1
|
Zhou J, Nie Y, Jin C, Zhang JXJ. Engineering Biomimetic Extracellular Matrix with Silica Nanofibers: From 1D Material to 3D Network. ACS Biomater Sci Eng 2022; 8:2258-2280. [PMID: 35377596 DOI: 10.1021/acsbiomaterials.1c01525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biomaterials at nanoscale is a fast-expanding research field with which extensive studies have been conducted on understanding the interactions between cells and their surrounding microenvironments as well as intracellular communications. Among many kinds of nanoscale biomaterials, mesoporous fibrous structures are especially attractive as a promising approach to mimic the natural extracellular matrix (ECM) for cell and tissue research. Silica is a well-studied biocompatible, natural inorganic material that can be synthesized as morpho-genetically active scaffolds by various methods. This review compares silica nanofibers (SNFs) to other ECM materials such as hydrogel, polymers, and decellularized natural ECM, summarizes fabrication techniques for SNFs, and discusses different strategies of constructing ECM using SNFs. In addition, the latest progress on SNFs synthesis and biomimetic ECM substrates fabrication is summarized and highlighted. Lastly, we look at the wide use of SNF-based ECM scaffolds in biological applications, including stem cell regulation, tissue engineering, drug release, and environmental applications.
Collapse
Affiliation(s)
- Junhu Zhou
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Yuan Nie
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Congran Jin
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - John X J Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
2
|
Tian Y, Wang Z, Wang L. Hollow fibers: from fabrication to applications. Chem Commun (Camb) 2021; 57:9166-9177. [PMID: 34519322 DOI: 10.1039/d1cc02991f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hollow fibers have attracted more and more attention due to their broad range of applications in numerous fields. We review the latest advance and summarize the fabrication methods, types and applications of hollow fibers. We mainly introduce the fabrication methods of hollow fibers, including co-extrusion/co-axial spinning methods, template methods, 3D printing methods, electrospinning methods, self-crimping methods and gas foaming process. Meanwhile, we summarize four types of hollow fibers: one-layered hollow fibers, multi-layered hollow fibers, multi-hollow fibers and branched hollow fibers. Next, we focus on the main applications of hollow fibers, such as gas separation, cell culture, microfluidic channels, artificial tubular tissues, etc. Finally, we present the prospects of the future trend of development. The review would promote the further development of hollow fibers and benefit their advance in sensing, bioreactors, electrochemical catalysis, energy conversion, microfluidics, gas separation, air purification, drug delivery, functional materials, cell culture and tissue engineering. This review has great significance for the design of new functional materials and development of devices and systems in the related fields.
Collapse
Affiliation(s)
- Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, 110169 Shenyang, China.,Foshan Graduate School of Northeastern University, Foshan, 528300, China.,Department of Mechanical Engineering, the University of Hong Kong, Hong Kong, China.
| | - Zhaoyang Wang
- College of Medicine and Biological Information Engineering, Northeastern University, 110169 Shenyang, China.,Foshan Graduate School of Northeastern University, Foshan, 528300, China
| | - Liqiu Wang
- Department of Mechanical Engineering, the University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
The Role of Biomimetic Hypoxia on Cancer Cell Behaviour in 3D Models: A Systematic Review. Cancers (Basel) 2021; 13:cancers13061334. [PMID: 33809554 PMCID: PMC7999912 DOI: 10.3390/cancers13061334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer remains one of the leading causes of death worldwide. The advancements in 3D tumour models provide in vitro test-beds to study cancer growth, metastasis and response to therapy. We conducted this systematic review on existing experimental studies in order to identify and summarize key biomimetic tumour microenvironmental features which affect aspects of cancer biology. The review noted the significance of in vitro hypoxia and 3D tumour models on epithelial to mesenchymal transition, drug resistance, invasion and migration of cancer cells. We highlight the importance of various experimental parameters used in these studies and their subsequent effects on cancer cell behaviour. Abstract The development of biomimetic, human tissue models is recognized as being an important step for transitioning in vitro research findings to the native in vivo response. Oftentimes, 2D models lack the necessary complexity to truly recapitulate cellular responses. The introduction of physiological features into 3D models informs us of how each component feature alters specific cellular response. We conducted a systematic review of research papers where the focus was the introduction of key biomimetic features into in vitro models of cancer, including 3D culture and hypoxia. We analysed outcomes from these and compiled our findings into distinct groupings to ascertain which biomimetic parameters correlated with specific responses. We found a number of biomimetic features which primed cancer cells to respond in a manner which matched in vivo response.
