1
|
Jia F, Wang X, Su H, Guan J, Wang J, Zheng J, Xie L, Han P, Lin H, Huang X, Qiao H, Huang Y. Gelatin/chitosan coating-embedded ZIF-8@DFO on Zn-EGCG: An effective strategy for treating infected bone defects. Int J Biol Macromol 2025; 313:144167. [PMID: 40379186 DOI: 10.1016/j.ijbiomac.2025.144167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 04/13/2025] [Accepted: 05/11/2025] [Indexed: 05/19/2025]
Abstract
Titanium-based bone defect repair often encounters problems such as bacterial infection and excessive inflammation. In this study, firstly, tea polyphenol and zinc ion (E-Zn) coatings were prepared on titanium surface. Subsequently, ZIF8@D (ZIF8 loaded with desferrioxamine) was loaded onto the E-Zn surface with the help of gelatin and chitosan (CG) to form an E-Zn/CG-ZIF8@D composite coating. The results demonstrated that the E-Zn/CG-ZIF8@D coating exhibited favorable hydrophilicity, corrosion resistance, and hemocompatible. In vitro, the coating boasted outstanding antimicrobial properties due to the antimicrobial effects of Zn2+ against E. coli and S. aureus. Leveraging the anti-inflammatory properties of Zn2+, the coating could modulate the polarization of macrophages (RAW264.7) to the M2 type. Thanks to the vascularization-inducing properties of desferrioxamine, the coating could prompt the vascularization of human umbilical vein endothelial cells (HUVEC). Relying on the osteogenic properties of Zn2+, the coating could drive the differentiation of preosteoblasts (MC3T3-E1) towards osteogenesis. In vivo experiments indicated that the E-Zn/CG-ZIF8@D manifested excellent anti-inflammatory, antibacterial, angiogenic, and bone repair capabilities. This surface engineering strategy is highly effective. It constructs favorable bone-implant interfaces. It does this by integrating multiple functions. As a result, the likelihood of implant failure is significantly reduced.
Collapse
Affiliation(s)
- Fengzhen Jia
- College of Lab Medicine, Life Science Research Centre, Key Laboratory of Biomedical Materials of Zhangjiakou, Basic Medical College, Hebei North University, Zhangjiakou 075000, China
| | - Xiaofeng Wang
- Department of Medical Aesthetics, Zhangjiakou No. 4 Hospital, Zhangjiakou 075000, China
| | - Hui Su
- College of Lab Medicine, Life Science Research Centre, Key Laboratory of Biomedical Materials of Zhangjiakou, Basic Medical College, Hebei North University, Zhangjiakou 075000, China
| | - Jiaxin Guan
- College of Lab Medicine, Life Science Research Centre, Key Laboratory of Biomedical Materials of Zhangjiakou, Basic Medical College, Hebei North University, Zhangjiakou 075000, China
| | - Jiali Wang
- College of Lab Medicine, Life Science Research Centre, Key Laboratory of Biomedical Materials of Zhangjiakou, Basic Medical College, Hebei North University, Zhangjiakou 075000, China
| | - Jiaqi Zheng
- College of Lab Medicine, Life Science Research Centre, Key Laboratory of Biomedical Materials of Zhangjiakou, Basic Medical College, Hebei North University, Zhangjiakou 075000, China
| | - Lei Xie
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Pengde Han
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - He Lin
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xiao Huang
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China.
| | - Haixia Qiao
- College of Lab Medicine, Life Science Research Centre, Key Laboratory of Biomedical Materials of Zhangjiakou, Basic Medical College, Hebei North University, Zhangjiakou 075000, China.
| | - Yong Huang
- College of Lab Medicine, Life Science Research Centre, Key Laboratory of Biomedical Materials of Zhangjiakou, Basic Medical College, Hebei North University, Zhangjiakou 075000, China.
| |
Collapse
|
2
|
Wang Z, Huang Y, He S, Li M, Gong J, Cheng L, Li J, Deng Y, Liang K. Oxygen-Independent Sulfate Radical and Fe 2+-Modified Implants for Fast Sterilization and Osseointegration of Infectious Bone Defects. ACS NANO 2025; 19:18804-18823. [PMID: 40350755 DOI: 10.1021/acsnano.5c04147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Currently, emerging dynamic therapy has gradually become a frequently used strategy for treating infectious bone defects via a rise in reactive oxygen species (ROS) levels, which can bring about oxidative harm to bacteria. However, ROS can be generated only under conditions of exogenous energy, limited by energy penetration or dependence on the existence of internal O2/H2O2. Thus, we designed Na2S2O8-decorated polyetheretherketone implants activated by Fe2+ for infected bone defects. In vitro experiments show that they generate sulfate radical (·SO4-) and hydroxyl radical (·OH) without O2/H2O2 existence, effectively killing bacteria. Additionally, the released Fe2+ enters bacteria and triggers ferroptosis-like death via lipid peroxidation. In vivo experiments show implants achieve an ideal effect of bone integration through a high-efficiency bactericidal effect and enhanced osteogenic activity. As envisioned, our proposed strategy offers a promising approach to halt refractory infection of bone tissue by autonomously catalyzing ROS storms and ferroptosis-like death, facilitating bone-defect recovery.
Collapse
Affiliation(s)
- Ziyou Wang
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu 610041, China
| | - Yiling Huang
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu 610041, China
| | - Shuai He
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Meng Li
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu 610041, China
| | - Jing Gong
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu 610041, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu 610041, China
| | - Yi Deng
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu 610041, China
| |
Collapse
|
3
|
Xu W, Lin Z, Cortez-Jugo C, Qiao GG, Caruso F. Antimicrobial Phenolic Materials: From Assembly to Function. Angew Chem Int Ed Engl 2025; 64:e202423654. [PMID: 39905990 DOI: 10.1002/anie.202423654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Indexed: 02/06/2025]
Abstract
Infectious diseases pose considerable challenges to public health, particularly with the rise of multidrug-resistant pathogens that globally cause high mortality rates. These pathogens can persist on surfaces and spread in public and healthcare settings. Advances have been made in developing antimicrobial materials to reduce the transmission of pathogens, including materials composed of naturally sourced polyphenols and their derivatives, which exhibit antimicrobial potency, broad-spectrum activity, and a lower likelihood of promoting resistance. This review provides an overview of recent advances in the fabrication of antimicrobial phenolic biomaterials, where natural phenolic compounds act as active antimicrobial agents or encapsulate other antimicrobial agents (e.g., metal ions, antimicrobial peptides, natural biopolymers). Various forms of phenolic biomaterials synthesized through these two strategies, including antimicrobial particles, capsules, hydrogels, and coatings, are summarized, with a focus on their application in wound healing, bone repair and regeneration, oral health, and antimicrobial coatings for medical devices. The potential of these advanced phenolic biomaterials provides a promising therapeutic approach for combating antimicrobial-resistant infections and reducing microbial transmission.
Collapse
Affiliation(s)
- Wanjun Xu
- Department of Chemical Engineering, The University of Melbourne Parkville, Victoria, 3010, Australia
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne Parkville, Victoria, 3010, Australia
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne Parkville, Victoria, 3010, Australia
| | - Greg G Qiao
- Department of Chemical Engineering, The University of Melbourne Parkville, Victoria, 3010, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne Parkville, Victoria, 3010, Australia
| |
Collapse
|
4
|
He R, Gu Y, Jia J, Yang F, Wu P, Feng P, Shuai C. Semiconductor photocatalytic antibacterial materials and their application for bone infection treatment. NANOSCALE HORIZONS 2025; 10:681-698. [PMID: 39850999 DOI: 10.1039/d4nh00542b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Bacterial infection in bone tissue engineering is a severe clinical issue. Traditional antimicrobial methods usually cause problems such as bacterial resistance and biosecurity. Employing semiconductor photocatalytic antibacterial materials is a more controlled and safer strategy, wherein semiconductor photocatalytic materials generate reactive oxygen species under illumination for killing bacteria by destroying their cell membranes, proteins, DNA, etc. In this review, P-type and N-type semiconductor photocatalytic materials and their antibacterial mechanisms are introduced. Type II heterojunctions, P-N heterojunctions, type Z heterojunctions and Schottky junctions have been reported to reduce the recombination of carriers, while element doping, sensitization and up-conversion luminescence expand the photoresponse range. Furthermore, the applications of semiconductor photocatalytic antibacterial materials in bone infection treatment such as osteomyelitis treatment, bone defect repair and dental tissue regeneration are summarized. Finally, the conclusion and future prospects of semiconductor photocatalytic antibacterial materials in bone tissue engineering were analyzed.
Collapse
Affiliation(s)
- Ruizhong He
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Yulong Gu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Jiye Jia
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Feng Yang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Ping Wu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Pei Feng
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Cijun Shuai
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
- Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China
| |
Collapse
|
5
|
Yin W, Sun S, Yao H, Li W, Cui Y, Peng C. Black Phosphorus Nanosheet-Based Composite Biomaterials for the Enhanced Repair of Infectious Bone Defects. ACS Biomater Sci Eng 2025; 11:1317-1337. [PMID: 39924732 DOI: 10.1021/acsbiomaterials.4c02263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Infectious bone defects pose significant challenges in orthopedic practice, marked by persistent bacterial infection and ongoing inflammatory responses. Recent advancements in bone tissue engineering have led to the development of biomaterials with both antibacterial properties and the ability to promote bone regeneration, offering new solutions to these complex issues. Black phosphorus nanosheets (BPNS), a unique two-dimensional material, demonstrate exceptional biocompatibility, bioactivity, and antibacterial properties. Their combination of osteogenic, antibacterial, and anti-inflammatory effects positions BPNS as an ideal candidate for addressing bone defects complicated by infection. This Review explores the potential of BPNS-based composite biomaterials in repairing infectious bone defects, discussing their molecular mechanisms for antibacterial activity, including intrinsic antibacterial properties, photothermal therapy (PTT), photodynamic therapy (PDT), and drug delivery. The application of BPNS in treating infectious bone defects, through hydrogels, scaffolds, coatings, and fibers, is also discussed. The Review emphasizes the transformative role of BPNS in bone tissue engineering and advocates for continued research and development in this promising field.
