1
|
Hassanel DNBP, Pilkington EH, Ju Y, Kent SJ, Pouton CW, Truong NP. Replacing poly(ethylene glycol) with RAFT lipopolymers in mRNA lipid nanoparticle systems for effective gene delivery. Int J Pharm 2024; 665:124695. [PMID: 39288840 DOI: 10.1016/j.ijpharm.2024.124695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/07/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Lipid nanoparticles (LNPs) have emerged as promising carriers to efficiently transport mRNA into cells for protein translation, as seen with the mRNA vaccines used against COVID-19. However, they contain a widely used polymer - poly(ethylene glycol) (PEG) - which lacks the functionality to be easily modified (which could effectively control the physicochemical properties of the LNPs such as its charge), and is also known to be immunogenic. Thus, it is desirable to explore alternative polymers which can replace the PEG component in mRNA LNP vaccines and therapeutics, while still maintaining their efficacy. Herein, we employed reversible addition-fragmentation chain transfer (RAFT) polymerisation to synthesise five PEG-lipid alternatives that could stabilise LNPs encapsulating mRNA or pDNA molecules. Importantly, the resultant RAFT lipopolymer LNPs exhibit analogous or higher in vivo gene expression and antigen-specific antibody production compared to traditional PEG-based formulations. Our synthesis strategy which allows the introduction of positive charges along the lipopolymer backbone also significantly improved the in vivo gene expression. This work expands the potential of RAFT polymer-conjugated LNPs as promising mRNA carriers and offers an innovative strategy for the development of PEG-free mRNA vaccines and therapeutics.
Collapse
Affiliation(s)
| | - Emily H Pilkington
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia; Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth St, Melbourne, VIC 3000, Australia
| | - Yi Ju
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth St, Melbourne, VIC 3000, Australia; School of Science and School of Health and Biomedical Sciences, RMIT University, 264 Plenty Rd, Mill Park, VIC 3083, Australia
| | - Stephen J Kent
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth St, Melbourne, VIC 3000, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Nghia P Truong
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
2
|
Sircy LM, Ramstead AG, Gibbs LC, Joshi H, Baessler A, Mena I, García-Sastre A, Emerson LL, Fairfax KC, Williams MA, Hale JS. Generation of antigen-specific memory CD4 T cells by heterologous immunization enhances the magnitude of the germinal center response upon influenza infection. PLoS Pathog 2024; 20:e1011639. [PMID: 39283916 PMCID: PMC11404825 DOI: 10.1371/journal.ppat.1011639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/05/2024] [Indexed: 09/22/2024] Open
Abstract
Current influenza vaccine strategies have yet to overcome significant obstacles, including rapid antigenic drift of seasonal influenza viruses, in generating efficacious long-term humoral immunity. Due to the necessity of germinal center formation in generating long-lived high affinity antibodies, the germinal center has increasingly become a target for the development of novel or improvement of less-efficacious vaccines. However, there remains a major gap in current influenza research to effectively target T follicular helper cells during vaccination to alter the germinal center reaction. In this study, we used a heterologous infection or immunization priming strategy to seed an antigen-specific memory CD4+ T cell pool prior to influenza infection in mice to evaluate the effect of recalled memory T follicular helper cells in increased help to influenza-specific primary B cells and enhanced generation of neutralizing antibodies. We found that heterologous priming with intranasal infection with acute lymphocytic choriomeningitis virus (LCMV) or intramuscular immunization with adjuvanted recombinant LCMV glycoprotein induced increased antigen-specific effector CD4+ T and B cellular responses following infection with a recombinant influenza strain that expresses LCMV glycoprotein. Heterologously primed mice had increased expansion of secondary Th1 and Tfh cell subsets, including increased CD4+ TRM cells in the lung. However, the early enhancement of the germinal center cellular response following influenza infection did not impact influenza-specific antibody generation or B cell repertoires compared to primary influenza infection. Overall, our study suggests that while heterologous infection or immunization priming of CD4+ T cells is able to enhance the early germinal center reaction, further studies to understand how to target the germinal center and CD4+ T cells specifically to increase long-lived antiviral humoral immunity are needed.
Collapse
Affiliation(s)
- Linda M. Sircy
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew G. Ramstead
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Lisa C. Gibbs
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Hemant Joshi
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew Baessler
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Lyska L. Emerson
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Keke C. Fairfax
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Matthew A. Williams
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - J. Scott Hale
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
3
|
Karaaslan E, Sorvillo TE, Scholte FEM, O'Neal TJ, Welch SR, Davies KA, Coleman-McCray JD, Harmon JR, Ritter JM, Pegan SD, Montgomery JM, Spengler JR, Spiropoulou CF, Bergeron É. Crimean Congo hemorrhagic fever virus nucleoprotein and GP38 subunit vaccine combination prevents morbidity in mice. NPJ Vaccines 2024; 9:148. [PMID: 39143104 PMCID: PMC11324950 DOI: 10.1038/s41541-024-00931-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Immunizing mice with Crimean-Congo hemorrhagic fever virus (CCHFV) nucleoprotein (NP), glycoprotein precursor (GPC), or with the GP38 domain of GPC, can be protective when the proteins are delivered with viral vectors or as a DNA or RNA vaccine. Subunit vaccines are a safe and cost-effective alternative to some vaccine platforms, but Gc and Gn glycoprotein subunit vaccines for CCHFV fail to protect despite eliciting high levels of neutralizing antibodies. Here, we investigated humoral and cellular immune responses and the protective efficacy of recombinant NP, GP38, and GP38 forms (GP85 and GP160) associated with the highly glycosylated mucin-like (MLD) domain, as well as the NP + GP38 combination. Vaccination with GP160, GP85, or GP38 did not confer protection, and vaccination with the MLD-associated GP38 forms blunted the humoral immune responses to GP38, worsened clinical chemistry, and increased viral RNA in the blood compared to the GP38 vaccination. In contrast, NP vaccination conferred 100% protection from lethal outcome and was associated with mild clinical disease, while the NP + GP38 combination conferred even more robust protection by reducing morbidity compared to mice receiving NP alone. Thus, recombinant CCHFV NP alone is a promising vaccine candidate conferring 100% survival against heterologous challenge. Moreover, incorporation of GP38 should be considered as it further enhances subunit vaccine efficacy by reducing morbidity in surviving animals.
