1
|
Liang A, Tao T, Chen J, Yang Y, Zhou X, Zhu X, Yu G. Immunocompetent tumor-on-a-chip: A translational tool for drug screening and cancer therapy. Crit Rev Oncol Hematol 2025; 210:104716. [PMID: 40194716 DOI: 10.1016/j.critrevonc.2025.104716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Tumor is one of the major diseases endangering human health while establishing an efficient in vitro tumor microenvironment (TME) model, which is an effective way to reveal the nature of the tumor and develop therapeutic methods. In recent years, due to the continuous development of lab-on-a-chip technology and tumor biology, various tumor-on-a-chip models applied to oncology research have emerged. Among them, the Immunotherapy-on-a-chip (ITOC) platform stands out with its ability to reflect immunological behavior in the TME. It is a class of in vitro tumor-on-a-chip with immune activity, which has good performance and the ability to reproduce TME. It can highly simulate the complex pathophysiological characteristics of tumors and be used to study various features related to tumor biological behavior. Currently, many advantageous functions and application values of ITOC platforms have been discovered and applied to tumor drug screening and development, tumor immunotherapy, and personalized therapy. In conclusion, the tumor-on-a-chip platform is a highly promising model for medical oncology research. In this review, the background of the ITOC platform, key factors for constructing an ideal ITOC platform, and the specific applications of ITOC platforms in tumor research and treatment are introduced.
Collapse
Affiliation(s)
- Anqi Liang
- Department of Cardiothoracic Surgery, Jiangyin People's Hospital Affiliated to Nantong University, Jiangyin, China; The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Jiahui Chen
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Yucong Yang
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Xiao Zhu
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China.
| | - Guiping Yu
- Department of Cardiothoracic Surgery, Jiangyin People's Hospital Affiliated to Nantong University, Jiangyin, China.
| |
Collapse
|
2
|
Sauce-Guevara MA, García-Schejtman SD, Alarcon EI, Bernal-Chavez SA, Mendez-Rojas MA. Development and Characterization of an Injectable Alginate/Chitosan Composite Hydrogel Reinforced with Cyclic-RGD Functionalized Graphene Oxide for Potential Tissue Regeneration Applications. Pharmaceuticals (Basel) 2025; 18:616. [PMID: 40430437 PMCID: PMC12115116 DOI: 10.3390/ph18050616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
Background: In tissue engineering, developing injectable hydrogels with tailored mechanical and bioactive properties remains a challenge. This study introduces an injectable hydrogel composite for soft tissue regeneration, composed of oxidized alginate (OA) and N-succinyl chitosan (NSC) cross-linked via Schiff base reaction, reinforced with graphene oxide (GOx) and cyclic arginylglycylaspartic acid (c-RGD). The objective was to create a multifunctional platform combining injectability, bioactivity, and structural stability. Methods: The OA/NSC/GOx-cRGD hydrogel was synthesized through Schiff base cross-linking (aldehyde-amine reaction). Characterization included FTIR (C=N bond at 1650 cm⁻¹), Raman spectroscopy (D/G bands at 1338/1567 cm⁻¹), SEM (porous microstructure), and rheological analysis (shear-thinning behavior). In vitro assays assessed fibroblast viability (MTT) and macrophage TNF-α secretion (ELISA), while ex-vivo injectability and retention were evaluated using chicken cardiac tissue. Results: The hydrogel exhibited shear-thinning behavior (viscosity: 10 to <1 Pa·s) and elastic-dominated mechanics (G' > G″), ensuring injectability. SEM revealed an interconnected porous structure mimicking native extracellular matrix. Fibroblast viability remained ≥95%, and TNF-α secretion in macrophages decreased by 80% (30 vs. 150 pg/μL in controls), demonstrating biocompatibility and anti-inflammatory effects. The hydrogel adhered stably to cardiac tissue without leakage. Conclusions: The OA/NSC/GOx-cRGD composite integrates injectability, bioactivity, and structural stability, offering a promising scaffold for tissue regeneration. Its modular design allows further functionalization with peptides or growth factors. Future work will focus on translational applications, including scalability and optimization for dynamic biological environments.
Collapse
Affiliation(s)
- Mildred A. Sauce-Guevara
- Department of Chemical and Biological Sciences, Universidad de las Americas Puebla, Ex-Hacienda de Santa Catarina Martir s/n, San Andres Cholula, Puebla 72820, Mexico;
| | - Sergio D. García-Schejtman
- Bioengineering and Therapeutic Solutions (BEaTS) Program, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada; (S.D.G.-S.); (E.I.A.)
| | - Emilio I. Alarcon
- Bioengineering and Therapeutic Solutions (BEaTS) Program, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada; (S.D.G.-S.); (E.I.A.)
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sergio A. Bernal-Chavez
- Department of Chemical and Biological Sciences, Universidad de las Americas Puebla, Ex-Hacienda de Santa Catarina Martir s/n, San Andres Cholula, Puebla 72820, Mexico;
| | - Miguel A. Mendez-Rojas
- Department of Chemical and Biological Sciences, Universidad de las Americas Puebla, Ex-Hacienda de Santa Catarina Martir s/n, San Andres Cholula, Puebla 72820, Mexico;
| |
Collapse
|
3
|
Wang Y, Yung P, Lu G, Liu Y, Ding C, Mao C, Li ZA, Tuan RS. Musculoskeletal Organs-on-Chips: An Emerging Platform for Studying the Nanotechnology-Biology Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2401334. [PMID: 38491868 PMCID: PMC11733728 DOI: 10.1002/adma.202401334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Nanotechnology-based approaches are promising for the treatment of musculoskeletal (MSK) disorders, which present significant clinical burdens and challenges, but their clinical translation requires a deep understanding of the complex interplay between nanotechnology and MSK biology. Organ-on-a-chip (OoC) systems have emerged as an innovative and versatile microphysiological platform to replicate the dynamics of tissue microenvironment for studying nanotechnology-biology interactions. This review first covers recent advances and applications of MSK OoCs and their ability to mimic the biophysical and biochemical stimuli encountered by MSK tissues. Next, by integrating nanotechnology into MSK OoCs, cellular responses and tissue behaviors may be investigated by precisely controlling and manipulating the nanoscale environment. Analysis of MSK disease mechanisms, particularly bone, joint, and muscle tissue degeneration, and drug screening and development of personalized medicine may be greatly facilitated using MSK OoCs. Finally, future challenges and directions are outlined for the field, including advanced sensing technologies, integration of immune-active components, and enhancement of biomimetic functionality. By highlighting the emerging applications of MSK OoCs, this review aims to advance the understanding of the intricate nanotechnology-MSK biology interface and its significance in MSK disease management, and the development of innovative and personalized therapeutic and interventional strategies.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Patrick Yung
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Gang Lu
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Yuwei Liu
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- The First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhenGuangdong518037P. R. China
| | - Changhai Ding
- Clinical Research CentreZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510260China
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Chuanbin Mao
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Zhong Alan Li
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Key Laboratory of Regenerative MedicineMinistry of EducationSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Shenzhen Research InstituteThe Chinese University of Hong KongShenzhen518172P. R. China
| | - Rocky S. Tuan
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| |
Collapse
|
4
|
Tang R, Liu XQ. Modeling development of breast cancer: from tumor microenvironment to preclinical applications. Front Pharmacol 2024; 15:1466017. [PMID: 39697553 PMCID: PMC11652193 DOI: 10.3389/fphar.2024.1466017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Breast cancer is a complex disease and its progression is related not only to tumor cells but also to its microenvironment, which can not be sufficiently reflected by the traditional monolayer cell culture manner. The novel human cancer models comprising tumor microenvironment (TME), such as tumor organoids and organs-on-a-chip, has been established in recent years to help elucidate the underlying mechanisms of tumorigenesis and promote the development of cancer therapies. In this review, we first discuss the current state of breast cancer and their treatment strategies, and elucidates the complex properties of TME of breast cancer in vivo. The culture models used in breast cancer research are then summarized with insights into recent development. Finally, we also conclude by discussing the current limitations and future directions of culture models in breast cancer research for providing a preclinical reference for the precise treatment of cancer patients.
Collapse
Affiliation(s)
- Ruizhi Tang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi-Qiu Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Liu M, Wang Y, Wang C, Li P, Qiu J, Yang N, Sun M, Han L. A Microfluidic 3D-Tumor-Spheroid Model for the Evaluation of Targeted Therapies from Angiogenesis-Related Cytokines at the Single Spheroid Level. Adv Healthc Mater 2024; 13:e2402321. [PMID: 39126126 DOI: 10.1002/adhm.202402321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Indexed: 08/12/2024]
Abstract
Angiogenesis is a key player in drug resistance to targeted therapies for breast cancer. The average expression of angiogenesis-related cytokines is widely associated with the treatments of target therapies for a population of cells or spheroids, overlooking the distinct responses for individuals. In this work, a highly integrated microfluidic platform is developed for the generation of monodisperse multicellular tumor spheroids (MTSs), drug treatments, and the measurement of cytokines for individual MTSs in a single chip. The platform allows the correlation evaluation between cytokine secretion and drug treatment at the level of individual spheroids. For validation, quantities of six representative proangiogenic cytokines are tested against treatments with four model drugs at varying times and concentrations. By applying a linear regression model, significant correlations are established between cytokine secretion and the treated drug concentration for individual spheroids. The proposed platform provides a high-throughput method for the investigation of the molecular mechanism of the cytokine response to targeted therapies and paves the way for future drug screening using predictive regression models at the single-spheroid level.