Collapse
Affiliation(s)
- Wen Yin
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Shouye Sun
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Hongyuan Yao
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Wenbo Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Chuangang Peng
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|
6
|
Li XL, Zhao YQ, Miao L, An YX, Wu F, Han JY, Han JY, Tay FR, Mu Z, Jiao Y, Wang J. Strategies for promoting neurovascularization in bone regeneration. Mil Med Res 2025; 12:9. [PMID: 40025573 PMCID: PMC11874146 DOI: 10.1186/s40779-025-00596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/26/2025] [Indexed: 03/04/2025] Open
Abstract
Bone tissue relies on the intricate interplay between blood vessels and nerve fibers, both are essential for many physiological and pathological processes of the skeletal system. Blood vessels provide the necessary oxygen and nutrients to nerve and bone tissues, and remove metabolic waste. Concomitantly, nerve fibers precede blood vessels during growth, promote vascularization, and influence bone cells by secreting neurotransmitters to stimulate osteogenesis. Despite the critical roles of both components, current biomaterials generally focus on enhancing intraosseous blood vessel repair, while often neglecting the contribution of nerves. Understanding the distribution and main functions of blood vessels and nerve fibers in bone is crucial for developing effective biomaterials for bone tissue engineering. This review first explores the anatomy of intraosseous blood vessels and nerve fibers, highlighting their vital roles in bone embryonic development, metabolism, and repair. It covers innovative bone regeneration strategies directed at accelerating the intrabony neurovascular system over the past 10 years. The issues covered included material properties (stiffness, surface topography, pore structures, conductivity, and piezoelectricity) and acellular biological factors [neurotrophins, peptides, ribonucleic acids (RNAs), inorganic ions, and exosomes]. Major challenges encountered by neurovascularized materials during their clinical translation have also been highlighted. Furthermore, the review discusses future research directions and potential developments aimed at producing bone repair materials that more accurately mimic the natural healing processes of bone tissue. This review will serve as a valuable reference for researchers and clinicians in developing novel neurovascularized biomaterials and accelerating their translation into clinical practice. By bridging the gap between experimental research and practical application, these advancements have the potential to transform the treatment of bone defects and significantly improve the quality of life for patients with bone-related conditions.
Collapse
Affiliation(s)
- Xin-Ling Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Qing Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Li Miao
- Department of Stomatology, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, China
| | - Yan-Xin An
- Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, China
| | - Fan Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jin-Yu Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jing-Yuan Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Franklin R Tay
- Graduate School of Augusta University, Augusta, GA, 30912, USA
| | - Zhao Mu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yang Jiao
- Department of Stomatology, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, China.
| | - Jing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
7
|
Chen K, Wang F, Sun X, Ge W, Zhang M, Wang L, Zheng H, Zheng S, Tang H, Zhou Z, Wu G. 3D-printed zinc oxide nanoparticles modified barium titanate/hydroxyapatite ultrasound-responsive piezoelectric ceramic composite scaffold for treating infected bone defects. Bioact Mater 2025; 45:479-495. [PMID: 39717367 PMCID: PMC11664295 DOI: 10.1016/j.bioactmat.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/22/2024] [Accepted: 11/10/2024] [Indexed: 12/25/2024] Open
Abstract
Clinically, infectious bone defects represent a significant threat, leading to osteonecrosis, severely compromising patient prognosis, and prolonging hospital stays. Thus, there is an urgent need to develop a bone graft substitute that combines broad-spectrum antibacterial efficacy and bone-inductive properties, providing an effective treatment option for infectious bone defects. In this study, the precision of digital light processing (DLP) 3D printing technology was utilized to construct a scaffold, incorporating zinc oxide nanoparticles (ZnO-NPs) modified barium titanate (BT) with hydroxyapatite (HA), resulting in a piezoelectric ceramic scaffold designed for the repair of infected bone defects. The results indicated that the addition of ZnO-NPs significantly improved the piezoelectric properties of BT, facilitating a higher HA content within the ceramic scaffold system, which is essential for bone regeneration. In vitro antibacterial assessments highlighted the scaffold's potent antibacterial capabilities. Moreover, combining the synergistic effects of low-intensity pulsed ultrasound (LIPUS) and piezoelectricity, results demonstrated that the scaffold promoted notable osteogenic and angiogenic potential, enhancing bone growth and repair. Furthermore, transcriptomics analysis results suggested that the early growth response-1 (EGR1) gene might be crucial in this process. This study introduces a novel method for constructing piezoelectric ceramic scaffolds exhibiting outstanding osteogenic, angiogenic, and antibacterial properties under the combined influence of LIPUS, offering a promising treatment strategy for infectious bone defects.
Collapse
Affiliation(s)
- Kai Chen
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xiumei Sun
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Wenwei Ge
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130021, China
| | - Mingjun Zhang
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lin Wang
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Haoyu Zheng
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Shikang Zheng
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Haoyu Tang
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130021, China
| | - Zhengjie Zhou
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Guomin Wu
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| |
Collapse
|
8
|
Zhang Y, Tang Z, Chen L, Yang M, Zeng Y, Bai X, Zhang B, Zhou J, Zhang W, Tang S. Intelligent sequential degradation hydrogels by releasing bimetal-phenolic for enhanced diabetic wound healing. J Control Release 2025; 378:961-981. [PMID: 39724946 DOI: 10.1016/j.jconrel.2024.12.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Healing of diabetic wounds is significantly impeded by a complex environment comprising biofilm formation, excessive inflammation, and compromised angiogenic capacity, leading to a disordered physiological healing process. Restoration and maintenance of a normal and orderly healing process in diabetic wounds remain unmet therapeutic objectives. Herein, an innovative bimetal-phenolic network hydrogel system is designed with a concentric circular structure, enabling dual-drug delivery with differentiated release kinetics. The outer layer, Cu@TA (tannic acid)-loaded ε-PL (poly-l-lysine)-SilMA (methacrylated silk), is engineered for an initial release to scavenge reactive oxygen species and exert antibacterial and anti-inflammatory effects. The inner layer, Zn@TA-loaded ε-PL-SilMA, is designed for sustained release to promote cell migration, modulate the immune microenvironment, and induce angiogenesis. By incorporating a polyphenolic-metal network, the Cu@TA/Zn@TA/ε-PL-SilMA hydrogel can alter its degradation rate, enabling the sequential release of Cu@TA and Zn@TA. An in vivo diabetic rat wound model, transcriptomic sequencing, and histological staining analyses revealed that the Cu@TA/Zn@TA/ε-PL-SilMA hydrogel effectively activates the Wnt/β-catenin signaling pathway, synergistically promoting wound healing by accelerating angiogenesis, effectively reducing inflammation, and promoting collagen deposition. This innovative hydrogel, with sequential degradation and release properties, is broadly applicable, ensures orderly wound healing, and holds promise for accelerating diabetic wound repair.
Collapse
Affiliation(s)
- Yiwen Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515051, China; Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong 515051, China
| | - Zixuan Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515051, China; Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong 515051, China
| | - Liyun Chen
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong 515051, China; Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515051, China
| | - Min Yang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515051, China; Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515051, China
| | - Yating Zeng
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515051, China; Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515051, China
| | - Xujue Bai
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515051, China; Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515051, China
| | - Bingna Zhang
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong 515051, China; Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515051, China
| | - Jianda Zhou
- Department of Plastic and Reconstructive Surgery, Central South University Third Xiangya Hospital, Changsha, Hunan 410013, China
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515051, China; Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong 515051, China; Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515051, China.
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515051, China; Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong 515051, China; Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515051, China.
| |
Collapse
|
9
|
Shi J, Liu Z, Ren X, Wang W, Zhang H, Wang Y, Liu M, Yao Q, Wu W. Bioinspired adhesive polydopamine-metal-organic framework functionalized 3D customized scaffolds with enhanced angiogenesis, immunomodulation, and osteogenesis for orbital bone reconstruction. Int J Biol Macromol 2025; 284:137968. [PMID: 39581418 DOI: 10.1016/j.ijbiomac.2024.137968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Critical-sized orbital bone defects can lead to significant maxillofacial deformities and even eye movement disorders. The challenges associated with these defects, including their complicated structure, inadequate blood supply, and limited availability of progenitor cells that hinder successful repair. To overcome these issues, we developed a novel approach using computer numerical control (CNC) material reduction manufacturing technology to produce a customized polyetheretherketone (PEEK) scaffold that conforms to the specific shape of orbital bone defects. Deferoxamine (DFO) was in situ encapsulated into polydopamine-hybridized zeolitic imidazolate framework-8 (pZIF8-DFO) nanoparticles, which was subsequently adhered to the sulfonated PEEK (sPEEK) scaffold through polydopamine modification. This functionalization enhanced drug loading efficiency and imparted anti-inflammatory properties to the nanoparticle system. Our in vitro findings demonstrated that the sustained release of DFO from the sPEEK/pZIF8-DFO scaffolds extended over 14 days and significantly promoted angiogenesis and progenitor cell recruitment, as evidenced by increased expression of HIF-1α, VEGF, and SDF-1α expression in human umbilical vein endothelial cells (HUVECs). Moreover, sPEEK/pZIF8-DFO scaffolds exhibited superior immunomodulation and osteogenic differentiation capabilities on Raw 264.7 cells and rabbit bone marrow mesenchymal stem cells (rBMSCs), respectively. Most notably, our in vivo rabbit orbital bone defects revealed that sPEEK/pZIF8-DFO scaffolds resulted in a greater volume of new bone formation than on sPEEK and sPEEK/pZIF8 scaffolds, with partial bone connection to the sPEEK/pZIF8-DFO scaffolds. In summary, we develop a novel PEEK scaffold that combines enhanced angiogenesis, stem cell recruitment, immunomodulation, and osteogenic differentiation, showcasing its promising potential for orbital bone reconstruction.
