1
|
She Y, Qi X, Wang W, Qiao Y, Xu L, Kang ET, Lu Z. Liquid Metal-Tannic Acid-Modified Cotton Yarn Prepared with Twist-Assisted Deposition Technique for Textile Electronics. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40393928 DOI: 10.1021/acsami.5c06856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
The past decade has witnessed the rapid growth of electronic textiles with a variety of textile-based smart devices being developed. However, the development of one-dimensional conductors that exhibit both excellent mechanical and electrical properties, while being compatible with conventional textile techniques, remains a challenge. Herein, a conductive cotton yarn was constructed using liquid metal as the conductive filler and tannic acid (TA) as the immobilizing linker via a twist-assisted deposition technique, in which eutectic gallium-indium alloy (EGaIn) droplets were effectively modified on cotton plies by using TA, followed by moderate twisting. By fully utilizing internal spaces between the adjacent fibers, the as-prepared EGaIn-TA-yarn exhibits high conductivity, with an average resistance of 11.20 Ω at a 10 cm length. When further wrapped with cotton fibers, the conductive yarn shows superior wash resistance, long-term stability, and excellent flexibility. It can withstand 25 washes, 3000 bending or twisting cycles, and 90 days of storage at ambient conditions without significant loss of conductivity. The cotton-wrapped EGaIn-TA-yarn could be used as a bendable, knottable, and sewable conductor to connect light-emitting diodes (LEDs) to power sources for lighting. This work could provide a simple, cost-effective approach to developing highly conductive yarns as promising candidates to replace traditional metal wires in textile electronics.
Collapse
Affiliation(s)
- Yu She
- School of Materials & Energy, Southwest University, Chongqing 400715, P. R. China
- Yibin Academy of Southwest University, Yibin 644000, P. R. China
| | - Xiulei Qi
- School of Materials & Energy, Southwest University, Chongqing 400715, P. R. China
- Yibin Academy of Southwest University, Yibin 644000, P. R. China
| | - Wei Wang
- Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), 138634 Singapore, Republic of Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637457 Singapore, Republic of Singapore
| | - Yan Qiao
- School of Materials & Energy, Southwest University, Chongqing 400715, P. R. China
- Yibin Academy of Southwest University, Yibin 644000, P. R. China
| | - Liqun Xu
- School of Materials & Energy, Southwest University, Chongqing 400715, P. R. China
- Yibin Academy of Southwest University, Yibin 644000, P. R. China
| | - En-Tang Kang
- School of Materials & Energy, Southwest University, Chongqing 400715, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576 Singapore, Republic of Singapore
| | - Zhisong Lu
- School of Materials & Energy, Southwest University, Chongqing 400715, P. R. China
- Yibin Academy of Southwest University, Yibin 644000, P. R. China
| |
Collapse
|
2
|
Zopf SF, Cruz RES, Kekedjian C, Ping L, Ferrer JMM, Aquino JPS, Xie R, Ling X, Boley JW. Self-Catalyzed Chemically Coalescing Liquid Metal Emulsions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413116. [PMID: 40285615 PMCID: PMC12120753 DOI: 10.1002/advs.202413116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/26/2025] [Indexed: 04/29/2025]
Abstract
Gallium-based liquid metal alloys (GaLMAs) have widespread applications ranging from soft electronics, energy devices, and catalysis. GaLMAs can be transformed into liquid metal emulsions (LMEs) to modify their rheology for facile patterning, processing, and material integration for GaLMA-based device fabrication. One drawback of using LMEs is reduced electrical conductivity owing to the oxides that form on the surface of dispersed liquid metal droplets. LMEs thus need to be activated by coalescing liquid metal droplets into an electrically conductive network, which usually involves techniques that subject the LME to harsh conditions. This study presents a way to coalesce these droplets through a chemical reaction at mild temperatures (T ∼ 80 °C). Chemical activation is enabled by adding halide compounds into the emulsion that chemically etch the oxide skin on the surface of dispersed droplets of eutectic gallium indium (eGaIn). LMEs synthesized with halide activators can achieve electrical conductivities close to bulk liquid metal (2.4 × 104 S cm-1) after being heated. 3D printable chemically coalescing LME ink formulations are optimized by systematically exploring halide activator type and concentration, along with mixing conditions, while maximizing for electrical conductivity, shape retention, and compatibility with direct ink writing (DIW). The utility of this ink is demonstrated in a hybrid 3D printing process to create a battery-integrated light emitting diode array, followed by a nondestructive low temperature heat activation that produces a functional device.
Collapse
Affiliation(s)
- Stephanie F. Zopf
- Department of Mechanical EngineeringBoston University730 Commonwealth AvenueBostonMA02215USA
| | - Ramón E. Sánchez Cruz
- Department of Mechanical EngineeringBoston University730 Commonwealth AvenueBostonMA02215USA
| | - Chloe Kekedjian
- Department of Materials ScienceBoston University730 Commonwealth AvenueBostonMA02215USA
| | - Lu Ping
- Department of Materials ScienceBoston University730 Commonwealth AvenueBostonMA02215USA
| | | | - Jean Paul Soto Aquino
- Department of Mechanical EngineeringBoston University730 Commonwealth AvenueBostonMA02215USA
| | - Rongxuan Xie
- Department of Materials ScienceBoston University730 Commonwealth AvenueBostonMA02215USA
| | - Xi Ling
- Department of Materials ScienceBoston University730 Commonwealth AvenueBostonMA02215USA
- Department of ChemistryBoston University590 Commonwealth AvenueBostonMA02215USA
| | - J. William Boley
- Department of Mechanical EngineeringBoston University730 Commonwealth AvenueBostonMA02215USA
- Department of Materials ScienceBoston University730 Commonwealth AvenueBostonMA02215USA
| |
Collapse
|
3
|
Gu W, Hu J, Li L, Hong M, Zhang D, Chen J, Ye J, Zhou S. Liquid Metal Nanobiohybrids for High-Performance Solar-Driven Methanogenesis via Multi-Interface Engineering. Angew Chem Int Ed Engl 2025; 64:e202423336. [PMID: 39825039 DOI: 10.1002/anie.202423336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 01/20/2025]
Abstract
Nanobiohybrids for solar-driven methanogenesis present a promising solution to the global energy crisis. However, conventional semiconductor-based nanobiohybrids face challenges such as limited tunability and poor biocompatibility, leading to undesirable spontaneous electron and proton transfer that compromise their structural stability and CH4 selectivity. Herein, we introduced eutectic gallium-indium alloys (EGaIn), featuring a self-limiting surface oxide layer surrounding the liquid metal core after sonication, integrated with Methanosarcina barkeri (M. b). The well-designed M. b-EGaIn nanobiohybrids exhibited superior performance, achieving a maximum CH4 yield of 455.64±15.99 μmol g-1, long-term stability across four successive 7-day cycles, and remarkable CH4 selectivity of >99 %. These improvements stem from enhanced proton-coupled electron transfer involving hydrogen atoms at the core-shell interface, further facilitated by the elevated expression of hydrogenases at the abiotic-biotic interface. This study provides an insightful concept for nanobiohybrid design through multi-interface engineering, advancing sustainable and scalable CO2-to-biofuel conversion under ambient conditions.
Collapse
Affiliation(s)
- Wenzhi Gu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Jing Hu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Lei Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Mingqiu Hong
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Dong Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Jiajing Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| |
Collapse
|
4
|
Lin Z, Luo M, Liang J, Li Z, Lin Y, Chen X, Chen B, Peng L, Ouyang Y, Mou L. A liquid metal-based sticky conductor for wearable and real-time electromyogram monitoring with machine learning classification. J Mater Chem B 2025; 13:3906-3917. [PMID: 40007317 DOI: 10.1039/d4tb01711k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Skin electronics face challenges related to the interface between rigid and soft materials, resulting in discomfort and signal inaccuracies. This study presents the development and characterization of a liquid metal-polydimethylsiloxane (LM-PDMS) sticky conductor designed for wearable electromyography (EMG) monitoring. The conductor leverages a composite of LM inks and PDMS, augmented with silver nanowires (AgNWs) and surface-modified with mercaptoundecanoic acid (MUD) to enhance conductivity. The mechanical properties of the PDMS matrix were optimized using Triton-X to achieve a flexible and adhesive configuration suitable for skin contact. Our LM-PDMS sticky conductor demonstrated excellent stretchability, could endure up to 300% strain without damage, and maintained strong adherence to the skin without relative displacement. Biocompatibility tests confirmed high cell viability, making it suitable for long-term use. EMG signal analysis revealed reliable muscle activity detection, with advanced signal processing techniques effectively filtering noise and stabilizing the baseline. Furthermore, we employed machine learning algorithms to classify EMG signals, achieving high accuracy in distinguishing different muscle activities. This study showcases the potential of LM-PDMS sticky conductors for advanced wearable bioelectronics, offering promising applications in personalized healthcare and real-time muscle activity monitoring.