Collapse
Affiliation(s)
- Mengqi Liu
- Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China
| | - Yihe Wang
- Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China
| | - Chao Wang
- Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China
| | - Ping Li
- Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China
| | - Jiaoyan Qiu
- Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China
| | - Ningkai Yang
- Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China
| | - Mingyuan Sun
- Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, 250100, P. R. China
| |
Collapse
|
6
|
Abed H, Radha R, Anjum S, Paul V, AlSawaftah N, Pitt WG, Ashammakhi N, Husseini GA. Targeted Cancer Therapy-on-A-Chip. Adv Healthc Mater 2024; 13:e2400833. [PMID: 39101627 PMCID: PMC11582519 DOI: 10.1002/adhm.202400833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/15/2024] [Indexed: 08/06/2024]
Abstract
Targeted cancer therapy (TCT) is gaining increased interest because it reduces the risks of adverse side effects by specifically treating tumor cells. TCT testing has traditionally been performed using two-dimensional (2D) cell culture and animal studies. Organ-on-a-chip (OoC) platforms have been developed to recapitulate cancer in vitro, as cancer-on-a-chip (CoC), and used for chemotherapeutics development and testing. This review explores the use of CoCs to both develop and test TCTs, with a focus on three main aspects, the use of CoCs to identify target biomarkers for TCT development, the use of CoCs to test free, un-encapsulated TCTs, and the use of CoCs to test encapsulated TCTs. Despite current challenges such as system scaling, and testing externally triggered TCTs, TCToC shows a promising future to serve as a supportive, pre-clinical platform to expedite TCT development and bench-to-bedside translation.
Collapse
Affiliation(s)
- Heba Abed
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Remya Radha
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Shabana Anjum
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Vinod Paul
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| | - Nour AlSawaftah
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| | - William G. Pitt
- Department of Chemical EngineeringBrigham Young UniversityProvoUT84602USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Michigan State UniversityEast LansingMI48824USA
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095‐1600USA
| | - Ghaleb A. Husseini
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| |
Collapse
|
7
|
Razavi Z, Soltani M, Pazoki-Toroudi H, Dabagh M. Microfluidic systems for modeling digestive cancer: a review of recent progress. Biomed Phys Eng Express 2024; 10:052002. [PMID: 39142294 DOI: 10.1088/2057-1976/ad6f15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Purpose. This review aims to highlight current improvements in microfluidic devices designed for digestive cancer simulation. The review emphasizes the use of multicellular 3D tissue engineering models to understand the complicated biology of the tumor microenvironment (TME) and cancer progression. The purpose is to develop oncology research and improve digestive cancer patients' lives.Methods. This review analyzes recent research on microfluidic devices for mimicking digestive cancer. It uses tissue-engineered microfluidic devices, notably organs on a chip (OOC), to simulate human organ function in the lab. Cell cultivation on modern three-dimensional hydrogel platforms allows precise geometry, biological components, and physiological qualities. The review analyzes novel methodologies, key findings, and technical progress to explain this field's advances.Results. This study discusses current advances in microfluidic devices for mimicking digestive cancer. Micro physiological systems with multicellular 3D tissue engineering models are emphasized. These systems capture complex biochemical gradients, niche variables, and dynamic cell-cell interactions in the tumor microenvironment (TME). These models reveal stomach cancer biology and progression by duplicating the TME. Recent discoveries and technology advances have improved our understanding of gut cancer biology, as shown in the review.Conclusion. Microfluidic systems play a crucial role in modeling digestive cancer and furthering oncology research. These platforms could transform drug development and treatment by revealing the complex biology of the tumor microenvironment and cancer progression. The review provides a complete summary of recent advances and suggests future research for field professionals. The review's major goal is to further medical research and improve digestive cancer patients' lives.
Collapse
Affiliation(s)
- ZahraSadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran
- Biochemistry Research Center, Iran University Medical Sciences, Tehran, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K N Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
- Centre for Sustainable Business, International Business University, Toronto, Canada
| | | | - Mahsa Dabagh
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, WI 53211, United States of America
| |
Collapse
|
8
|
de Roode KE, Hashemi K, Verdurmen WPR, Brock R. Tumor-On-A-Chip Models for Predicting In Vivo Nanoparticle Behavior. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402311. [PMID: 38700060 DOI: 10.1002/smll.202402311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Indexed: 05/05/2024]
Abstract
Nanosized drug formulations are broadly explored for the improvement of cancer therapy. Prediction of in vivo nanoparticle (NP) behavior, however, is challenging, given the complexity of the tumor and its microenvironment. Microfluidic tumor-on-a-chip models are gaining popularity for the in vitro testing of nanoparticle targeting under conditions that simulate the 3D tumor (microenvironment). In this review, following a description of the tumor microenvironment (TME), the state of the art regarding tumor-on-a-chip models for investigating nanoparticle delivery to solid tumors is summarized. The models are classified based on the degree of compartmentalization (single/multi-compartment) and cell composition (tumor only/tumor microenvironment). The physiological relevance of the models is critically evaluated. Overall, microfluidic tumor-on-a-chip models greatly improve the simulation of the TME in comparison to 2D tissue cultures and static 3D spheroid models and contribute to the understanding of nanoparticle behavior. Interestingly, two interrelated aspects have received little attention so far which are the presence and potential impact of a protein corona as well as nanoparticle uptake through phagocytosing cells. A better understanding of their relevance for the predictive capacity of tumor-on-a-chip systems and development of best practices will be a next step for the further refinement of advanced in vitro tumor models.
Collapse
Affiliation(s)
- Kim E de Roode
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Khadijeh Hashemi
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Wouter P R Verdurmen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Roland Brock
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, 329, Bahrain
| |
Collapse
|
9
|
Brooks A, Zhang Y, Chen J, Zhao CX. Cancer Metastasis-on-a-Chip for Modeling Metastatic Cascade and Drug Screening. Adv Healthc Mater 2024; 13:e2302436. [PMID: 38224141 DOI: 10.1002/adhm.202302436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Microfluidic chips are valuable tools for studying intricate cellular and cell-microenvironment interactions. Traditional in vitro cancer models lack accuracy in mimicking the complexities of in vivo tumor microenvironment. However, cancer-metastasis-on-a-chip (CMoC) models combine the advantages of 3D cultures and microfluidic technology, serving as powerful platforms for exploring cancer mechanisms and facilitating drug screening. These chips are able to compartmentalize the metastatic cascade, deepening the understanding of its underlying mechanisms. This article provides an overview of current CMoC models, focusing on distinctive models that simulate invasion, intravasation, circulation, extravasation, and colonization, and their applications in drug screening. Furthermore, challenges faced by CMoC and microfluidic technologies are discussed, while exploring promising future directions in cancer research. The ongoing development and integration of these models into cancer studies are expected to drive transformative advancements in the field.
Collapse
Affiliation(s)
- Anastasia Brooks
- School of Chemical Engineering, University of Adelaide, Adelaide, 5005, Australia
| | - Yali Zhang
- School of Chemical Engineering, University of Adelaide, Adelaide, 5005, Australia
| | - Jiezhong Chen
- School of Chemical Engineering, University of Adelaide, Adelaide, 5005, Australia
| | - Chun-Xia Zhao
- School of Chemical Engineering, University of Adelaide, Adelaide, 5005, Australia
| |
Collapse
|
10
|
Li L, Bo W, Wang G, Juan X, Xue H, Zhang H. Progress and application of lung-on-a-chip for lung cancer. Front Bioeng Biotechnol 2024; 12:1378299. [PMID: 38854856 PMCID: PMC11157020 DOI: 10.3389/fbioe.2024.1378299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Lung cancer is a malignant tumour with the highest incidence and mortality worldwide. Clinically effective therapy strategies are underutilized owing to the lack of efficient models for evaluating drug response. One of the main reasons for failure of anticancer drug therapy is development of drug resistance. Anticancer drugs face severe challenges such as poor biodistribution, restricted solubility, inadequate absorption, and drug accumulation. In recent years, "organ-on-a-chip" platforms, which can directly regulate the microenvironment of biomechanics, biochemistry and pathophysiology, have been developed rapidly and have shown great potential in clinical drug research. Lung-on-a-chip (LOC) is a new 3D model of bionic lungs with physiological functions created by micromachining technology on microfluidic chips. This approach may be able to partially replace animal and 2D cell culture models. To overcome drug resistance, LOC realizes personalized prediction of drug response by simulating the lung-related microenvironment in vitro, significantly enhancing therapeutic effectiveness, bioavailability, and pharmacokinetics while minimizing side effects. In this review, we present an overview of recent advances in the preparation of LOC and contrast it with earlier in vitro models. Finally, we describe recent advances in LOC. The combination of this technology with nanomedicine will provide an accurate and reliable treatment for preclinical evaluation.