Collapse
Affiliation(s)
- Elif Karaaslan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Teresa E Sorvillo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Florine E M Scholte
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Troy Justin O'Neal
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Katherine A Davies
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- U.S. Department of Agriculture, Agricultural Research Service, Zoonotic and Emerging Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS, USA
| | - JoAnn D Coleman-McCray
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica R Harmon
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jana M Ritter
- Infectious Disease Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Scott D Pegan
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Ma Y, Chen Y, Li Z, Zhao Y. Rational Design of Lipid-Based Vectors for Advanced Therapeutic Vaccines. Vaccines (Basel) 2024; 12:603. [PMID: 38932332 PMCID: PMC11209477 DOI: 10.3390/vaccines12060603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Recent advancements in vaccine delivery systems have seen the utilization of various materials, including lipids, polymers, peptides, metals, and inorganic substances, for constructing non-viral vectors. Among these, lipid-based nanoparticles, composed of natural, synthetic, or physiological lipid/phospholipid materials, offer significant advantages such as biocompatibility, biodegradability, and safety, making them ideal for vaccine delivery. These lipid-based vectors can protect encapsulated antigens and/or mRNA from degradation, precisely tune chemical and physical properties to mimic viruses, facilitate targeted delivery to specific immune cells, and enable efficient endosomal escape for robust immune activation. Notably, lipid-based vaccines, exemplified by those developed by BioNTech/Pfizer and Moderna against COVID-19, have gained approval for human use. This review highlights rational design strategies for vaccine delivery, emphasizing lymphoid organ targeting and effective endosomal escape. It also discusses the importance of rational formulation design and structure-activity relationships, along with reviewing components and potential applications of lipid-based vectors. Additionally, it addresses current challenges and future prospects in translating lipid-based vaccine therapies for cancer and infectious diseases into clinical practice.
Collapse
Affiliation(s)
- Yufei Ma
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Yiang Chen
- College of Chemistry, Nankai University, Tianjin 300071, China;
| | - Zilu Li
- College of Chemistry, Nankai University, Tianjin 300071, China;
| | - Yu Zhao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
5
|
Sircy LM, Ramstead AG, Joshi H, Baessler A, Mena I, García-Sastre A, Williams MA, Scott Hale J. Generation of antigen-specific memory CD4 T cells by heterologous immunization enhances the magnitude of the germinal center response upon influenza infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555253. [PMID: 37693425 PMCID: PMC10491174 DOI: 10.1101/2023.08.29.555253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Current influenza vaccine strategies have yet to overcome significant obstacles, including rapid antigenic drift of seasonal influenza viruses, in generating efficacious long-term humoral immunity. Due to the necessity of germinal center formation in generating long-lived high affinity antibodies, the germinal center has increasingly become a target for the development of novel or improvement of less-efficacious vaccines. However, there remains a major gap in current influenza research to effectively target T follicular helper cells during vaccination to alter the germinal center reaction. In this study, we used a heterologous infection or immunization priming strategy to seed an antigen-specific memory CD4+ T cell pool prior to influenza infection in mice to evaluate the effect of recalled memory T follicular helper cells in increased help to influenza-specific primary B cells and enhanced generation of neutralizing antibodies. We found that heterologous priming with intranasal infection with acute lymphocytic choriomeningitis virus (LCMV) or intramuscular immunization with adjuvanted recombinant LCMV glycoprotein induced increased antigen-specific effector CD4+ T and B cellular responses following infection with a recombinant influenza strain that expresses LCMV glycoprotein. Heterologously primed mice had increased expansion of secondary Th1 and Tfh cell subsets, including increased CD4+ TRM cells in the lung. However, the early enhancement of the germinal center cellular response following influenza infection did not impact influenza-specific antibody generation or B cell repertoires compared to primary influenza infection. Overall, our study suggests that while heterologous infection/immunization priming of CD4+ T cells is able to enhance the early germinal center reaction, further studies to understand how to target the germinal center and CD4+ T cells specifically to increase long-lived antiviral humoral immunity are needed.
Collapse
Affiliation(s)
- Linda M. Sircy
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew G. Ramstead
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Hemant Joshi
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew Baessler
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Matthew A. Williams
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - J. Scott Hale
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
6
|
Vu MN, Pilkington EH, Lee WS, Tan H, Davis TP, Truong NP, Kent SJ, Wheatley AK. Engineered Ferritin Nanoparticle Vaccines Enable Rapid Screening of Antibody Functionalization to Boost Immune Responses. Adv Healthc Mater 2023; 12:e2202595. [PMID: 36786027 PMCID: PMC11469303 DOI: 10.1002/adhm.202202595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/16/2023] [Indexed: 02/15/2023]
Abstract
Employing monoclonal antibodies to target vaccine antigens to different immune cells within lymph nodes where adaptive immunity is initiated can provide a mechanism to fine-tune the magnitude or the quality of immune responses. However, studying the effects of different targeting antibodies head-to-head is challenging due to the lack of a feasible method that allows rapid screening of multiple antibodies for their impact on immunogenicity. Here self-assembling ferritin nanoparticles are prepared that co-display vaccine antigens and the Fc-binding domain of Staphylococcal protein A, allowing rapid attachment of soluble antibodies to the nanoparticle surface. Using this tunable system, ten antibodies targeting different immune cell subsets are screened, with targeting to Clec9a associated with higher serum antibody titers after immunization. Immune cell targeting using ferritin nanoparticles with anti-Clec9a antibodies drives concentrated deposition of antigens within germinal centers, boosting germinal center formation and robust antibody responses. However, the capacity to augment humoral immunity is antigen-dependent, with significant boosting observed for prototypic ovalbumin immunogens but reduced effectiveness with the SARS-CoV-2 RBD. This work provides a rapid platform for screening targeting antibodies, which will accelerate mechanistic insights into optimal delivery strategies for nanoparticle-based vaccines to maximize protective immunity.