Collapse
|
4
|
Wang S, Gu K, Guo Z, Yan C, Yang T, Chen Z, Tian H, Zhu WH. Self-Assembly of a Monochromophore-Based Polymer Enables Unprecedented Ratiometric Tracing of Hypoxia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805735. [PMID: 30484912 DOI: 10.1002/adma.201805735] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/02/2018] [Indexed: 06/09/2023]
Abstract
The accuracy of traditional bischromophore-based ratiometric probes is always compromised by undesirable energy/charge transferring interactions between the internal reference moiety and the sensing chromophore. In this regard, ratiometric sensing with a monochromophore system is highly desirable. Herein, an unprecedented monochromophore-based ratiometric probe, which consists of a hydrophilic backbone poly(N-vinylpyrrolidone) (PVP) and single chromophore of platinum(II) tetraphenylporphyrin (Pt-TPP) is reported. Combination of the specific assembled clustering-triggered fluorescent emission (oxygen-insensitive) with the original Pt-TPP phosphorescence (oxygen-sensitive) enables successful construction of a monochromophore-based ratiometric nanosensor for directly tracing hypoxia in vivo, along with the preferable facilitation of enhanced permeation and retention effect and long excitation wavelength. The unique ratiometric signals enable the direct observation from normoxic to hypoxic environment in both living A549 cells and a tumor-bearing mice model, providing a significant paradigm of a monochromophore-based dual-emissive system with the specific assembled cluster emission. The work satisfactorily demonstrates a valuable strategy for designing monochromophore-based dual-emissive materials, and validates its utility for in vivo ratiometric biological sensing without the common energy/charge interference in bischromophore-based system.
Collapse
Affiliation(s)
- Shuwen Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kaizhi Gu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhiqian Guo
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chenxu Yan
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tingyuan Yang
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhuo Chen
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - He Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei-Hong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
5
|
Ribeiro VP, Silva-Correia J, Gonçalves C, Pina S, Radhouani H, Montonen T, Hyttinen J, Roy A, Oliveira AL, Reis RL, Oliveira JM. Rapidly responsive silk fibroin hydrogels as an artificial matrix for the programmed tumor cells death. PLoS One 2018; 13:e0194441. [PMID: 29617395 PMCID: PMC5884513 DOI: 10.1371/journal.pone.0194441] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 03/02/2018] [Indexed: 01/29/2023] Open
Abstract
Timely and spatially-regulated injectable hydrogels, able to suppress growing tumors in response to conformational transitions of proteins, are of great interest in cancer research and treatment. Herein, we report rapidly responsive silk fibroin (SF) hydrogels formed by a horseradish peroxidase (HRP) crosslinking reaction at physiological conditions, and demonstrate their use as an artificial biomimetic three-dimensional (3D) matrix. The proposed SF hydrogels presented a viscoelastic nature of injectable hydrogels and spontaneous conformational changes from random coil to β-sheet conformation under physiological conditions. A human neuronal glioblastoma (U251) cell line was used for screening cell encapsulation and in vitro evaluation within the SF hydrogels. The transparent random coil SF hydrogels promoted cell viability and proliferation up to 10 days of culturing, while the crystalline SF hydrogels converted into β-sheet structure induced the formation of TUNEL-positive apoptotic cells. Therefore, this work provides a powerful tool for the investigation of the microenvironment on the programed tumor cells death, by using rapidly responsive SF hydrogels as 3D in vitro tumor models.