Collapse
Affiliation(s)
- Lantao Li
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Wentao Bo
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Guangyan Wang
- Department of General Internal Medicine, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Juan
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Haiyi Xue
- Department of Intensive Care Unit, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hongwei Zhang
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Zhou Q, Liu Q, Wang Y, Chen J, Schmid O, Rehberg M, Yang L. Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308659. [PMID: 38282076 PMCID: PMC11005737 DOI: 10.1002/advs.202308659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 01/30/2024]
Abstract
Intracellular delivery of nano-drug-carriers (NDC) to specific cells, diseased regions, or solid tumors has entered the era of precision medicine that requires systematic knowledge of nano-biological interactions from multidisciplinary perspectives. To this end, this review first provides an overview of membrane-disruption methods such as electroporation, sonoporation, photoporation, microfluidic delivery, and microinjection with the merits of high-throughput and enhanced efficiency for in vitro NDC delivery. The impact of NDC characteristics including particle size, shape, charge, hydrophobicity, and elasticity on cellular uptake are elaborated and several types of NDC systems aiming for hierarchical targeting and delivery in vivo are reviewed. Emerging in vitro or ex vivo human/animal-derived pathophysiological models are further explored and highly recommended for use in NDC studies since they might mimic in vivo delivery features and fill the translational gaps from animals to humans. The exploration of modern microscopy techniques for precise nanoparticle (NP) tracking at the cellular, organ, and organismal levels informs the tailored development of NDCs for in vivo application and clinical translation. Overall, the review integrates the latest insights into smart nanosystem engineering, physiological models, imaging-based validation tools, all directed towards enhancing the precise and efficient intracellular delivery of NDCs.
Collapse
Affiliation(s)
- Qiaoxia Zhou
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Forensic PathologyWest China School of Preclinical and Forensic MedicineSichuan UniversityNo. 17 Third Renmin Road NorthChengdu610041China
- Burning Rock BiotechBuilding 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou510300China
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Thoracic SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Yan Wang
- Qingdao Central HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Central Medical Group)Qingdao266042China
| | - Jie Chen
- Department of Respiratory MedicineNational Key Clinical SpecialtyBranch of National Clinical Research Center for Respiratory DiseaseXiangya HospitalCentral South UniversityChangshaHunan410008China
- Center of Respiratory MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Clinical Research Center for Respiratory Diseases in Hunan ProvinceChangshaHunan410008China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory DiseaseChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008P. R. China
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Lin Yang
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| |
Collapse
|
12
|
Zheng C, Wang Z, Xu H, Huang H, Tao X, Hu Y, He Y, Zhang Z, Huang X. Redox-Activatable Magnetic Nanoarchitectonics for Self-Enhanced Tumor Imaging and Synergistic Photothermal-Chemodynamic Therapy. SMALL METHODS 2024; 8:e2301099. [PMID: 37890280 DOI: 10.1002/smtd.202301099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent malignancy of the head and neck region associated with high recurrence rates and poor prognosis under current diagnostic and treatment methods. The development of nanomaterials that can improve diagnostic accuracy and therapeutic efficacy is of great importance for OSCC. In this study, a redox-activatable nanoarchitectonics is designed via the construction of dual-valence cobalt oxide (DV-CO) nanospheres, which can serve as a contrast agent for magnetic resonance (MR) imaging, and exhibit enhanced transverse and longitudinal relaxivities through the release and redox of Co3+ /Co2+ in an acidic condition with glutathione (GSH), resulting in self-enhanced T1 /T2 -weighted MR contrast. Moreover, DV-CO demonstrates properties of intracellular GSH-depletion and hydroxyl radicals (•OH) generation through a Fenton-like reaction, enabling strengthened chemodynamic (CD) effect. Additionally, DV-CO displays efficient near-infrared laser-induced photothermal (PT) effect, thereby exhibiting synergistic PT-CD therapy for suppressing OSCC tumor cells. It further investigates the tumor-specific self-enhanced MR imaging of DV-CO both in subcutaneous and orthotopic OSCC mouse models, and demonstrate the therapeutic effects of DV-CO in orthotopic OSCC mouse models. Overall, the in vitro and in vivo findings highlight the excellent theranositc potentials of DV-CO for OSCC and offer new prospects for future advancement of nanomaterials.
Collapse
Affiliation(s)
- Chongyang Zheng
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Zhen Wang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Hongtao Xu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Hailong Huang
- Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Xiaofeng Tao
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Yongjie Hu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Yue He
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Xiaojuan Huang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| |
Collapse
|
13
|
Balestri A, Gibot L, Amenitisch H, Cervelli L, Montis C, Lonetti B, Berti D. PNIPAM-stabilized cubosomes as fusogenic delivery nanovectors for anticancer applications. Colloids Surf B Biointerfaces 2023; 231:113532. [PMID: 37722254 DOI: 10.1016/j.colsurfb.2023.113532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/20/2023]
Abstract
In recent years, lipid cubic nanoparticles have emerged as promising nanocarriers for drug delivery, due to the several advantages they exhibit with respect to other lipid systems. Here, we report on lipid cubic nanoparticles stabilized by PNIPAM-based amphiphilic block copolymers, specifically, poly(N, N-dimethylacrylamide)-block-poly(N-isopropylacrylamide) (PDMA-b-PNIPAM), as a new class of drug delivery systems (DDS). In vitro studies on the internalization efficiency of the DDS towards two types of human cancer cells (colon HCT-116 and bladder T24 cells), carried out employing a set of sensitive techniques (confocal laser scanning microscopy (CLSM), flow cytometry, scanning electron microscopy (SEM), fluorescence spectroscopy), highlight a prominent role of PDMA-b-PNIPAM stabilizer in enhancing the uptake of cubosomes, compared to the standard Pluronic F127-based formulations. The drug delivery potential of cubosomes, tested by encapsulating a chemotherapeutic drug, camptothecin (CPT), and conducting cytotoxicity studies against 2D plated cells and 3D spheroids, confirm that PDMA-b-PNIPAM-stabilized cubosomes improve the efficacy of treatment with CPT. The origin of this effect lies in the higher lipophilicity of the stabilizer, as we confirm by studying the interaction between the cubosomes and biomimetic membranes of lipid vesicles with Small Angle X-Ray Scattering (SAXS) and CLSM experiments. These results corroborate our fundamental understanding of the interaction between cubosomes and cells, and on the role of polymer to formulate lipid cubic nanoparticles as DDS.
Collapse
Affiliation(s)
- Arianna Balestri
- Department of Chemistry "Ugo Schiff" (DICUS) & Consorzio Sistemi a Grande Interfase (CSGI), University of Florence, via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Rte de Narbonne, Toulouse 31062, France
| | - Heinz Amenitisch
- Institute of Inorganic Chemistry, Graz University of Technology, Graz 8010, Austria
| | - Lorenzo Cervelli
- Department of Chemistry "Ugo Schiff" (DICUS) & Consorzio Sistemi a Grande Interfase (CSGI), University of Florence, via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff" (DICUS) & Consorzio Sistemi a Grande Interfase (CSGI), University of Florence, via della Lastruccia 13, 50019 Sesto Fiorentino, Italy.
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Rte de Narbonne, Toulouse 31062, France.
| | - Debora Berti
- Department of Chemistry "Ugo Schiff" (DICUS) & Consorzio Sistemi a Grande Interfase (CSGI), University of Florence, via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
14
|
Boddu SH, Acharya D, Hala V, Jani H, Pande S, Patel C, Shahwan M, Jwala R, Ranch KM. An Update on Strategies to Deliver Protein and Peptide Drugs to the Eye. ACS OMEGA 2023; 8:35470-35498. [PMID: 37810716 PMCID: PMC10552503 DOI: 10.1021/acsomega.3c02897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
In the past few decades, advancements in protein engineering, biotechnology, and structural biochemistry have resulted in the discovery of various techniques that enhanced the production yield of proteins, targetability, circulating half-life, product purity, and functionality of proteins and peptides. As a result, the utilization of proteins and peptides has increased in the treatment of many conditions, including ocular diseases. Ocular delivery of large molecules poses several challenges due to their high molecular weight, hydrophilicity, unstable nature, and poor permeation through cellular and enzymatic barriers. The use of novel strategies for delivering protein and peptides such as glycoengineering, PEGylation, Fc-fusion, chitosan nanoparticles, and liposomes have improved the efficacy, safety, and stability, which consequently expanded the therapeutic potential of proteins. This review article highlights various proteins and peptides that are useful in ocular disorders, challenges in their delivery to the eye, and strategies to enhance ocular bioavailability using novel delivery approaches. In addition, a few futuristic approaches that will assist in the ocular delivery of proteins and peptides were also discussed.
Collapse
Affiliation(s)
- Sai H.
S. Boddu
- College
of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center
of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Devarshi Acharya
- Department
of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Vivek Hala
- Department
of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Harshil Jani
- Department
of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
- Gujarat
Technological University, Ahmedabad, Gujarat 382424, India
| | - Sonal Pande
- Gujarat
Technological University, Ahmedabad, Gujarat 382424, India
- Department
of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Chirag Patel
- Department
of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Moyad Shahwan
- College
of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center
of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Renukuntla Jwala
- School
of
Pharmacy, The University of Texas at El
Paso, 1101 N Campbell
St., El Paso, Texas 79902, United States
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, North Carolina, 27240, United States
| | - Ketan M. Ranch
- Department
of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| |
Collapse
|
15
|
Gimondi S, Ferreira H, Reis RL, Neves NM. Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation. ACS NANO 2023; 17:14205-14228. [PMID: 37498731 PMCID: PMC10416572 DOI: 10.1021/acsnano.3c01117] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The use of nanoparticles (NPs) in nanomedicine holds great promise for the treatment of diseases for which conventional therapies present serious limitations. Additionally, NPs can drastically improve early diagnosis and follow-up of many disorders. However, to harness their full capabilities, they must be precisely designed, produced, and tested in relevant models. Microfluidic systems can simulate dynamic fluid flows, gradients, specific microenvironments, and multiorgan complexes, providing an efficient and cost-effective approach for both NPs synthesis and screening. Microfluidic technologies allow for the synthesis of NPs under controlled conditions, enhancing batch-to-batch reproducibility. Moreover, due to the versatility of microfluidic devices, it is possible to generate and customize endless platforms for rapid and efficient in vitro and in vivo screening of NPs' performance. Indeed, microfluidic devices show great potential as advanced systems for small organism manipulation and immobilization. In this review, first we summarize the major microfluidic platforms that allow for controlled NPs synthesis. Next, we will discuss the most innovative microfluidic platforms that enable mimicking in vitro environments as well as give insights into organism-on-a-chip and their promising application for NPs screening. We conclude this review with a critical assessment of the current challenges and possible future directions of microfluidic systems in NPs synthesis and screening to impact the field of nanomedicine.