Collapse
Affiliation(s)
- Jieliang Shi
- National Clinical Research Center for Ocular Diseases, National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou 325027, China
| | - Zhirong Liu
- National Clinical Research Center for Ocular Diseases, National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou 325027, China
| | - Xiaobin Ren
- National Clinical Research Center for Ocular Diseases, National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou 325027, China
| | - Wei Wang
- National Clinical Research Center for Ocular Diseases, National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou 325027, China
| | - Haojie Zhang
- National Clinical Research Center for Ocular Diseases, National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou 325027, China
| | - Yuanli Wang
- National Clinical Research Center for Ocular Diseases, National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou 325027, China
| | - Mingyue Liu
- National Clinical Research Center for Ocular Diseases, National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou 325027, China
| | - Qingqing Yao
- National Clinical Research Center for Ocular Diseases, National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou 325027, China.
| | - Wencan Wu
- National Clinical Research Center for Ocular Diseases, National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou 325027, China.
| |
Collapse
|
10
|
Liu X, Feng Z, Ran Z, Zeng Y, Cao G, Li X, Ye H, Wang M, Liang W, He Y. External Stimuli-Responsive Strategies for Surface Modification of Orthopedic Implants: Killing Bacteria and Enhancing Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67028-67044. [PMID: 38497341 DOI: 10.1021/acsami.3c19149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Bacterial infection and insufficient osteogenic activity are the main causes of orthopedic implant failure. Conventional surface modification methods are difficult to meet the requirements for long-term implant placement. In order to better regulate the function of implant surfaces, especially to improve both the antibacterial and osteogenic activity, external stimuli-responsive (ESR) strategies have been employed for the surface modification of orthopedic implants. External stimuli act as "smart switches" to regulate the surface interactions with bacteria and cells. The balance between antibacterial and osteogenic capabilities of implant surfaces can be achieved through these specific ESR manifestations, including temperature changes, reactive oxygen species production, controlled release of bioactive molecules, controlled release of functional ions, etc. This Review summarizes the recent progress on different ESR strategies (based on light, ultrasound, electric, and magnetic fields) that can effectively balance antibacterial performance and osteogenic capability of orthopedic implants. Furthermore, the current limitations and challenges of ESR strategies for surface modification of orthopedic implants as well as future development direction are also discussed.
Collapse
Affiliation(s)
- Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenzhen Feng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhili Ran
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Guining Cao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Huiling Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Meijing Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanting Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
11
|
Yu G, Wang J, Xiong Q, Xu Y, Xuan S, Leung KCF, Fang Q. Dipolar-hollowed α-Fe 2O 3@Au/Polydopamine nanospindle for photothermal-photodynamic coupling antibacterial and drug-delivery. Int J Biol Macromol 2024; 281:136615. [PMID: 39414200 DOI: 10.1016/j.ijbiomac.2024.136615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
With the prevalence of drug-resistant bacteria and the waning effects of antibiotics, nanoplatform has become an effective strategy for fighting infections. This work reports a dipolar-hollowed α-Fe2O3@Au/Polydopamine (PDA) nanospindle which possesses both photothermal-photodynamic (PTT-PDT) coupling antibacterial and drug carrying performance. Firstly, the spindle type α-Fe2O3@Au/PDA particle was prepared by a simple one-step strategy and then the dipolar-hollow structure was obtained by controlling etching the inside α-Fe2O3 core with hydrochloric acid. After further loading the photosensitizer zinc phthalocyanine (ZnPc), the dipolar-hollowed α-Fe2O3@Au/PDA-ZnPc nanospindles were obtained. Owing to the dipolar-hollowed interior, the nanospindles are also effective in carrying antitumor drug doxorubicin (DOX) and shows a good drug loading-release behavior. The dipolar-hollowed α-Fe2O3@Au/PDA nanospindles exhibits a high antibacterial performance against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) under near-infrared (NIR) and Xenon lamp irradiation. When α-Fe2O3@Au/PDA-ZnPc nanospindles concentration was increased to 100 μg/mL, the antibacterial rate was close to 100 %. In comparison to the original α-Fe2O3@Au/PDA nanospindles, the product achieved a lower effective antibacterial temperature. This triple-mode therapy (PTT/PDT/Drug) provides an interesting design idea for anisotropic therapeutic nanoplatform which can be applied in low-temperature antibacterial and drug delivery.
Collapse
Affiliation(s)
- Guangjin Yu
- Department of Chirurgery, Affiliated Hospital 1, Anhui Medical University, Hefei 230032, PR China; Department of Hepatobiliary Surgery, Dongcheng branch of the First Affiliated Hospital of Anhui Medical University (Feidong People's Hospital), Hefei 230027, PR China
| | - Jing Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China; Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Qingshan Xiong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Yunqi Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China; Anhui Provincial Key Laboratory of Aerosol Analysis, Regulation and Biological Effect, Hefei 230000, PR China.
| | - Ken Cham-Fai Leung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, The Hong Kong Baptist University, Kowloon, Hong Kong.
| | - Qunling Fang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
12
|
Ju Y, Ma S, Fu M, Wu M, Li Y, Wang Y, Tao M, Lu Z, Guo J. Polyphenol-modified biomimetic bioadhesives for the therapy of annulus fibrosus defect and nucleus pulposus degeneration after discectomy. Acta Biomater 2024; 189:116-129. [PMID: 39362450 DOI: 10.1016/j.actbio.2024.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/29/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
Discectomy is the surgical standard of care to relieve low back pain caused by intervertebral disc (IVD) herniation. However, there remains annulus fibrosus (AF) defect and nucleus pulposus (NP) degeneration, which often result in recurrent herniation (re-herniation). Herein, we develop a polyphenol-modified waterborne polyurethane bioadhesives (PPU-glues) to promote therapy prognosis after discectomy. Being composed of tannic acid (TA) mixed cationic waterborne polyurethane nanodispersions (TA/WPU+) and curcumin (Cur) embedded anionic waterborne polyurethane nanodispersions (Cur-WPU-), PPU-glue gels rapidly (<10 s) and exhibits low swelling ratios, tunable degradation rates and good biocompatibility. Due to the application of an adhesion strategy combing English ivy mechanism and particle packing theory, PPU-glue also shows considerable lap shear strength against wet porcine skin (≈58 kPa) and burst pressure (≈26 kPa). The mismatched particle sizes and the opposite charges of TA/WPU+ and Cur-WPU- in PPU-glue bring electrostatic interaction and enhance particle packing density. PPU-glue possesses superior reactive oxygen species (ROS)-scavenging capacity derived from polyphenols. PPU-glue can regulate extracellular matrix (ECM) metabolism in degenerated NP cells, and it can promote therapy biologically and mechanically in degenerated rat caudal discs. In summary, this study highlights the therapeutic approach that combines AF seal and NP augmentation, and PPU-glue holds great application potentials for post discectomy therapy. STATEMENT OF SIGNIFICANCE: Currently, there is no established method for the therapy of annulus fibrosus (AF) defect and nucleus pulposus (NP) degeneration after discectomy. Herein, we developed a polyphenol-modified biomimetic polyurethane bioadhesive (PPU-glue) with strong adhesive strength and superior bioactive property. The adhesion strategy that combined a particle packing theory and an English ivy mechanism was firstly applied to the intervertebral disc repair field, which benefited AF seal. The modified method of incorporating polyphenols was utilized to confer with ROS-scavenging capacity, ECM metabolism regulation ability and anti-inflammatory property, which promoted NP augmentation. Thus, PPU-glue attained the synergy effect for post discectomy therapy, and the design principle could be universally expanded to the bioadhesives for other surgical uses.
Collapse
Affiliation(s)
- Yan Ju
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510515, PR China
| | - Shiyuan Ma
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510515, PR China
| | - Meimei Fu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510515, PR China
| | - Min Wu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510515, PR China
| | - Yue Li
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510515, PR China; Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou 510515, PR China
| | - Yue Wang
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510515, PR China
| | - Meihan Tao
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510515, PR China.
| | - Zhihui Lu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510515, PR China; Regenerative Medicine and Tissue Repair Material Research Center, Huangpu Institute of Materials, 88 Yonglong Avenue of Xinlong Town, Guangzhou 511363, PR China.
| | - Jinshan Guo
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510515, PR China; Regenerative Medicine and Tissue Repair Material Research Center, Huangpu Institute of Materials, 88 Yonglong Avenue of Xinlong Town, Guangzhou 511363, PR China; CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.
