanford, California 94305, United States
- Program
in Immunology, Stanford University School
of Medicine, 240 Pasteur Drive, Stanford, California 94305, United States
- Institute
for Immunity, Transplantation & Infection, Stanford University School of Medicine, 240 Pasteur Drive, Stanford, California 94305, United States
- ChEM-H
Institute, Stanford University, 290 Jane Stanford Way, Stanford, California 94305, United States
| | - Eric A. Appel
- Department
of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- Department
of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
- Institute
for Immunity, Transplantation & Infection, Stanford University School of Medicine, 240 Pasteur Drive, Stanford, California 94305, United States
- ChEM-H
Institute, Stanford University, 290 Jane Stanford Way, Stanford, California 94305, United States
- Department
of Pediatrics - Endocrinology, Stanford
University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| |
Collapse
|
30
|
Saouaf OM, Roth GA, Ou BS, Smith AAA, Yu AC, Gale EC, Grosskopf AK, Picece VCTM, Appel EA. Modulation of injectable hydrogel properties for slow co-delivery of influenza subunit vaccine components enhance the potency of humoral immunity. J Biomed Mater Res A 2021; 109:2173-2186. [PMID: 33955657 PMCID: PMC8518857 DOI: 10.1002/jbm.a.37203] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/25/2021] [Accepted: 04/12/2021] [Indexed: 11/06/2022]
Abstract
Vaccines are critical for combating infectious diseases across the globe. Influenza, for example, kills roughly 500,000 people annually worldwide, despite annual vaccination campaigns. Efficacious vaccines must elicit a robust and durable antibody response, and poor efficacy often arises from inappropriate temporal control over antigen and adjuvant presentation to the immune system. In this work, we sought to exploit the immune system's natural response to extended pathogen exposure during infection by designing an easily administered slow-delivery influenza vaccine platform. We utilized an injectable and self-healing polymer-nanoparticle (PNP) hydrogel platform to prolong the co-delivery of vaccine components to the immune system. We demonstrated that these hydrogels exhibit unique dynamic physical characteristics whereby physicochemically distinct influenza hemagglutinin antigen and a toll-like receptor 7/8 agonist adjuvant could be co-delivered over prolonged timeframes that were tunable through simple alteration of the gel formulation. We show a relationship between hydrogel physical properties and the resulting immune response to immunization. When administered in mice, hydrogel-based vaccines demonstrated enhancements in the magnitude and duration of humoral immune responses compared to alum, a widely used clinical adjuvant system. We found stiffer hydrogel formulations exhibited slower release and resulted in the greatest improvements to the antibody response while also enabling significant adjuvant dose sparing. In summary, this work introduces a simple and effective vaccine delivery platform that increases the potency and durability of influenza subunit vaccines.
Collapse
Affiliation(s)
- Olivia M Saouaf
- Department of Materials Science & Engineering, Stanford University, Stanford, California, USA
| | - Gillie A Roth
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Ben S Ou
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Anton A A Smith
- Department of Materials Science & Engineering, Stanford University, Stanford, California, USA
| | - Anthony C Yu
- Department of Materials Science & Engineering, Stanford University, Stanford, California, USA
| | - Emily C Gale
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Abigail K Grosskopf
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - Vittoria C T M Picece
- Department of Materials Science & Engineering, Stanford University, Stanford, California, USA.,Department of Chemistry & Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Eric A Appel
- Department of Materials Science & Engineering, Stanford University, Stanford, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, USA.,Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford, California, USA.,ChEM-H Institute, Stanford University, Stanford, California, USA.,Department of Pediatrics - Endocrinology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
31
|
Webber MJ, Pashuck ET. (Macro)molecular self-assembly for hydrogel drug delivery. Adv Drug Deliv Rev 2021; 172:275-295. [PMID: 33450330 PMCID: PMC8107146 DOI: 10.1016/j.addr.2021.01.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023]
Abstract
Hydrogels prepared via self-assembly offer scalable and tunable platforms for drug delivery applications. Molecular-scale self-assembly leverages an interplay of attractive and repulsive forces; drugs and other active molecules can be incorporated into such materials by partitioning in hydrophobic domains, affinity-mediated binding, or covalent integration. Peptides have been widely used as building blocks for self-assembly due to facile synthesis, ease of modification with bioactive molecules, and precise molecular-scale control over material properties through tunable interactions. Additional opportunities are manifest in stimuli-responsive self-assembly for more precise drug action. Hydrogels can likewise be fabricated from macromolecular self-assembly, with both synthetic polymers and biopolymers used to prepare materials with controlled mechanical properties and tunable drug release. These include clinical approaches for solubilization and delivery of hydrophobic drugs. To further enhance mechanical properties of hydrogels prepared through self-assembly, recent work has integrated self-assembly motifs with polymeric networks. For example, double-network hydrogels capture the beneficial properties of both self-assembled and covalent networks. The expanding ability to fabricate complex and precise materials, coupled with an improved understanding of biology, will lead to new classes of hydrogels specifically tailored for drug delivery applications.