Collapse
Affiliation(s)
- Sara Gimondi
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque
de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT
Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| | - Helena Ferreira
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque
de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT
Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque
de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT
Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque
de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT
Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| |
Collapse
|
16
|
Qiao R, Fu C, Forgham H, Javed I, Huang X, Zhu J, Whittaker AK, Davis TP. Magnetic Iron Oxide Nanoparticles for Brain Imaging and Drug Delivery. Adv Drug Deliv Rev 2023; 197:114822. [PMID: 37086918 DOI: 10.1016/j.addr.2023.114822] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/14/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
Central nervous system (CNS) disorders affect as many as 1.5 billion people globally. The limited delivery of most imaging and therapeutic agents into the brain is a major challenge for treatment of CNS disorders. With the advent of nanotechnologies, controlled delivery of drugs with nanoparticles holds great promise in CNS disorders for overcoming the blood-brain barrier (BBB) and improving delivery efficacy. In recent years, magnetic iron oxide nanoparticles (MIONPs) have stood out as a promising theranostic nanoplatform for brain imaging and drug delivery as they possess unique physical properties and biodegradable characteristics. In this review, we summarize the recent advances in MIONP-based platforms as imaging and drug delivery agents for brain diseases. We firstly introduce the methods of synthesis and surface functionalization of MIONPs with emphasis on the inclusion of biocompatible polymers that allow for the addition of tailored physicochemical properties. We then discuss the recent advances in in vivo imaging and drug delivery applications using MIONPs. Finally, we present a perspective on the remaining challenges and possible future directions for MIONP-based brain delivery systems.
Collapse
Affiliation(s)
- Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Helen Forgham
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ibrahim Javed
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xumin Huang
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Thomas P Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
17
|
Song T, Zhang H, Luo Z, Shang L, Zhao Y. Primary Human Pancreatic Cancer Cells Cultivation in Microfluidic Hydrogel Microcapsules for Drug Evaluation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206004. [PMID: 36808707 PMCID: PMC10131826 DOI: 10.1002/advs.202206004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Chemotherapy is an essential postoperative treatment for pancreatic cancer, while due to the lack of effective drug evaluation platforms, the therapeutic outcomes are hampered by tumor heterogeneity among individuals. Here, a novel microfluidic encapsulated and integrated primary pancreatic cancer cells platform is proposed for biomimetic tumor 3D cultivation and clinical drug evaluation. These primary cells are encapsulated into hydrogel microcapsules of carboxymethyl cellulose cores and alginate shells based on a microfluidic electrospray technique. Benefiting from the good monodispersity, stability, and precise dimensional controllability of the technology, the encapsulated cells can proliferate rapidly and spontaneously form 3D tumor spheroids with highly uniform size and good cell viability. By integrating these encapsulated tumor spheroids into a microfluidic chip with concentration gradient channels and culture chambers, dynamic and high-throughput drug evaluation of different chemotherapy regimens could be realized. It is demonstrated that different patient-derived tumor spheroids show different drug sensitivity on-chip, which is significantly consistent with the clinical follow-up study after the operation. The results demonstrate that the microfluidic encapsulated and integrated tumor spheroids platform has great application potential in clinical drug evaluation.
Collapse
Affiliation(s)
- Taiyu Song
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210002China
| | - Hui Zhang
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Zhiqiang Luo
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Luoran Shang
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210002China
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics the International Colaboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210002China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023China
| |
Collapse
|
18
|
Johnson A, Reimer S, Childres R, Cupp G, Kohs TCL, McCarty OJT, Kang Y(A. The Applications and Challenges of the Development of In Vitro Tumor Microenvironment Chips. Cell Mol Bioeng 2023; 16:3-21. [PMID: 36660587 PMCID: PMC9842840 DOI: 10.1007/s12195-022-00755-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/07/2022] [Indexed: 12/27/2022] Open
Abstract
The tumor microenvironment (TME) plays a critical, yet mechanistically elusive role in tumor development and progression, as well as drug resistance. To better understand the pathophysiology of the complex TME, a reductionist approach has been employed to create in vitro microfluidic models called "tumor chips". Herein, we review the fabrication processes, applications, and limitations of the tumor chips currently under development for use in cancer research. Tumor chips afford capabilities for real-time observation, precise control of microenvironment factors (e.g. stromal and cellular components), and application of physiologically relevant fluid shear stresses and perturbations. Applications for tumor chips include drug screening and toxicity testing, assessment of drug delivery modalities, and studies of transport and interactions of immune cells and circulating tumor cells with primary tumor sites. The utility of tumor chips is currently limited by the ability to recapitulate the nuances of tumor physiology, including extracellular matrix composition and stiffness, heterogeneity of cellular components, hypoxic gradients, and inclusion of blood cells and the coagulome in the blood microenvironment. Overcoming these challenges and improving the physiological relevance of in vitro tumor models could provide powerful testing platforms in cancer research and decrease the need for animal and clinical studies.
Collapse
Affiliation(s)
- Annika Johnson
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| | - Samuel Reimer
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| | - Ryan Childres
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| | - Grace Cupp
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| | - Tia C. L. Kohs
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
| | - Owen J. T. McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
- Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201 USA
| | - Youngbok (Abraham) Kang
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| |
Collapse
|
19
|
Tevlek A, Kecili S, Ozcelik OS, Kulah H, Tekin HC. Spheroid Engineering in Microfluidic Devices. ACS OMEGA 2023; 8:3630-3649. [PMID: 36743071 PMCID: PMC9893254 DOI: 10.1021/acsomega.2c06052] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/12/2022] [Indexed: 05/27/2023]
Abstract
Two-dimensional (2D) cell culture techniques are commonly employed to investigate biophysical and biochemical cellular responses. However, these culture methods, having monolayer cells, lack cell-cell and cell-extracellular matrix interactions, mimicking the cell microenvironment and multicellular organization. Three-dimensional (3D) cell culture methods enable equal transportation of nutrients, gas, and growth factors among cells and their microenvironment. Therefore, 3D cultures show similar cell proliferation, apoptosis, and differentiation properties to in vivo. A spheroid is defined as self-assembled 3D cell aggregates, and it closely mimics a cell microenvironment in vitro thanks to cell-cell/matrix interactions, which enables its use in several important applications in medical and clinical research. To fabricate a spheroid, conventional methods such as liquid overlay, hanging drop, and so forth are available. However, these labor-intensive methods result in low-throughput fabrication and uncontrollable spheroid sizes. On the other hand, microfluidic methods enable inexpensive and rapid fabrication of spheroids with high precision. Furthermore, fabricated spheroids can also be cultured in microfluidic devices for controllable cell perfusion, simulation of fluid shear effects, and mimicking of the microenvironment-like in vivo conditions. This review focuses on recent microfluidic spheroid fabrication techniques and also organ-on-a-chip applications of spheroids, which are used in different disease modeling and drug development studies.
Collapse
Affiliation(s)
- Atakan Tevlek
- METU
MEMS Research and Application Center, Ankara 06800, Turkey
| | - Seren Kecili
- The
Department of Bioengineering, Izmir Institute
of Technology, Urla, Izmir 35430, Turkey
| | - Ozge S. Ozcelik
- The
Department of Bioengineering, Izmir Institute
of Technology, Urla, Izmir 35430, Turkey
| | - Haluk Kulah
- METU
MEMS Research and Application Center, Ankara 06800, Turkey
- The
Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - H. Cumhur Tekin
- METU
MEMS Research and Application Center, Ankara 06800, Turkey
- The
Department of Bioengineering, Izmir Institute
of Technology, Urla, Izmir 35430, Turkey
| |
Collapse
|
20
|
Pan X, Li J, Li W, Wang H, Durisic N, Li Z, Feng Y, Liu Y, Zhao CX, Wang T. Axons-on-a-chip for mimicking non-disruptive diffuse axonal injury underlying traumatic brain injury. LAB ON A CHIP 2022; 22:4541-4555. [PMID: 36318066 DOI: 10.1039/d2lc00730d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Diffuse axonal injury (DAI) is the most severe pathological feature of traumatic brain injury (TBI). However, how primary axonal injury is induced by transient mechanical impacts remains unknown, mainly due to the low temporal and spatial resolution of medical imaging approaches. Here we established an axon-on-a-chip (AoC) model for mimicking DAI and monitoring instant cellular responses. Integrating computational fluid dynamics and microfluidic techniques, DAI was induced by injecting a precisely controlled micro-flux in the transverse direction. The clear correlation between the flow speed of injecting flux and the severity of DAI was elucidated. We next used the AoC to investigate the instant intracellular responses underlying DAI and found that the dynamic formation of focal axonal swellings (FAS) accompanied by Ca2+ surge occurs during the flux. Surprisingly, periodic axonal cytoskeleton disruption also occurs rapidly after the flux. These instant injury responses are spatially restricted to the fluxed axon, not affecting the overall viability of the neuron in the acute stage. Compatible with high-resolution live microscopy, the AoC provides a versatile system to identify early mechanisms underlying DAI, offering a platform for screening effective treatments to alleviate TBI.