| |
Collapse
|
13
|
Du J, Chu Y, Hu Y, Liu J, Liu H, Wang H, Yang C, Wang Z, Yu A, Ran J. A multifunctional self-reinforced injectable hydrogel for enhancing repair of infected bone defects by simultaneously targeting macrophages, bacteria, and bone marrow stromal cells. Acta Biomater 2024; 189:232-253. [PMID: 39396629 DOI: 10.1016/j.actbio.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/21/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Injectable hydrogels (IHs) have demonstrated huge potential in promoting repair of infected bone defects (IBDs), but how to endow them with desired anti-bacterial, immunoregulatory, and osteo-inductive properties as well as avoid mechanical failure during their manipulation are challenging. In this regard, we developed a multifunctional AOHA-RA/Lap nanocomposite IH for IBDs repair, which was constructed mainly through two kinds of reversible cross-links: (i) the laponite (Lap) crystals mediated electrostatic interactions; (ii) the phenylboronic acid easter bonds between the 4-aminobenzeneboronic acid grafted oxidized hyaluronic acid (AOHA) and rosmarinic acid (RA). Due to the specific structural composition, the AOHA-RA/Lap IH demonstrated superior injectability, self-recoverability, spatial adaptation, and self-reinforced mechanical properties after being injected to the bone defect site. In addition, the RA molecules could be locally released from the hydrogel following a Weibull model for over 10 days. Systematic in vitro/vivo assays proved the strong anti-bacterial activity of the hydrogel against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Moreover, its capability of inducing M2 polarization of macrophages (Mφ) and osteogenic differentiation of bone marrow stromal cells (BMSCs) was verified either, and the mechanism of the former was identified to be related to the JAK1-STAT1 and PI3K-AKT signaling pathways and that of the latter was identified to be related to the calcium signaling pathway, extracellular matrix (ECM) receptor interaction and TGF-β signaling pathway. After being implanted to a S. aureus infected rat skull defect model, the AOHA-RA/Lap IH significantly accelerated repair of IBDs without causing significant systemic toxicity. STATEMENT OF SIGNIFICANCE: Rosmarinic acid and laponite were utilized to develop an injectable hydrogel, promising for accelerating repair of infected bone defects in clinic. The gelation of the hydrogel was completely driven by two kinds of reversible cross-links, which endow the hydrogel superior spatial adaption, self-recoverability, and structural stability. The as-prepared hydrogel demonstrated superior anti-bacterial/anti-biofilm activity and could induce M2 polarization of macrophages and osteogenic differentiation of BMSCs. The mechanism behind macrophages polarization was identified to be related to the JAK1-STAT1 and PI3K-AKT signaling pathways. The mechanism behind osteogenic differentiation of BMSCs was identified to be related to the ECM receptor interaction and calcium signaling/TGF-β signaling pathways.
Collapse
Affiliation(s)
- Jingyi Du
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Ying Chu
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Yan Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan, 430000, China
| | - Jin Liu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Hanghang Liu
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Huimin Wang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Changying Yang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Zheng Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan, 430000, China.
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan, 430000, China.
| | - Jiabing Ran
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
14
|
Zhang M, Ye Q, Zhu Z, Shi S, Xu C, Xie R, Li Y. Hyaluronic Acid-Based Dynamic Hydrogels for Cartilage Repair and Regeneration. Gels 2024; 10:703. [PMID: 39590059 PMCID: PMC11594165 DOI: 10.3390/gels10110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Hyaluronic acid (HA), an important natural polysaccharide and meanwhile, an essential component of extracellular matrix (ECM), has been widely used in tissue repair and regeneration due to its high biocompatibility, biodegradation, and bioactivity, and the versatile chemical groups for modification. Specially, HA-based dynamic hydrogels, compared with the conventional hydrogels, offer an adaptable network and biomimetic microenvironment to optimize tissue repair and the regeneration process with a striking resemblance to ECM. Herein, this review comprehensively summarizes the recent advances of HA-based dynamic hydrogels and focuses on their applications in articular cartilage repair. First, the fabrication methods and advantages of HA dynamic hydrogels are presented. Then, the applications of HA dynamic hydrogels in cartilage repair are illustrated from the perspective of cell-free and cell-encapsulated and/or bioactive molecules (drugs, factors, and ions). Finally, the current challenges and prospective directions are outlined.
Collapse
Affiliation(s)
- Mingshuo Zhang
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Qianwen Ye
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Zebo Zhu
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Shuanglian Shi
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Chunming Xu
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Renjian Xie
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China
| | - Yumei Li
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
15
|
Hu X, Chen J, Yang S, Zhang Z, Wu H, He J, Qin L, Cao J, Xiong C, Li K, Liu X, Qian Z. 3D Printed Multifunctional Biomimetic Bone Scaffold Combined with TP-Mg Nanoparticles for the Infectious Bone Defects Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403681. [PMID: 38804867 DOI: 10.1002/smll.202403681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Infected bone defects are one of the most challenging problems in the treatment of bone defects due to the high antibiotic failure rate and the lack of ideal bone grafts. In this paper, inspired by clinical bone cement filling treatment, α-c phosphate (α-TCP) with self-curing properties is composited with β-tricalcium phosphate (β-TCP) and constructed a bionic cancellous bone scaffolding system α/β-tricalcium phosphate (α/β-TCP) by low-temperature 3D printing, and gelatin is preserved inside the scaffolds as an organic phase, and later loaded with a metal-polyphenol network structure of tea polyphenol-magnesium (TP-Mg) nanoparticles. The scaffolds mimic the structure and components of cancellous bone with high mechanical strength (>100 MPa) based on α-TCP self-curing properties through low-temperature 3D printing. Meanwhile, the scaffolds loaded with TP-Mg exhibit significant inhibition of Staphylococcus aureus (S.aureus) and promote the transition of macrophages from M1 pro-inflammatory to M2 anti-inflammatory phenotype. In addition, the composite scaffold also exhibits excellent bone-enhancing effects based on the synergistic effect of Mg2+ and Ca2+. In this study, a multifunctional ceramic scaffold (α/β-TCP@TP-Mg) that integrates anti-inflammatory, antibacterial, and osteoinduction is constructed, which promotes late bone regenerative healing while modulating the early microenvironment of infected bone defects, has a promising application in the treatment of infected bone defects.
Collapse
Affiliation(s)
- Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, China
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiao Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shuhao Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Zhen Zhang
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Haoming Wu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, China
| | - Jian He
- College of Medical, Henan University of Science and Technology, Luoyang, 471023, China
| | - Leilei Qin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Jianfei Cao
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, Sichuan, 611730, China
| | - Chengdong Xiong
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
16
|
Almatroudi A. Unlocking the Potential of Silver Nanoparticles: From Synthesis to Versatile Bio-Applications. Pharmaceutics 2024; 16:1232. [PMID: 39339268 PMCID: PMC11435049 DOI: 10.3390/pharmaceutics16091232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Silver nanoparticles (AgNPs) are leading the way in nanotechnological innovation, combining the captivating properties of silver with the accuracy of nanoscale engineering, thus revolutionizing material science. Three main techniques arise within the alchemical domains of AgNP genesis: chemical, physical, and biological synthesis. Each possesses its distinct form of magic for controlling size, shape, and scalability-key factors necessary for achieving expertise in the practical application of nanoparticles. The story unravels, describing the careful coordination of chemical reduction, the environmentally sensitive charm of green synthesis utilizing plant extracts, and the precise accuracy of physical techniques. AgNPs are highly praised in the field of healthcare for their powerful antibacterial characteristics. These little warriors display a wide-ranging attack against bacteria, fungi, parasites, and viruses. Their critical significance in combating hospital-acquired and surgical site infections is highly praised, serving as a beacon of hope in the fight against the challenging problem of antibiotic resistance. In addition to their ability to kill bacteria, AgNPs are also known to promote tissue regeneration and facilitate wound healing. The field of cancer has also observed the adaptability of AgNPs. The review documents their role as innovative carriers of drugs, specifically designed to target cancer cells with accuracy, minimizing harm to healthy tissues. Additionally, it explores their potential as cancer therapy or anticancer agents capable of disrupting the growth of tumors. In the food business, AgNPs are utilized to enhance the durability of packing materials and coatings by infusing them with their bactericidal properties. This results in improved food safety measures and a significant increase in the duration that products can be stored, thereby tackling the crucial issue of food preservation. This academic analysis recognizes the many difficulties that come with the creation and incorporation of AgNPs. This statement pertains to the evaluation of environmental factors and the effort to enhance synthetic processes. The review predicts future academic pursuits, envisioning progress that will enhance the usefulness of AgNPs and increase their importance from being new to becoming essential within the realms of science and industry. Besides, AgNPs are not only a subject of scholarly interest but also a crucial component in the continuous effort to tackle some of the most urgent health and conservation concerns of contemporary society. This review aims to explore the complex process of AgNP synthesis and highlight their numerous uses, with a special focus on their growing importance in the healthcare and food business sectors. This review invites the scientific community to explore the extensive possibilities of AgNPs in order to fully understand and utilize their potential.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
17
|
Xu Y, Cai F, Zhou Y, Tang J, Mao J, Wang W, Li Z, Zhou L, Feng Y, Xi K, Gu Y, Chen L. Magnetically attracting hydrogel reshapes iron metabolism for tissue repair. SCIENCE ADVANCES 2024; 10:eado7249. [PMID: 39151007 PMCID: PMC11328908 DOI: 10.1126/sciadv.ado7249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/10/2024] [Indexed: 08/18/2024]
Abstract
Ferroptosis, caused by disorders of iron metabolism, plays a critical role in various diseases, making the regulation of iron metabolism essential for tissue repair. In our analysis of degenerated intervertebral disc tissue, we observe a positive correlation between the concentration of extracellular iron ions (ex-iron) and the severity of ferroptosis in intervertebral disc degeneration (IVDD). Hence, inspired by magnets attracting metals, we combine polyether F127 diacrylate (FDA) with tannin (TA) to construct a magnetically attracting hydrogel (FDA-TA). This hydrogel demonstrates the capability to adsorb ex-iron and remodel the iron metabolism of cells. Furthermore, it exhibits good toughness and self-healing properties. Notably, it can activate the PI3K-AKT pathway to inhibit nuclear receptor coactivator 4-mediated ferritinophagy under ex-iron enrichment conditions. The curative effect and related mechanism are further confirmed in vivo. Consequently, on the basis of the pathological mechanism, a targeted hydrogel is designed to reshape iron metabolism, offering insights for tissue repair.