Collapse
Affiliation(s)
- Matthew J Webber
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, IN 46556, USA.
| | - E Thomas Pashuck
- Lehigh University, Department of Bioengineering, Bethlehem, PA 18015, USA.
| |
Collapse
|
32
|
Meis CM, Grosskopf AK, Correa S, Appel EA. Injectable Supramolecular Polymer-Nanoparticle Hydrogels for Cell and Drug Delivery Applications. J Vis Exp 2021:10.3791/62234. [PMID: 33616104 PMCID: PMC8104931 DOI: 10.3791/62234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
These methods describe how to formulate injectable, supramolecular polymer-nanoparticle (PNP) hydrogels for use as biomaterials. PNP hydrogels are composed of two components: hydrophobically modified cellulose as the network polymer and self-assembled core-shell nanoparticles that act as non-covalent cross linkers through dynamic, multivalent interactions. These methods describe both the formation of these self-assembled nanoparticles through nanoprecipitation as well as the formulation and mixing of the two components to form hydrogels with tunable mechanical properties. The use of dynamic light scattering (DLS) and rheology to characterize the quality of the synthesized materials is also detailed. Finally, the utility of these hydrogels for drug delivery, biopharmaceutical stabilization, and cell encapsulation and delivery is demonstrated through in vitro experiments to characterize drug release, thermal stability, and cell settling and viability. Due to its biocompatibility, injectability, and mild gel formation conditions, this hydrogel system is a readily tunable platform suitable for a range of biomedical applications.
Collapse
Affiliation(s)
- Catherine M Meis
- Department of Materials Science & Engineering, Stanford University
| | | | - Santiago Correa
- Department of Materials Science & Engineering, Stanford University
| | - Eric A Appel
- Department of Materials Science & Engineering, Stanford University; Department of Bioengineering, Stanford University; Department of Pediatrics - Endocrinology, Stanford University;
| |
Collapse
|
33
|
Ge Q, Chen Z, Cheng J, Zhang B, Zhang YF, Li H, He X, Yuan C, Liu J, Magdassi S, Qu S. 3D printing of highly stretchable hydrogel with diverse UV curable polymers. SCIENCE ADVANCES 2021; 7:eaba4261. [PMID: 33523958 PMCID: PMC7787492 DOI: 10.1126/sciadv.aba4261] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 11/10/2020] [Indexed: 05/18/2023]
Abstract
Hydrogel-polymer hybrids have been widely used for various applications such as biomedical devices and flexible electronics. However, the current technologies constrain the geometries of hydrogel-polymer hybrid to laminates consisting of hydrogel with silicone rubbers. This greatly limits functionality and performance of hydrogel-polymer-based devices and machines. Here, we report a simple yet versatile multimaterial 3D printing approach to fabricate complex hybrid 3D structures consisting of highly stretchable and high-water content acrylamide-PEGDA (AP) hydrogels covalently bonded with diverse UV curable polymers. The hybrid structures are printed on a self-built DLP-based multimaterial 3D printer. We realize covalent bonding between AP hydrogel and other polymers through incomplete polymerization of AP hydrogel initiated by the water-soluble photoinitiator TPO nanoparticles. We demonstrate a few applications taking advantage of this approach. The proposed approach paves a new way to realize multifunctional soft devices and machines by bonding hydrogel with other polymers in 3D forms.