Collapse
Affiliation(s)
- Mai N. Vu
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyThe University of MelbourneMelbourneVIC3010Australia
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- Faculty of Pharmaceutics and Pharmaceutical TechnologyHanoi University of Pharmacy10000HanoiVietnam
| | - Emily H. Pilkington
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyThe University of MelbourneMelbourneVIC3010Australia
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
| | - Wen Shi Lee
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyThe University of MelbourneMelbourneVIC3010Australia
| | - Hyon‐Xhi Tan
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyThe University of MelbourneMelbourneVIC3010Australia
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
| | - Thomas P. Davis
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- Australia Institute of Bioengineering & NanotechnologyUniversity of QueenslandBrisbaneQLD4072Australia
| | - Nghia P. Truong
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
| | - Stephen J. Kent
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyThe University of MelbourneMelbourneVIC3010Australia
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Melbourne Sexual Health Centre and Department of Infectious DiseasesAlfred Hospital and Central Clinical SchoolMonash UniversityMelbourneVIC3004Australia
| | - Adam K. Wheatley
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyThe University of MelbourneMelbourneVIC3010Australia
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
| |
Collapse
|
7
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Chen F, Huang Y, Huang Z, Jiang T, Yang Z, Zeng J, Jin A, Zuo H, Huang CZ, Mao C. DNA-scaffolded multivalent vaccine against SARS-CoV-2. Acta Biomater 2023; 164:387-396. [PMID: 37088158 PMCID: PMC10122553 DOI: 10.1016/j.actbio.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/12/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Short peptides are poor immunogens. One way to increase their immune responses is by arraying immunogens in multivalency. Simple and efficient scaffolds for spatial controlling the inter-antigen distance and enhancing immune activation are required. Here, we report a molecular vaccine design principle that maximally drives potent SARS-CoV-2 RBD subunit vaccine on DNA duplex to induce robust and efficacious immune responses in vivo. We expect that the DNA-peptide epitope platform represents a facile and generalizable strategy to enhance the immune response. STATEMENT OF SIGNIFICANCE: DNA scaffolds offer a biocompatible and convenient platform for arraying immunogens in multivalency antigenic peptides, and spatially control the inter-antigen distance. This can effectively enhance immune response. Peptide (instead of entire protein) vaccines are highly attractive. However, short peptides are poor immunogens. Our DNA scaffolded multivalent peptide immunogen system induced robust and efficacious immune response in vivo as demonstrated by the antigenic peptide against SAR-CoV-2. The present strategy could be readily generalized and adapted to prepare multivalent vaccines against other viruses or disease. Particularly, the different antigens could be integrated into one single vaccine and lead to super-vaccines that can protect the host from multiple different viruses or multiple variants of the same virus.
Collapse
Affiliation(s)
- Fangfang Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yuhan Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhengyu Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Tingting Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zailin Yang
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Jie Zeng
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Aishun Jin
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Hua Zuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Chengde Mao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; Department of Chemistry, Purdue University, West Lafayette 47907, IN, USA.
| |
Collapse
|
9
|
Barber-Axthelm IM, Wragg KM, Esterbauer R, Amarasena TH, Barber-Axthelm VR, Wheatley AK, Gibbon AM, Kent SJ, Juno JA. Phenotypic and functional characterization of pharmacologically expanded Vγ9Vδ2 T cells in pigtail macaques. iScience 2023; 26:106269. [PMID: 36936791 PMCID: PMC10014287 DOI: 10.1016/j.isci.2023.106269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/22/2022] [Accepted: 02/19/2023] [Indexed: 03/12/2023] Open
Abstract
While gaining interest as treatment for cancer and infectious disease, the clinical efficacy of Vγ9Vδ2 T cell-based immunotherapeutics has to date been limited. An improved understanding of γδ T cell heterogeneity across lymphoid and non-lymphoid tissues, before and after pharmacological expansion, is required. Here, we describe the phenotype and tissue distribution of Vγ9Vδ2 T cells at steady state and following in vivo pharmacological expansion in pigtail macaques. Intravenous phosphoantigen administration with subcutaneous rhIL-2 drove robust expansion of Vγ9Vδ2 T cells in blood and pulmonary mucosa, while expansion was confined to the pulmonary mucosa following intratracheal antigen administration. Peripheral blood Vγ9Vδ2 T cell expansion was polyclonal, and associated with a significant loss of CCR6 expression due to IL-2-mediated receptor downregulation. Overall, we show the tissue distribution and phenotype of in vivo pharmacologically expanded Vγ9Vδ2 T cells can be altered based on the antigen administration route, with implications for tissue trafficking and the clinical efficacy of Vγ9Vδ2 T cell immunotherapeutics.
Collapse
Affiliation(s)
- Isaac M. Barber-Axthelm
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Kathleen M. Wragg
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Thakshila H. Amarasena
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Valerie R.B. Barber-Axthelm
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Anne M. Gibbon
- Monash Animal Research Platform, Monash University, Clayton, VIC 3800, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jennifer A. Juno
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| |
Collapse
|
10
|
Hendy DA, Haven A, Bachelder EM, Ainslie KM. Preclinical developments in the delivery of protein antigens for vaccination. Expert Opin Drug Deliv 2023; 20:367-384. [PMID: 36731824 PMCID: PMC9992317 DOI: 10.1080/17425247.2023.2176844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Vaccine technology has constantly advanced since its origin. One of these advancements is where purified parts of a pathogen are used rather than the whole pathogen. Subunit vaccines have no chance of causing disease; however, alone these antigens are often poorly immunogenic. Therefore, they can be paired with immune stimulating adjuvants. Further, subunits can be combined with delivery strategies such as nano/microparticles to enrich their delivery to organs and cells of interest as well as protect them from in vivo degradation. Here, we seek to highlight some of the more promising delivery strategies for protein antigens. AREAS COVERED We present a brief description of the different types of vaccines, clinically relevant examples, and their disadvantages when compared to subunit vaccines. Also, specific preclinical examples of delivery strategies for protein antigens. EXPERT OPINION Subunit vaccines provide optimal safety given that they have no risk of causing disease; however, they are often not immunogenic enough on their own to provide protection. Advanced delivery systems are a promising avenue to increase the immunogenicity of subunit vaccines, but scalability and stability can be improved. Further, more research is warranted on systems that promote a mucosal immune response to provide better protection against infection.
Collapse
Affiliation(s)
- Dylan A. Hendy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Alex Haven
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Eric M. Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Sarangi MK, Padhi S, Rath G, Nanda SS, Yi DK. Success of nano-vaccines against COVID-19: a transformation in nanomedicine. Expert Rev Vaccines 2022; 21:1739-1761. [PMID: 36384360 DOI: 10.1080/14760584.2022.2148659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The vaccines being used against COVID-19 are composed of either non-viral or viral nanoparticles (NPs). Nanotechnology-based vaccine technology was studied for its potentially transformative advancement of medicine. AREAS COVERED NPs protect the encapsulated mRNA in vaccines, thereby enhancing the stability of the ribonucleic acids and facilitating their intact delivery to their specific targets. Compared to liposomes, lipid nanoparticles (LNPs) are unique and, through their rigid morphology and better cellular penetrability, render enhanced cargo stability. To explore nanotechnology-mediated vaccine delivery and its potential in future pandemics, we assessed articles from various databases, such as PubMed, Embase, and Scopus, including editorial/research notes, expert opinions, and collections of data from several clinical research trials. In the current review, we focus on the nanoparticulate approach of the different SARS-CoV-2 vaccines and explore their success against the pandemic. EXPERT OPINION The mRNA-based vaccines, with their tremendous efficacy of ~95% (under phase III-IV clinical trials) and distinct nanocarriers (LNPs), represent a new medical front alongside DNA and siRNA-based vaccines.