Collapse
Affiliation(s)
- Zixin Lin
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Yanjiang Road, Yuexiu District, Guangzhou, Guangdong 510120, P. R. China.
| | - Mingmei Luo
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Yanjiang Road, Yuexiu District, Guangzhou, Guangdong 510120, P. R. China.
| | - Jiayi Liang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Department of Biotechnology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Zijie Li
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Yanjiang Road, Yuexiu District, Guangzhou, Guangdong 510120, P. R. China.
| | - Yanting Lin
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Yanjiang Road, Yuexiu District, Guangzhou, Guangdong 510120, P. R. China.
| | - Xiaman Chen
- The Fifth Affiliated Hospital of Guangzhou Medical University, Department of Biotechnology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Baozhu Chen
- The Fifth Affiliated Hospital of Guangzhou Medical University, Department of Biotechnology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Liang Peng
- The Fifth Affiliated Hospital of Guangzhou Medical University, Department of Biotechnology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Yongchang Ouyang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Department of Biotechnology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Lei Mou
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Yanjiang Road, Yuexiu District, Guangzhou, Guangdong 510120, P. R. China.
| |
Collapse
|
5
|
Tian Y, Wang J, Chen H, Lin H, Wu S, Zhang Y, Tian M, Meng J, Saeed W, Liu W, Chen X. Electrospun multifunctional nanofibers for advanced wearable sensors. Talanta 2025; 283:127085. [PMID: 39490308 DOI: 10.1016/j.talanta.2024.127085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
The multifunctional extension of fiber-based wearable sensors determines their integration and sustainable development, with electrospinning technology providing reliable, efficient, and scalable support for fabricating these sensors. Despite numerous studies on electrospun fiber-based wearable sensors, further attention is needed to leverage composite structural engineering for functionalizing electrospun fibers. This paper systematically reviews the research progress on fiber-based multifunctional wearable sensors in terms of design concept, device fabrication, mechanism exploration, and application potential. Firstly, the basics of electrospinning are briefly introduced, including its development, principles, parameters, and material selection. Tactile sensors, as crucial components of wearable sensors, are discussed in detail, encompassing their performance parameters, transduction mechanisms, and preparation strategies for pressure, strain, temperature, humidity, and bioelectrical signal sensors. The main focus of the article is on the latest research progress in multifunctional sensing design concepts, multimodal decoupling mechanisms, sensing mechanisms, and functional extensions. These extensions include multimodal sensing, self-healing, energy harvesting, personal thermal management, EMI shielding, antimicrobial properties, and other capabilities. Furthermore, the review assesses existing challenges and outlines future developments for multifunctional wearable sensors, highlighting the need for continued research and innovation.
Collapse
Affiliation(s)
- Ye Tian
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China; School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China; The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Junhao Wang
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Haojie Chen
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Haibin Lin
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Shulei Wu
- Key Laboratory of Polymer Materials and Products, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, People's Republic of China
| | - Yifan Zhang
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Meng Tian
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Jiaqi Meng
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Waqas Saeed
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Wei Liu
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Xing Chen
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
6
|
Kanetkar S, Peri SP, Mithaiwala H, Krisnadi F, Dickey MD, Green MD, Wang RY, Rykaczewski K. Impact of rheology on formation of oil-in-liquid metal emulsions. SOFT MATTER 2024; 21:33-38. [PMID: 39635718 DOI: 10.1039/d4sm01361a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
To quantify how the viscosities of silicone oil (SO) and liquid metal (LM) relate to emulsion-formation (LM-in-SO versus SO-in-LM), a process was developed to produce LM pastes with adjustable viscosity and minimal oxide and bubbles. Increased LM viscosity allows greater silicone oil intake and/or intake of higher-viscosity silicone oils.
Collapse
Affiliation(s)
- Shreyas Kanetkar
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA.
| | - Sai P Peri
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA.
| | - Husain Mithaiwala
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA.
| | - Febby Krisnadi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Matthew D Green
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA.
| | - Robert Y Wang
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA.
| | - Konrad Rykaczewski
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
7
|
Wang L, Kong D. Stretchable and Self-Adhesive Conductors for Smart Epidermal Electronics. Macromol Rapid Commun 2024:e2400774. [PMID: 39579092 DOI: 10.1002/marc.202400774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/11/2024] [Indexed: 11/25/2024]
Abstract
Epidermal electronics utilize deformable devices that are seamlessly integrated into the body for various cutting-edge applications. Stretchable conductors are essential for creating electrodes in these devices, allowing them to interface with the skin for sensing and stimulation. Despite considerable progress in improved deformability, these conductors may not easily adhere to the skin for long-term use. There is a growing interest in imparting self-adhesive properties to epidermal devices to ensure secure integration with the body. This article focuses on the emerging field of stretchable and self-adhesive conductors. It explores the design strategy required to enable stretchability and conformability in these materials and discusses their pivotal applications in smart epidermal electronics. Additionally, this article also addresses the current challenges and future directions in this dynamic area of research.
Collapse
Affiliation(s)
- Lin Wang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210021, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210021, China
| |
Collapse
|
8
|
Zhou X, Min P, Liu Y, Jin M, Yu ZZ, Zhang HB. Insulating electromagnetic-shielding silicone compound enables direct potting electronics. Science 2024; 385:1205-1210. [PMID: 39265019 DOI: 10.1126/science.adp6581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
Traditional electromagnetic interference-shielding materials are predominantly electrically conductive, posing short-circuit risks when applied in highly integrated electronics. To overcome this dilemma, we propose a microcapacitor-structure model comprising conductive fillers as polar plates and intermediate polymer as a dielectric layer to develop insulating electromagnetic interference-shielding polymer composites. The electron oscillation in plates and dipole polarization in dielectric layers contribute to the reflection and absorption of electromagnetic waves. Guided by this, the synergistic nonpercolation densification and dielectric enhancement enable our composite to combine high resistivity, shielding performance, and thermal conductivity. Its insulating feature allows for direct potting into the crevices among assembled components to address electromagnetic compatibility and heat-accumulation issues.
Collapse
Affiliation(s)
- Xinfeng Zhou
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Min
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meng Jin
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhong-Zhen Yu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao-Bin Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Wang S, Li X. Soft composites with liquid inclusions: functional properties and theoretical models. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:493003. [PMID: 39222657 DOI: 10.1088/1361-648x/ad765d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Soft materials containing liquid inclusions have emerged as a promising class of materials. Unlike solid inclusions, liquid inclusions possess intrinsic fluidity, which allows them to retain the excellent deformation ability of soft materials. This can prevent compliance mismatches between the inclusions and the matrix, thus leading to improved performance and durability. Various liquids, including metallic, water-based, and ionic liquids, have been selected as inclusions for embedding into soft materials, resulting in unique properties and functionalities that enable a wide range of applications in soft robotics, wearable devices, and other cutting-edge fields. This review provides an overview of recent studies on the functional properties of composites with liquid inclusions and discusses theoretical models used to estimate these properties, aiming to bridge the gap between the microstructure/components and the overall properties of the composite from a theoretical perspective. Furthermore, current challenges and future opportunities for the widespread application of these composites are explored, highlighting their potential in advancing technologies.
Collapse
Affiliation(s)
- Shuang Wang
- School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Xiying Li
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| |
Collapse
|
10
|
Woodman SJ, Shah DS, Landesberg M, Agrawala A, Kramer-Bottiglio R. Stretchable Arduinos embedded in soft robots. Sci Robot 2024; 9:eadn6844. [PMID: 39259780 DOI: 10.1126/scirobotics.adn6844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
To achieve real-world functionality, robots must have the ability to carry out decision-making computations. However, soft robots stretch and therefore need a solution other than rigid computers. Examples of embedding computing capacity into soft robots currently include appending rigid printed circuit boards to the robot, integrating soft logic gates, and exploiting material responses for material-embedded computation. Although promising, these approaches introduce limitations such as rigidity, tethers, or low logic gate density. The field of stretchable electronics has sought to solve these challenges, but a complete pipeline for direct integration of single-board computers, microcontrollers, and other complex circuitry into soft robots has remained elusive. We present a generalized method to translate any complex two-layer circuit into a soft, stretchable form. This enabled the creation of stretchable single-board microcontrollers (including Arduinos) and other commercial circuits (including SparkFun circuits), without design simplifications. As demonstrations of the method's utility, we embedded highly stretchable (>300% strain) Arduino Pro Minis into the bodies of multiple soft robots. This makes use of otherwise inert structural material, fulfilling the promise of the stretchable electronic field to integrate state-of-the-art computational power into robust, stretchable systems during active use.
Collapse
Affiliation(s)
- Stephanie J Woodman
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave., New Haven, CT 06511, USA
| | - Dylan S Shah
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave., New Haven, CT 06511, USA
| | - Melanie Landesberg
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave., New Haven, CT 06511, USA
| | - Anjali Agrawala
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave., New Haven, CT 06511, USA
| | - Rebecca Kramer-Bottiglio
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave., New Haven, CT 06511, USA
| |
Collapse
|
11
|
Liu X, Sun C, Ye X, Zhu X, Hu C, Tan H, He S, Shao M, Li RW. Neuromorphic Nanoionics for Human-Machine Interaction: From Materials to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311472. [PMID: 38421081 DOI: 10.1002/adma.202311472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Human-machine interaction (HMI) technology has undergone significant advancements in recent years, enabling seamless communication between humans and machines. Its expansion has extended into various emerging domains, including human healthcare, machine perception, and biointerfaces, thereby magnifying the demand for advanced intelligent technologies. Neuromorphic computing, a paradigm rooted in nanoionic devices that emulate the operations and architecture of the human brain, has emerged as a powerful tool for highly efficient information processing. This paper delivers a comprehensive review of recent developments in nanoionic device-based neuromorphic computing technologies and their pivotal role in shaping the next-generation of HMI. Through a detailed examination of fundamental mechanisms and behaviors, the paper explores the ability of nanoionic memristors and ion-gated transistors to emulate the intricate functions of neurons and synapses. Crucial performance metrics, such as reliability, energy efficiency, flexibility, and biocompatibility, are rigorously evaluated. Potential applications, challenges, and opportunities of using the neuromorphic computing technologies in emerging HMI technologies, are discussed and outlooked, shedding light on the fusion of humans with machines.
Collapse
Affiliation(s)
- Xuerong Liu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaoyu Ye
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaojian Zhu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Cong Hu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Hongwei Tan
- Department of Applied Physics, Aalto University, Aalto, FI-00076, Finland
| | - Shang He
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Mengjie Shao
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
12
|
Agarwal R, Mohamad A. Gallium-based liquid metals as smart responsive materials: Morphological forms and stimuli characterization. Adv Colloid Interface Sci 2024; 329:103183. [PMID: 38788305 DOI: 10.1016/j.cis.2024.103183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/02/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Gallium-based liquid metals (GaLMs) have garnered monumental attention from the scientific community due to their diverse actuation characteristics. These metals possess remarkable characteristics, including high surface tension, excellent electrical and thermal conductivity, phase transformation behaviour, minimal viscosity and vapour pressure, lack of toxicity, and biocompatibility. In addition, GaLMs have melting points that are either lower or near room temperature, making them incredibly beneficial when compared to solid metals since they can be easily deformed. Thus, there has been significant progress in developing multifunctional devices using GaLMs, including bio-devices, flexible and self-healing circuits, and actuators. Despite numerous reports on these liquid metals (LMs), there is an urgent need for consolidated and coherent literature regarding their actuation principles linked to the targeted application. This will ensure that the reader gets the flavour of physics behind the actuation mechanism and how it can be utilized in diverse fields. Moreover, the actuation mechanism has been scattered in the literature, and thus, the primary motive of this review is to provide a one-stop solution for the actuation mechanism and the associated dynamics while directing the readers to specialized literature. Thus, addressing this issue, we thoroughly examine and present a detailed account of the actuation mechanisms of GaLMs while highlighting the science behind them. We also discuss the various morphologies of GaLMs and their crucial physical characteristics which decide their targeted application. Furthermore, we also delve into commonly held beliefs about GaLMs in the literature, such as their toxicity and antibacterial properties, to offer readers a more accurate understanding. Finally, we have explored several key unanswered aspects of the LM that should be explored in future research. The core strength of this review lies in its simplistic approach in offering a starting point for researchers venturing this innovative field, while we make use of existing literature to develop a comprehensive understanding.