Collapse
Affiliation(s)
- Qi Ge
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Zhe Chen
- State Key Laboratory of Fluid Power and Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Jianxiang Cheng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Biao Zhang
- Xi'an Institute of Flexible Electronics and Xi'an Key Laboratory of Biomedical Materials and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, Shaanxi, China.
| | - Yuan-Fang Zhang
- Digital Manufacturing and Design Center, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Honggeng Li
- Digital Manufacturing and Design Center, Singapore University of Technology and Design, Singapore 487372, Singapore
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
| | - Xiangnan He
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chao Yuan
- Digital Manufacturing and Design Center, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shlomo Magdassi
- Casali Center for Applied Chemistry, Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Shaoxing Qu
- State Key Laboratory of Fluid Power and Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
34
|
Meis CM, Salzman EE, Maikawa CL, Smith AAA, Mann JL, Grosskopf AK, Appel EA. Self-Assembled, Dilution-Responsive Hydrogels for Enhanced Thermal Stability of Insulin Biopharmaceuticals. ACS Biomater Sci Eng 2020; 7:4221-4229. [PMID: 34510910 PMCID: PMC8441967 DOI: 10.1021/acsbiomaterials.0c01306] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Biotherapeutics currently dominate
the landscape of new drugs because
of their exceptional potency and selectivity. Yet, the intricate molecular
structures that give rise to these beneficial qualities also render
them unstable in formulation. Hydrogels have shown potential as stabilizing
excipients for biotherapeutic drugs, providing protection against
harsh thermal conditions experienced during distribution and storage.
In this work, we report the utilization of a cellulose-based supramolecular
hydrogel formed from polymer–nanoparticle (PNP) interactions
to encapsulate and stabilize insulin, an important biotherapeutic
used widely to treat diabetes. Encapsulation of insulin in these hydrogels
prevents insulin aggregation and maintains insulin bioactivity through
stressed aging conditions of elevated temperature and continuous agitation
for over 28 days. Further, insulin can be easily recovered by dilution
of these hydrogels for administration at the point of care. This supramolecular
hydrogel system shows promise as a stabilizing excipient to reduce
the cold chain dependence of insulin and other biotherapeutics.
Collapse
Affiliation(s)
- Catherine M Meis
- Department of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Erika E Salzman
- Department of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Caitlin L Maikawa
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
| | - Anton A A Smith
- Department of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States.,Department of Science and Technology, Aarhus University, 8000 Aarhus, Denmark
| | - Joseph L Mann
- Department of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Abigail K Grosskopf
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
| | - Eric A Appel
- Department of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States.,Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.,Department of Pediatrics-Endocrinology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States.,ChEM-H Institute, Stanford University, 290 Jane Stanford Way, Stanford, California 94305, United States
| |
Collapse
|
35
|
Cohen JE, Goldstone AB, Wang H, Purcell BP, Shudo Y, MacArthur JW, Steele AN, Paulsen MJ, Edwards BB, Aribeana CN, Cheung NC, Burdick JA, Woo YJ. A Bioengineered Neuregulin-Hydrogel Therapy Reduces Scar Size and Enhances Post-Infarct Ventricular Contractility in an Ovine Large Animal Model. J Cardiovasc Dev Dis 2020; 7:jcdd7040053. [PMID: 33212844 PMCID: PMC7711763 DOI: 10.3390/jcdd7040053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/26/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