Collapse
Affiliation(s)
- Xiaorong Pan
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Jie Li
- Division of Chemistry and Physical Biology, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Haofei Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nela Durisic
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhenyu Li
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Yu Feng
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Yifan Liu
- Division of Chemistry and Physical Biology, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Tong Wang
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
21
|
Liu X, Su Q, Zhang X, Yang W, Ning J, Jia K, Xin J, Li H, Yu L, Liao Y, Zhang D. Recent Advances of Organ-on-a-Chip in Cancer Modeling Research. BIOSENSORS 2022; 12:bios12111045. [PMID: 36421163 PMCID: PMC9688857 DOI: 10.3390/bios12111045] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 05/27/2023]
Abstract
Although many studies have focused on oncology and therapeutics in cancer, cancer remains one of the leading causes of death worldwide. Due to the unclear molecular mechanism and complex in vivo microenvironment of tumors, it is challenging to reveal the nature of cancer and develop effective therapeutics. Therefore, the development of new methods to explore the role of heterogeneous TME in individual patients' cancer drug response is urgently needed and critical for the effective therapeutic management of cancer. The organ-on-chip (OoC) platform, which integrates the technology of 3D cell culture, tissue engineering, and microfluidics, is emerging as a new method to simulate the critical structures of the in vivo tumor microenvironment and functional characteristics. It overcomes the failure of traditional 2D/3D cell culture models and preclinical animal models to completely replicate the complex TME of human tumors. As a brand-new technology, OoC is of great significance for the realization of personalized treatment and the development of new drugs. This review discusses the recent advances of OoC in cancer biology studies. It focuses on the design principles of OoC devices and associated applications in cancer modeling. The challenges for the future development of this field are also summarized in this review. This review displays the broad applications of OoC technique and has reference value for oncology development.
Collapse
Affiliation(s)
- Xingxing Liu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Qiuping Su
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Xiaoyu Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Wenjian Yang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Junhua Ning
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Kangle Jia
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Jinlan Xin
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Huanling Li
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Longfei Yu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Yuheng Liao
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
22
|
Osouli-Bostanabad K, Puliga S, Serrano DR, Bucchi A, Halbert G, Lalatsa A. Microfluidic Manufacture of Lipid-Based Nanomedicines. Pharmaceutics 2022; 14:pharmaceutics14091940. [PMID: 36145688 PMCID: PMC9506151 DOI: 10.3390/pharmaceutics14091940] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Nanoparticulate technologies have revolutionized drug delivery allowing for passive and active targeting, altered biodistribution, controlled drug release (temporospatial or triggered), enhanced stability, improved solubilization capacity, and a reduction in dose and adverse effects. However, their manufacture remains immature, and challenges exist on an industrial scale due to high batch-to-batch variability hindering their clinical translation. Lipid-based nanomedicines remain the most widely approved nanomedicines, and their current manufacturing methods remain discontinuous and face several problems such as high batch-to-batch variability affecting the critical quality attributes (CQAs) of the product, laborious multistep processes, need for an expert workforce, and not being easily amenable to industrial scale-up involving typically a complex process control. Several techniques have emerged in recent years for nanomedicine manufacture, but a paradigm shift occurred when microfluidic strategies able to mix fluids in channels with dimensions of tens of micrometers and small volumes of liquid reagents in a highly controlled manner to form nanoparticles with tunable and reproducible structure were employed. In this review, we summarize the recent advancements in the manufacturing of lipid-based nanomedicines using microfluidics with particular emphasis on the parameters that govern the control of CQAs of final nanomedicines. The impact of microfluidic environments on formation dynamics of nanomaterials, and the application of microdevices as platforms for nanomaterial screening are also discussed.
Collapse
Affiliation(s)
- Karim Osouli-Bostanabad
- Biomaterials, Bio-Engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
- School of Pharmacy and Biomedical Sciences, Robertson Wing, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
| | - Sara Puliga
- Biomaterials, Bio-Engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
| | - Dolores R. Serrano
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Facultad de Farmacia, Instituto Universitario de Farmacia Industrial, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (D.R.S.); (A.L.); Tel.: +44-141-548-2675 (A.L.)
| | - Andrea Bucchi
- School of Mechanical and Design Engineering, Faculty of Technology, University of Portsmouth, Portsmouth PO1 3DJ, UK
| | - Gavin Halbert
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, Robertson Wing, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
| | - Aikaterini Lalatsa
- Biomaterials, Bio-Engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
- School of Pharmacy and Biomedical Sciences, Robertson Wing, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, Robertson Wing, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
- Correspondence: (D.R.S.); (A.L.); Tel.: +44-141-548-2675 (A.L.)
| |
Collapse
|
23
|
Liu Y, Yang G, Hui Y, Ranaweera S, Zhao CX. Microfluidic Nanoparticles for Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106580. [PMID: 35396770 DOI: 10.1002/smll.202106580] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) have attracted tremendous interest in drug delivery in the past decades. Microfluidics offers a promising strategy for making NPs for drug delivery due to its capability in precisely controlling NP properties. The recent success of mRNA vaccines using microfluidics represents a big milestone for microfluidic NPs for pharmaceutical applications, and its rapid scaling up demonstrates the feasibility of using microfluidics for industrial-scale manufacturing. This article provides a critical review of recent progress in microfluidic NPs for drug delivery. First, the synthesis of organic NPs using microfluidics focusing on typical microfluidic methods and their applications in making popular and clinically relevant NPs, such as liposomes, lipid NPs, and polymer NPs, as well as their synthesis mechanisms are summarized. Then, the microfluidic synthesis of several representative inorganic NPs (e.g., silica, metal, metal oxide, and quantum dots), and hybrid NPs is discussed. Lastly, the applications of microfluidic NPs for various drug delivery applications are presented.
Collapse
Affiliation(s)
- Yun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yue Hui
- Institute of Advanced Technology, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Supun Ranaweera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering and Advanced Materials, Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
24
|
Cheng Y, Bo H, Qin R, Chen F, Xue F, An L, Huang G, Tian Q. Hyaluronic acid-coated Bi:Cu 2O: an H 2S-responsive agent for colon cancer with targeted delivery and enhanced photothermal performance. J Nanobiotechnology 2022; 20:346. [PMID: 35883134 PMCID: PMC9327345 DOI: 10.1186/s12951-022-01555-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background Endogenous hydrogen sulfide (H2S)-responsive theranostic agents have attracted extensive attention due to their specificity for colon cancer. However, the development of such agents with high enrichment in tumors and excellent photothermal performance remains challenging. Results We prepared hyaluronic acid (HA)-coated Bi-doped cuprous oxide (Bi:Cu2O@HA) via a one-pot method. The HA specifically targets colon cancer tumor cells to improve the enrichment of Bi:Cu2O@HA at tumor sites, while the doped Bi both enhances the photothermal performance of the H2S-triggered Cu2O and serves as an agent for tumor imaging. The results in this work demonstrated that the Bi:Cu2O@HA nanoparticles exhibit good biocompatibility, target colon cancer tumor cells, facilitate computed tomography imaging, and enhanced H2S-responsive photothermal therapy performance, resulting in an excellent therapeutic effect in colon cancer. Conclusions The novel Bi:Cu2O@HA nanoparticles exhibit excellent tumor targeting and photothermal therapeutic effects, which provide new strategies and insights for colon cancer therapy. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01555-x.
Collapse
Affiliation(s)
- Yuying Cheng
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.,Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| | - Haiji Bo
- Department of Pathology, Naval Medical Center of PLA, No. 338 Huaihai West Road, Shanghai, 200052, China
| | - Ruomeng Qin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Fulai Chen
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Fengfeng Xue
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Lu An
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Qiwei Tian
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
25
|
Tian C, Zheng S, Liu X, Kamei KI. Tumor-on-a-chip model for advancement of anti-cancer nano drug delivery system. J Nanobiotechnology 2022; 20:338. [PMID: 35858898 PMCID: PMC9301849 DOI: 10.1186/s12951-022-01552-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/12/2022] [Indexed: 12/27/2022] Open
Abstract
Despite explosive growth in the development of nano-drug delivery systems (NDDS) targeting tumors in the last few decades, clinical translation rates are low owing to the lack of efficient models for evaluating and predicting responses. Microfluidics-based tumor-on-a-chip (TOC) systems provide a promising approach to address these challenges. The integrated engineered platforms can recapitulate complex in vivo tumor features at a microscale level, such as the tumor microenvironment, three-dimensional tissue structure, and dynamic culture conditions, thus improving the correlation between results derived from preclinical and clinical trials in evaluating anticancer nanomedicines. The specific focus of this review is to describe recent advances in TOCs for the evaluation of nanomedicine, categorized into six sections based on the drug delivery process: circulation behavior after infusion, endothelial and matrix barriers, tumor uptake, therapeutic efficacy, safety, and resistance. We also discuss current issues and future directions for an end-use perspective of TOCs.