Collapse
Affiliation(s)
- Viviana P. Ribeiro
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark – Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associated Laboratory, Braga/Guimarães, Portugal
- * E-mail:
| | - Joana Silva-Correia
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark – Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Cristiana Gonçalves
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark – Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Sandra Pina
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark – Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Hajer Radhouani
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark – Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Toni Montonen
- Computational Biophysics and Imaging Group, ELT Department, Tampere University of Technology, Tampere, Finland
- BioMediTech - Institute of Biosciences and Medical Technology, Tampere, Finland
| | - Jari Hyttinen
- Computational Biophysics and Imaging Group, ELT Department, Tampere University of Technology, Tampere, Finland
- BioMediTech - Institute of Biosciences and Medical Technology, Tampere, Finland
| | - Anirban Roy
- Anasys Instruments Corp - Santa Barbara, California, United States of America
| | - Ana L. Oliveira
- CBQF – Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Rui L. Reis
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark – Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associated Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark – Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark – Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associated Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark – Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal
| |
Collapse
|
6
|
Janani G, Nandi SK, Mandal BB. Functional hepatocyte clusters on bioactive blend silk matrices towards generating bioartificial liver constructs. Acta Biomater 2018; 67:167-182. [PMID: 29223705 DOI: 10.1016/j.actbio.2017.11.053] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/10/2017] [Accepted: 11/29/2017] [Indexed: 12/17/2022]
Abstract
The creation of in vitro functional hepatic tissue simulating micro-environmental niche of native liver is a keen area of research due to its demand in bioartificial liver (BAL) and cell-based tissue engineering. Here, we investigated the potential of novel blend (BA) silk scaffold fabricated by blending mulberry (Bombyx mori, BM) silk fibroin with cell adhesion motif (RGD) rich non-mulberry (Antheraea assamensis, AA) silk fibroin, in generating a functional liver construct. Three-dimensional (3D) porous silk scaffolds (BM, AA and BA) were physico-chemically characterized and functionally evaluated using human hepatocarcinoma cells (HepG2) and primary neonatal rat hepatocytes. The growth and distribution of hepatocytes within the scaffolds were tracked by FESEM, alamar blue proliferation assay and live/dead staining. Hemocompatible BA scaffolds supported the formation of high density hepatocyte clusters, facilitating cell-matrix and cell-cell interactions. Blend scaffolds evinced enhanced liver-specific functions of cultured hepatocytes in terms of albumin synthesis, urea synthesis and cytochrome P450 enzyme activity over 21 days. Subcutaneous implantation of scaffolds demonstrated minimal macrophage infiltration in blend scaffolds. These findings substantiate that the integral property of blend (BA) scaffold offers a befitting environment by influencing spheroidal growth of hepatocytes with enhanced biological activity. Collectively, the present study provides a new 3D bio-matrix niche for growing functional liver cells that would have future prospects in BAL as well as regenerative medicine. STATEMENT OF SIGNIFICANCE An end stage liver disease called cirrhosis perturbs the self-healing ability and physiological functions of liver. Due to the scarcity of healthy donors, a functional in vitro hepatic construct retaining the liver-specific functions is in great demand for its prospects in bioartificial liver (BAL) and cell-based tissue engineering. Physicochemical attributes of a matrix influence the behavior of cultured hepatocytes in terms of attachment, morphology and functionality. Mulberry and non-mulberry silk fibroin presents unique amino acid sequence with difference in hydrophobicity and crystallinity. Considering this, the present study focuses on the development of a suitable three-dimensional (3D) bioactive matrix incorporating both mulberry silk fibroin and cell adhesion motif (RGD) rich non-mulberry silk fibroin. Porous silk blend scaffolds facilitated the formation of hepatocyte clusters with enhanced liver-specific functions emphasizing both cell-cell and cell-matrix interactions. Hemocompatibility and integral property of blend scaffolds offers a biological niche for seeding functional liver cells that would have future prospects in biohybrid devices.