Collapse
Affiliation(s)
- Manoj Kumar Sarangi
- Department of Pharmacy, School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Dehradun, India
| | - Sasmita Padhi
- Department of Pharmacy, School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Dehradun, India
| | - Gautam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, India
| | | | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin, South Korea
| |
Collapse
|
12
|
Liu Y, Yang G, Hui Y, Ranaweera S, Zhao CX. Microfluidic Nanoparticles for Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106580. [PMID: 35396770 DOI: 10.1002/smll.202106580] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) have attracted tremendous interest in drug delivery in the past decades. Microfluidics offers a promising strategy for making NPs for drug delivery due to its capability in precisely controlling NP properties. The recent success of mRNA vaccines using microfluidics represents a big milestone for microfluidic NPs for pharmaceutical applications, and its rapid scaling up demonstrates the feasibility of using microfluidics for industrial-scale manufacturing. This article provides a critical review of recent progress in microfluidic NPs for drug delivery. First, the synthesis of organic NPs using microfluidics focusing on typical microfluidic methods and their applications in making popular and clinically relevant NPs, such as liposomes, lipid NPs, and polymer NPs, as well as their synthesis mechanisms are summarized. Then, the microfluidic synthesis of several representative inorganic NPs (e.g., silica, metal, metal oxide, and quantum dots), and hybrid NPs is discussed. Lastly, the applications of microfluidic NPs for various drug delivery applications are presented.
Collapse
Affiliation(s)
- Yun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yue Hui
- Institute of Advanced Technology, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Supun Ranaweera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering and Advanced Materials, Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
13
|
Lohmann V, Rolland M, Truong NP, Anastasaki A. Controlling size, shape, and charge of nanoparticles via low-energy miniemulsion and heterogeneous RAFT polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Chen H, Ren X, Xu S, Zhang D, Han T. Optimization of Lipid Nanoformulations for Effective mRNA Delivery. Int J Nanomedicine 2022; 17:2893-2905. [PMID: 35814615 PMCID: PMC9259059 DOI: 10.2147/ijn.s363990] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/24/2022] [Indexed: 01/03/2023] Open
Abstract
Introduction Since the coronavirus disease 2019 (COVID-19) pandemic, the value of mRNA vaccine has been widely recognized worldwide. Messenger RNA (mRNA) therapy platform provides a promising alternative to DNA delivery in non-viral gene therapy. Lipid nanoparticles (LNPs), as effective mRNA delivery carriers, have been highly valued by the pharmaceutical industry, and many LNPs have entered clinical trials. Methods We developed an ideal lipid nanoformulation, named LNP3, composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and cholesterol, and observed its release efficiency, sustained release, organ specific targeting and thermal stability. Results In vitro studies showed that the transfection efficiency of LNP3 was higher than that of LNPs composed of DOTAP-DOPE and DOTAP-cholesterol. The positive to negative charge ratio of LNPs is a determinant of mRNA transfer efficiency in different cell lines. We noted that the buffer affected the packaging of mRNA LNPs and identified sodium potassium magnesium calcium and glucose solution (SPMCG) as a favorable buffer formulation. LNP3 suspension can be lyophilized into a thermally stable formulation to maintain activity after rehydration both in vitro and in vivo. Finally, LNP3 showed sustained release and organ specific targeting. Conclusion We have developed an ideal lipid nanoformulation composed of DOTAP, DOPE and cholesterol for effective mRNA delivery.
Collapse
Affiliation(s)
- Huiling Chen
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, People’s Republic of China
| | - Xuan Ren
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, People’s Republic of China
| | - Shi Xu
- Therarna. Co. Ltd., Nanjing, Jiangsu, People’s Republic of China
| | - Dekui Zhang
- Department of Gastroenterology, Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, People’s Republic of China
| | - TiYun Han
- Department of Gastroenterology, Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, People’s Republic of China
| |
Collapse
|
15
|
Algarni A, Pilkington EH, Suys EJA, Al-Wassiti H, Pouton CW, Truong NP. In vivo delivery of plasmid DNA by lipid nanoparticles: the influence of ionizable cationic lipids on organ-selective gene expression. Biomater Sci 2022; 10:2940-2952. [PMID: 35475455 DOI: 10.1039/d2bm00168c] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionizable cationic lipids play a critical role in developing new gene therapies for various biomedical applications, including COVID-19 vaccines. However, it remains unclear whether the formulation of lipid nanoparticles (LNPs) using DLin-MC3-DMA, an optimized ionizable lipid clinically used for small interfering RNA (siRNA) therapy, also facilitates high liver-selective transfection of other gene therapies such as plasmid DNA (pDNA). Here we report the first investigation into pDNA transfection efficiency in different mouse organs after intramuscular and intravenous administration of lipid nanoparticles (LNPs) where DLin-MC3-DMA, DLin-KC2-DMA or DODAP are used as the ionizable cationic lipid component of the LNP. We discovered that these three benchmark lipids previously developed for siRNA delivery followed an unexpected characteristic rank order in gene expression efficiency when utilized for pDNA. In particular, DLin-KC2-DMA facilitated higher in vivo pDNA transfection than DLin-MC3-DMA and DODAP, possibly due to its head group pKa and lipid tail structure. Interestingly, LNPs formulated with either DLin-KC2-DMA or DLin-MC3-DMA exhibited significantly higher in vivo protein production in the spleen than in the liver. This work sheds light on the importance of the choice of ionizable cationic lipid and nucleic acid cargo for organ-selective gene expression. The study also provides a new design principle towards the formulation of more effective LNPs for biomedical applications of pDNA, such as gene editing, vaccines and immunotherapies.