Collapse
Affiliation(s)
- Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China.,Chinese People's Liberation Army 210 Hospital, 116021, Dalian, People's Republic of China
| | - Shunzhe Zheng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Xinying Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China. .,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, 606-8501, Kyoto, Japan.
| |
Collapse
|
26
|
Cameron AP, Zeng B, Liu Y, Wang H, Soheilmoghaddam F, Cooper-White J, Zhao CX. Biophysical properties of hydrogels for mimicking tumor extracellular matrix. BIOMATERIALS ADVANCES 2022; 136:212782. [PMID: 35929332 DOI: 10.1016/j.bioadv.2022.212782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/01/2022] [Accepted: 03/26/2022] [Indexed: 06/15/2023]
Abstract
The extracellular matrix (ECM) is an essential component of the tumor microenvironment. It plays a critical role in regulating cell-cell and cell-matrix interactions. However, there is lack of systematic and comparative studies on different widely-used ECM mimicking hydrogels and their properties, making the selection of suitable hydrogels for mimicking different in vivo conditions quite random. This study systematically evaluates the biophysical attributes of three widely used natural hydrogels (Matrigel, collagen gel and agarose gel) including complex modulus, loss tangent, diffusive permeability and pore size. A new and facile method was developed combining Critical Point Drying, Scanning Electron Microscopy imaging and a MATLAB image processing program (CSM method) for the characterization of hydrogel microstructures. This CSM method allows accurate measurement of the hydrogel pore size down to nanometer resolution. Furthermore, a microfluidic device was implemented to measure the hydrogel permeability (Pd) as a function of particle size and gel concentration. Among the three gels, collagen gel has the lowest complex modulus, medium pore size, and the highest loss tangent. Agarose gel exhibits the highest complex modulus, the lowest loss tangent and the smallest pore size. Collagen gel and Matrigel produced complex moduli close to that estimated for cancer ECM. The Pd of these hydrogels decreases significantly with the increase of particle size. By assessing different hydrogels' biophysical characteristics, this study provides valuable insights for tailoring their properties for various three-dimensional cancer models.
Collapse
Affiliation(s)
- Anna P Cameron
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Bijun Zeng
- Diamantina Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yun Liu
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Haofei Wang
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Farhad Soheilmoghaddam
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Justin Cooper-White
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
27
|
Kabay G, Manz A, Dincer C. Microfluidic Roadmap for Translational Nanotheranostics. SMALL METHODS 2022; 6:e2101217. [PMID: 34957704 DOI: 10.1002/smtd.202101217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Nanotheranostic materials (NTMs) shed light on the mechanisms responsible for complex diseases such as cancer because they enable making a diagnosis, monitoring the disease progression, and applying a targeted therapy simultaneously. However, several issues such as the reproducibility and mass production of NTMs hamper their application for clinical practice. To address these issues and facilitate the clinical application of NTMs, microfluidic systems have been increasingly used. This perspective provides a glimpse into the current state-of-art of NTM research, emphasizing the methods currently employed at each development stage of NTMs and the related open problems. This work reviews microfluidic technologies used to develop NTMs, ranging from the fabrication and testing of a single NTM up to their manufacturing on a large scale. Ultimately, a step-by-step vision on the future development of NTMs for clinical practice enabled by microfluidics techniques is provided.
Collapse
Affiliation(s)
- Gozde Kabay
- University of Freiburg, Department of Microsystems Engineering (IMTEK), 79110, Freiburg, Germany
- University of Freiburg, FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, 79110, Freiburg, Germany
| | - Andreas Manz
- Korea Institute of Science and Technology (KIST) in Europe, 66123, Saarbrücken, Germany
| | - Can Dincer
- University of Freiburg, Department of Microsystems Engineering (IMTEK), 79110, Freiburg, Germany
- University of Freiburg, FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, 79110, Freiburg, Germany
| |
Collapse
|
28
|
Carvalho BG, Ceccato BT, Michelon M, Han SW, de la Torre LG. Advanced Microfluidic Technologies for Lipid Nano-Microsystems from Synthesis to Biological Application. Pharmaceutics 2022; 14:141. [PMID: 35057037 PMCID: PMC8781930 DOI: 10.3390/pharmaceutics14010141] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Microfluidics is an emerging technology that can be employed as a powerful tool for designing lipid nano-microsized structures for biological applications. Those lipid structures can be used as carrying vehicles for a wide range of drugs and genetic materials. Microfluidic technology also allows the design of sustainable processes with less financial demand, while it can be scaled up using parallelization to increase production. From this perspective, this article reviews the recent advances in the synthesis of lipid-based nanostructures through microfluidics (liposomes, lipoplexes, lipid nanoparticles, core-shell nanoparticles, and biomimetic nanovesicles). Besides that, this review describes the recent microfluidic approaches to produce lipid micro-sized structures as giant unilamellar vesicles. New strategies are also described for the controlled release of the lipid payloads using microgels and droplet-based microfluidics. To address the importance of microfluidics for lipid-nanoparticle screening, an overview of how microfluidic systems can be used to mimic the cellular environment is also presented. Future trends and perspectives in designing novel nano and micro scales are also discussed herein.
Collapse
Affiliation(s)
- Bruna G. Carvalho
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil; (B.G.C.); (B.T.C.)
| | - Bruno T. Ceccato
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil; (B.G.C.); (B.T.C.)
| | - Mariano Michelon
- School of Chemical and Food Engineering, Federal University of Rio Grande (FURG), Rio Grande 96203-900, Brazil;
| | - Sang W. Han
- Center for Cell Therapy and Molecular, Department of Biophysics, Federal University of São Paulo (UNIFESP), São Paulo 04044-010, Brazil;
| | - Lucimara G. de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil; (B.G.C.); (B.T.C.)
| |
Collapse
|
29
|
Francés-Herrero E, Lopez R, Hellström M, de Miguel-Gómez L, Herraiz S, Brännström M, Pellicer A, Cervelló I. OUP accepted manuscript. Hum Reprod Update 2022; 28:798-837. [PMID: 35652272 PMCID: PMC9629485 DOI: 10.1093/humupd/dmac025] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To provide the optimal milieu for implantation and fetal development, the female reproductive system must orchestrate uterine dynamics with the appropriate hormones produced by the ovaries. Mature oocytes may be fertilized in the fallopian tubes, and the resulting zygote is transported toward the uterus, where it can implant and continue developing. The cervix acts as a physical barrier to protect the fetus throughout pregnancy, and the vagina acts as a birth canal (involving uterine and cervix mechanisms) and facilitates copulation. Fertility can be compromised by pathologies that affect any of these organs or processes, and therefore, being able to accurately model them or restore their function is of paramount importance in applied and translational research. However, innate differences in human and animal model reproductive tracts, and the static nature of 2D cell/tissue culture techniques, necessitate continued research and development of dynamic and more complex in vitro platforms, ex vivo approaches and in vivo therapies to study and support reproductive biology. To meet this need, bioengineering is propelling the research on female reproduction into a new dimension through a wide range of potential applications and preclinical models, and the burgeoning number and variety of studies makes for a rapidly changing state of the field. OBJECTIVE AND RATIONALE This review aims to summarize the mounting evidence on bioengineering strategies, platforms and therapies currently available and under development in the context of female reproductive medicine, in order to further understand female reproductive biology and provide new options for fertility restoration. Specifically, techniques used in, or for, the uterus (endometrium and myometrium), ovary, fallopian tubes, cervix and vagina will be discussed. SEARCH METHODS A systematic search of full-text articles available in PubMed and Embase databases was conducted to identify relevant studies published between January 2000 and September 2021. The search terms included: bioengineering, reproduction, artificial, biomaterial, microfluidic, bioprinting, organoid, hydrogel, scaffold, uterus, endometrium, ovary, fallopian tubes, oviduct, cervix, vagina, endometriosis, adenomyosis, uterine fibroids, chlamydia, Asherman’s syndrome, intrauterine adhesions, uterine polyps, polycystic ovary syndrome and primary ovarian insufficiency. Additional studies were identified by manually searching the references of the selected articles and of complementary reviews. Eligibility criteria included original, rigorous and accessible peer-reviewed work, published in English, on female reproductive bioengineering techniques in preclinical (in vitro/in vivo/ex vivo) and/or clinical testing phases. OUTCOMES Out of the 10 390 records identified, 312 studies were included for systematic review. Owing to inconsistencies in the study measurements and designs, the findings were assessed qualitatively rather than by meta-analysis. Hydrogels and scaffolds were commonly applied in various bioengineering-related studies of the female reproductive tract. Emerging technologies, such as organoids and bioprinting, offered personalized diagnoses and alternative treatment options, respectively. Promising microfluidic systems combining various bioengineering approaches have also shown translational value. WIDER IMPLICATIONS The complexity of the molecular, endocrine and tissue-level interactions regulating female reproduction present challenges for bioengineering approaches to replace female reproductive organs. However, interdisciplinary work is providing valuable insight into the physicochemical properties necessary for reproductive biological processes to occur. Defining the landscape of reproductive bioengineering technologies currently available and under development for women can provide alternative models for toxicology/drug testing, ex vivo fertility options, clinical therapies and a basis for future organ regeneration studies.