Collapse
Affiliation(s)
- G Janani
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Samit K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
7
|
Zhang X, Han F, Syed A, Bukhari EM, Siang BCJ, Yang S, Zhou B, Wen WJ, Jiang D. Fabrication of highly modulable fibrous 3D extracellular microenvironments. Biomed Microdevices 2018; 19:53. [PMID: 28608128 DOI: 10.1007/s10544-017-0187-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three-dimensional (3D) in vitro scaffolds that mimic the irregular fibrous structures of in vivo extracellular matrix (ECM) are critical for many important biological applications. However, structural properties modulation of fibrous 3D scaffolds remains a challenge. Here, we report the first highly modulable 3D fibrous scaffolds self-assembled by high-aspect-ratio (HAR) microfibers. The scaffolds structural properties can be easily tailored to incorporate various physical cues, including geometry, stiffness, heterogeneity and nanotopography. Moreover, the fibrous scaffolds are readily and accurately patterned on desired locations of the substrate. Cell culture exhibits that our scaffolds can elicit strong bidirectional cell-material interactions. Furthermore, a functional disparity between the two-dimensional substrate and our 3D scaffolds is identified by cell spreading and proliferation data. These results prove the potential of the proposed scaffold as a biomimetic extracellular microenvironment for cell study.
Collapse
Affiliation(s)
- Xixiang Zhang
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Fangfei Han
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, People's Republic of China
| | - Ahad Syed
- Imaging & Characterization Core Lab, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ebtihaj M Bukhari
- Advanced Nanofabrication Core Lab, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Basil Chew Joo Siang
- Imaging & Characterization Core Lab, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Shan Yang
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Bingpu Zhou
- Department of Physics, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
| | - Wei-Jia Wen
- Department of Physics, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, People's Republic of China.
| |
Collapse
|
8
|
Guo M, Dong Y, Xiao J, Gu R, Ding M, Huang T, Li J, Zhao N, Liao H. In vivoimmuno-reactivity analysis of the porous three-dimensional chitosan/SiO2and chitosan/SiO2/hydroxyapatite hybrids. J Biomed Mater Res A 2018; 106:1223-1235. [DOI: 10.1002/jbm.a.36320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/11/2017] [Accepted: 12/21/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Mengxia Guo
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy; Southern Medical University, No. 1838, Guangzhou Avenue North; Guangzhou 510515 China
| | - Yifan Dong
- School of Materials Science and Engineering; South China University of Technology; Guangzhou 510641 China
| | - Jiangwei Xiao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy; Southern Medical University, No. 1838, Guangzhou Avenue North; Guangzhou 510515 China
| | - Ruicai Gu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy; Southern Medical University, No. 1838, Guangzhou Avenue North; Guangzhou 510515 China
| | - Maochao Ding
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy; Southern Medical University, No. 1838, Guangzhou Avenue North; Guangzhou 510515 China
| | - Tao Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy; Southern Medical University, No. 1838, Guangzhou Avenue North; Guangzhou 510515 China
| | - Junhua Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy; Southern Medical University, No. 1838, Guangzhou Avenue North; Guangzhou 510515 China
| | - Naru Zhao
- School of Materials Science and Engineering; South China University of Technology; Guangzhou 510641 China
| | - Hua Liao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy; Southern Medical University, No. 1838, Guangzhou Avenue North; Guangzhou 510515 China
| |
Collapse
|
9
|
Li C, Yang M, Zhu L, Zhu Y. Honeysuckle flowers extract loaded Bombyx mori silk fibroin films for inducing apoptosis of HeLa cells. Microsc Res Tech 2017; 80:1297-1303. [PMID: 28841768 PMCID: PMC5763328 DOI: 10.1002/jemt.22928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 01/30/2023]
Abstract
This study aimed to prepare silk fibroin (SF) films loaded with honeysuckle flowers extract (HFE) for inducing apoptosis of HeLa cells. We mixed solution of SF and HFE by air-drying for preparing the honeysuckle flowers extract loaded silk fibroin (SFH) films. The physical properties including morphologies, contact angle, roughness, and Z range were characterized. MTS assay and fluorescence micrographs proved that SFH films inhibited the proliferation rate of HeLa cells due to induction of HFE into SF films. Furthermore, cell apoptosis assay and cell cycle analysis confirmed that the apoptosis of HeLa cells resulted from SFH films. Therefore, SFH films designed in our study might be a promising candidate material for cancer therapy.