Collapse
Affiliation(s)
- Rahul Agarwal
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| | - Abdulmajeed Mohamad
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
13
|
Li W, Wu S, Zhou Q, Gong C, Liu Z, Yan Y. Harmonizing Elastic Modulus and Dielectric Constant of Elastomers for Improved Pressure Sensing Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32727-32738. [PMID: 38864718 DOI: 10.1021/acsami.4c06122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Enhancing the sensitivity of capacitive pressure sensors through microstructure design may compromise the reliability of the device and rely on intricate manufacturing processes. It is an effective way to solve this issue by balancing the intrinsic properties (elastic modulus and dielectric constant) of the dielectric layer materials. Here, we introduce a liquid metal (LM) hybrid elastomer prepared by a chain-extension-free polyurethane (PU) and LM. The synergistic strategies of extender-free and LM doping effectively reduce the elastic modulus (7.6 ± 0.2-2.1 ± 0.3 MPa) and enhance the dielectric constant (5.12-8.17 @1 kHz) of LM hybrid elastomers. Interestingly, the LM hybrid elastomer combines reprocessability, recyclability, and photothermal conversion. The obtained flexible pressure sensor can be used for detecting hand and throat muscle movements, and high-precision speech recognition of seven words has been using a convolutional neural network (CNN) in deep learning. This work provides an idea for designing and manufacturing wearable, recyclable, and intelligent control pressure sensors.
Collapse
Affiliation(s)
- Wanjiang Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China
| | - Shaoji Wu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China
| | - Qiuman Zhou
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China
| | - Caihong Gong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China
| | - Zhao Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China
| | - Yurong Yan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China
- Key Lab of Guangdong High Property & Functional Polymer Materials, Guangzhou 510640, P.R. China
| |
Collapse
|
14
|
Lin Z, Qiu X, Cai Z, Li J, Zhao Y, Lin X, Zhang J, Hu X, Bai H. High internal phase emulsions gel ink for direct-ink-writing 3D printing of liquid metal. Nat Commun 2024; 15:4806. [PMID: 38839743 PMCID: PMC11153652 DOI: 10.1038/s41467-024-48906-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
3D printing of liquid metal remains a big challenge due to its low viscosity and large surface tension. In this study, we use Carbopol hydrogel and liquid gallium-indium alloy to prepare a liquid metal high internal phase emulsion gel ink, which can be used for direct-ink-writing 3D printing. The high volume fraction (up to 82.5%) of the liquid metal dispersed phase gives the ink excellent elastic properties, while the Carbopol hydrogel, as the continuous phase, provides lubrication for the liquid metal droplets, ensuring smooth flow of the ink during shear extrusion. These enable high-resolution and shape-stable 3D printing of three-dimensional structures. Moreover, the liquid metal droplets exhibit an electrocapillary phenomenon in the Carbopol hydrogel, which allows for demulsification by an electric field and enables electrical connectivity between droplets. We have also achieved the printing of ink on flexible, non-planar structures, and demonstrated the potential for alternating printing with various materials.
Collapse
Affiliation(s)
- Zewen Lin
- College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Xiaowen Qiu
- College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Zhouqishuo Cai
- College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Jialiang Li
- College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Yanan Zhao
- College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Xinping Lin
- College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Jinmeng Zhang
- College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Xiaolan Hu
- College of Materials, Xiamen University, Xiamen, 361005, PR China.
| | - Hua Bai
- College of Materials, Xiamen University, Xiamen, 361005, PR China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China.
| |
Collapse
|
15
|
Wang H, Yuan B, Zhu X, Shan X, Chen S, Ding W, Cao Y, Dong K, Zhang X, Guo R, Yao Y, Wang B, Tang J, Liu J. Multi-stimulus perception and visualization by an intelligent liquid metal-elastomer architecture. SCIENCE ADVANCES 2024; 10:eadp5215. [PMID: 38787948 PMCID: PMC11122678 DOI: 10.1126/sciadv.adp5215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Multi-stimulus responsive soft materials with integrated functionalities are elementary blocks for building soft intelligent systems, but their rational design remains challenging. Here, we demonstrate an intelligent soft architecture sensitized by magnetized liquid metal droplets that are dispersed in a highly stretchable elastomer network. The supercooled liquid metal droplets serve as microscopic latent heat reservoirs, and their controllable solidification releases localized thermal energy/information flows for enabling programmable visualization and display. This allows the perception of a variety of information-encoded contact (mechanical pressing, stretching, and torsion) and noncontact (magnetic field) stimuli as well as the visualization of dynamic phase transition and stress evolution processes, via thermal and/or thermochromic imaging. The liquid metal-elastomer architecture offers a generic platform for designing soft intelligent sensing, display, and information encryption systems.
Collapse
Affiliation(s)
- Hongzhang Wang
- Institute of Materials Research, Center of Double Helix, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Bo Yuan
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, P. R. China
| | - Xiyu Zhu
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaohui Shan
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Sen Chen
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Wenbo Ding
- Tsinghua-Berkeley Shenzhen Institute, Institute of Data and Information, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P. R. China
| | - Yingjie Cao
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Kaichen Dong
- Institute of Materials Research, Center of Double Helix, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Tsinghua-Berkeley Shenzhen Institute, Institute of Data and Information, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P. R. China
| | - Xudong Zhang
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Rui Guo
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yuchen Yao
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Bo Wang
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, P. R. China
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia
| | - Jing Liu
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
16
|
Li X, Hou K, Long Y, Song K. LM-Gel Plasticine Based on Binary Cooperative with Kneadable Shaping and Conductivity. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38711229 DOI: 10.1021/acsami.4c03471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Liquid metal (LM)-based polymers have received growing interest for wearable health monitoring, electronic skins, and soft robotics. However, fabricating multifunctional LM-based polymers, in particular, featuring a convenient shaping ability while offering excellent deformability and conductivity remains a challenge. To overcome this obstacle, here, we propose a strategy to prepare LM-Gel "plasticine" (LGP) with great deformability, which is composed of a PVA (poly(vinyl alcohol)) soft network and an LM conductive phase. LGP can be easily constructed into different shapes such as plasticine and can be applied to different conditions (such as building a 3D circuit, circuit repair, and switch). Meanwhile, LGP has great conductivity (2.3 × 104 S/m) after surface annealing. Besides, LGP has a good electric heating performance, which shows the potential for application in wearable heating devices. Thus, this approach not only provides a way to prepare LM-polymer plasticine but also provides a novel perspective toward extending the applied range of LM-polymer composites.
Collapse
Affiliation(s)
- Xingchao Li
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kai Hou
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yue Long
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City 256606, Shandong, P. R. China
| | - Kai Song
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City 256606, Shandong, P. R. China
| |
Collapse
|
17
|
Cao Y, Fan L, Gao J, Zhu X, Wu B, Wang H, Wang B, Shi J, Liu J. Magnetic and injectable Fe-doped liquid metals for controlled movement and photothermal/electromagnetic therapy. J Mater Chem B 2024; 12:2313-2323. [PMID: 38268450 DOI: 10.1039/d3tb02501b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
As a multifunctional material, gallium-based liquid metal (LM) mixtures with metal particles dispersed in the LM environment display many excellent and intriguing properties. In this study, biomaterials were prepared by mixing Fe particles with LM for easily manageable photothermal or electromagnetic therapy and evaluated. Clinically, the fabricated 5%Fe/LM sample was injectable and radiopaque, which allowed its smooth delivery through a syringe to the target tissues, where it could help achieve clear imaging under CT. Meanwhile, because of the loading of Fe particles, the 5%Fe/LM possessed a magnetic property, implying a high manipulation capability. According to the experiments, the capsule containing 5%Fe/LM when placed in an isolated pig large intestine could move as desired to the designated position through an external magnet. Further, the biosafety and low toxicity of the 5%Fe/LM were confirmed by cytotoxicity tests in vitro, and the temperature changes at the interface between the 5%Fe/LM and intestinal tissue after near-infrared (NIR) laser irradiation were determined through theoretical modeling and numerical simulation data analysis. Due to the excellent photothermal and magnetothermal effects of LM, the temperature of the 5%Fe/LM injected into the rabbit abdominal cavity could significantly increase under NIR laser or alternating magnetic field (AMF) administration. As a novel functional biomaterial, the 5%Fe/LM exhibited promising potential for designated position movement and photothermal or magnetothermal therapy in the near future.
Collapse
Affiliation(s)
- Yingjie Cao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Linlin Fan
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China.
| | - Jianye Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Xiyu Zhu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Bingjie Wu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Hongzhang Wang
- Center of Double Helix, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Bo Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jun Shi
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China.
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
18
|
Madadi M, Zhang P. Finite-size effect on the percolation and electromechanical behaviors of liquid metal particulate composites. SOFT MATTER 2024; 20:1061-1069. [PMID: 38206109 DOI: 10.1039/d3sm01469j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Liquid metal particulate composites (LMPCs) are super-stretchable conductors with promising applications in soft electronics. Their conductance originates from the percolation networks of liquid metal particles. This work aims at elucidating the effect of finite-size and sample shape on the percolation and electromechanical properties of LMPCs, given that their dimensions range from microns to centimeters. It is found that their percolation threshold is dominated by the smallest dimension of the samples, not the shape or aspect ratio. A smaller sample size increases the percolation threshold and makes it harder to activate the conductance. In addition, smaller samples are more sensitive to local defects, which adversely impair the electromechanical properties or even undermine the conductance. Finally, this work considers the influence of finite-size on the piezoresistance effect, i.e., strain-dependent resistance. It is found that the piezoresistance effect and finite-size effect are uncorrelated, if the samples are above the percolation threshold. The findings provide not only fundamental insights on the finite-size effect of percolation but also guidance on the design-fabrication process for LMPCs to achieve more reliable electromechanical performance.