The clinical efficacy of neuregulin (NRG) in the treatment of heart failure is hindered by off-target exposure due to systemic delivery. We previously encapsulated neuregulin in a hydrogel (HG) for targeted and sustained myocardial delivery, demonstrating significant induction of cardiomyocyte proliferation and preservation of post-infarct cardiac function in a murine myocardial infarction (MI) model. Here, we performed a focused evaluation of our hydrogel-encapsulated neuregulin (NRG-HG) therapy’s potential to enhance cardiac function in an ovine large animal MI model. Adult male Dorset sheep (n = 21) underwent surgical induction of MI by coronary artery ligation. The sheep were randomized to receive an intramyocardial injection of saline, HG only, NRG only, or NRG-HG circumferentially around the infarct borderzone. Eight weeks after MI, closed-chest intracardiac pressure–volume hemodynamics were assessed, followed by heart explant for infarct size analysis. Compared to each of the control groups, NRG-HG significantly augmented left ventricular ejection fraction (p = 0.006) and contractility based on the slope of the end-systolic pressure–volume relationship (p = 0.006). NRG-HG also significantly reduced infarct scar size (p = 0.002). Overall, using a bioengineered hydrogel delivery system, a one-time dose of NRG delivered intramyocardially to the infarct borderzone at the time of MI in adult sheep significantly reduces scar size and enhances ventricular contractility at 8 weeks after MI.
Collapse
Affiliation(s)
- Jeffrey E. Cohen
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; (J.E.C.); (A.B.G.); (H.W.); (Y.S.); (J.W.M.); (A.N.S.); (M.J.P.); (B.B.E.); (C.N.A.); (N.C.C.)
| | - Andrew B. Goldstone
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; (J.E.C.); (A.B.G.); (H.W.); (Y.S.); (J.W.M.); (A.N.S.); (M.J.P.); (B.B.E.); (C.N.A.); (N.C.C.)
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; (J.E.C.); (A.B.G.); (H.W.); (Y.S.); (J.W.M.); (A.N.S.); (M.J.P.); (B.B.E.); (C.N.A.); (N.C.C.)
| | - Brendan P. Purcell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.P.P.); (J.A.B.)
| | - Yasuhiro Shudo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; (J.E.C.); (A.B.G.); (H.W.); (Y.S.); (J.W.M.); (A.N.S.); (M.J.P.); (B.B.E.); (C.N.A.); (N.C.C.)
| | - John W. MacArthur
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; (J.E.C.); (A.B.G.); (H.W.); (Y.S.); (J.W.M.); (A.N.S.); (M.J.P.); (B.B.E.); (C.N.A.); (N.C.C.)
| | - Amanda N. Steele
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; (J.E.C.); (A.B.G.); (H.W.); (Y.S.); (J.W.M.); (A.N.S.); (M.J.P.); (B.B.E.); (C.N.A.); (N.C.C.)
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Michael J. Paulsen
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; (J.E.C.); (A.B.G.); (H.W.); (Y.S.); (J.W.M.); (A.N.S.); (M.J.P.); (B.B.E.); (C.N.A.); (N.C.C.)
| | - Bryan B. Edwards
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; (J.E.C.); (A.B.G.); (H.W.); (Y.S.); (J.W.M.); (A.N.S.); (M.J.P.); (B.B.E.); (C.N.A.); (N.C.C.)
| | - Chiaka N. Aribeana
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; (J.E.C.); (A.B.G.); (H.W.); (Y.S.); (J.W.M.); (A.N.S.); (M.J.P.); (B.B.E.); (C.N.A.); (N.C.C.)
| | - Nicholas C. Cheung
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; (J.E.C.); (A.B.G.); (H.W.); (Y.S.); (J.W.M.); (A.N.S.); (M.J.P.); (B.B.E.); (C.N.A.); (N.C.C.)
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.P.P.); (J.A.B.)
| | - Y. Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; (J.E.C.); (A.B.G.); (H.W.); (Y.S.); (J.W.M.); (A.N.S.); (M.J.P.); (B.B.E.); (C.N.A.); (N.C.C.)