Collapse
Affiliation(s)
- Chenlin Li
- Institute of Applied Bioresource, College of Animal ScienceZhejiang UniversityHangzhou, Zhejiang 310058People's Republic of China
| | - Mingying Yang
- Institute of Applied Bioresource, College of Animal ScienceZhejiang UniversityHangzhou, Zhejiang 310058People's Republic of China
| | - Liangjun Zhu
- Institute of Applied Bioresource, College of Animal ScienceZhejiang UniversityHangzhou, Zhejiang 310058People's Republic of China
| | - Yongqiang Zhu
- Zhejiang Academy of Traditional Chinese MedicineHangzhou, Zhejiang 310058People's Republic of China
| |
Collapse
|
10
|
Yang Y, Zhang J, Zou W, Wu S, Wu F, Xie A, Wei Z. Self-Assembled 3D Helical Hollow Superstructures with Enhanced Microwave Absorption Properties. Macromol Rapid Commun 2017; 39. [DOI: 10.1002/marc.201700591] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/25/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Yang Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 China
| | - Wenjun Zou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 China
| | - Sai Wu
- Beijing Institute of Aeronautical Materials Aero Engine Corporation of China; Beijing 100095 China
| | - Fan Wu
- State Key Laboratory for Disaster Prevention and Mitigation of Explosion and Impact; PLA University of Science and Technology; Nanjing 210007 China
| | - Aming Xie
- State Key Laboratory for Disaster Prevention and Mitigation of Explosion and Impact; PLA University of Science and Technology; Nanjing 210007 China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
11
|
Ju Z, Sun W. Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles. Drug Deliv 2017; 24:1898-1908. [PMID: 29191048 PMCID: PMC8241185 DOI: 10.1080/10717544.2017.1410259] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/16/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022] Open
Abstract
With the development of nanomedicine, a mass of nanocarriers have been exploited and utilized for targeted drug delivery, including liposomes, polymers, nanoparticles, viruses, and stem cells. Due to huge surface bearing capacity and flexible genetic engineering property, filamentous bacteriophage and phage-mimetic nanoparticles are attracting more and more attentions. As a rod-like bio-nanofiber without tropism to mammalian cells, filamentous phage can be easily loaded with drugs and directly delivered to the lesion location. In particular, chemical drugs can be conjugated on phage surface by chemical modification, and gene drugs can also be inserted into the genome of phage by recombinant DNA technology. Meanwhile, specific peptides/proteins displayed on the phage surface are able to conjugate with nanoparticles which will endow them specific-targeting and huge drug-loading capacity. Additionally, phage peptides/proteins can directly self-assemble into phage-mimetic nanoparticles which may be applied for self-navigating drug delivery nanovehicles. In this review, we summarize the production of phage particles, the identification of targeting peptides, and the recent applications of filamentous bacteriophages as well as their protein/peptide for targeting drug delivery in vitro and in vivo. The improvement of our understanding of filamentous bacteriophage and phage-mimetic nanoparticles will supply new tools for biotechnological approaches.