Collapse
Affiliation(s)
- Yichang Xu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Feng Cai
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Yidi Zhou
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Jincheng Tang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Jiannan Mao
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Wei Wang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Ziang Li
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Liang Zhou
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Yu Feng
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Kun Xi
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Yong Gu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Liang Chen
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| |
Collapse
|
18
|
Zhang F, Zheng Y, Wang L, Kang Y, Dong H, Li H, Zhao X, Li B, Chen H, Qiu J, Sang Y, Liu C, Liu H, Wang S. Implantable Zinc Ion Battery and Osteogenesis-Immunoregulation Bifunction of Its Catabolite. ACS NANO 2024; 18:21246-21257. [PMID: 39083700 DOI: 10.1021/acsnano.4c04705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Biocompatible batteries can power implantable electronic devices and have broad applications in medicine. However, the controlled degradation of implantable batteries, the impact of battery catabolites on surrounding tissues, and wireless charging designs are often overlooked. Here, we designed an implantable zinc ion battery (ZIB) using a gelatin/polycaprolactone-based composite gel electrolyte. The prepared ZIBs deliver a high specific capacity of 244.0 mA h g-1 (0.5C) and long cycling stability of 300 cycles (4C). ZIBs were completely degraded within 8 weeks in rats and 30 days in a phosphate-buffered saline lipase solution, demonstrating good biocompatibility and degradability. ZIBs catabolites induced macrophage M2 polarization and exhibited anti-inflammatory properties, with mRNA levels of the M2 markers Arg-1 and CD206 up-regulated 15.8-fold and 13.4-fold, respectively, compared to the blank control group. Meanwhile, the expressions of two typical osteogenic markers, osteopontin and osteocalcin, were up-regulated by 3.6-fold and 5.6-fold, respectively, demonstrating that designed ZIBs promoted osteogenic differentiation of bone marrow mesenchymal stem cells. Additionally, a wireless energy transmission module was designed using 3D printing technology to realize real-time charging of the ZIB in rats. The designed ZIB is a promising power source for implantable medical electronic devices and also serves as a functional material to accelerate bone repair.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Crystal Materials, Shandong University Jinan 250100, P. R. China
| | - Yubo Zheng
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University.Jinan 250012, P. R. China
| | - Liang Wang
- State Key Laboratory of Crystal Materials, Shandong University Jinan 250100, P. R. China
| | - Yongchao Kang
- State Key Laboratory of Crystal Materials, Shandong University Jinan 250100, P. R. China
| | - Huitong Dong
- State Key Laboratory of Crystal Materials, Shandong University Jinan 250100, P. R. China
| | - Houzhen Li
- State Key Laboratory of Crystal Materials, Shandong University Jinan 250100, P. R. China
| | - Xiaoru Zhao
- State Key Laboratory of Crystal Materials, Shandong University Jinan 250100, P. R. China
| | - Boyan Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012 Shandong, China
| | - Hao Chen
- State Key Laboratory of Crystal Materials, Shandong University Jinan 250100, P. R. China
| | - Jichuan Qiu
- State Key Laboratory of Crystal Materials, Shandong University Jinan 250100, P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University Jinan 250100, P. R. China
| | - Chao Liu
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University.Jinan 250012, P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University Jinan 250100, P. R. China
| | - Shuhua Wang
- State Key Laboratory of Crystal Materials, Shandong University Jinan 250100, P. R. China
| |
Collapse
|
19
|
Tang X, Wang Y, Liu N, Deng X, Zhou Z, Yu C, Wang Y, Fang K, Wu T. Methacrylated Carboxymethyl Chitosan Scaffold Containing Icariin-Loaded Short Fibers for Antibacterial, Hemostasis, and Bone Regeneration. ACS Biomater Sci Eng 2024; 10:5181-5193. [PMID: 38935742 DOI: 10.1021/acsbiomaterials.4c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Bone defects typically result in bone nonunion, delayed or nonhealing, and localized dysfunction, and commonly used clinical treatments (i.e., autologous and allogeneic grafts) have limited results. The multifunctional bone tissue engineering scaffold provides a new treatment for the repair of bone defects. Herein, a three-dimensional porous composite scaffold with stable mechanical support, effective antibacterial and hemostasis properties, and the ability to promote the rapid repair of bone defects was synthesized using methacrylated carboxymethyl chitosan and icariin-loaded poly-l-lactide/gelatin short fibers (M-CMCS-SFs). Icariin-loaded SFs in the M-CMCS scaffold resulted in the sustained release of osteogenic agents, which was beneficial for mechanical reinforcement. Both the porous structure and the use of chitosan facilitate the effective absorption of blood and fluid exudates. Moreover, its superior antibacterial properties could prevent the occurrence of inflammation and infection. When cultured with bone mesenchymal stem cells, the composite scaffold showed a promotion in osteogenic differentiation. Taken together, such a multifunctional composite scaffold showed comprehensive performance in antibacterial, hemostasis, and bone regeneration, thus holding promising potential in the repair of bone defects and related medical treatments.
Collapse
Affiliation(s)
- Xunmeng Tang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China
| | - Yawen Wang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Na Liu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Xinyuan Deng
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China
| | - Ziyi Zhou
- Department of Plastic, Reconstructive and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Chenghao Yu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Yuanfei Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China
| | - Kuanjun Fang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China
- Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, State Key Laboratory for Biofibers and Eco-textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Tong Wu
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| |
Collapse
|
20
|
Wang J, Zhang Y, Tang Q, Zhang Y, Yin Y, Chen L. Application of Antioxidant Compounds in Bone Defect Repair. Antioxidants (Basel) 2024; 13:789. [PMID: 39061858 PMCID: PMC11273992 DOI: 10.3390/antiox13070789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Bone defects caused by trauma, tumor resection, and infections are significant clinical challenges. Excessive reactive oxygen species (ROS) usually accumulate in the defect area, which may impair the function of cells involved in bone formation, posing a serious challenge for bone repair. Due to the potent ROS scavenging ability, as well as potential anti-inflammatory and immunomodulatory activities, antioxidants play an indispensable role in the maintenance and protection of bone health and have gained increasing attention in recent years. This narrative review aims to give an overview of the main research directions on the application of antioxidant compounds in bone defect repair over the past decade. In addition, the positive effects of various antioxidants and their biomaterial delivery systems in bone repair are summarized to provide new insights for exploring antioxidant-based strategies for bone defect repair.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yubing Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
21
|
Yang M, Du D, Hao Y, Meng Z, Zhang H, Liu Y. Preparation of an injectable zinc-containing hydrogel with double dynamic bond and its potential application in the treatment of periodontitis. RSC Adv 2024; 14:19312-19321. [PMID: 38887645 PMCID: PMC11181151 DOI: 10.1039/d4ra00546e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024] Open
Abstract
Periodontal tissue regeneration continues to face significant clinical challenges. Periodontitis leads to alveolar bone resorption and even tooth loss due to persistent microbial infection and persistent inflammatory response. As a promising topical drug delivery system, the application of hydrogels in the controlled release of periodontal bioactive drugs has aroused great interest. Therefore, the design and preparation of an injectable hydrogel with self-repairing properties for periodontitis treatment is still in great demand. In this study, polysaccharide-based self-healing hydrogels with antimicrobial osteogenic properties were developed. Zinc ions are introduced into a dynamic cross-linking network formed by dynamic Schiff bases between carboxymethyl chitosan and oxidized hyaluronic acid via coordination bonds. The OC-Zn hydrogels exhibited good tissue adhesion, good fatigue resistance, excellent self-healing ability, low cytotoxicity, good broad-spectrum antimicrobial activity, and osteogenic activity. Therefore, the designed hydrogels allow the development of drug delivery systems as a potential treatment for periodontitis.
Collapse
Affiliation(s)
- Mei Yang
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Dejiang Du
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Yuanping Hao
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Zhaojian Meng
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Haiyu Zhang
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Yuhan Liu
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| |
Collapse
|
22
|
Li J, Ke H, Lei X, Zhang J, Wen Z, Xiao Z, Chen H, Yao J, Wang X, Wei Z, Zhang H, Pan W, Shao Y, Zhao Y, Xie D, Zeng C. Controlled-release hydrogel loaded with magnesium-based nanoflowers synergize immunomodulation and cartilage regeneration in tendon-bone healing. Bioact Mater 2024; 36:62-82. [PMID: 38440323 PMCID: PMC10909705 DOI: 10.1016/j.bioactmat.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
Tendon-bone interface injuries pose a significant challenge in tissue regeneration, necessitating innovative approaches. Hydrogels with integrated supportive features and controlled release of therapeutic agents have emerged as promising candidates for the treatment of such injuries. In this study, we aimed to develop a temperature-sensitive composite hydrogel capable of providing sustained release of magnesium ions (Mg2+). We synthesized magnesium-Procyanidin coordinated metal polyphenol nanoparticles (Mg-PC) through a self-assembly process and integrated them into a two-component hydrogel. The hydrogel was composed of dopamine-modified hyaluronic acid (Dop-HA) and F127. To ensure controlled release and mitigate the "burst release" effect of Mg2+, we covalently crosslinked the Mg-PC nanoparticles through coordination bonds with the catechol moiety within the hydrogel. This crosslinking strategy extended the release window of Mg2+ concentrations for up to 56 days. The resulting hydrogel (Mg-PC@Dop-HA/F127) exhibited favorable properties, including injectability, thermosensitivity and shape adaptability, making it suitable for injection and adaptation to irregularly shaped supraspinatus implantation sites. Furthermore, the hydrogel sustained the release of Mg2+ and Procyanidins, which attracted mesenchymal stem and progenitor cells, alleviated inflammation, and promoted macrophage polarization towards the M2 phenotype. Additionally, it enhanced collagen synthesis and mineralization, facilitating the repair of the tendon-bone interface. By incorporating multilevel metal phenolic networks (MPN) to control ion release, these hybridized hydrogels can be customized for various biomedical applications.