Collapse
Affiliation(s)
- Mohammad Madadi
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY 13902, USA.
| | - Pu Zhang
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY 13902, USA.
| |
Collapse
|
19
|
Zhang Y, Wang C, Yin M, Liang H, Gao Q, Hu S, Guo W. Liquid Metal Nanocores Initiated Construction of Smart DNA-Polymer Microgels with Programmable and Regulable Functions and Near-Infrared Light-Driven Locomotion. Angew Chem Int Ed Engl 2024; 63:e202311678. [PMID: 37963813 DOI: 10.1002/anie.202311678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/21/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
Due to their sequence-directed functions and excellent biocompatibility, smart DNA microgels have attracted considerable research interest, and the combination of DNA microgels with functional nanostructures can further expand their applications in biosensing and biomedicine. Gallium-based liquid metals (LMs) exhibiting both fluidic and metallic properties hold great promise for the development of smart soft materials; in particular, LM particles upon sonication can mediate radical-initiated polymerization reactions, thus allowing the combination of LMs and polymeric matrix to construct "soft-soft" materials. Herein, by forming active surfaces under sonication, LM nanoparticles (LM NPs) initiated localized radical polymerization reactions allow the combination of functional DNA units and different polymeric backbones to yield multifunctional core/shell microgels. The localized polymerization reaction allows fine control of the microgel compositions, and smart DNA microgels with tunable catalytic activities can be constructed. Moreover, due to the excellent photothermal effect of LM NPs, the resulting temperature gradient between microgels and surrounding solution upon NIR light irradiation can drive the oriented locomotion of the microgels, and remote control of the activity of these smart microgels can be achieved. These microgels may hold promise for various applications, such as the development of in vivo and in vitro biosensing and drug delivery systems.
Collapse
Affiliation(s)
- Yaxing Zhang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071, Tianjin, P. R. China
| | - Chunyan Wang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071, Tianjin, P. R. China
| | - Mengyuan Yin
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071, Tianjin, P. R. China
| | - Hanxue Liang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071, Tianjin, P. R. China
| | - Qi Gao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071, Tianjin, P. R. China
| | - Shanjin Hu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071, Tianjin, P. R. China
| | - Weiwei Guo
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071, Tianjin, P. R. China
| |
Collapse
|
20
|
Qiao X, Zhang Y, Wang L, Zhou S, Pang X. Simple preparation of lignosulfonate stabilized eutectic gallium/indium liquid metal nanodroplets through ball milling process. Int J Biol Macromol 2024; 254:127809. [PMID: 37926321 DOI: 10.1016/j.ijbiomac.2023.127809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
The combination of biomass and liquid metal (LM) makes the preparation process "greener" and application of LM composite materials more sustainable. Here we reported the solvent free preparation of lignosulfonate (LS) stabilized eutectic gallium/indium (EGaIn) LM nanodroplets through ball milling (BM), which was recognized to be efficient and environmentally-friendly alternatives to solution-based methods. By regulating the BM frequency and milling time, uniform LM nanodroplets with a size <200 nm can be achieved. Moreover, the surface of the EGaIn nanodroplets was covered by LS molecules, owing to the hydrogen bond formed between Ga2O3 and LS. Hydrophilic LS shell endowed the LS@EGaIn nanodroplets excellent colloidal stability in the aqueous media. The elongation at break and fracture strength of hydrogel with the addition of LS@EGaIn significantly improved with the addition of LS@EGaIn. Besides, the conductivity and excellent stress responsibility of the LS@EGaIn composite hydrogel illustrated its potential application as s a stress sensor, flexible wearable devices and other related applications. Moreover, it was predicted that LS can be replaced by other synthesized or biological macromolecules, and induced the formation of types of LM based composite materials through such a simple method.
Collapse
Affiliation(s)
- Xiaoguang Qiao
- College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan Engineering Technology Research Center for Fiber Preparation and Modification, Henan University of Engineering, Zhengzhou 451191, China; Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Yuhan Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Linan Wang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shuzhen Zhou
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
21
|
Yao B, Xu X, Han Z, Xu W, Yang G, Guo J, Li G, Wang Q, Wang H. Cephalopod-inspired polymer composites with mechanically tunable infrared properties. Sci Bull (Beijing) 2023; 68:2962-2972. [PMID: 37940450 DOI: 10.1016/j.scib.2023.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/24/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Cephalopods have evolved an all-soft skin that can rapidly display colors for protection, predation, or communication. Development of synthetic analogs to mimic such color-changing abilities in the infrared (IR) region is pivotal to a variety of technologies ranging from soft robotics, flexible displays, dynamic thermoregulatory systems, to adaptive IR disguise platforms. However, the integration of tissue-like mechanical properties and rapid IR modulation ability into smart materials remains challenging. Here, by drawing inspiration from cephalopod skin, we develop an all-soft adaptive IR composite that can dynamically change its IR appearance upon equiaxial stretching. The biomimetic composite is built entirely from soft materials of liquid metal droplets and elastic elastomer, which are analogs of chromatophores and dermal layer of cephalopod skin, respectively. Driven by externally applied strains, the liquid metal inclusions transition between a contracted droplet state with corrugated surface and an expanded platelet state with relatively smooth surface, enabling dynamic variations in the IR reflectance/emissivity of the composite and ultimately resulting in reversible IR adaption. Strain-actuated flexible IR displays and pneumatically-driven soft devices that can dynamically manipulate their IR appearance are demonstrated as examples of the applicability of this material in emerging adaptive soft electronics.
Collapse
Affiliation(s)
- Bin Yao
- School of Aerospace Science and Technology, Xidian University, Xi'an 710071, China; State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Department of Materials Science and Engineering, The Pennsylvania State University, University Park PA 16802, USA
| | - Xinwei Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhubing Han
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park PA 16802, USA
| | - Wenhan Xu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park PA 16802, USA
| | - Guang Yang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park PA 16802, USA
| | - Jing Guo
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guixin Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provisional Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qing Wang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park PA 16802, USA.
| | - Hong Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provisional Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
22
|
Lin Y, Fang T, Bai C, Sun Y, Yang C, Hu G, Guo H, Qiu W, Huang W, Wang L, Tao Z, Lu YQ, Kong D. Ultrastretchable Electrically Self-Healing Conductors Based on Silver Nanowire/Liquid Metal Microcapsule Nanocomposites. NANO LETTERS 2023. [PMID: 38047765 DOI: 10.1021/acs.nanolett.3c03670] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Stretchable conductive nanocomposites are essential for deformable electronic devices. These conductors currently face significant limitations, such as insufficient deformability, significant resistance changes upon stretching, and drifted properties during cyclic deformations. To tackle these challenges, we present an electrically self-healing and ultrastretchable conductor in the form of bilayer silver nanowire/liquid metal microcapsule nanocomposites. These nanocomposites utilize silver nanowires to establish their initial excellent conductivity. When the silver nanowire networks crack during stretching, the microcapsules are ruptured to release the encased liquid metal for recovering the electrical properties. This self-healing capability allows the nanocomposite to achieve ultrahigh stretchability for both uniaxial and biaxial strains, minor changes in resistance during stretching, and stable resistance after repetitive deformations. The conductors have been used to create skin-attachable electronic patches and stretchable light-emitting diode arrays with enhanced robustness. These developments provide a bioinspired strategy to enhance the performance and durability of conductive nanocomposites.
Collapse
Affiliation(s)
- Yong Lin
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Ting Fang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Chong Bai
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yuping Sun
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Cheng Yang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Gaohua Hu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Haorun Guo
- College of Chemical Engineering and Technology, Engineering Research Center of Seawater Utilization Technology of Ministry of Education, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Weijie Qiu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Weixi Huang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Lin Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Zihao Tao
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Yan-Qing Lu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210093, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| |
Collapse
|
23
|
Wang D, Ye J, Bai Y, Yang F, Zhang J, Rao W, Liu J. Liquid Metal Combinatorics toward Materials Discovery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303533. [PMID: 37417920 DOI: 10.1002/adma.202303533] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Liquid metals and their derivatives provide several opportunities for fundamental and practical exploration worldwide. However, the increasing number of studies and shortage of desirable materials to fulfill different needs also pose serious challenges. Herein, to address this issue, a generalized theoretical frame that is termed as "Liquid Metal Combinatorics" (LMC) is systematically presented, and summarizes promising candidate technical routes toward new generation material discovery. The major categories of LMC are defined, and eight representative methods for manufacturing advanced materials are outlined. It is illustrated that abundant targeted materials can be efficiently designed and fabricated via LMC through deep physical combinations, chemical reactions, or both among the main bodies of liquid metals, surface chemicals, precipitated ions, and other materials. This represents a large class of powerful, reliable, and modular methods for innovating general materials. The achieved combinatorial materials not only maintained the typical characteristics of liquid metals but also displayed distinct tenability. Furthermore, the fabrication strategies, wide extensibility, and pivotal applications of LMC are classified. Finally, by interpreting the developmental trends in the area, a perspective on the LMC is provided, which warrants its promising future for society.