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Correspondence: ; Tel.: 1-650-725-3828
| |
Collapse
|
36
|
Park SJ, Akimoto J, Sakakibara N, Kobatake E, Ito Y. Thermally Induced Switch of Coupling Reaction Using the Morphological Change of a Thermoresponsive Polymer on a Reactive Heteroarmed Nanoparticle. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49165-49173. [PMID: 32991144 DOI: 10.1021/acsami.0c12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Control of the cross-linking reaction is imperative when developing a sophisticated in situ forming hydrogel in the body. In this study, a heteroarmed thermoresponsive (TR) nanoparticle was designed to investigate the mechanism of controlling reactivity of the functional groups introduced into the nanoparticles. The coupling reaction was suppressed/proceeded by utilizing temperature-induced morphological changes of the TR polymer. The heteroarmed TR nanoparticle was prepared by the coassembly of amphiphilic block copolymers possessing both a TR segment and hydrophilic segment with reactive functional groups of succinimide. The longer TR chain on the nanoparticle covered the succinimide group and suppressed the reaction with the primary amine on the external nanoparticle. In contrast, the coupling reaction was promoted at a high temperature to create the chemical cross-linking structure between the nanoparticles because of the exposure of the succinimide group on the surface of the particle as a consequence of the morphological change of the TR polymer. In addition, the thermally controlled chemical reaction modulated initiation of the gelation using a highly concentrated nanoparticle solution. The heteroarmed TR nanoparticle offers great practical advantages for clinical uses, such as embolization agents, through precise control of the reaction.
Collapse
Affiliation(s)
- So Jung Park
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8502, Japan
| | - Jun Akimoto
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Naoki Sakakibara
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Cardiovascular Surgery, Edogawa Hospital, 2-24-18 Higashikoiwa, Edogawa-ku, Tokyo 133-0052. Japan
| | - Eiry Kobatake
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8502, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
37
|
Marco-Dufort B, Willi J, Vielba-Gomez F, Gatti F, Tibbitt MW. Environment Controls Biomolecule Release from Dynamic Covalent Hydrogels. Biomacromolecules 2020; 22:146-157. [PMID: 32813504 PMCID: PMC7805009 DOI: 10.1021/acs.biomac.0c00895] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Moldable hydrogels composed of dynamic
covalent bonds are attractive
biomaterials for controlled release, as the dynamic exchange of bonds
in these networks enables minimally invasive application via injection.
Despite the growing interest in the biomedical application of dynamic
covalent hydrogels, there is a lack of fundamental understanding as
to how the network design and local environment control the release
of biomolecules from these materials. In this work, we fabricated
boronic-ester-based dynamic covalent hydrogels for the encapsulation
and in vitro release of a model biologic (β-galactosidase).
We systematically investigated the role of network properties and
of the external environment (temperature and presence of competitive
binders) on release from these dynamic covalent hydrogels. We observed
that surface erosion (and associated mass loss) governed biomolecule
release. In addition, we developed a statistical model of surface
erosion based on the binding equilibria in a boundary layer that described
the rates of release. In total, our results will guide the design
of dynamic covalent hydrogels as biomaterials for drug delivery applications.