Collapse
Affiliation(s)
- Azizah Algarni
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia.
| | - Emily H Pilkington
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia.
| | - Estelle J A Suys
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia.
| | - Hareth Al-Wassiti
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia.
| | - Colin W Pouton
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia.
| | - Nghia P Truong
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia.
| |
Collapse
|
16
|
Dong C, Wang BZ. Engineered Nanoparticulate Vaccines to Combat Recurring and Pandemic Influenza Threats. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100122. [PMID: 35754779 PMCID: PMC9231845 DOI: 10.1002/anbr.202100122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Reoccurring seasonal flu epidemics and occasional pandemics are among the most severe threats to public health. Current seasonal influenza vaccines provide limited protection against drifted circulating strains and no protection against influenza pandemics. Next-generation influenza vaccines, designated as universal influenza vaccines, should be safe, affordable, and elicit long-lasting cross-protective influenza immunity. Nanotechnology plays a critical role in the development of such novel vaccines. Engineered nanoparticles can incorporate multiple advantageous properties into the same nanoparticulate platforms to improve vaccine potency and breadth. These immunological properties include virus-like biomimicry, high antigen-load, controlled antigen release, targeted delivery, and induction of innate signaling pathways. Many nanoparticle influenza vaccines have shown promising results in generating potent and broadly protective immune responses. This review will summarize the necessity and characteristics of next-generation influenza vaccines and the immunological correlates of broad influenza immunity and focus on how cutting-edge nanoparticle technology contributes to such vaccine development. The review will give new insights into the rational design of nanoparticle universal vaccines to combat influenza epidemics and pandemics.
Collapse
Affiliation(s)
- Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia 30303, USA
| |
Collapse
|
17
|
Cordeiro AS, Patil-Sen Y, Shivkumar M, Patel R, Khedr A, Elsawy MA. Nanovaccine Delivery Approaches and Advanced Delivery Systems for the Prevention of Viral Infections: From Development to Clinical Application. Pharmaceutics 2021; 13:2091. [PMID: 34959372 PMCID: PMC8707864 DOI: 10.3390/pharmaceutics13122091] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Viral infections causing pandemics and chronic diseases are the main culprits implicated in devastating global clinical and socioeconomic impacts, as clearly manifested during the current COVID-19 pandemic. Immunoprophylaxis via mass immunisation with vaccines has been shown to be an efficient strategy to control such viral infections, with the successful and recently accelerated development of different types of vaccines, thanks to the advanced biotechnological techniques involved in the upstream and downstream processing of these products. However, there is still much work to be done for the improvement of efficacy and safety when it comes to the choice of delivery systems, formulations, dosage form and route of administration, which are not only crucial for immunisation effectiveness, but also for vaccine stability, dose frequency, patient convenience and logistics for mass immunisation. In this review, we discuss the main vaccine delivery systems and associated challenges, as well as the recent success in developing nanomaterials-based and advanced delivery systems to tackle these challenges. Manufacturing and regulatory requirements for the development of these systems for successful clinical and marketing authorisation were also considered. Here, we comprehensively review nanovaccines from development to clinical application, which will be relevant to vaccine developers, regulators, and clinicians.
Collapse
Affiliation(s)
- Ana Sara Cordeiro
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| | - Yogita Patil-Sen
- Wrightington, Wigan and Leigh Teaching Hospitals NHS Foundation Trust, National Health Service, Wigan WN6 0SZ, UK;
| | - Maitreyi Shivkumar
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| | - Ronak Patel
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Abdulwahhab Khedr
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A. Elsawy
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| |
Collapse
|
18
|
Vu MN, Kelly HG, Kent SJ, Wheatley AK. Current and future nanoparticle vaccines for COVID-19. EBioMedicine 2021; 74:103699. [PMID: 34801965 PMCID: PMC8602808 DOI: 10.1016/j.ebiom.2021.103699] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 has become a major cause of global mortality and driven massive health and economic disruptions. Mass global vaccination offers the most efficient pathway towards ending the pandemic. The development and deployment of first-generation COVID-19 vaccines, encompassing mRNA or viral vectors, has proceeded at a phenomenal pace. Going forward, nanoparticle-based vaccines which deliver SARS-CoV-2 antigens will play an increasing role in extending or improving vaccination outcomes against COVID-19. At present, over 26 nanoparticle vaccine candidates have advanced into clinical testing, with ∼60 more in pre-clinical development. Here, we discuss the emerging promise of nanotechnology in vaccine design and manufacturing to combat SARS-CoV-2, and highlight opportunities and challenges presented by these novel vaccine platforms.
Collapse
Affiliation(s)
- Mai N Vu
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC 3000, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, VIC 3052, Australia; Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmaceutics, Hanoi University of Pharmacy, Hanoi 10000, Vietnam
| | - Hannah G Kelly
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC 3000, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, VIC 3052, Australia
| | - Stephen J Kent
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC 3000, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, VIC 3052, Australia; Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| | - Adam K Wheatley
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC 3000, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, VIC 3052, Australia.
| |
Collapse
|
19
|
Arjunan A, Robinson J, Baroutaji A, Tuñón-Molina A, Martí M, Serrano-Aroca Á. 3D Printed Cobalt-Chromium-Molybdenum Porous Superalloy with Superior Antiviral Activity. Int J Mol Sci 2021; 22:12721. [PMID: 34884526 PMCID: PMC8657688 DOI: 10.3390/ijms222312721] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 02/04/2023] Open
Abstract
COVID-19 pandemic and associated supply-chain disruptions emphasise the requirement for antimicrobial materials for on-demand manufacturing. Besides aerosol transmission, SARS-CoV-2 is also propagated through contact with virus-contaminated surfaces. As such, the development of effective biofunctional materials that can inactivate SARS-CoV-2 is critical for pandemic preparedness. Such materials will enable the rational development of antiviral devices with prolonged serviceability, reducing the environmental burden of disposable alternatives. This research reveals the novel use of Laser Powder Bed Fusion (LPBF) to 3D print porous Cobalt-Chromium-Molybdenum (Co-Cr-Mo) superalloy with potent antiviral activity (100% viral inactivation in 30 min). The porous material was rationally conceived using a multi-objective surrogate model featuring track thickness (tt) and pore diameter (ϕd) as responses. The regression analysis found the most significant parameters for Co-Cr-Mo track formation to be the interaction effects of scanning rate (Vs) and laser power (Pl) in the order PlVs>Vs>Pl. Contrastively, the pore diameter was found to be primarily driven by the hatch spacing (Sh). The study is the first to demonstrate the superior antiviral properties of 3D printed Co-Cr-Mo superalloy against an enveloped virus used as biosafe viral model of SARS-CoV-2. The material significantly outperforms the viral inactivation time of other broadly used antiviral metals such as copper and silver, as the material's viral inactivation time was from 5 h to 30 min. As such, the study goes beyond the current state-of-the-art in antiviral alloys to provide extra protection to combat the SARS-CoV-2 viral spread. The evolving nature of the COVID-19 pandemic brings new and unpredictable challenges where on-demand 3D printing of antiviral materials can achieve rapid solutions while reducing the environmental impact of disposable devices.