Collapse
Affiliation(s)
- Dawei Wang
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Jiao Ye
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunlong Bai
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Yang
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zhang
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Rao
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Liu
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
24
|
Zhang R, Zhai Q, Bao F, Zhao D, Lu Z, Wang J, Wang W. A Highly Stretchable Force Sensitive and Temperature Sensitive Sensor Material with the Sandwich Structure of PDMS + PDMS/GaInSn + PDMS. Polymers (Basel) 2023; 15:3776. [PMID: 37765630 PMCID: PMC10535835 DOI: 10.3390/polym15183776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Flexible conductive sensor materials have received great attention for their sensitive electrical response to external conditions and their promising applications in flexible wearable and robotic applications. In this work, a highly stretchable force sensitive and temperature sensitive sensor material with a sandwich structure was prepared from the polydimethylsiloxane (PDMS) and the liquid metal (LM) gallium-indium-tin alloy (GaInSn). The sandwich structure (PDMS + PDMS/GaInSn + PDMS) was proven to prevent the "leakage" of LM. The preparation method of the sensing material was simple and time-saving (less than 1.5 h) and can be used for industrial production. The electrical performance analysis results confirmed that the resistance (R) of the material was sensitive to the external force, such as repeated stretching, compressing, bending, and impacting. The ΔR/R changed periodically and stably with the repeated stretching, when the GaInSn/Part A ≥ 0.4, the cyclic tensile strain ≤ 50%, and the cyclic tensile rate ≤ 2.5 mm/min. The R of the sensor materials was also responsive to the temperature, such as hot air and liquid nitrogen. In conclusion, this work provides a method for preparing sensing materials with the sandwich structure, which was confirmed to be sensitive to force and temperature without leaking LM, and it produced different types of R signals under different deformations and different temperatures.
Collapse
Affiliation(s)
| | - Qianqian Zhai
- School of Physical Science and Intelligent Engineering, Jining University, Qufu 273155, China; (R.Z.)
| | | | | | | | | | | |
Collapse
|
25
|
Won P, Coyle S, Ko SH, Quinn D, Hsia KJ, LeDuc P, Majidi C. Controlling C2C12 Cytotoxicity on Liquid Metal Embedded Elastomer (LMEE). Adv Healthc Mater 2023; 12:e2202430. [PMID: 36706458 PMCID: PMC11468040 DOI: 10.1002/adhm.202202430] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/17/2023] [Indexed: 01/28/2023]
Abstract
Liquid metal embedded elastomers (LMEEs) are highly stretchable composites comprising microscopic droplets of eutectic gallium-indium (EGaIn) liquid metal embedded in a soft rubber matrix. They have a unique combination of mechanical, electrical, and thermal properties that make them attractive for potential applications in flexible electronics, thermal management, wearable computing, and soft robotics. However, the use of LMEEs in direct contact with human tissue or organs requires an understanding of their biocompatibility and cell cytotoxicity. In this study, the cytotoxicity of C2C12 cells in contact with LMEE composites composed of EGaIn droplets embedded with a polydimethylsiloxane (PDMS) matrix is investigated. In particular, the influence of EGaIn volume ratio and shear mixing time during synthesis on cell proliferation and viability is examined. The special case of electrically-conductive LMEE composites in which a percolating network of EGaIn droplets is created through "mechanical sintering" is also examined. This study in C2C12 cytotoxicity represents a first step in determining whether LMEE is safe for use in implantable biomedical devices and biohybrid systems.
Collapse
Affiliation(s)
- Phillip Won
- Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Stephen Coyle
- Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Seung Hwan Ko
- Mechanical EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - David Quinn
- Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - K. Jimmy Hsia
- Chemical & Biomedical EngineeringNanyang Technical UniversitySingapore639798Singapore
- Mechanical & Aerospace EngineeringNanyang Technical UniversitySingapore639798Singapore
| | - Philip LeDuc
- Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
- Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Carmel Majidi
- Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
- Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| |
Collapse
|
26
|
Li X, Wang R, Li J, Dong G, Song Q, Wang B, Liu Z. Gallium-based liquid metal hybridizing MoS 2 nanosheets with reversible rheological characteristics and enhanced lubrication properties. RSC Adv 2023; 13:20365-20372. [PMID: 37425627 PMCID: PMC10326599 DOI: 10.1039/d3ra02297h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Gallium-based liquid metal (GLM) is a promising lubricant candidate due to its high load capacity and high thermal stability. However, the lubrication performance of GLM is restricted by its metallic characteristics. Herein, this work proposes a facile method to obtain a GLM@MoS2 composite by integrating GLM with MoS2 nanosheets. The incorporation of MoS2 imparts GLM with different rheological properties. Since GLM is able to be separated from the GLM@MoS2 composite and agglomerates into bulk liquid metal again in alkaline solution, the bonding between GLM and MoS2 nanosheets is reversible. Moreover, our frictional tests demonstrate that the GLM@MoS2 composite exhibits enhanced tribological performance including reduction of friction coefficient and wear rate by 46% and 89%, respectively, in contrast to the pure GLM.
Collapse
Affiliation(s)
- Xing Li
- School of Mechanical Engineering, Shandong University Jinan 250061 China
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE/ National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University China
- Collaborative Innovation Center for Shandong's Main crop Production Equipment and Mechanization China
| | - Ruizhi Wang
- School of Mechanical Engineering, Shandong University Jinan 250061 China
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE/ National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University China
- Collaborative Innovation Center for Shandong's Main crop Production Equipment and Mechanization China
| | - Jiaqian Li
- School of energy and power Engineering, Shandong University Jinan 250061 China
| | - Guangneng Dong
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi'an Jiaotong University Xi'an 710049 China
| | - Qinghua Song
- School of Mechanical Engineering, Shandong University Jinan 250061 China
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE/ National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University China
| | - Bing Wang
- School of Mechanical Engineering, Shandong University Jinan 250061 China
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE/ National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University China
| | - Zhanqiang Liu
- School of Mechanical Engineering, Shandong University Jinan 250061 China
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE/ National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University China
| |
Collapse
|
27
|
Li Y, Fang T, Zhang J, Zhu H, Sun Y, Wang S, Lu Y, Kong D. Ultrasensitive and ultrastretchable electrically self-healing conductors. Proc Natl Acad Sci U S A 2023; 120:e2300953120. [PMID: 37253015 PMCID: PMC10266060 DOI: 10.1073/pnas.2300953120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Self-healing is a bioinspired strategy to repair damaged conductors under repetitive wear and tear, thereby largely extending the life span of electronic devices. The self-healing process often demands external triggering conditions as the practical challenges for the widespread applications. Here, a compliant conductor with electrically self-healing capability is introduced by combining ultrahigh sensitivity to minor damages and reliable recovery from ultrahigh tensile deformations. Conductive features are created in a scalable and low-cost fabrication process comprising a copper layer on top of liquid metal microcapsules. The efficient rupture of microcapsules is triggered by structural damages in the copper layer under stress conditions as a result of the strong interfacial interactions. The liquid metal is selectively filled into the damaged site for the instantaneous restoration of the metallic conductivity. The unique healing mechanism is responsive to various structural degradations including microcracks under bending conditions and severe fractures upon large stretching. The compliant conductor demonstrates high conductivity of ∼12,000 S/cm, ultrahigh stretchability of up to 1,200% strain, an ultralow threshold to activate the healing actions, instantaneous electrical recovery in microseconds, and exceptional electromechanical durability. Successful implementations in a light emitting diode (LED) matrix display and a multifunctional electronic patch demonstrate the practical suitability of the electrically self-healing conductor in flexible and stretchable electronics. The developments provide a promising approach to improving the self-healing capability of compliant conductors.
Collapse
Affiliation(s)
- Yanyan Li
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210023, China
| | - Ting Fang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210023, China
| | - Jiaxue Zhang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210023, China
| | - Hangyu Zhu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210023, China
| | - Yuping Sun
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210023, China
| | - Shaolei Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210023, China
| | - Yanqing Lu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing210093, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210023, China
| |
Collapse
|
28
|
Khandagale P, Breitzman T, Majidi C, Dayal K. Statistical field theory for nonlinear elasticity of polymer networks with excluded volume interactions. Phys Rev E 2023; 107:064501. [PMID: 37464704 DOI: 10.1103/physreve.107.064501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 04/17/2023] [Indexed: 07/20/2023]
Abstract
Polymer networks formed by cross linking flexible polymer chains are ubiquitous in many natural and synthetic soft-matter systems. Current micromechanics models generally do not account for excluded volume interactions except, for instance, through imposing a phenomenological incompressibility constraint at the continuum scale. This work aims to examine the role of excluded volume interactions on the mechanical response. The approach is based on the framework of the self-consistent statistical field theory of polymers, which provides an efficient mesoscale approach that enables the accounting of excluded volume effects without the expense of large-scale molecular modeling. A mesoscale representative volume element is populated with multiple interacting chains, and the macroscale nonlinear elastic deformation is imposed by mapping the end-to-end vectors of the chains by this deformation. In the absence of excluded volume interactions, it recovers the closed-form results of the classical theory of rubber elasticity. With excluded volume interactions, the model is solved numerically in three dimensions using a finite element method to obtain the energy, stresses, and linearized moduli under imposed macroscale deformation. Highlights of the numerical study include: (i) the linearized Poisson's ratio is very close to the incompressible limit without a phenomenological imposition of incompressibility; (ii) despite the harmonic Gaussian chain as a starting point, there is an emergent strain-softening and strain-stiffening response that is characteristic of real polymer networks, driven by the interplay between the entropy and the excluded volume interactions; and (iii) the emergence of a deformation-sensitive localization instability at large excluded volumes.
Collapse
Affiliation(s)
- Pratik Khandagale
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy Breitzman
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Carmel Majidi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Kaushik Dayal
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
- Center for Nonlinear Analysis, Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
- Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
29
|
Liu C, Li D, Huang J, Guo Z, Liu W. High-Performance Magnetic and Electric Control of Liquid Metal Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7495-7502. [PMID: 37196334 DOI: 10.1021/acs.langmuir.3c00888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In the present study, we propose a magnetically controlled and electrically controlled magnetic liquid metal (MLM) method to achieve high-performance multiple manipulation of droplets. The prepared MLM has good active and passive deformability. Under the action of the magnetic field, controllable transport, splitting, merging, and rotation are realized. In addition, controllable electric field manipulation in alkaline and acidic electrolytes is realized. This simple preparation method can be applied to the precise and rapid control of the magnetic field and electric field at the same time. Compared with other droplet manipulation methods, we realized droplet manipulation independent of special surfaces. It has the advantages of easy implementation, low cost, and high controllability. It shows great application potential in the fields of biochemical analysis, microfluidics, drug transportation in complex limited space, and intelligent soft robots.