Collapse
Affiliation(s)
- Jintao Li
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Haolin Ke
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangcheng Lei
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jiexin Zhang
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zhicheng Wen
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zhisheng Xiao
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Huabin Chen
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Juncheng Yao
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xuan Wang
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengnong Wei
- Department of Spine Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Hongrui Zhang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weilun Pan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yan Shao
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yitao Zhao
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Denghui Xie
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Chun Zeng
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Odatsu T, Valanezhad A, Shinohara A, Takase K, Naito M, Sawase T. Bioactivity and antibacterial effects of zinc-containing bioactive glass on the surface of zirconia abutments. J Dent 2024; 145:105033. [PMID: 38697505 DOI: 10.1016/j.jdent.2024.105033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVES This study aimed to enhance gingival fibroblast function and to achieve antibacterial activity around the implant abutment by using a zinc (Zn)-containing bioactive glass (BG) coating. METHODS 45S5 BG containing 0, 5, and 10 wt.% Zn were coated on zirconia disks. The release of silica and Zn ions in physiological saline and their antibacterial effects were measured. The effects of BG coatings on human gingival fibroblasts (hGFs) were assessed using cytotoxicity assays and by analyzing the gene expression of various genes related to antioxidant enzymes, wound healing, and fibrosis. RESULTS BG coatings are capable of continuous degradation and simultaneous ion release. The antibacterial effect of BG coatings increased with the addition of Zn, while the cytotoxicity remained unchanged compared to the group without coatings. BG coating enhances the expression of angiogenesis genes, while the Zn-containing BG enhances the expression of antioxidant genes at an early time point. BG coating enhances the expression of collagen genes at later time points. CONCLUSIONS The antibacterial effect of BG improved with the increase in Zn concentration, without inducing cytotoxicity. BG coating enhances the expression of angiogenesis genes, and Zn-containing BG enhances the expression of antioxidant genes at an early time point. BG coating enhances the expression of collagen genes at later time points. CLINICAL SIGNIFICANCE Adding 10 wt% Zn to BG could enhance the environment around implant abutments by providing antibacterial, antioxidant, and anti-fibrotic effects, having potential for clinical use.
Collapse
Affiliation(s)
- Tetsurou Odatsu
- Department of Applied Prosthodontics, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan.
| | - Alireza Valanezhad
- Department of Dental and Biomaterials Science, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| | - Ayano Shinohara
- Department of Applied Prosthodontics, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| | - Kazuma Takase
- Department of Prosthetic Dentistry, Institute of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| | - Takashi Sawase
- Department of Applied Prosthodontics, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
24
|
Zhang B, Pei Z, He W, Feng W, Hao T, Sun M, Yang X, Wang X, Kong X, Chang J, Liu G, Bai R, Wang C, Zheng F. 3D-printed porous zinc scaffold combined with bioactive serum exosomes promotes bone defect repair in rabbit radius. Aging (Albany NY) 2024; 16:9625-9648. [PMID: 38829771 PMCID: PMC11210218 DOI: 10.18632/aging.205891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024]
Abstract
Currently, the repair of large bone defects still faces numerous challenges, with the most crucial being the lack of large bone grafts with good osteogenic properties. In this study, a novel bone repair implant (degradable porous zinc scaffold/BF Exo composite implant) was developed by utilizing laser melting rapid prototyping 3D printing technology to fabricate a porous zinc scaffold, combining it under vacuum conditions with highly bioactive serum exosomes (BF EXO) and Poloxamer 407 thermosensitive hydrogel. The electron microscope revealed the presence of tea saucer-shaped exosomes with a double-layered membrane structure, ranging in diameter from 30-150 nm, with an average size of 86.3 nm and a concentration of 3.28E+09 particles/mL. In vitro experiments demonstrated that the zinc scaffold displayed no significant cytotoxicity, and loading exosomes enhanced the zinc scaffold's ability to promote osteogenic cell activity while inhibiting osteoclast activity. In vivo experiments on rabbits indicated that the hepatic and renal toxicity of the zinc scaffold decreased over time, and the loading of exosomes alleviated the hepatic and renal toxic effects of the zinc scaffold. Throughout various stages of repairing radial bone defects in rabbits, loading exosomes reinforced the zinc scaffold's capacity to enhance osteogenic cell activity, suppress osteoclast activity, and promote angiogenesis. This effect may be attributed to BF Exo's regulation of p38/STAT1 signaling. This study signifies that the combined treatment of degradable porous zinc scaffolds and BF Exo is an effective and biocompatible strategy for bone defect repair therapy.
Collapse
Affiliation(s)
- Baoxin Zhang
- Department of Orthopedic Surgery, Suzhou Medical College of Soochow University, Suzhou 215000, Jiangsu, China
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Zhiwei Pei
- Graduate School of Inner Mongolia Medical University, Hohhot 010050, China
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Wanxiong He
- Graduate School of Inner Mongolia Medical University, Hohhot 010050, China
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Wei Feng
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Ting Hao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Mingqi Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Xiaolong Yang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Xing Wang
- Department of Orthopedic Surgery, Bayannur City Hospital, Bayannur 015000, China
| | - Xiangyu Kong
- Graduate School of Inner Mongolia Medical University, Hohhot 010050, China
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Jiale Chang
- Graduate School of Inner Mongolia Medical University, Hohhot 010050, China
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Guanghui Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Rui Bai
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Chang Wang
- Department of Biomaterials Research Center, Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Shaanxi 710016, Xi’an, China
| | - Feng Zheng
- Department of Orthopedic Surgery, Suzhou Medical College of Soochow University, Suzhou 215000, Jiangsu, China
- Department of Orthopedic Surgery, Qinghai Provincial People’s Hospital, Xining 810000, Qinghai, China
| |
Collapse
|
25
|
Chen E, Wang T, Sun Z, Gu Z, Xiao S, Ding Y. Polyphenols-based intelligent oral barrier membranes for periodontal bone defect reconstruction. Regen Biomater 2024; 11:rbae058. [PMID: 38854682 PMCID: PMC11157154 DOI: 10.1093/rb/rbae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Abstract
Periodontitis-induced periodontal bone defects significantly impact patients' daily lives. The guided tissue regeneration and guided bone regeneration techniques, which are based on barrier membranes, have brought hope for the regeneration of periodontal bone defects. However, traditional barrier membranes lack antimicrobial properties and cannot effectively regulate the complex oxidative stress microenvironment in periodontal bone defect areas, leading to unsatisfactory outcomes in promoting periodontal bone regeneration. To address these issues, our study selected the collagen barrier membrane as the substrate material and synthesized a novel barrier membrane (PO/4-BPBA/Mino@COL, PBMC) with an intelligent antimicrobial coating through a simple layer-by-layer assembly method, incorporating reactive oxygen species (ROS)-scavenging components, commercial dual-functional linkers and antimicrobial building blocks. Experimental results indicated that PBMC exhibited good degradability, hydrophilicity and ROS-responsiveness, allowing for the slow and controlled release of antimicrobial drugs. The outstanding antibacterial, antioxidant and biocompatibility properties of PBMC contributed to resistance to periodontal pathogen infection and regulation of the oxidative balance, while enhancing the migration and osteogenic differentiation of human periodontal ligament stem cells. Finally, using a rat periodontal bone defect model, the therapeutic effect of PBMC in promoting periodontal bone regeneration under infection conditions was confirmed. In summary, the novel barrier membranes designed in this study have significant potential for clinical application and provide a reference for the design of future periodontal regenerative functional materials.
Collapse
Affiliation(s)
- Enni Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiyuan Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shimeng Xiao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
26
|
Wang R, He X, Su S, Bai J, Liu H, Zhou F. Multifunctional tannic acid-based nanocomposite methacrylated silk fibroin hydrogel with the ability to scavenge reactive oxygen species and reduce inflammation for bone regeneration. Int J Biol Macromol 2024; 266:131357. [PMID: 38580010 DOI: 10.1016/j.ijbiomac.2024.131357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The microenvironment of bone defect site is vital for bone regeneration. Severe bone defect is often accompanied with severe inflammation and elevated generation of reactive oxygen species (ROS) during bone repair. In recent years, the unfriendly local microenvironment has been paid more and more attention. Some bioactive materials with the ability to regulate the microenvironment to promote bone regeneration urgently need to be developed. Here, we develop a multifunctional composite hydrogel composed of photo-responsive methacrylate silk fibroin (SFMA), laponite (LAP) nanocomposite and tannic acid (TA), aiming to endow hydrogel with antioxidant, anti-inflammatory and osteogenic induction ability. Characterization results confirmed that the SFMA-LAP@TA hydrogel could significantly improve the mechanical properties of hydrogel. The ROS-Scavenging ability of the hydrogel enabled bone marrow mesenchymal stem cells (BMSCs) to survive against H2O2-induced oxidative stress. In addition, the SFMA-LAP@TA hydrogel effectively decreased the expression of pro-inflammatory factors in RAW264.7. More importantly, the SFMA-LAP@TA hydrogel could enhance the expression of osteogenic markers of BMSCs under inflammatory condition and greatly promote new bone formation in a critical-sized cranial defect model. Above all, the multifunctional hydrogel could effectively promote bone regeneration in vitro and in vivo by scavenging ROS and reducing inflammation, providing a prospective strategy for bone regeneration.