Collapse
Affiliation(s)
- Zhigang Ju
- Medicine College, Guiyang University of Chinese Medicine, Huaxi university town, Guiyang City, Guizhou Province, China
| | - Wei Sun
- Key Laboratory of Plant Physiology and Development Regulation, College of Life Science, Guizhou Normal University, Huaxi university town, Guiyang City, Guizhou Province, China
| |
Collapse
|
12
|
Setyawati MI, Leong DT. Mesoporous Silica Nanoparticles as an Antitumoral-Angiogenesis Strategy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6690-6703. [PMID: 28150492 DOI: 10.1021/acsami.6b12524] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tumors depend heavily on angiogenesis for nutrient derivation and their subsequent metastasis. Targeting tumor induced angiogenesis per se can address both tumor growth and progression simultaneously. Here, we show that we could elegantly restrict the endothelial cells angiogenic behavior through digital size control of mesoporous silica nanoparticle (MSN). This antiangiogenesis effect was derived from the particle size dependent uptake and production of intracellular reactive oxygen species (ROS) that directly interfered with p53 tumor suppressor pathway. The resulting signaling cascade wrestled back the tumoral control of endothelial cells' migration, invasion, and proliferation. Overall, a mere control over the size of a highly oxidative reactive surfaced nanoparticle could provide an alternative strategy to curb the tumor induced angiogenesis process in a conventional drug-free manner.
Collapse
Affiliation(s)
- Magdiel I Setyawati
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| | - David T Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
13
|
Cao Y, Duan Y, Han L, Che S. Hierarchical chirality transfer in the formation of chiral silica fibres with DNA–porphyrin co-templates. Chem Commun (Camb) 2017; 53:5641-5644. [PMID: 28480934 DOI: 10.1039/c7cc02382k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Screw-like hierarchical chiral fibres were constructed by the co-assembly of two biomolecules, from a multilevel chirality transfer and amplification process.
Collapse
Affiliation(s)
- Yuanyuan Cao
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Yingying Duan
- School of Chemical Science and Engineering
- Tongji University
- Shanghai
- P. R. China
| | - Lu Han
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Shunai Che
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| |
Collapse
|
14
|
Li Y, Hu Q, Miao G, Zhang Q, Yuan B, Zhu Y, Fu X, Chen X, Mao C. Size-Dependent Mechanism of Intracellular Localization and Cytotoxicity of Mono-Disperse Spherical Mesoporous Nano- and Micron-Bioactive Glass Particles. J Biomed Nanotechnol 2016; 12:863-77. [PMID: 27305811 PMCID: PMC4924523 DOI: 10.1166/jbn.2016.2235] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Mono-disperse spherical mesoporous nano- and micro- bioactive glass particles (NMBGs) can find potential use in bone tissue engineering. However, their size-dependent interaction with osteoblasts has never been studied. Herein, the proliferation, morphology, cytoskeleton organization and apoptosis of MC3T3-E1 osteoblasts are studied in response to the NMBGs with varying sizes (from 61 to 1085 nm) at different concentrations. Generally, smaller NMBGs at a lower dose show weaker cytotoxicity compared to the larger particles and higher doses, arising from a novel size-dependent mechanisrm of intracellular localization of NMBGs observed by electron and confocal microscopy. Specifically, NMBGs pass through perinuclear membrane of the cells to initiate endocytosis. Once internalized, the sizes of NMBGs are found to play a significant role in determining their intracellular localization. When the NMBGs are smaller than 174 nm, they are transported via the lysosomal pathway and phagocytized in lysosomes, resulting in little cytotoxicity at later time points. On the contrary, larger NMBGs (over 174 nm) escape from the lysosomes after endocytosis, and are localized inside the intra-cytoplasmic vacuoles or randomly in the cytoplasm of cells. Their lysosomal escape may damage the lysosomes, inducing cell apoptosis and thus the greater cytotoxicity.