Collapse
Affiliation(s)
- Bruno Marco-Dufort
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Jack Willi
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Felipe Vielba-Gomez
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Francesco Gatti
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
38
|
Xu C, Chen Y, Zheng Z, Liu Y, Cao S, Xu Y. Mussel-Inspired Biocompatible PAADOPA/PAAm Hydrogel Adhesive for Amoxicillin Delivery. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chengyuan Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Yang Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Zhiyuan Zheng
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Yongchun Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Song Cao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| |
Collapse
|
39
|
Le Thi P, Lee Y, Tran DL, Hoang Thi TT, Park KD. Horseradish peroxidase-catalyzed hydrogelation of fish gelatin with tunable mechanical properties and biocompatibility. J Biomater Appl 2020; 34:1216-1226. [PMID: 31914843 DOI: 10.1177/0885328219899787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Horseradish peroxidase-catalyzed injectable gelatin hydrogels have attracted much attention in various biomedical fields because of their processability, biodegradability, and excellent biocompatibility in promoting cell adhesion and proliferation. However, gelatin derivatives are mainly obtained from mammalian sources (porcine, bovine) with thermal gelation at room temperature, leading to the potential problems in biofabrication applications. Here, we introduce a novel fish gelatin derivative that can be easily dissolved and cross-linked at room temperature by horseradish peroxidase. This system provides thermally stable fish gelatin hydrogels with tunable mechanical and biological properties, comparable to porcine gelatin hydrogels. The properties (gelation time, stiffness, degradation rate) of hydrogels prepared from fish gelatin-hydroxyphenyl propionic acid (FGH) are controllable for suitable applications. Moreover, FGH hydrogels allow human dermal fibroblast cells to adhere, proliferate, and produce the extracellular components. These results suggest horseradish peroxidase-cross-linked FGH as potential hydrogel matrices that can be used as an alternative for mammalian gelatin hydrogels in various biomedical applications.
Collapse
Affiliation(s)
- Phuong Le Thi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Yunki Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Dieu Linh Tran
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
40
|
Dias JR, Ribeiro N, Baptista-Silva S, Costa-Pinto AR, Alves N, Oliveira AL. In situ Enabling Approaches for Tissue Regeneration: Current Challenges and New Developments. Front Bioeng Biotechnol 2020. [PMID: 32133354 DOI: 10.3389/fbioe.2020.00085.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In situ tissue regeneration can be defined as the implantation of tissue-specific biomaterials (by itself or in combination with cells and/or biomolecules) at the tissue defect, taking advantage of the surrounding microenvironment as a natural bioreactor. Up to now, the structures used were based on particles or gels. However, with the technological progress, the materials' manipulation and processing has become possible, mimicking the damaged tissue directly at the defect site. This paper presents a comprehensive review of current and advanced in situ strategies for tissue regeneration. Recent advances to put in practice the in situ regeneration concept have been mainly focused on bioinks and bioprinting techniques rather than the combination of different technologies to make the real in situ regeneration. The limitation of conventional approaches (e.g., stem cell recruitment) and their poor ability to mimic native tissue are discussed. Moreover, the way of advanced strategies such as 3D/4D bioprinting and hybrid approaches may contribute to overcome the limitations of conventional strategies are highlighted. Finally, the future trends and main research challenges of in situ enabling approaches are discussed considering in vitro and in vivo evidence.
Collapse
Affiliation(s)
- Juliana R Dias
- Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Leiria, Portugal
| | - Nilza Ribeiro
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa1, Porto, Portugal
| | - Sara Baptista-Silva
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa1, Porto, Portugal
| | - Ana Rita Costa-Pinto
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa1, Porto, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Leiria, Portugal
| | - Ana L Oliveira
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa1, Porto, Portugal
| |
Collapse
|
41
|
Steele AN, Paulsen MJ, Wang H, Stapleton LM, Lucian HJ, Eskandari A, Hironaka CE, Farry JM, Baker SW, Thakore AD, Jaatinen KJ, Tada Y, Hollander MJ, Williams KM, Seymour AJ, Totherow KP, Yu AC, Cochran JR, Appel EA, Woo YJ. Multi-phase catheter-injectable hydrogel enables dual-stage protein-engineered cytokine release to mitigate adverse left ventricular remodeling following myocardial infarction in a small animal model and a large animal model. Cytokine 2020; 127:154974. [DOI: 10.1016/j.cyto.2019.154974] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/18/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
|
42
|
Dias JR, Ribeiro N, Baptista-Silva S, Costa-Pinto AR, Alves N, Oliveira AL. In situ Enabling Approaches for Tissue Regeneration: Current Challenges and New Developments. Front Bioeng Biotechnol 2020; 8:85. [PMID: 32133354 PMCID: PMC7039825 DOI: 10.3389/fbioe.2020.00085] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022] Open
Abstract
In situ tissue regeneration can be defined as the implantation of tissue-specific biomaterials (by itself or in combination with cells and/or biomolecules) at the tissue defect, taking advantage of the surrounding microenvironment as a natural bioreactor. Up to now, the structures used were based on particles or gels. However, with the technological progress, the materials' manipulation and processing has become possible, mimicking the damaged tissue directly at the defect site. This paper presents a comprehensive review of current and advanced in situ strategies for tissue regeneration. Recent advances to put in practice the in situ regeneration concept have been mainly focused on bioinks and bioprinting techniques rather than the combination of different technologies to make the real in situ regeneration. The limitation of conventional approaches (e.g., stem cell recruitment) and their poor ability to mimic native tissue are discussed. Moreover, the way of advanced strategies such as 3D/4D bioprinting and hybrid approaches may contribute to overcome the limitations of conventional strategies are highlighted. Finally, the future trends and main research challenges of in situ enabling approaches are discussed considering in vitro and in vivo evidence.