Collapse
Affiliation(s)
- Ruideng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Xi He
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shilong Su
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Jinwu Bai
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China.
| |
Collapse
|
27
|
Wang Y, Zhao Y, Ma S, Fu M, Wu M, Li J, Wu K, Zhuang X, Lu Z, Guo J. Injective Programmable Proanthocyanidin-Coordinated Zinc-Based Composite Hydrogel for Infected Bone Repair. Adv Healthc Mater 2024; 13:e2302690. [PMID: 37885334 DOI: 10.1002/adhm.202302690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Effectively integrating infection control and osteogenesis to promote infected bone repair is challenging. Herein, injective programmable proanthocyanidin (PC)-coordinated zinc-based composite hydrogels (ipPZCHs) are developed by compositing antimicrobial and antioxidant PC-coordinated zinc oxide (ZnO) microspheres with thioether-grafted sodium alginate (TSA), followed by calcium chloride (CaCl2 ) crosslinking. Responsive to the high endogenous reactive oxygen species (ROS) microenvironment in infected bone defects, the hydrophilicity of TSA can be significantly improved, to trigger the disintegration of ipPZCHs and the fast release of PC-coordinated ZnOs. This together with the easily dissociable PC-Zn2+ coordination induced fast release of antimicrobial zinc (Zn2+ ) with/without silver (Ag+ ) ions from PC-coordinated ZnOs (for Zn2+ , > 100 times that of pure ZnO) guarantees the strong antimicrobial activity of ipPZCHs. The exogenous ROS generated by ZnO and silver nanoparticles during the antimicrobial process further speeds up the disintegration of ipPZCHs, augmenting the antimicrobial efficacy. At the same time, ROS-responsive degradation/disintegration of ipPZCHs vacates space for bone ingrowth. The concurrently released strong antioxidant PC scavenges excess ROS thus enhances the immunomodulatory (in promoting the anti-inflammatory phenotype (M2) polarization of macrophages) and osteoinductive properties of Zn2+ , thus the infected bone repair is effectively promoted via the aforementioned programmable and self-adaptive processes.
Collapse
Affiliation(s)
- Yue Wang
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Yitao Zhao
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Shiyuan Ma
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Meimei Fu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Min Wu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Jintao Li
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Keke Wu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Zhihui Lu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
- Regenerative Medicine and Tissue Repair Material Research Center, Huangpu Institute of Materials, 88 Yonglong Avenue of Xinlong Town, Guangzhou, 511363, P. R. China
| | - Jinshan Guo
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
- Regenerative Medicine and Tissue Repair Material Research Center, Huangpu Institute of Materials, 88 Yonglong Avenue of Xinlong Town, Guangzhou, 511363, P. R. China
- Guangzhou New Materials Science Center, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 88 Yonglong Avenue of Xinlong Town, Guangzhou, 511361, P. R. China
| |
Collapse
|
28
|
Wu J, Xiang S, Zhang M, Zhou N, Wang M, Li L, Shen J. Self-Assembled Nanoflowers Realizes Synergistic Sterilization with Photothermal and Chemical Kinetics Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2591-2600. [PMID: 38265289 DOI: 10.1021/acs.langmuir.3c02838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Wounds caused by bacterial infections have become a major challenge in the medical field; however, the overuse of antibiotics has led to increased resistance and bioaccumulation. Therefore, it is urgent to develop an antibacterial agent with excellent antibacterial properties and biosafety. Here, we designed an antibacterial platform that combines photothermal and chemical kinetics therapies. Platinum-cobalt (PtCo) bimetallic nanoparticles (NPs) were first prepared, and then PtCo@MnO2 nanoflowers were obtained by adding MES buffer solution and KMnO4 to the PtCo bimetallic nanoparticle suspension using ultrasound. When light strikes metal NPs, they can strongly absorb the photon energy, resulting in photothermal properties. In addition, Pt and Co were used as the oxidase mimics, and MnO2 was used as the catalase mimic. In summary, the photothermal capacity of PtCo@MnO2 nanoflowers with rough surfaces can effectively disrupt the permeability of the bacterial cell membranes. Further, by catalyzing H2O2, PtCo@MnO2 nanoflowers can generate large amounts of hydroxyl free radicals, which can damage bacterial cell membranes, proteins, and DNA. In addition, MnO2 can effectively alleviate the hypoxic environment of the bacterially infected areas and activate deep bacteria, thus achieving the goal of complete sterilization. The in vitro and in vivo results showed that PtCo@MnO2 displayed excellent antibacterial properties and good biocompatibility.
Collapse
Affiliation(s)
- Jing Wu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shuqing Xiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ming Zhang
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Ninglin Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mingqian Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Li Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| |
Collapse
|
29
|
Zhao Q, Ni Y, Wei H, Duan Y, Chen J, Xiao Q, Gao J, Yu Y, Cui Y, Ouyang S, Miron RJ, Zhang Y, Wu C. Ion incorporation into bone grafting materials. Periodontol 2000 2024; 94:213-230. [PMID: 37823468 DOI: 10.1111/prd.12533] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
The use of biomaterials in regenerative medicine has expanded to treat various disorders caused by trauma or disease in orthopedics and dentistry. However, the treatment of large and complex bone defects presents a challenge, leading to a pressing need for optimized biomaterials for bone repair. Recent advances in chemical sciences have enabled the incorporation of therapeutic ions into bone grafts to enhance their performance. These ions, such as strontium (for bone regeneration/osteoporosis), copper (for angiogenesis), boron (for bone growth), iron (for chemotaxis), cobalt (for B12 synthesis), lithium (for osteogenesis/cementogenesis), silver (for antibacterial resistance), and magnesium (for bone and cartilage regeneration), among others (e.g., zinc, sodium, and silica), have been studied extensively. This review aims to provide a comprehensive overview of current knowledge and recent developments in ion incorporation into biomaterials for bone and periodontal tissue repair. It also discusses recently developed biomaterials from a basic design and clinical application perspective. Additionally, the review highlights the importance of precise ion introduction into biomaterials to address existing limitations and challenges in combination therapies. Future prospects and opportunities for the development and optimization of biomaterials for bone tissue engineering are emphasized.
Collapse
Affiliation(s)
- Qin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yueqi Ni
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Hongjiang Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yiling Duan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jingqiu Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Qi Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jie Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yiqian Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yu Cui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Simin Ouyang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
30
|
Liu Y, Yu L, Chen J, Li S, Wei Z, Guo W. Exploring the Osteogenic Potential of Zinc-Doped Magnesium Phosphate Cement (ZMPC): A Novel Material for Orthopedic Bone Defect Repair. Biomedicines 2024; 12:344. [PMID: 38397946 PMCID: PMC10886858 DOI: 10.3390/biomedicines12020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
In orthopedics, the repair of bone defects remains challenging. In previous research reports, magnesium phosphate cements (MPCs) were widely used because of their excellent mechanical properties, which have been widely used in the field of orthopedic medicine. We built a new k-struvite (MPC) cement obtained from zinc oxide (ZnO) and assessed its osteogenic properties. Zinc-doped magnesium phosphate cement (ZMPC) is a novel material with good biocompatibility and degradability. This article summarizes the preparation method, physicochemical properties, and biological properties of ZMPC through research on this material. The results show that ZMPC has the same strength and toughness (25.3 ± 1.73 MPa to 20.18 ± 2.11 MPa), that meet the requirements of bone repair. Furthermore, the material can gradually degrade (12.27% ± 1.11% in 28 days) and promote osteogenic differentiation (relative protein expression level increased 2-3 times) of rat bone marrow mesenchymal stem cells (rBMSCs) in vitro. In addition, in vivo confirmation revealed increased bone regeneration in a rat calvarial defect model compared with MPC alone. Therefore, ZMPC has broad application prospects and is expected to be an important repair material in the field of orthopedic medicine.
Collapse
Affiliation(s)
| | | | | | | | | | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
31
|
Wu Y, Cheng Z, Hu W, Tang S, Zhou X, Dong S. Biosynthesized Silver Nanoparticles Inhibit Osteoclastogenesis by Suppressing NF-κB Signaling Pathways. Adv Biol (Weinh) 2024; 8:e2300355. [PMID: 37953696 DOI: 10.1002/adbi.202300355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Indexed: 11/14/2023]
Abstract
Osteoclasts overactivity plays a critical role in the progress of inflammatory bone loss. In addition, ROS can facilitate the formation and function of osteoclasts. Silver nanoparticles (Ag NPs) with ROS scavenging activity are potential candidates for inflammatory bone loss. In this regard, the biosynthetic Ag NPs with low toxicity and high stability by using Flos Sophorae Immaturus extract as the reducing and capping agents are reported. The inflammatory bone loss model is established by injecting LPS. Quantitative reverse transcription-polymerase chain reaction and Western Blot are utilized to determine the expression level of target biomarkers related to osteoclast formation. Ag NPs can significantly reduce the number of TRAP-positive (TRAP+ ) cells. In addition, Ag NPs down-regulate the expression of biomarkers relevant to osteoclast formation. Interestingly, Ag NPs can effectively suppress osteoclast formation via down-regulating ROS-mediated phosphorylation of NF-κB pathways. The in vivo study shows that Ag NPs can ameliorate bone density and decrease osteoclast number. Due to these benefits, the constructed Ag NPs can delay the progression of inflammatory bone loss. These findings suggest that Ag NPs are a potential therapeutic agent in the treatment of inflammatory bone loss.