Collapse
Affiliation(s)
- Cong Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
- School of Materials Engineering, Lanzhou Institute of Technology, Lanzhou 730050, People's Republic of China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
30
|
Ghosh PK, Sundaravadivel P. Stretchable Sensors for Soft Robotic Grippers in Edge-Intelligent IoT Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:4039. [PMID: 37112380 PMCID: PMC10145183 DOI: 10.3390/s23084039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/24/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
The rapid development of electronic material and sensing technology has enabled research to be conducted on liquid metal-based soft sensors. The application of soft sensors is widespread and has many applications in soft robotics, smart prosthetics, and human-machine interfaces, where these sensors can be integrated for precise and sensitive monitoring. Soft sensors can be easily integrated for soft robotic applications, where traditional sensors are incompatible with robotic applications as these types of sensors show large deformation and very flexible. These liquid-metal-based sensors have been widely used for biomedical, agricultural and underwater applications. In this research, we have designed and fabricated a novel soft sensor that yields microfluidic channel arrays embedded with liquid metal Galinstan alloy. First of all, the article presents different fabrication steps such as 3D modeling, printing, and liquid metal injection. Different sensing performances such as stretchability, linearity, and durability results are measured and characterized. The fabricated soft sensor demonstrated excellent stability and reliability and exhibited promising sensitivity with respect to different pressures and conditions.
Collapse
|
31
|
Ma X, Wu X, Cao S, Zhao Y, Lin Y, Xu Y, Ning X, Kong D. Stretchable and Skin-Attachable Electronic Device for Remotely Controlled Wearable Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205343. [PMID: 36727804 PMCID: PMC10074095 DOI: 10.1002/advs.202205343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Surgery represents a primary clinical treatment of solid tumors. The high risk of local relapse typically requires frequent hospital visits for postoperative adjuvant therapy. Here, device designs and system integration of a stretchable electronic device for wearable cancer treatment are presented. The soft electronic patch harnesses compliant materials to achieve conformal and stable attachment to the surgical wound. A composite nanotextile dressing is laminated to the electronic patch to allow the on-demand release of anticancer drugs under electro-thermal actuation. An additional flexible circuit and a compact battery complete an untethered wearable system to execute remote therapeutic commands from a smartphone. The successful implementation of combined chemothermotherapy to inhibit tumor recurrence demonstrates the promising potential of stretchable electronics for advanced wearable therapies without interfering with daily activities.
Collapse
Affiliation(s)
- Xiaohui Ma
- College of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNanjing UniversityNanjing210046China
- State Key Laboratory of Analytical Chemistry for Life ScienceNanjing UniversityNanjing210046China
| | - Xiaotong Wu
- College of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNanjing UniversityNanjing210046China
- National Laboratory of Solid State MicrostructureCollaborative Innovation Center of Advanced MicrostructuresChemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210093China
| | - Shitai Cao
- College of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNanjing UniversityNanjing210046China
- State Key Laboratory of Analytical Chemistry for Life ScienceNanjing UniversityNanjing210046China
| | - Yinfeng Zhao
- College of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNanjing UniversityNanjing210046China
- National Laboratory of Solid State MicrostructureCollaborative Innovation Center of Advanced MicrostructuresChemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210093China
| | - Yong Lin
- College of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNanjing UniversityNanjing210046China
- State Key Laboratory of Analytical Chemistry for Life ScienceNanjing UniversityNanjing210046China
| | - Yurui Xu
- College of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNanjing UniversityNanjing210046China
- National Laboratory of Solid State MicrostructureCollaborative Innovation Center of Advanced MicrostructuresChemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210093China
| | - Xinghai Ning
- College of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNanjing UniversityNanjing210046China
- National Laboratory of Solid State MicrostructureCollaborative Innovation Center of Advanced MicrostructuresChemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210093China
| | - Desheng Kong
- College of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNanjing UniversityNanjing210046China
- State Key Laboratory of Analytical Chemistry for Life ScienceNanjing UniversityNanjing210046China
| |
Collapse
|
32
|
Zhao B, Bai Z, Lv H, Yan Z, Du Y, Guo X, Zhang J, Wu L, Deng J, Zhang DW, Che R. Self-Healing Liquid Metal Magnetic Hydrogels for Smart Feedback Sensors and High-Performance Electromagnetic Shielding. NANO-MICRO LETTERS 2023; 15:79. [PMID: 37002442 PMCID: PMC10066054 DOI: 10.1007/s40820-023-01043-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Hydrogels exhibit potential applications in smart wearable devices because of their exceptional sensitivity to various external stimuli. However, their applications are limited by challenges in terms of issues in biocompatibility, custom shape, and self-healing. Herein, a conductive, stretchable, adaptable, self-healing, and biocompatible liquid metal GaInSn/Ni-based composite hydrogel is developed by incorporating a magnetic liquid metal into the hydrogel framework through crosslinking polyvinyl alcohol (PVA) with sodium tetraborate. The excellent stretchability and fast self-healing capability of the PVA/liquid metal hydrogel are derived from its abundant hydrogen binding sites and liquid metal fusion. Significantly, owing to the magnetic constituent, the PVA/liquid metal hydrogel can be guided remotely using an external magnetic field to a specific position to repair the broken wires with no need for manual operation. The composite hydrogel also exhibits sensitive deformation responses and can be used as a strain sensor to monitor various body motions. Additionally, the multifunctional hydrogel displays absorption-dominated electromagnetic interference (EMI) shielding properties. The total shielding performance of the composite hydrogel increases to ~ 62.5 dB from ~ 31.8 dB of the pure PVA hydrogel at the thickness of 3.0 mm. The proposed bioinspired multifunctional magnetic hydrogel demonstrates substantial application potential in the field of intelligent wearable devices.
Collapse
Affiliation(s)
- Biao Zhao
- School of Microelectronics, Fudan University, Shanghai, 2000433, People's Republic of China
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, People's Republic of China
- Henan Key Laboratory of Aeronautical Materials and Application Technology,, School of Material Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, 450046, Henan, People's Republic of China
| | - Zhongyi Bai
- Key Laboratory of Separation and Processing of Symbiotic-Associated Mineral Resources in Non-Ferrous Metal Industry, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, People's Republic of China
| | - Hualiang Lv
- Institute of Optoelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Zhikai Yan
- Henan Key Laboratory of Aeronautical Materials and Application Technology,, School of Material Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, 450046, Henan, People's Republic of China
| | - Yiqian Du
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, People's Republic of China
| | - Xiaoqin Guo
- Henan Key Laboratory of Aeronautical Materials and Application Technology,, School of Material Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, 450046, Henan, People's Republic of China
| | - Jincang Zhang
- Zhejiang Laboratory, Hangzhou, 311100, People's Republic of China
| | - Limin Wu
- Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Jiushuai Deng
- Key Laboratory of Separation and Processing of Symbiotic-Associated Mineral Resources in Non-Ferrous Metal Industry, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, People's Republic of China
| | - David Wei Zhang
- School of Microelectronics, Fudan University, Shanghai, 2000433, People's Republic of China
| | - Renchao Che
- School of Microelectronics, Fudan University, Shanghai, 2000433, People's Republic of China.
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, People's Republic of China.
- Zhejiang Laboratory, Hangzhou, 311100, People's Republic of China.
| |
Collapse
|
33
|
Zhao R, Kang S, Wu C, Cheng Z, Xie Z, Liu Y, Zhang D. Designable Electrical/Thermal Coordinated Dual-Regulation Based on Liquid Metal Shape Memory Polymer Foam for Smart Switch. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205428. [PMID: 36658714 PMCID: PMC10015848 DOI: 10.1002/advs.202205428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Electronic components with tunable resistance, especially with synergistic regulation of thermal conductivity, play important roles in the fields of electronics, smart switch, soft robots, and so on. However, it is still a challenge to get the material with various resistance and thermal conductivity stably without lasting external force. Herein, a liquid metal shape memory polymer foam (LM-SMF) is developed by loading electrically and thermally conductive liquid metal (LM) on deformable foam skeleton. Based on thermal response shape memory effect, the foam skeleton can be reversibly pressed, the process of which enables LM to transfer between connected and disconnected states. As a result, obtained LM-SMF shows that the resistance stably changes from 0.8 Ω (conductor) to 200 MΩ (insulator), and the thermal conductivity difference is up to 4.71 times (0.108 to 0.509 W m-1 K-1 ), which indicates that LM-SMF can achieve the electrical and thermal dual-regulation. Moreover, LM-SMF can be used as a designable self-feedback/-warning integrated smart switch or tunable infrared stealth switch. This work proposes a novel strategy to get the material with electrical-thermal coordinated dual-regulation, which is possibly applied in intelligent heating system with real-time monitoring function, electrothermal sensor in the future.
Collapse
Affiliation(s)
- Ruoxi Zhao
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Sibo Kang
- State Key Laboratory of Marine CoatingMarine Chemical Research Institute Co., Ltd.Qingdao266071P. R. China
| | - Chao Wu
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Zhongjun Cheng
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Zhimin Xie
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsHarbin Institute of TechnologyHarbin150080P. R. China
| | - Yuyan Liu
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Dongjie Zhang
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| |
Collapse
|
34
|
Zhang XD, Zhang ZT, Wang HZ, Cao BY. Thermal Interface Materials with High Thermal Conductivity and Low Young's Modulus Using a Solid-Liquid Metal Codoping Strategy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3534-3542. [PMID: 36604306 DOI: 10.1021/acsami.2c20713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Thermal interface materials (TIMs), as typical thermal functional materials, are highly required to possess both high thermal conductivity and low Young's modulus. However, the naturally synchronized change in the thermal and mechanical properties seriously hinders the development of high-performance TIMs. To tackle such a dilemma, a strategy of codoping solid fillers and liquid metal fillers into polymer substrates is proposed in this study. This strategy includes a large amount of liquid metals that play the role of thermal paths and a small amount of uniformly dispersed solid fillers that further enhance heat conduction. Through the synergistic effect of the liquid metal and solid fillers, the thermal conductivity can be improved, and Young's modulus can be kept small simultaneously. A typical TIM with a volume of 55% gallium-based liquid metal and 15% copper particles as fillers has a thermal conductivity of 3.94 W/(m·K) and a Young's modulus of 699 kPa, which had the maximum thermomechanical performance coefficient compared with liquid metal TIMs and solid filler-doped TIMs. In addition, the thermal conductivity of the solid-liquid metal codoped TIM increased sharply with an increase of liquid metal content, and Young's modulus increased rapidly with an increase of the volume ratio of copper and polymer. The high-low-temperature cycling test and large-size light-emitting diode (LED) application demonstrated that this TIM had stable physical performance. The synergistic effect of the solid fillers and liquid metal fillers provides a broad space to solve the classic tradeoff issue of the mechanical and thermal properties of composites.