Collapse
Affiliation(s)
- Juliana R. Dias
- Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Leiria, Portugal
| | - Nilza Ribeiro
- CBQF – Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa1, Porto, Portugal
| | - Sara Baptista-Silva
- CBQF – Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa1, Porto, Portugal
| | - Ana Rita Costa-Pinto
- CBQF – Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa1, Porto, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Leiria, Portugal
| | - Ana L. Oliveira
- CBQF – Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa1, Porto, Portugal
| |
Collapse
|
43
|
Fuchs S, Shariati K, Ma M. Specialty Tough Hydrogels and Their Biomedical Applications. Adv Healthc Mater 2020; 9:e1901396. [PMID: 31846228 PMCID: PMC7586320 DOI: 10.1002/adhm.201901396] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/23/2019] [Indexed: 02/06/2023]
Abstract
Hydrogels have long been explored as attractive materials for biomedical applications given their outstanding biocompatibility, high water content, and versatile fabrication platforms into materials with different physiochemical properties and geometries. Nonetheless, conventional hydrogels suffer from weak mechanical properties, restricting their use in persistent load-bearing applications often required of materials used in medical settings. Thus, the fabrication of mechanically robust hydrogels that can prolong the lifetime of clinically suitable materials under uncompromising in vivo conditions is of great interest. This review focuses on design considerations and strategies to construct such tough hydrogels. Several promising advances in the proposed use of specialty tough hydrogels for soft actuators, drug delivery vehicles, adhesives, coatings, and in tissue engineering settings are highlighted. While challenges remain before these specialty tough hydrogels will be deemed translationally acceptable for clinical applications, promising preliminary results undoubtedly spur great hope in the potential impact this embryonic research field can have on the biomedical community.
Collapse
Affiliation(s)
- Stephanie Fuchs
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| |
Collapse
|
44
|
Spicer CD. Hydrogel scaffolds for tissue engineering: the importance of polymer choice. Polym Chem 2020; 11:184-219. [DOI: 10.1039/c9py01021a] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
We explore the design and synthesis of hydrogel scaffolds for tissue engineering from the perspective of the underlying polymer chemistry. The key polymers, properties and architectures used, and their effect on tissue growth are discussed.