Collapse
Affiliation(s)
- Yu Wu
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, China
| | - Zhong Cheng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, China
| | - Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China
| | - Shanwen Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, China
| | - Xue Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
32
|
Sun X, Xu X, Yue X, Wang T, Wang Z, Zhang C, Wang J. Nanozymes With Osteochondral Regenerative Effects: An Overview of Mechanisms and Recent Applications. Adv Healthc Mater 2024; 13:e2301924. [PMID: 37633309 DOI: 10.1002/adhm.202301924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/14/2023] [Indexed: 08/28/2023]
Abstract
With the discovery of the intrinsic enzyme-like activity of metal oxides, nanozymes garner significant attention due to their superior characteristics, such as low cost, high stability, multi-enzyme activity, and facile preparation. Notably, in the field of biomedicine, nanozymes primarily focus on disease detection, antibacterial properties, antitumor effects, and treatment of inflammatory conditions. However, the potential for application in regenerative medicine, which primarily addresses wound healing, nerve defect repair, bone regeneration, and cardiovascular disease treatment, is garnering interest as well. This review introduces nanozymes as an innovative strategy within the realm of bone regenerative medicine. The primary focus of this approach lies in the facilitation of osteochondral regeneration through the modulation of the pathological microenvironment. The catalytic mechanisms of four types of representative nanozymes are first discussed. The pathological microenvironment inhibiting osteochondral regeneration, followed by summarizing the therapy mechanism of nanozymes to osteochondral regeneration barriers is introduced. Further, the therapeutic potential of nanozymes for bone diseases is included. To improve the therapeutic efficiency of nanozymes and facilitate their clinical translation, future potential applications in osteochondral diseases are also discussed and some significant challenges addressed.
Collapse
Affiliation(s)
- Xueheng Sun
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
| | - Xiang Xu
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Xiaokun Yue
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Tianchang Wang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Zhaofei Wang
- Department of Orthopaedic Surgery, Shanghai ZhongYe Hospital, Genertec Universal Medical Group, Shanghai, 200941, China
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
- Institute of Translational Medicine, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Jinwu Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
| |
Collapse
|
33
|
Zhang S, Zhao G, Mahotra M, Ma S, Li W, Lee HW, Yu H, Sampathkumar K, Xie D, Guo J, Loo SCJ. Chitosan nanofibrous scaffold with graded and controlled release of ciprofloxacin and BMP-2 nanoparticles for the conception of bone regeneration. Int J Biol Macromol 2024; 254:127912. [PMID: 37939763 DOI: 10.1016/j.ijbiomac.2023.127912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/18/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
The repair of bone defects using grafts is commonly employed in clinical practice. However, the risk of infection poses a significant concern. Tissue engineering scaffolds with antibacterial functionalities offer a better approach for bone tissue repair. In this work, firstly, two kinds of nanoparticles were prepared using chitosan to complex with ciprofloxacin and BMP-2, respectively. The ciprofloxacin complex nanoparticles improved the dissolution efficiency of ciprofloxacin achieving a potent antibacterial effect and cumulative release reached 95 % in 7 h. For BMP-2 complexed nanoparticles, the release time points can be programmed at 80 h, 100 h or 180 h by regulating the number of coating chitosan layers. Secondly, a functional scaffold was prepared by combining the two nanoparticles with chitosan nanofibers. The microscopic nanofiber structure of the scaffold with 27.28 m2/g specific surface area promotes cell adhesion, high porosity provides space for cell growth, and facilitates drug loading and release. The multifunctional scaffold exhibits programmed release function, and has obvious antibacterial effect at the initial stage of implantation, and releases BMP-2 to promote osteogenic differentiation of mesenchymal stem cells after the antibacterial effect ends. The scaffold is expected to be applied in clinical bone repair and graft infection prevention.
Collapse
Affiliation(s)
- Sihan Zhang
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou 510630, China
| | - Guanglei Zhao
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Manish Mahotra
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Shiyuan Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenrui Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, 637335, Singapore
| | - Hiang Wee Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Hong Yu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Kaarunya Sampathkumar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Denghui Xie
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou 510630, China.
| | - Jinshan Guo
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou 510630, China; Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore.
| |
Collapse
|
34
|
Li S, Niu D, Fang H, Chen Y, Li J, Zhang K, Yin J, Fu P. Tissue adhesive, ROS scavenging and injectable PRP-based 'plasticine' for promoting cartilage repair. Regen Biomater 2023; 11:rbad104. [PMID: 38235061 PMCID: PMC10793072 DOI: 10.1093/rb/rbad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/17/2023] [Accepted: 11/11/2023] [Indexed: 01/19/2024] Open
Abstract
Platelet-rich plasma (PRP) that has various growth factors has been used clinically in cartilage repair. However, the short residence time and release time at the injury site limit its therapeutic effect. The present study fabricated a granular hydrogel that was assembled from gelatin microspheres and tannic acid through their abundant hydrogen bonding. Gelatin microspheres with the gelatin concentration of 10 wt% and the diameter distribution of 1-10 μm were used to assemble by tannic acid to form the granular hydrogel, which exhibited elasticity under low shear strain, but flowability under higher shear strain. The viscosity decreased with the increase in shear rate. Meanwhile, the granular hydrogel exhibited self-healing feature during rheology test. Thus, granular hydrogel carrying PRP not only exhibited well-performed injectability but also performed like a 'plasticine' that possessed good plasticity. The granular hydrogel showed tissue adhesion ability and reactive oxygen species scavenging ability. Granular hydrogel carrying PRP transplanted to full-thickness articular cartilage defects could integrate well with native cartilage, resulting in newly formed cartilage articular fully filled in defects and well-integrated with the native cartilage and subchondral bone. The unique features of the present granular hydrogel, including injectability, plasticity, porous structure, tissue adhesion and reactive oxygen species scavenging provided an ideal PRP carrier toward cartilage tissue engineering.
Collapse
Affiliation(s)
- Shiao Li
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Dawei Niu
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Haowei Fang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Yancheng Chen
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Jinyan Li
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Kunxi Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Peiliang Fu
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
35
|
Wu M, Zhao Y, Tao M, Fu M, Wang Y, Liu Q, Lu Z, Guo J. Malate-Based Biodegradable Scaffolds Activate Cellular Energetic Metabolism for Accelerated Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50836-50853. [PMID: 37903387 DOI: 10.1021/acsami.3c09394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The latest advancements in cellular bioenergetics have revealed the potential of transferring chemical energy to biological energy for therapeutic applications. Despite efforts, a three-dimensional (3D) scaffold that can induce long-term bioenergetic effects and facilitate tissue regeneration remains a big challenge. Herein, the cellular energetic metabolism promotion ability of l-malate, an important intermediate of the tricarboxylic acid (TCA) cycle, was proved, and a series of bioenergetic porous scaffolds were fabricated by synthesizing poly(diol l-malate) (PDoM) prepolymers via a facial one-pot polycondensation of l-malic acid and aliphatic diols, followed by scaffold fabrication and thermal-cross-linking. The degradation products of the developed PDoM scaffolds can regulate the metabolic microenvironment by entering mitochondria and participating in the TCA cycle to elevate intracellular adenosine triphosphate (ATP) levels, thus promoting the cellular biosynthesis, including the production of collagen type I (Col1a1), fibronectin 1 (Fn1), and actin alpha 2 (Acta2/α-Sma). The porous PDoM scaffold was demonstrated to support the growth of the cocultured mesenchymal stem cells (MSCs) and promote their secretion of bioactive molecules [such as vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1), and basic fibroblast growth factor (bFGF)], and this stem cells-laden scaffold architecture was proved to accelerate wound healing in a critical full-thickness skin defect model on rats.
Collapse
Affiliation(s)
- Min Wu
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yitao Zhao
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Meihan Tao
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Meimei Fu
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yue Wang
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Qi Liu
- Regenerative Medicine and Tissue Repair Research Center, Huangpu Institute of Materials, Guangzhou 511363, P. R. China
| | - Zhihui Lu
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
- Regenerative Medicine and Tissue Repair Research Center, Huangpu Institute of Materials, Guangzhou 511363, P. R. China
| | - Jinshan Guo
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
36
|
Chen G, Wang Q, Zhu Y, Zhao M, Ma S, Bai Y, Wang J, Zou M, Cheng G. Molecularly engineered dual-network photothermal hydrogel delivery system with enhanced mechanical properties, antibacterial ability and angiogenic effect for accelerating wound healing. J Mech Behav Biomed Mater 2023; 146:106081. [PMID: 37651758 DOI: 10.1016/j.jmbbm.2023.106081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
Bacterial infection caused by trauma and chronic wounds in the most mobile area remains a challenge in clinic. It is difficult to achieve the synergistic effects of antibacterial capacity and skin regeneration using conventional therapeutic methods. Developing a multi-functional hydrogel dressing that can cope with the complex wound environment will contribute to the healing and therapeutic effects. In this work, a novel Cur@PAM/TA-Cu photothermal hydrogel delivery system was prepared by engineering tannic acid (TA) into covalent cross-linked polyacrylamide (PAM) on which the chelating tannic acid-copper metal-polyphenolic network (TA-Cu MPN) was imposed to form dual-crosslinked networks, and the natural medicine curcumin was loaded eventually. The molecularly engineered dual-crosslinked networks resulted in enhanced mechanical properties including bio-adhesion, tensile strength and self-healing, which made the hydrogel suitable for dynamic wound and various application scenarios. In addition, the excellent photothermal capacity, antioxidant effect and biocompatibility of the hydrogel were demonstrated. Notably, this curcumin loaded photothermal hydrogel exhibited superior antibacterial capacity (almost 100% killing ratio to E. coli and S. aureus) under 808 nm laser irradiation. Meanwhile, the in vivo wound healing experiment results revealed that the anti-inflammation and proangiogenic effect of Cur@PAM/TA-Cu hydrogel successfully shortened the healing time of wound and the reconstruction of skin structure and function. Thus, this dual-crosslinked multi-functional hydrogel delivery system is a promising wound dressing for accelerating wound healing.
Collapse
Affiliation(s)
- Guo Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Qiaoqiao Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Yumeng Zhu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Minqian Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Siyuan Ma
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Yifeng Bai
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jingfeng Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Meijuan Zou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Gang Cheng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|