Collapse
Affiliation(s)
| | | | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lucía de Miguel-Gómez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- Fundación IVI, IVI-RMA Global, Valencia, Spain
| | - Sonia Herraiz
- Fundación IVI, IVI-RMA Global, Valencia, Spain
- Reproductive Medicine Research Group, IIS La Fe, Valencia, Spain
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- IVI Roma Parioli, IVI-RMA Global, Rome, Italy
| | | |
Collapse
|
30
|
Xu L, Wang X, Liu Y, Yang G, Falconer RJ, Zhao CX. Lipid Nanoparticles for Drug Delivery. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100109] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Letao Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
| | - Xing Wang
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
| | - Yun Liu
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
| | - Robert J. Falconer
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
31
|
Zhang G, Sun J. Lipid in Chips: A Brief Review of Liposomes Formation by Microfluidics. Int J Nanomedicine 2021; 16:7391-7416. [PMID: 34764647 PMCID: PMC8575451 DOI: 10.2147/ijn.s331639] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Liposomes are ubiquitous tools in biomedical applications, such as drug delivery, membrane science and artificial cell. Micro- and nanofabrication techniques have revolutionized the preparation of liposomes on the microscale. State-of-the-art liposomal formation on microfluidic chips and its associated applications are introduced in this review. We attempt to provide a reference for liposomal researchers by comparing various microfluidic techniques for liposomes formation.
Collapse
Affiliation(s)
- Guo Zhang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
32
|
Kang S, Park SE, Huh DD. Organ-on-a-chip technology for nanoparticle research. NANO CONVERGENCE 2021; 8:20. [PMID: 34236537 PMCID: PMC8266951 DOI: 10.1186/s40580-021-00270-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/11/2021] [Indexed: 05/02/2023]
Abstract
The last two decades have witnessed explosive growth in the field of nanoengineering and nanomedicine. In particular, engineered nanoparticles have garnered great attention due to their potential to enable new capabilities such as controlled and targeted drug delivery for treatment of various diseases. With rapid progress in nanoparticle research, increasing efforts are being made to develop new technologies for in vitro modeling and analysis of the efficacy and safety of nanotherapeutics in human physiological systems. Organ-on-a-chip technology represents the most recent advance in this effort that provides a promising approach to address the limitations of conventional preclinical models. In this paper, we present a concise review of recent studies demonstrating how this emerging technology can be applied to in vitro studies of nanoparticles. The specific focus of this review is to examine the use of organ-on-a-chip models for toxicity and efficacy assessment of nanoparticles used in therapeutic applications. We also discuss challenges and future opportunities for implementing organ-on-a-chip technology for nanoparticle research.
Collapse
Affiliation(s)
- Shawn Kang
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd St., Philadelphia, PA 19104 USA
| | - Sunghee Estelle Park
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd St., Philadelphia, PA 19104 USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Dan Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd St., Philadelphia, PA 19104 USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104 USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
33
|
Liu W, Hu R, Han K, Sun M, Liu D, Zhang J, Wang J. Parallel and large-scale antitumor investigation using stable chemical gradient and heterotypic three-dimensional tumor coculture in a multi-layered microfluidic device. Biotechnol J 2021; 16:e2000655. [PMID: 34218506 DOI: 10.1002/biot.202000655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Cancer has been responsible for a large number of human deaths in the 21st century. Establishing a controllable, biomimetic, and large-scale analytical platform to investigate the tumor-associated pathophysiological and preclinical events, such as oncogenesis and chemotherapy, is necessary. METHODS AND RESULTS This study presents antitumor investigation in a parallel, large-scale, and tissue-mimicking manner based on well-constructed chemical gradients and heterotypic three-dimensional (3D) tumor cocultures using a multifunction-integrated device. The integrated microfluidic device was engineered to produce a controllable and steady chemical gradient by manipulative optimization. Array-like and size-homogeneous production of heterotypic 3D tumor cocultures with in vivo-like features, including similar tumor-stromal composition and functional phenotypic gradients of metabolic activity and viability, was successfully established. Furthermore, temporal, parallel, and high-throughput analyses of tumor behaviors in different antitumor stimulations were performed in a device based on the integrated operations involving gradient generation and coculture. CONCLUSION This achievement holds great potential for applications in the establishment of multifunctional tumor platforms to perform tissue-biomimetic neoplastic research and therapy assessment in the fields of oncology, bioengineering, and drug discovery.
Collapse
Affiliation(s)
- Wenming Liu
- School of Basic Medical Science, Central South University, Changsha, Hunan, China.,College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Hu
- School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Kai Han
- School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Meilin Sun
- School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Dan Liu
- School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jinwei Zhang
- School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jinyi Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
34
|
Oh HJ, Kim J, Kim H, Choi N, Chung S. Microfluidic Reconstitution of Tumor Microenvironment for Nanomedical Applications. Adv Healthc Mater 2021; 10:e2002122. [PMID: 33576178 DOI: 10.1002/adhm.202002122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 12/17/2022]
Abstract
Nanoparticles have an extensive range of diagnostic and therapeutic applications in cancer treatment. However, their current clinical translation is slow, mainly due to the failure to develop preclinical evaluation techniques that can draw similar conclusions to clinical outcomes by adequately mimicking nanoparticle behavior in complicated tumor microenvironments (TMEs). Microfluidic methods offer significant advantages over conventional in vitro methods to resolve these challenges by recapitulating physiological cues of the TME such as the extracellular matrix, shear stress, interstitial flow, soluble factors, oxygen, and nutrient gradients. The methods are capable of de-coupling microenvironmental features, spatiotemporal controlling of experimental sequences, and high throughput readouts in situ. This progress report highlights the recent achievements of microfluidic models to reconstitute the physiological microenvironment, especially for nanomedical tools for cancer treatment.
Collapse
Affiliation(s)
- Hyun Jeong Oh
- School of Mechanical Engineering Korea University Seoul 02841 Republic of Korea
| | - Jaehoon Kim
- School of Mechanical Engineering Korea University Seoul 02841 Republic of Korea
| | - Hyunho Kim
- School of Mechanical Engineering Korea University Seoul 02841 Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Division of Bio‐Medical Science & Technology KIST School Korea University of Science and Technology (UST) Seoul 34113 Republic of Korea
- KU‐KIST Graduate School of Converging Science and Technology Korea University Seoul 02841 Republic of Korea
| | - Seok Chung
- School of Mechanical Engineering Korea University Seoul 02841 Republic of Korea
- KU‐KIST Graduate School of Converging Science and Technology Korea University Seoul 02841 Republic of Korea
| |
Collapse
|
35
|
Fu JJ, Lv XH, Wang LX, He X, Li Y, Yu L, Li CM. Cutting and Bonding Parafilm ® to Fast Prototyping Flexible Hanging Drop Chips for 3D Spheroid Cultures. Cell Mol Bioeng 2021; 14:187-199. [PMID: 33868499 PMCID: PMC8010094 DOI: 10.1007/s12195-020-00660-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
A fast and low-cost fabrication process of flexible hanging drop chips for 3D spheroid cultures was proposed by cutting and bonding Parafilm®, a cohesive thermoplastic. The Parafilm® Hanging Drop Chip (PHDC) was assembled by two-layer of Parafilm® sheet with different sizes of holes. The hole on the upper layer of the Parafilm® is smaller than the hole on the bottom layer. The impact of hole size and sample volume on hanging drop formation and 3D spheroid formations in the hanging drop were investigated. The results showed that 20 µL solution on PHDC with a 3 mm hole could form stabile drop and facilitate spheroid formation. The initial cell number determinates the size of the formed spheroids. Exchanging liquid from the upper hole of the PHDC enables the co-culture of two types of cells in one spheroid and drug efficacy testing in hanging drops. The relative expression of cell adhesion and hypoxia-related genes from spheroids in hanging drop and conventional culture plate suggested the relevance of 3D spheroids and in vivo tumor tissue. The economical hanging drop chip can be fabricated without wet chemistry or expensive fabrication equipment, strengthening its application potential in conventional biological laboratories.
Collapse
Affiliation(s)
- Jing Jing Fu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715 People’s Republic of China
- Present Address: School of Preclinical Medicine, North Sichuan Medical College, Nanchong, 637000 People’s Republic of China
| | - Xiao Hui Lv
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Lin Xiang Wang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Xiu He
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Yuan Li
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 People’s Republic of China
| | - Ling Yu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Chang Ming Li
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715 People’s Republic of China
- Institute for Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215011 People’s Republic of China
| |
Collapse
|
36
|
Chi C, Lao Y, Ahmed AHR, Benoy EC, Li C, Dereli‐Korkut Z, Fu BM, Leong KW, Wang S. High-Throughput Tumor-on-a-Chip Platform to Study Tumor-Stroma Interactions and Drug Pharmacokinetics. Adv Healthc Mater 2020; 9:e2000880. [PMID: 32965088 DOI: 10.1002/adhm.202000880] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Drug screening in oncology, especially for triple-negative breast cancer (TNBC), has high demand but remains unsatisfactory. Currently available models are either nonrepresentative of the complex tumor microenvironment or only suitable for low throughput screening, resulting in a low-yield success for drug development. To tackle these issues, the L-TumorChip system is developed in this study. It is a three-layered microfluidic tumor-on-a-chip platform integrating tumor microvasculature and tumor-stromal microenvironment with high throughput screening capability. Its layered and modular design is readily scalable through simple integration of multiple units. Here, L-TumorChip is validated with a TNBC model. The L-TumorChip system emulates certain tumor-stroma complexities and tumor-endothelium interactions, including TNBC invasion through the leaky microvasculature and angiogenesis. Additionally, with this L-TumorChip, the influence of different stromal cells, including normal fibroblasts, mesenchymal stem cells, and cancer-associated fibroblasts (CAF), on cancer cell growth as well as the stromal effects on drug responses to doxorubicin treatment is investigated. The presence of CAF delays drug pharmacokinetics, while apoptotic responses indicated by caspase-3 activities are higher in coculture with normal fibroblasts. Collectively, the L-TumorChip system represents a translational high-throughput screening toolkit that enables drug screening with a scenario closer to the in vivo conditions. This potential use may therefore facilitate development of new cancer drugs.