Collapse
Affiliation(s)
- Xu-Dong Zhang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing100084, China
| | - Zi-Tong Zhang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing100084, China
| | - Hong-Zhang Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing100084, China
| | - Bing-Yang Cao
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing100084, China
| |
Collapse
|
35
|
Synthesis and Application of Liquid Metal Based-2D Nanomaterials: A Perspective View for Sustainable Energy. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020524. [PMID: 36677585 PMCID: PMC9864318 DOI: 10.3390/molecules28020524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
With the continuous exploration of low-dimensional nanomaterials, two dimensional metal oxides (2DMOs) has been received great interest. However, their further development is limited by the high cost in the preparation process and the unstable states caused by the polarization of surface chemical bonds. Recently, obtaining mental oxides via liquid metals have been considered a surprising method for obtaining 2DMOs. Therefore, how to scientifically choose different preparation methods to obtain 2DMOs applying in different application scenarios is an ongoing process worth discussing. This review will provide some new opportunities for the rational design of 2DMOs based on liquid metals. Firstly, the surface oxidation process and in situ electrical replacement reaction process of liquid metals are introduced in detail, which provides theoretical basis for realizing functional 2DMOs. Secondly, by simple sticking method, gas injection method and ultrasonic method, 2DMOs can be obtained from liquid metal, the characteristics of each method are introduced in detail. Then, this review provides some prospective new ideas for 2DMOs in other energy-related applications such as photodegradation, CO2 reduction and battery applications. Finally, the present challenges and future development prospects of 2DMOs applied in liquid metals are presented.
Collapse
|
36
|
Won P, Valentine CS, Zadan M, Pan C, Vinciguerra M, Patel DK, Ko SH, Walker LM, Majidi C. 3D Printing of Liquid Metal Embedded Elastomers for Soft Thermal and Electrical Materials. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55028-55038. [PMID: 36458663 DOI: 10.1021/acsami.2c14815] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Liquid metal embedded elastomers (LMEEs) are composed of a soft polymer matrix embedded with droplets of metal alloys that are liquid at room temperature. These soft matter composites exhibit exceptional combinations of elastic, electrical, and thermal properties that make them uniquely suited for applications in flexible electronics, soft robotics, and thermal management. However, the fabrication of LMEE structures has primarily relied on rudimentary techniques that limit patterning to simple planar geometries. Here, we introduce an approach for direct ink write (DIW) printing of a printable LMEE ink to create three-dimensional shapes with various designs. We use eutectic gallium-indium (EGaIn) as the liquid metal, which reacts with oxygen to form an electrically insulating oxide skin that acts as a surfactant and stabilizes the droplets for 3D printing. To rupture the oxide skin and achieve electrical conductivity, we encase the LMEE in a viscoelastic polymer and apply acoustic shock. For printed composites with a 80% LM volume fraction, this activation method allows for a volumetric electrical conductivity of 5 × 104 S cm-1 (80% LM volume)─significantly higher than what had been previously reported with mechanically sintered EGaIn-silicone composites. Moreover, we demonstrate the ability to print 3D LMEE interfaces that provide enhanced charge transfer for a triboelectric nanogenerator (TENG) and improved thermal conductivity within a thermoelectric device (TED). The 3D printed LMEE can be integrated with a highly soft TED that is wearable and capable of providing cooling/heating to the skin through electrical stimulation.
Collapse
Affiliation(s)
- Phillip Won
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Connor S Valentine
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Mason Zadan
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Chengfeng Pan
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR999077, China
| | - Michael Vinciguerra
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Dinesh K Patel
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Seung Hwan Ko
- Department of Mechanical Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Lynn M Walker
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Carmel Majidi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| |
Collapse
|
37
|
Dang TKM, Nikzad M, Truong VK, Masood S, Nguyen CK, Sbarski I. Thermomechanical Properties and Fracture Toughness Improvement of Thermosetting Vinyl Ester Using Liquid Metal and Graphene Nanoplatelets. Polymers (Basel) 2022; 14:polym14245397. [PMID: 36559762 PMCID: PMC9783833 DOI: 10.3390/polym14245397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, a eutectic gallium-indium (EGaIn) alloy and graphene nanoplatelets (GnPs) were employed as reinforcements for a comonomer vinyl ester (cVE) resin at different weight fractions up to 2% via a direct polymerization process. First, the effect of EGaIn on the curing kinetics of cVE was evaluated. The thermal and mechanical properties, and the fracture toughness of two types of cVE composites consisting of EGaIn and GnPs were then studied. The results showed that sub-micron sized EGaIn (≤1 wt.%) could promote the curing reaction of cVE without changing the curing mechanism. However, with further increases in EGaIn loading between 1 and 2 wt.%, the curing reaction rate tends to decrease. Both EGaIn and GnPs showed a significant enhancement in strengthening and toughening the cVE matrix with the presence of filler loading up to 1 wt.%. EGaIn was more effective than GnPs in promoting the flexural and impact strength. An increase of up to 50% and 32% were recorded for these mechanical properties, when EGaln was used, as compared to 46%, and 18% for GnPs, respectively. In contrast, the GnPs/cVE composites exhibited a greater improvement in the fracture toughness and fracture energy by up to 50% and 56% in comparison with those of the EGaIn/cVE ones by up to 32% and 39%, respectively. Furthermore, the stiffness of both the EgaIn/cVE and GnPs/cVE composites showed a significant improvement with an increase of up to 1.76 and 1.83 times in the normalized storage modulus, respectively, while the glass transition temperature (Tg) values remained relatively constant. This work highlights the potential of EGaIn being employed as a filler in creating high-performance thermoset composites, which facilitates its widening applications in many structural and engineering fields, where both higher toughness and stiffness are required.
Collapse
Affiliation(s)
- Thanh Kim Mai Dang
- School of Engineering, Swinburne University of Technology, P.O. Box 218, Melbourne, VIC 3122, Australia
| | - Mostafa Nikzad
- School of Engineering, Swinburne University of Technology, P.O. Box 218, Melbourne, VIC 3122, Australia
- Correspondence:
| | - Vi Khanh Truong
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Syed Masood
- School of Engineering, Swinburne University of Technology, P.O. Box 218, Melbourne, VIC 3122, Australia
| | - Chung Kim Nguyen
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Igor Sbarski
- School of Engineering, Swinburne University of Technology, P.O. Box 218, Melbourne, VIC 3122, Australia
| |
Collapse
|
38
|
He J, Pang W, Gu B, Lin X, Ye J. The stiffness-dependent tumor cell internalization of liquid metal nanoparticles. NANOSCALE 2022; 14:16902-16917. [PMID: 36342434 DOI: 10.1039/d2nr04293b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The properties of nanoparticle (NP) carriers, such as size, shape and surface state, have been proven to dramatically affect their uptake by tumor cells, thereby influencing and determining the effect of nanomedicine on tumor theranostics. However, the effect of the stiffness of NPs on their cellular internalization remains unclear, especially for circumstances involving active or passive NP targeting. In this work, we constructed eutectic gallium indium liquid metal NPs with the same particle size, shape and surface charge properties but distinct stiffness via tailoring the surface oxidation and silica coating. It has been found that the softer NPs would be endocytosed much slower than their stiffer counterparts in the presence of specific ligand-receptor interaction. Interestingly, once the interaction is eliminated, softer NPs are internalized faster than the stiffer ones. Based on experimental observations and theoretical verification, we demonstrate that this phenomenon is mainly caused by varying degrees of deformation of soft NPs induced by ligand-receptor interactions. Such a finding of the stiffness effect of NPs implies great potential for fundamental biomedical applications, such as the rational design of nanomedicines.
Collapse
Affiliation(s)
- Jing He
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Wen Pang
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Bobo Gu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Xubo Lin
- Institute of Single Cell Engineering, Key Laboratory of Ministry of Education for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100191, P. R. China
| | - Jian Ye
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| |
Collapse
|
39
|
Super Tough Hydrogels with Self-adaptive Network Facilitated by Liquid Metal. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Qiao R, Tang SY. Connecting liquid metals with sound. Science 2022; 378:594-595. [DOI: 10.1126/science.ade1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A stretchable conductive circuit is formed using a liquid metal-polymer composite
Collapse
Affiliation(s)
- Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Birmingham, UK
| |
Collapse
|
41
|
Liquid metals: Preparation, surface engineering, and biomedical applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
Centurion F, Hassan MM, Tang J, Allioux FM, Chakraborty S, Chen R, Mao G, Kumar N, Kalantar-Zadeh K, Rahim MA. Assembly of surface-independent polyphenol/liquid gallium composite nanocoatings. NANOSCALE 2022; 14:14760-14769. [PMID: 36178260 DOI: 10.1039/d2nr02559k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of functional nanocoatings using natural compounds is a hallmark of sustainable strategies in the field of green synthesis. Herein, we report a surface-independent nanocoating strategy using natural polyphenols and gallium-based room temperature liquid metal nanoparticles. The nanocoating matrix is composed of tannic acid, crosslinked with group (IV) transition metal ions. Liquid gallium nanoparticles are incorporated into the coatings as a gallium ion releasing depot. The coating deposition is rapid and can be applied to a range of substrates including glass, plastics, paper, and metal surfaces, owing to the versatile adhesive nature of the catechol/gallol functional groups of tannic acid. The coating thickness can be controlled from 100 to 700 nm and the content of liquid gallium nanoparticles can be modulated. This enables the tunable release behaviour of gallium ions into the surrounding from the composite coatings. The coatings are highly biocompatible and display antioxidant and antibacterial properties that can be useful for diverse applications.