Collapse
Affiliation(s)
- Arun Arjunan
- Centre for Engineering Innovation and Research, Additive Manufacturing of Functional Materials (AMFM) Research Group, Faculty of Science and Engineering, Telford Innovation Campus, University of Wolverhampton, Telford TF2 9NT, UK; (J.R.); (A.B.)
| | - John Robinson
- Centre for Engineering Innovation and Research, Additive Manufacturing of Functional Materials (AMFM) Research Group, Faculty of Science and Engineering, Telford Innovation Campus, University of Wolverhampton, Telford TF2 9NT, UK; (J.R.); (A.B.)
- Additive Analytics Ltd., Stirchley Road, Telford TF3 1EB, UK
| | - Ahmad Baroutaji
- Centre for Engineering Innovation and Research, Additive Manufacturing of Functional Materials (AMFM) Research Group, Faculty of Science and Engineering, Telford Innovation Campus, University of Wolverhampton, Telford TF2 9NT, UK; (J.R.); (A.B.)
| | - Alberto Tuñón-Molina
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain; (A.T.-M.); (M.M.)
| | - Miguel Martí
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain; (A.T.-M.); (M.M.)
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain; (A.T.-M.); (M.M.)
| |
Collapse
|
20
|
Takayama K, Tuñón-Molina A, Cano-Vicent A, Muramoto Y, Noda T, Aparicio-Collado JL, Sabater i Serra R, Martí M, Serrano-Aroca Á. Non-Woven Infection Prevention Fabrics Coated with Biobased Cranberry Extracts Inactivate Enveloped Viruses Such as SARS-CoV-2 and Multidrug-Resistant Bacteria. Int J Mol Sci 2021; 22:12719. [PMID: 34884521 PMCID: PMC8657951 DOI: 10.3390/ijms222312719] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 01/08/2023] Open
Abstract
The Coronavirus Disease (COVID-19) pandemic is demanding the rapid action of the authorities and scientific community in order to find new antimicrobial solutions that could inactivate the pathogen SARS-CoV-2 that causes this disease. Gram-positive bacteria contribute to severe pneumonia associated with COVID-19, and their resistance to antibiotics is exponentially increasing. In this regard, non-woven fabrics are currently used for the fabrication of infection prevention clothing such as face masks, caps, scrubs, shirts, trousers, disposable gowns, overalls, hoods, aprons and shoe covers as protective tools against viral and bacterial infections. However, these non-woven fabrics are made of materials that do not exhibit intrinsic antimicrobial activity. Thus, we have here developed non-woven fabrics with antimicrobial coatings of cranberry extracts capable of inactivating enveloped viruses such as SARS-CoV-2 and the bacteriophage phi 6 (about 99% of viral inactivation in 1 min of viral contact), and two multidrug-resistant bacteria: the methicillin-resistant Staphylococcus aureus and the methicillin-resistant Staphylococcus epidermidis. The morphology, thermal and mechanical properties of the produced filters were characterized by optical and electron microscopy, differential scanning calorimetry, thermogravimetry and dynamic mechanical thermal analysis. The non-toxicity of these advanced technologies was ensured using a Caenorhabditis elegans in vivo model. These results open up a new prevention path using natural and biodegradable compounds for the fabrication of infection prevention clothing in the current COVID-19 pandemic and microbial resistant era.
Collapse
Affiliation(s)
- Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan;
| | - Alberto Tuñón-Molina
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain; (A.T.-M.); (A.C.-V.); (M.M.)
| | - Alba Cano-Vicent
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain; (A.T.-M.); (A.C.-V.); (M.M.)
| | - Yukiko Muramoto
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; (Y.M.); (T.N.)
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; (Y.M.); (T.N.)
| | - José Luis Aparicio-Collado
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.L.A.-C.); (R.S.i.S.)
| | - Roser Sabater i Serra
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.L.A.-C.); (R.S.i.S.)
- CIBER-BBN, Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine, 46022 València, Spain
| | - Miguel Martí
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain; (A.T.-M.); (A.C.-V.); (M.M.)
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain; (A.T.-M.); (A.C.-V.); (M.M.)
| |
Collapse
|
21
|
Pilkington EH, Suys EJA, Trevaskis NL, Wheatley AK, Zukancic D, Algarni A, Al-Wassiti H, Davis TP, Pouton CW, Kent SJ, Truong NP. From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases. Acta Biomater 2021; 131:16-40. [PMID: 34153512 PMCID: PMC8272596 DOI: 10.1016/j.actbio.2021.06.023] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 02/08/2023]
Abstract
Vaccination represents the best line of defense against infectious diseases and is crucial in curtailing pandemic spread of emerging pathogens to which a population has limited immunity. In recent years, mRNA vaccines have been proposed as the new frontier in vaccination, owing to their facile and rapid development while providing a safer alternative to traditional vaccine technologies such as live or attenuated viruses. Recent breakthroughs in mRNA vaccination have been through formulation with lipid nanoparticles (LNPs), which provide both protection and enhanced delivery of mRNA vaccines in vivo. In this review, current paradigms and state-of-the-art in mRNA-LNP vaccine development are explored through first highlighting advantages posed by mRNA vaccines, establishing LNPs as a biocompatible delivery system, and finally exploring the use of mRNA-LNP vaccines in vivo against infectious disease towards translation to the clinic. Furthermore, we highlight the progress of mRNA-LNP vaccine candidates against COVID-19 currently in clinical trials, with the current status and approval timelines, before discussing their future outlook and challenges that need to be overcome towards establishing mRNA-LNPs as next-generation vaccines. STATEMENT OF SIGNIFICANCE: With the recent success of mRNA vaccines developed by Moderna and BioNTech/Pfizer against COVID-19, mRNA technology and lipid nanoparticles (LNP) have never received more attention. This manuscript timely reviews the most advanced mRNA-LNP vaccines that have just been approved for emergency use and are in clinical trials, with a focus on the remarkable development of several COVID-19 vaccines, faster than any other vaccine in history. We aim to give a comprehensive introduction of mRNA and LNP technology to the field of biomaterials science and increase accessibility to readers with a new interest in mRNA-LNP vaccines. We also highlight current limitations and future outlook of the mRNA vaccine technology that need further efforts of biomaterials scientists to address.