Collapse
Affiliation(s)
- Yuli Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Qing Hu
- Department of Biomedical Engineering, School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Guohou Miao
- Department of Biomedical Engineering, School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Qing Zhang
- Department of Biomedical Engineering, School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Bo Yuan
- Department of Biomedical Engineering, School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Ye Zhu
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019, USA
| | - Xiaoling Fu
- Department of Biomedical Engineering, School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Xiaofeng Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019, USA
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
15
|
Rijal G, Li W. 3D scaffolds in breast cancer research. Biomaterials 2016; 81:135-156. [DOI: 10.1016/j.biomaterials.2015.12.016] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 12/15/2022]
|
16
|
Setyawati MI, Mochalin VN, Leong DT. Tuning Endothelial Permeability with Functionalized Nanodiamonds. ACS NANO 2016; 10:1170-81. [PMID: 26643115 DOI: 10.1021/acsnano.5b06487] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Cancer nanomedicine vehicles are required to cross the vascular barrier to reach the tumor site in order to ensure the successful delivery of their therapeutic load. Here, nanodiamond (ND) variants were shown to induce surface dependent vascular barrier leakiness. The ND-induced leakiness was found to be mediated by the increase in intracellular reactive oxygen species (ROS) and Ca(2+). These then in turn triggered the loss in endothelial cell-endothelial cell connections of the vascular barrier and also triggered their quasi-stable cytoskeletal remodelling. This ND driven increase in leakiness allowed more doxorubicin drug to penetrate through the vascular barrier to reach the cancer cells. This increase in the doxorubicin penetration subsequently led to an increase in the cancer killing effect. Overall, tuning the vascular barrier leakiness through ND surface group functionalization could provide an alternative strategy for the cancer nanomedicine to traverse across the vascular barrier.
Collapse
Affiliation(s)
- Magdiel I Setyawati
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Vadym N Mochalin
- Department of Chemistry, Missouri University of Science & Technology , Rolla, Missouri 65409, United States
| | - David T Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
17
|
Wang Y, Hao H, Liu H, Wang Y, Li Y, Yang G, Ma J, Mao C, Zhang S. Selenite-Releasing Bone Mineral Nanoparticles Retard Bone Tumor Growth and Improve Healthy Tissue Functions In Vivo. Adv Healthc Mater 2015; 4:1813-8. [PMID: 26101804 DOI: 10.1002/adhm.201500307] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 05/24/2015] [Indexed: 01/15/2023]
Abstract
Selenite-doped bone mineral nanoparticles can retard the growth of osteosarcoma in a nude mice model, through sustained release of selenite ions. The selenite ions released from the nanoparticles through a degradation-mediated fashion inhibit tumor metastasis. Blood routine analysis indicates that selenite ions can also improve the functions of liver, kidney, and heart.
Collapse
Affiliation(s)
- Yanhua Wang
- Advanced Biomaterials and Tissue Engineering Center; Huazhong University of Science and Technology; Wuhan 430074 China
- Department of Biomedical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Hang Hao
- Advanced Biomaterials and Tissue Engineering Center; Huazhong University of Science and Technology; Wuhan 430074 China
- Department of Biomedical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Haoming Liu
- Advanced Biomaterials and Tissue Engineering Center; Huazhong University of Science and Technology; Wuhan 430074 China
- Department of Biomedical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Yifan Wang
- Advanced Biomaterials and Tissue Engineering Center; Huazhong University of Science and Technology; Wuhan 430074 China
- Department of Biomedical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Yan Li
- Department of Oncology; Zhongnan Hospital of Wuhan University; Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center; Wuhan 430074 China
| | - Gaojie Yang
- Advanced Biomaterials and Tissue Engineering Center; Huazhong University of Science and Technology; Wuhan 430074 China
- Department of Biomedical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Jun Ma
- Advanced Biomaterials and Tissue Engineering Center; Huazhong University of Science and Technology; Wuhan 430074 China
- Department of Biomedical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry; Stephenson Life Sciences Research Center; University of Oklahoma; Norman Oklahoma 73019 USA