Collapse
|
45
|
Bovone G, Steiner F, Guzzi EA, Tibbitt MW. Automated and Continuous Production of Polymeric Nanoparticles. Front Bioeng Biotechnol 2019; 7:423. [PMID: 31921826 PMCID: PMC6927919 DOI: 10.3389/fbioe.2019.00423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/29/2019] [Indexed: 01/08/2023] Open
Abstract
Polymeric nanoparticles (NPs) are increasingly used as therapeutics, diagnostics, and building blocks in (bio)materials science. Current barriers to translation are limited control over NP physicochemical properties and robust scale-up of their production. Flow-based devices have emerged for controlled production of polymeric NPs, both for rapid formulation screening (~μg min-1) and on-scale production (~mg min-1). While flow-based devices have improved NP production compared to traditional batch processes, automated processes are desired for robust NP production at scale. Therefore, we engineered an automated coaxial jet mixer (CJM), which controlled the mixing of an organic stream containing block copolymer and an aqueous stream, for the continuous nanoprecipitation of polymeric NPs. The CJM was operated stably under computer control for up to 24 h and automated control over the flow conditions tuned poly(ethylene glycol)-block-polylactide (PEG5K -b-PLA20K ) NP size between ≈56 nm and ≈79 nm. In addition, the automated CJM enabled production of NPs of similar size (D h ≈ 50 nm) from chemically diverse block copolymers, PEG5K -b-PLA20K , PEG-block-poly(lactide-co-glycolide) (PEG5K -b-PLGA20K ), and PEG-block-polycaprolactone (PEG5K -b-PCL20K ), by tuning the flow conditions for each block copolymer. Further, the automated CJM was used to produce model nanotherapeutics in a reproducible manner without user intervention. Finally, NPs produced with the automated CJM were used to scale the formation of injectable polymer-nanoparticle (PNP) hydrogels, without modifying the mechanical properties of the PNP gel. In conclusion, the automated CJM enabled stable, tunable, and continuous production of polymeric NPs, which are needed for the scale-up and translation of this important class of biomaterials.
Collapse
Affiliation(s)
| | | | | | - Mark W. Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
46
|
Abdulghani S, Mitchell GR. Biomaterials for In Situ Tissue Regeneration: A Review. Biomolecules 2019; 9:E750. [PMID: 31752393 PMCID: PMC6920773 DOI: 10.3390/biom9110750] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022] Open
Abstract
This review focuses on a somewhat unexplored strand of regenerative medicine, that is in situ tissue engineering. In this approach manufactured scaffolds are implanted in the injured region for regeneration within the patient. The scaffold is designed to attract cells to the required volume of regeneration to subsequently proliferate, differentiate, and as a consequence develop tissue within the scaffold which in time will degrade leaving just the regenerated tissue. This review highlights the wealth of information available from studies of ex-situ tissue engineering about the selection of materials for scaffolds. It is clear that there are great opportunities for the use of additive manufacturing to prepare complex personalized scaffolds and we speculate that by building on this knowledge and technology, the development of in situ tissue engineering could rapidly increase. Ex-situ tissue engineering is handicapped by the need to develop the tissue in a bioreactor where the conditions, however optimized, may not be optimum for accelerated growth and maintenance of the cell function. We identify that in both methodologies the prospect of tissue regeneration has created much promise but delivered little outside the scope of laboratory-based experiments. We propose that the design of the scaffolds and the materials selected remain at the heart of developments in this field and there is a clear need for predictive modelling which can be used in the design and optimization of materials and scaffolds.
Collapse
Affiliation(s)
- Saba Abdulghani
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-080 Marinha Grande, Portugal;
| | | |
Collapse
|
47
|
Abstract
This review focuses on a somewhat unexplored strand of regenerative medicine, that is in situ tissue engineering. In this approach manufactured scaffolds are implanted in the injured region for regeneration within the patient. The scaffold is designed to attract cells to the required volume of regeneration to subsequently proliferate, differentiate, and as a consequence develop tissue within the scaffold which in time will degrade leaving just the regenerated tissue. This review highlights the wealth of information available from studies of ex-situ tissue engineering about the selection of materials for scaffolds. It is clear that there are great opportunities for the use of additive manufacturing to prepare complex personalized scaffolds and we speculate that by building on this knowledge and technology, the development of in situ tissue engineering could rapidly increase. Ex-situ tissue engineering is handicapped by the need to develop the tissue in a bioreactor where the conditions, however optimized, may not be optimum for accelerated growth and maintenance of the cell function. We identify that in both methodologies the prospect of tissue regeneration has created much promise but delivered little outside the scope of laboratory-based experiments. We propose that the design of the scaffolds and the materials selected remain at the heart of developments in this field and there is a clear need for predictive modelling which can be used in the design and optimization of materials and scaffolds.
Collapse
|