Collapse
Affiliation(s)
- Emily H Pilkington
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Estelle J A Suys
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Natalie L Trevaskis
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Danijela Zukancic
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Azizah Algarni
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Hareth Al-Wassiti
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Australia
| | - Colin W Pouton
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Nghia P Truong
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
22
|
Abd Elkodous M, Olojede SO, Morsi M, El-Sayyad GS. Nanomaterial-based drug delivery systems as promising carriers for patients with COVID-19. RSC Adv 2021; 11:26463-26480. [PMID: 35480012 PMCID: PMC9037715 DOI: 10.1039/d1ra04835j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/27/2021] [Indexed: 01/09/2023] Open
Abstract
Once the World Health Organization (WHO) declared the COVID-19 outbreak to be pandemic, massive efforts have been launched by researchers around the globe to combat this emerging infectious disease. Here we review the most recent data on the novel SARS-CoV-2 pathogen. We analyzed its etiology, pathogenesis, diagnosis, prevention, and current medications. After that, we summarized the promising drug delivery application of nanomaterial-based systems. Their preparation routes, unique advantages over the traditional drug delivery routes and their toxicity though risk analysis were also covered. We also discussed in detail the mechanism of action for one example of drug-loaded nanomaterial drug delivery systems (Avigan-contained nano-emulsions). This review provides insights about employing nanomaterial-based drug delivery systems for the treatment of COVID-19 to increase the bioavailability of current drugs, reducing their toxicity, and to increase their efficiency.
Collapse
Affiliation(s)
- M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology Toyohashi Aichi 441-8580 Japan
- Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University Sheikh Zayed Giza 16453 Egypt
| | - S O Olojede
- Nanotechnology Platforms, Discipline of Clinical Anatomy, Nelson Mandela School of Medicine, University of KwaZulu-Natal Durban South Africa
| | - Mahmoud Morsi
- Faculty of Medicine, Menoufia University Menoufia Shebin El Kom Egypt
| | - Gharieb S El-Sayyad
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
- Chemical Engineering Department, Military Technical College (MTC) Egyptian Armed Forces Cairo Egypt
| |
Collapse
|
23
|
Chatzikleanthous D, O'Hagan DT, Adamo R. Lipid-Based Nanoparticles for Delivery of Vaccine Adjuvants and Antigens: Toward Multicomponent Vaccines. Mol Pharm 2021; 18:2867-2888. [PMID: 34264684 DOI: 10.1021/acs.molpharmaceut.1c00447] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the many advances that have occurred in the field of vaccine adjuvants, there are still unmet needs that may enable the development of vaccines suitable for more challenging pathogens (e.g., HIV and tuberculosis) and for cancer vaccines. Liposomes have already been shown to be highly effective as adjuvant/delivery systems due to their versatility and likely will find further uses in this space. The broad potential of lipid-based delivery systems is highlighted by the recent approval of COVID-19 vaccines comprising lipid nanoparticles with encapsulated mRNA. This review provides an overview of the different approaches that can be evaluated for the design of lipid-based vaccine adjuvant/delivery systems for protein, carbohydrate, and nucleic acid-based antigens and how these strategies might be combined to develop multicomponent vaccines.
Collapse
Affiliation(s)
- Despo Chatzikleanthous
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, U.K.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | | | | |
Collapse
|
24
|
Ruseska I, Fresacher K, Petschacher C, Zimmer A. Use of Protamine in Nanopharmaceuticals-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1508. [PMID: 34200384 PMCID: PMC8230241 DOI: 10.3390/nano11061508] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022]
Abstract
Macromolecular biomolecules are currently dethroning classical small molecule therapeutics because of their improved targeting and delivery properties. Protamine-a small polycationic peptide-represents a promising candidate. In nature, it binds and protects DNA against degradation during spermatogenesis due to electrostatic interactions between the negatively charged DNA-phosphate backbone and the positively charged protamine. Researchers are mimicking this technique to develop innovative nanopharmaceutical drug delivery systems, incorporating protamine as a carrier for biologically active components such as DNA or RNA. The first part of this review highlights ongoing investigations in the field of protamine-associated nanotechnology, discussing the self-assembling manufacturing process and nanoparticle engineering. Immune-modulating properties of protamine are those that lead to the second key part, which is protamine in novel vaccine technologies. Protamine-based RNA delivery systems in vaccines (some belong to the new class of mRNA-vaccines) against infectious disease and their use in cancer treatment are reviewed, and we provide an update on the current state of latest developments with protamine as pharmaceutical excipient for vaccines.
Collapse
Affiliation(s)
| | | | | | - Andreas Zimmer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Universitätsplatz 1, 8010 Graz, Austria; (I.R.); (K.F.); (C.P.)
| |
Collapse
|
25
|
A liposome-displayed hemagglutinin vaccine platform protects mice and ferrets from heterologous influenza virus challenge. Proc Natl Acad Sci U S A 2021; 118:2025759118. [PMID: 34050027 DOI: 10.1073/pnas.2025759118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Recombinant influenza virus vaccines based on hemagglutinin (HA) hold the potential to accelerate production timelines and improve efficacy relative to traditional egg-based platforms. Here, we assess a vaccine adjuvant system comprised of immunogenic liposomes that spontaneously convert soluble antigens into a particle format, displayed on the bilayer surface. When trimeric H3 HA was presented on liposomes, antigen delivery to macrophages was improved in vitro, and strong functional antibody responses were induced following intramuscular immunization of mice. Protection was conferred against challenge with a heterologous strain of H3N2 virus, and naive mice were also protected following passive serum transfer. When admixed with the particle-forming liposomes, immunization reduced viral infection severity at vaccine doses as low as 2 ng HA, highlighting dose-sparing potential. In ferrets, immunization induced neutralizing antibodies that reduced the upper respiratory viral load upon challenge with a more modern, heterologous H3N2 viral strain. To demonstrate the flexibility and modular nature of the liposome system, 10 recombinant surface antigens representing distinct influenza virus strains were bound simultaneously to generate a highly multivalent protein particle that with 5 ng individual antigen dosing induced antibodies in mice that specifically recognized the constituent immunogens and conferred protection against heterologous H5N1 influenza virus challenge. Taken together, these results show that stable presentation of recombinant HA on immunogenic liposome surfaces in an arrayed fashion enhances functional immune responses and warrants further attention for the development of broadly protective influenza virus vaccines.