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center; Huazhong University of Science and Technology; Wuhan 430074 China
- Department of Biomedical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| |
Collapse
|
18
|
Ning C, Wang X, Li L, Zhu Y, Li M, Yu P, Zhou L, Zhou Z, Chen J, Tan G, Zhang Y, Wang Y, Mao C. Concentration ranges of antibacterial cations for showing the highest antibacterial efficacy but the least cytotoxicity against mammalian cells: implications for a new antibacterial mechanism. Chem Res Toxicol 2015; 28:1815-22. [PMID: 26258952 DOI: 10.1021/acs.chemrestox.5b00258] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antibacterial metal ions, such as Ag(+), Zn(2+) and Cu(2+), have been extensively used in medical implants and devices due to their strong broad spectrum of antibacterial activity. However, it is still a controversial issue as to whether they can show the desired antibacterial activity while being toxic to mammalian cells. It is very important to balance their antibacterial effectiveness with minimal damage to mammalian cells. Toward this end, this study is to identify the suitable concentrations of these three ions at which they can effectively kill two types of clinically relevant bacteria (Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)) but show no obvious cytotoxicity on fibroblasts. Such concentration ranges are found to be 2.5 × 10(-7) M-10(-6) M, 10(-5) M-10(-4) M, and 10(-5) M-10(-4) M for Ag(+), Zn(2+), and Cu(2+), respectively. Investigation of their antibacterial mechanism shows that these three metal ions all show antibacterial property through a mechanism of damaging bacterial cell membranes by the generation of reactive oxygen species but surprisingly preserving the integrity of bacterial genomic DNA. The encouraging results indicate that antibacterial metal ions with controlled concentrations can bring considerable benefits to biomedical applications.
Collapse
Affiliation(s)
- Chengyun Ning
- School of Materials Science and Engineering, South China University of Technology , Guangzhou 510641, China
| | - Xiaolan Wang
- School of Materials Science and Engineering, South China University of Technology , Guangzhou 510641, China
| | - Lihua Li
- Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command , 111 Liuhua Road, Guangzhou 510010, China
| | - Ye Zhu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma , 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Mei Li
- Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command , 111 Liuhua Road, Guangzhou 510010, China
| | - Peng Yu
- School of Materials Science and Engineering, South China University of Technology , Guangzhou 510641, China
| | - Lei Zhou
- School of Materials Science and Engineering, South China University of Technology , Guangzhou 510641, China
| | - Zhengnan Zhou
- School of Materials Science and Engineering, South China University of Technology , Guangzhou 510641, China
| | - Junqi Chen
- School of Materials Science and Engineering, South China University of Technology , Guangzhou 510641, China
| | - Guoxin Tan
- Institute of Chemical Engineering and Light Industry, Guangdong University of Technology , Guangzhou 510006, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command , 111 Liuhua Road, Guangzhou 510010, China
| | - Yingjun Wang
- School of Materials Science and Engineering, South China University of Technology , Guangzhou 510641, China
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma , 101 Stephenson Parkway, Norman, Oklahoma 73019, United States.,School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang 310027, China
| |
Collapse
|
19
|
Cao B, Yang M, Zhu Y, Qu X, Mao C. Stem cells loaded with nanoparticles as a drug carrier for in vivo breast cancer therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:4627-31. [PMID: 24890678 PMCID: PMC4292873 DOI: 10.1002/adma.201401550] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 04/22/2014] [Indexed: 05/26/2023]
Abstract
A novel anti-cancer drug carrier, mesenchymal stem cells (MSCs) encapsulating drug-loaded hollow silica nanoparticles, is used to carry a photosensitizer drug and deliver it to breast tumors, due to the natural high tumor affinity of the MSCs, and inhibit tumor growth by photo dynamic therapy. This new strategy for delivering a photo sensitizer to tumors by using tumor-affinitive MSCs addresses the challenge of the accumulation of photosensitizer drugs in tumors in photodynamic therapy.
Collapse
Affiliation(s)
- Binrui Cao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019–5251, USA
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang 310058, China
| | - Ye Zhu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019–5251, USA
| | - Xuewei Qu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019–5251, USA
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019–5251, USA
| |
Collapse
|