Collapse
Affiliation(s)
- Chun‐Wei Chi
- Department of Biomedical Engineering CUNY‐ The City College of New York New York NY 10031 USA
| | - Yeh‐Hsing Lao
- Department of Biomedical Engineering Columbia University New York NY 10027 USA
| | - A. H. Rezwanuddin Ahmed
- Department of Biomedical Engineering CUNY‐ The City College of New York New York NY 10031 USA
| | - Elizabeth C. Benoy
- Department of Biomedical Engineering CUNY‐ The City College of New York New York NY 10031 USA
| | - Chenghai Li
- Department of Biomedical Engineering CUNY‐ The City College of New York New York NY 10031 USA
| | - Zeynep Dereli‐Korkut
- Department of Biomedical Engineering CUNY‐ The City College of New York New York NY 10031 USA
| | - Bingmei M. Fu
- Department of Biomedical Engineering CUNY‐ The City College of New York New York NY 10031 USA
| | - Kam W. Leong
- Department of Biomedical Engineering Columbia University New York NY 10027 USA
| | - Sihong Wang
- Department of Biomedical Engineering CUNY‐ The City College of New York New York NY 10031 USA
| |
Collapse
|
37
|
Chen X, Zhang YS, Zhang X, Liu C. Organ-on-a-chip platforms for accelerating the evaluation of nanomedicine. Bioact Mater 2020; 6:1012-1027. [PMID: 33102943 PMCID: PMC7566214 DOI: 10.1016/j.bioactmat.2020.09.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Nanomedicine involves the use of engineered nanoscale materials in an extensive range of diagnostic and therapeutic applications and can be applied to the treatment of many diseases. Despite the rapid progress and tremendous potential of nanomedicine in the past decades, the clinical translational process is still quite slow, owing to the difficulty in understanding, evaluating, and predicting nanomaterial behaviors within the complex environment of human beings. Microfluidics-based organ-on-a-chip (Organ Chip) techniques offer a promising way to resolve these challenges. Sophisticatedly designed Organ Chip enable in vitro simulation of the in vivo microenvironments, thus providing robust platforms for evaluating nanomedicine. Herein, we review recent developments and achievements in Organ Chip models for nanomedicine evaluations, categorized into seven broad sections based on the target organ systems: respiratory, digestive, lymphatic, excretory, nervous, and vascular, as well as coverage on applications relating to cancer. We conclude by providing our perspectives on the challenges and potential future directions for applications of Organ Chip in nanomedicine. Microfluidics-based organ-on-a-chip (Organ Chip) techniques offer a promising way to understand, evaluate, and predict nanomedicine behaviors within the complex environment. Organ Chip models for nanomedicine evaluations are categorized into seven broad sections based on the targeted body systems. Limitations, challenges, and perspectives of Organ Chip for accelerating the assessment of nanomedicine are discussed, respectively.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, United States
| | - Xinping Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
38
|
Liu Y, Yang G, Jin S, Xu L, Zhao CX. Development of High-Drug-Loading Nanoparticles. Chempluschem 2020; 85:2143-2157. [PMID: 32864902 DOI: 10.1002/cplu.202000496] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Formulating drugs into nanoparticles offers many attractive advantages over free drugs including improved bioavailability, minimized toxic side effects, enhanced drug delivery, feasibility of incorporating other functions such as controlled release, imaging agents for imaging, targeting delivery, and loading more than one drug for combination therapies. One of the key parameters is drug loading, which is defined as the mass ratio of drug to drug-loaded nanoparticles. Currently, most nanoparticle systems have relatively low drug loading (<10 wt%), and developing methods to increase drug loading remains a challenge. This Minireview presents an overview of recent research on developing nanoparticles with high drug loading (>10 wt%) from the perspective of synthesis strategies, including post-loading, co-loading, and pre-loading. Based on these three different strategies, various nanoparticle systems with different materials and drugs are summarized and discussed in terms of their synthesis methods, drug loadings, encapsulation efficiencies, release profiles, stabilities, and their applications in drug delivery. The advantages and disadvantages of these strategies are presented with an objective of providing useful design rules for future development of high-drug-loading nanoparticles.
Collapse
Affiliation(s)
- Yun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Song Jin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Letao Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| |
Collapse
|
39
|
Wang HF, Liu Y, Wang T, Yang G, Zeng B, Zhao CX. Tumor-Microenvironment-on-a-Chip for Evaluating Nanoparticle-Loaded Macrophages for Drug Delivery. ACS Biomater Sci Eng 2020; 6:5040-5050. [DOI: 10.1021/acsbiomaterials.0c00650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hao-Fei Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Tong Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Bijun Zeng
- Diamantina Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
40
|
Yang G, Liu Y, Jin S, Zhao C. Development of Core‐Shell Nanoparticle Drug Delivery Systems Based on Biomimetic Mineralization. Chembiochem 2020; 21:2871-2879. [DOI: 10.1002/cbic.202000105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/28/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia, Queensland 4072 Australia
| | - Yun Liu
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia, Queensland 4072 Australia
| | - Song Jin
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia, Queensland 4072 Australia
| | - Chun‐Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia, Queensland 4072 Australia
| |
Collapse
|
41
|
Radhakrishnan J, Varadaraj S, Dash SK, Sharma A, Verma RS. Organotypic cancer tissue models for drug screening: 3D constructs, bioprinting and microfluidic chips. Drug Discov Today 2020; 25:879-890. [DOI: 10.1016/j.drudis.2020.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/09/2020] [Accepted: 03/03/2020] [Indexed: 12/20/2022]
|
42
|
Chen C, Xu D, Bai S, Yu Z, Zhu Y, Xing X, Chen H. Dynamic screening and printing of single cells using a microfluidic chip with dual microvalves. LAB ON A CHIP 2020; 20:1227-1237. [PMID: 32100799 DOI: 10.1039/d0lc00040j] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inoculation of single cells into separate culture chambers is one of the key requirements in single-cell analysis. This paper reports an innovative microfluidic chip integrating two pneumatic microvalves to screen and print single cells onto a well plate. The upper and lower size limits of cells can be dynamically controlled by regulating the deformation of two adjacent microvalves. Numerical simulations were employed to systematically study the influence of membrane dimensions and pressure on the deflection of a valve. A mathematical model was then modified to predict the size of cells captured by a microvalve at various pressures. The membrane deflection was further studied using confocal imaging. The critical pressure trapping beads of various sizes was experimentally determined. These experiments validated the accuracy of both numerical simulations and the mathematical model. Furthermore, single beads and endothelial cells with the desired size range were screened using dual valves and printed onto well plates with 100% efficiency. Viability studies suggested that the screening process had no significant impact on cells. This device enables dynamic regulation of both the lower and the upper size limits of cells for printing. It has significant application potential in inoculating cells with desired sizes for various fields such as clonal expansion, monoclonality development and single-cell genomic studies.
Collapse
Affiliation(s)
- Chang Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Pradhan S, Banda OA, Farino CJ, Sperduto JL, Keller KA, Taitano R, Slater JH. Biofabrication Strategies and Engineered In Vitro Systems for Vascular Mechanobiology. Adv Healthc Mater 2020; 9:e1901255. [PMID: 32100473 PMCID: PMC8579513 DOI: 10.1002/adhm.201901255] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/24/2020] [Indexed: 12/17/2022]
Abstract
The vascular system is integral for maintaining organ-specific functions and homeostasis. Dysregulation in vascular architecture and function can lead to various chronic or acute disorders. Investigation of the role of the vascular system in health and disease has been accelerated through the development of tissue-engineered constructs and microphysiological on-chip platforms. These in vitro systems permit studies of biochemical regulation of vascular networks and parenchymal tissue and provide mechanistic insights into the biophysical and hemodynamic forces acting in organ-specific niches. Detailed understanding of these forces and the mechanotransductory pathways involved is necessary to develop preventative and therapeutic strategies targeting the vascular system. This review describes vascular structure and function, the role of hemodynamic forces in maintaining vascular homeostasis, and measurement approaches for cell and tissue level mechanical properties influencing vascular phenomena. State-of-the-art techniques for fabricating in vitro microvascular systems, with varying degrees of biological and engineering complexity, are summarized. Finally, the role of vascular mechanobiology in organ-specific niches and pathophysiological states, and efforts to recapitulate these events using in vitro microphysiological systems, are explored. It is hoped that this review will help readers appreciate the important, but understudied, role of vascular-parenchymal mechanotransduction in health and disease toward developing mechanotherapeutics for treatment strategies.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Omar A. Banda
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Cindy J. Farino
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - John L. Sperduto
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Keely A. Keller
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Ryan Taitano
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - John H. Slater
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| |
Collapse
|
44
|
Liu Y, Yang G, Zou D, Hui Y, Nigam K, Middelberg APJ, Zhao CX. Formulation of Nanoparticles Using Mixing-Induced Nanoprecipitation for Drug Delivery. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04747] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Da Zou
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yue Hui
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Krishna Nigam
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz khas, New Delhi 110016, India
| | - Anton P. J. Middelberg
- Faculty of Engineering, Computer, and Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
45
|
Li W, Wang HF, Li ZY, Wang T, Zhao CX. Numerical investigation of drug transport from blood vessels to tumour tissue using a Tumour-Vasculature-on-a-Chip. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.115155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|