Collapse
|
26
|
Allemailem KS, Alnuqaydan AM, Almatroudi A, Alrumaihi F, Aljaghwani A, Khalilullah H, Younus H, Khan A, Khan MA. Safety and Therapeutic Efficacy of Thymoquinone-Loaded Liposomes against Drug-Sensitive and Drug-Resistant Acinetobacter baumannii. Pharmaceutics 2021; 13:677. [PMID: 34066874 PMCID: PMC8151670 DOI: 10.3390/pharmaceutics13050677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
In the present study, we investigated the activity of free thymoquinone (TQ) or liposomal thymoquinone (Lip-TQ) in comparison to standard antibiotic amoxicillin (AMX) against the drug-sensitive and drug-resistant Acinetobacter baumannii. A liposomal formulation of TQ was prepared and characterized and its toxicity was evaluated by analyzing the hematological, liver and kidney function parameters. TQ was effective against both drug-sensitive and drug-resistant A. baumannii as shown by the findings of drug susceptibility testing and time kill kinetics. Moreover, the therapeutic efficacy of TQ or Lip-TQ against A. baumannii was assessed by the survival rate and the bacterial load in the lung tissues of treated mice. The mice infected with drug-sensitive A. baumannii exhibited a 90% survival rate on day 30 post treatment with Lip-TQ at a dose of 10 mg/kg, whereas the mice treated with AMX (10 mg/kg) had a 100% survival rate. On the other hand, the mice infected with drug-resistant A. baumannii had a 70% survival rate in the group treated with Lip-TQ, whereas AMX was ineffective against drug-resistant A. baumannii and all the mice died within day 30 after the treatment. Moreover, Lip-TQ treatment effectively reduced the bacterial load in the lung tissues of the mice infected with the drug-sensitive and drug-resistant A. baumannii. Moreover, the blood of the mice treated with Lip-TQ had reduced levels of inflammation markers, leukocytes and neutrophils. The results of the present study suggest that Lip-TQ may prove to be an effective therapeutic formulation in the treatment of the drug-sensitive or drug-resistant A. baumannii infection as well.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (F.A.); (A.A.)
| | - Abdullah M. Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (F.A.); (A.A.)
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (F.A.); (A.A.)
| | - Aseel Aljaghwani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (F.A.); (A.A.)
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India;
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Masood A. Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| |
Collapse
|
27
|
Vu MN, Kelly HG, Tan H, Juno JA, Esterbauer R, Davis TP, Truong NP, Wheatley AK, Kent SJ. Hemagglutinin Functionalized Liposomal Vaccines Enhance Germinal Center and Follicular Helper T Cell Immunity. Adv Healthc Mater 2021; 10:e2002142. [PMID: 33690985 PMCID: PMC8206650 DOI: 10.1002/adhm.202002142] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Despite remarkable successes of immunization in protecting public health, safe and effective vaccines against a number of life-threatening pathogens such as HIV, ebola, influenza, and SARS-CoV-2 remain urgently needed. Subunit vaccines can avoid potential toxicity associated with traditional whole virion-inactivated and live-attenuated vaccines; however, the immunogenicity of subunit vaccines is often poor. A facile method is here reported to produce lipid nanoparticle subunit vaccines that exhibit high immunogenicity and elicit protection against influenza virus. Influenza hemagglutinin (HA) immunogens are functionalized on the surface of liposomes via stable metal chelation chemistry, using a scalable advanced microfluidic mixing technology (NanoAssemblr). Immunization of mice with HA-liposomes elicits increased serum antibody titers and superior protection against highly pathogenic virus challenge compared with free HA protein. HA-liposomal vaccines display enhanced antigen deposition into germinal centers within the draining lymph nodes, driving increased HA-specific B cell, and follicular helper T cell responses. This work provides mechanistic insights into highly protective HA-liposome vaccines and informs the rational design and rapid production of next generation nanoparticle subunit vaccines.
Collapse
Affiliation(s)
- Mai N. Vu
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVIC3000Australia
- Department of PharmaceuticsHanoi University of PharmacyHanoi10000Vietnam
| | - Hannah G. Kelly
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVIC3000Australia
| | - Hyon‐Xhi Tan
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVIC3000Australia
| | - Jennifer A. Juno
- Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVIC3000Australia
| | - Robyn Esterbauer
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVIC3000Australia
| | - Thomas P. Davis
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- Australia Institute of Bioengineering & NanotechnologyUniversity of QueenslandBrisbaneQLD4072Australia
| | - Nghia P. Truong
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
| | - Adam K. Wheatley
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVIC3000Australia
| | - Stephen J. Kent
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVIC3000Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical SchoolMonash UniversityMelbourneVIC3004Australia
| |
Collapse
|
28
|
Thi TTH, Suys EJA, Lee JS, Nguyen DH, Park KD, Truong NP. Lipid-Based Nanoparticles in the Clinic and Clinical Trials: From Cancer Nanomedicine to COVID-19 Vaccines. Vaccines (Basel) 2021; 9:359. [PMID: 33918072 PMCID: PMC8069344 DOI: 10.3390/vaccines9040359] [Citation(s) in RCA: 267] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 vaccines have been developed with unprecedented speed which would not have been possible without decades of fundamental research on delivery nanotechnology. Lipid-based nanoparticles have played a pivotal role in the successes of COVID-19 vaccines and many other nanomedicines, such as Doxil® and Onpattro®, and have therefore been considered as the frontrunner in nanoscale drug delivery systems. In this review, we aim to highlight the progress in the development of these lipid nanoparticles for various applications, ranging from cancer nanomedicines to COVID-19 vaccines. The lipid-based nanoparticles discussed in this review are liposomes, niosomes, transfersomes, solid lipid nanoparticles, and nanostructured lipid carriers. We particularly focus on the innovations that have obtained regulatory approval or that are in clinical trials. We also discuss the physicochemical properties required for specific applications, highlight the differences in requirements for the delivery of different cargos, and introduce current challenges that need further development. This review serves as a useful guideline for designing new lipid nanoparticles for both preventative and therapeutic vaccines including immunotherapies.
Collapse
Affiliation(s)
- Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Estelle J. A. Suys
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
| | - Jung Seok Lee
- Biomedical Engineering, Malone Engineering Center 402A, Yale University, 55 Prospect St., New Haven, CT 06511, USA;
| | - Dai Hai Nguyen
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi 100000, Vietnam;
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 01 TL29 District 12, Ho Chi Minh City 700000, Vietnam
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea;
| | - Nghia P. Truong
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
| |
Collapse
|