Collapse
Affiliation(s)
- Franco Centurion
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, Australia.
| | - Md Musfizur Hassan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, Australia.
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, Australia.
| | - Francois-Marie Allioux
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, Australia.
| | - Sudip Chakraborty
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales, Australia
| | - Renxun Chen
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, Australia.
| | - Naresh Kumar
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, Australia.
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Md Arifur Rahim
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, Australia.
| |
Collapse
|
43
|
Guo C, He L, Yao Y, Lin W, Zhang Y, Zhang Q, Wu K, Fu Q. Bifunctional Liquid Metals Allow Electrical Insulating Phase Change Materials to Dual-Mode Thermal Manage the Li-Ion Batteries. NANO-MICRO LETTERS 2022; 14:202. [PMID: 36214908 PMCID: PMC9551009 DOI: 10.1007/s40820-022-00947-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/17/2022] [Indexed: 06/01/2023]
Abstract
Phase change materials (PCMs) are expected to achieve dual-mode thermal management for heating and cooling Li-ion batteries (LIBs) according to real-time thermal conditions, guaranteeing the reliable operation of LIBs in both cold and hot environments. Herein, we report a liquid metal (LM) modified polyethylene glycol/LM/boron nitride PCM, capable of dual-mode thermal managing the LIBs through photothermal effect and passive thermal conduction. Its geometrical conformation and thermal pathways fabricated through ice-template strategy are conformable to the LIB's structure and heat-conduction characteristic. Typically, soft and deformable LMs are modified on the boron nitride surface, serving as thermal bridges to reduce the contact thermal resistance among adjacent fillers to realize high thermal conductivity of 8.8 and 7.6 W m-1 K-1 in the vertical and in-plane directions, respectively. In addition, LM with excellent photothermal performance provides the PCM with efficient battery heating capability if employing a controllable lighting system. As a proof-of-concept, this PCM is manifested to heat battery to an appropriate temperature range in a cold environment and lower the working temperature of the LIBs by more than 10 °C at high charging/discharging rate, opening opportunities for LIBs with durable working performance and evitable risk of thermal runaway.
Collapse
Affiliation(s)
- Cong Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Lu He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yihang Yao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Weizhi Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yongzheng Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
- Department of Polymer Science and Engineering, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Qin Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Kai Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
44
|
Ryu G, Park K, Kim H. Interfacial properties of liquid metal immersed in various liquids. J Colloid Interface Sci 2022; 621:285-294. [DOI: 10.1016/j.jcis.2022.04.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 11/15/2022]
|
45
|
Influence of microstructural alterations of liquid metal and its interfacial interactions with rubber on multifunctional properties of soft composite materials. Adv Colloid Interface Sci 2022; 308:102752. [PMID: 36007286 DOI: 10.1016/j.cis.2022.102752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022]
Abstract
Liquid metal (LM)-based polymer composites are currently new breakthrough and emerging classes of soft multifunctional materials (SMMs) having immense transformative potential for soft technological applications. Currently, room-temperature LMs, mostly eutectic gallium‑indium and Galinstan alloys are used to integrate with soft polymer due to their outstanding properties such as high conductivity, fluidity, low adhesion, high surface tension, low cytotoxicity, etc. The microstructural alterations and interfacial interactions controlling the efficient integration of LMs with rubber are the most critical aspects for successful implementation of multifunctionality in the resulting material. In this review article, a fundamental understanding of microstructural alterations of LMs to the formation of well-defined percolating networks inside an insulating rubber matrix has been established by exploiting several existing theoretical and experimental studies. Furthermore, effects of the chemical modifications of an LM surface and its interfacial interactions on the compatibility between solid rubber and fluid filler phase have been discussed. The presence of thin oxide layer on the LM surface and the effects and challenges it poses to the adequate functionalization of these materials have been discussed. Plausible applications of SMMs in different soft matter technologies, like soft robotics, flexible electronics, soft actuators, sensors, etc. have been provided. Finally, the current technical challenges and further prospective to the development of SMMs using non‑silicone rubbers have been critically discussed. This review is anticipated to infuse a new impetus to the associated research communities for the development of next generation SMMs.
Collapse
|
46
|
Shi W, Wang Z, Song H, Chang Y, Hou W, Li Y, Han G. High-Sensitivity and Extreme Environment-Resistant Sensors Based on PEDOT:PSS@PVA Hydrogel Fibers for Physiological Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35114-35125. [PMID: 35862578 DOI: 10.1021/acsami.2c09556] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rapid development of flexible electronic devices has caused a boom in researching flexible sensors based on hydrogels, but most of the flexible sensors can only work at room temperature, and they are difficult to adapt to extremely cold or dry environments. Here, the flexible hydrogel fibers (PEDOT:PSS@PVA) with excellent resistance to extreme environments have been prepared by adding glycerin (GL) to the mixture of poly(vinyl alcohol) (PVA) and poly 3,4-dioxyethylene thiophene:polystyrene sulfonic acid (PEDOT:PSS) because GL molecules can form dynamic hydrogen bonds with an elastic matrix of PVA molecules. It is found that the prepared sensor exhibits very good flexibility and mechanical strength, and the ultimate tensile strength can reach up to 13.76 MPa when the elongation at break is 519.9%. Furthermore, the hydrogel fibers possess excellent water retention performance and low-temperature resistance. After being placed in the atmospheric environment for 1 year, the sensor still shows good flexibility. At a low temperature of -60 °C, the sensor can stably endure 1000 repeated stretches and shrinks (10% elongation). In addition to the response to a large strain, this fiber sensor can also detect extremely small strains as low as 0.01%. It is proved that complex human movements such as knuckle bending, vocalization, pulse, and others can be monitored perfectly by this fiber sensor. The above results mean that the PEDOT:PSS@PVA fiber sensor has great application prospects in physiological monitoring.
Collapse
|
47
|
Li Y, Cong M, Liu D, Du Y. A Practical Model of Hybrid Robotic Hands for Grasping Applications Based on Bioinspired Form. J INTELL ROBOT SYST 2022. [DOI: 10.1007/s10846-022-01569-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
48
|
Liquid-Metal-Mediated Electrocatalyst Support Engineering toward Enhanced Water Oxidation Reaction. NANOMATERIALS 2022; 12:nano12132153. [PMID: 35807989 PMCID: PMC9268020 DOI: 10.3390/nano12132153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022]
Abstract
Functional and robust catalyst supports are vital in the catalysis field, and the development of universal and efficient catalyst support is essential but challenging. Traditional catalyst fabrication methods include the carbonization of ordered templates and high−temperature dehydration. All these methods involve complicated meso−structural disordering and allow little control over morphology. To this end, a eutectic GaInSn alloy (EGaInSn) was proposed and employed as an intermediate to fabricate low−dimensional ordered catalyst support materials. Owing to the lower Gibbs free energy of Ga2O3 compared to certain types of metals (e.g., Al, Mn, Ce, etc.), we found that a skinny layer of metal oxides could be formed and exfoliated into a two−dimensional nanosheet at the interface of liquid metal (LM) and water. As such, EGaInSn was herein employed as a reaction matrix to synthesize a range of two−dimensional catalyst supports with large specific surface areas and structural stability. As a proof−of-concept, Al2O3 and MnO were fabricated with the assistance of LM and were used as catalyst supports for loading Ru, demonstrating enhanced structural stability and overall electrocatalytic performance in the oxygen evolution reaction. This work opens an avenue for the development of functional support materials mediated by LM, which would play a substantial role in electrocatalytic reactions and beyond.
Collapse
|
49
|
Sattar M, Yeo WH. Recent Advances in Materials for Wearable Thermoelectric Generators and Biosensing Devices. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4315. [PMID: 35744374 PMCID: PMC9230808 DOI: 10.3390/ma15124315] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/12/2023]
Abstract
Recently, self-powered health monitoring systems using a wearable thermoelectric generator (WTEG) have been rapidly developed since no battery is needed for continuous signal monitoring, and there is no need to worry about battery leakage. However, the existing materials and devices have limitations in rigid form factors and small-scale manufacturing. Moreover, the conventional bulky WTEG is not compatible with soft and deformable tissues, including human skins or internal organs. These limitations restrict the WTEG from stabilizing the thermoelectric gradient that is necessary to harvest the maximum body heat and generate valuable electrical energy. This paper summarizes recent advances in soft, flexible materials and device designs to overcome the existing challenges. Specifically, we discuss various organic and inorganic thermoelectric materials with their properties for manufacturing flexible devices. In addition, this review discusses energy budgets required for effective integration of WTEGs with wearable biomedical systems, which is the main contribution of this article compared to previous articles. Lastly, the key challenges of the existing WTEGs are discussed, followed by describing future perspectives for self-powered health monitoring systems.
Collapse
Affiliation(s)
- Maria Sattar
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Neural Engineering Center, Institute for Materials, and Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
50
|
Guo C, Li Y, Xu J, Zhang Q, Wu K, Fu Q. A thermally conductive interface material with tremendous and reversible surface adhesion promises durable cross-interface heat conduction. MATERIALS HORIZONS 2022; 9:1690-1699. [PMID: 35393993 DOI: 10.1039/d2mh00276k] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The dramatic miniaturization and integration of electronic devices call for next-generation thermally conductive interface materials with higher service performance and long-term stability. In addition to enhancing the inherent thermal conductivity of materials, it is noteworthy to pay attention to the thermal contact resistance. Herein, we synthesized a polyurethane with hierarchical hydrogen bonding to realize high surface adhesion with substrates; another key was incorporating aluminum oxide modified by a deformable liquid metal to improve the thermo-conductive capability and offer the freedom of polymeric segmental motions. These molecular and structural designs endow the composite with high isotropic thermal conductivity, electrical insulation and temperature-responsive reversible adhesion, which enable low thermal resistance and durable thermal contact with substrates without the need for external pressure.
Collapse
Affiliation(s)
- Cong Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yuhan Li
- College of Chemistry and Green Catalysis Center, Zhengzhou Key Laboratory of Elastic Sealing Materials, Zhengzhou University, Zhengzhou 450001, China
| | - JianHua Xu
- Joint Laboratory of Advanced Biomedical Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Qin Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Kai Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|