1
|
Huang Y, Ke C, Lou C, He Q. Chemically active colloidal superstructures. NANOSCALE 2025; 17:12534-12553. [PMID: 40331321 DOI: 10.1039/d5nr00650c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Mimicking biological systems, artificial active colloidal motors that continuously dissipate energy can dynamically self-assemble to form active colloidal superstructures with specific spatial configurations and complex functionalities, which offers a promising pathway for developing new active soft matter materials with adaptability, self-repair, and reconfigurability. Beyond merely propelling their own motion, chemically driven colloidal motors can also induce phoretic effects and osmotic flows to affect the motion of neighboring colloidal motors through local fluid fields generated by chemical reactions, thereby achieving spontaneous chemical communication and promoting dynamic self-assembly between motors. This review summarizes the latest progress in the dynamic self-assembly of chemically driven colloidal motors, ranging from single chemically driven colloidal motors to chemically driven colloidal motors with passive colloidal particles and then to different chemically driven colloidal motors, ultimately forming active colloidal superstructures with complex dynamic behaviors. Not only are the interactions between chemically driven colloidal motors with different self-propulsion mechanisms and passive colloidal particles focused on, but also the communication behaviors between chemically driven colloidal motors are explored. We explain the fundamental physicochemical mechanisms that regulate the assembly behavior of chemically driven colloidal motors, propose general strategies for the controlled construction of active colloidal superstructures, and discuss the potential applications that may emerge from the directed dynamic self-assembly of these superstructures.
Collapse
Affiliation(s)
- Yang Huang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Changcheng Ke
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Celi Lou
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Qiang He
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
2
|
Jhajhria M, Das SK, Thakur S. Kinetics of phase transition in nonreciprocal mixtures of passive and chemophoretically active particles. J Chem Phys 2025; 162:194905. [PMID: 40396545 DOI: 10.1063/5.0258020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 05/02/2025] [Indexed: 05/22/2025] Open
Abstract
We study phase separation kinetics in two-dimensional binary mixtures of active and passive colloids. An active particle acts as a source of the chemical gradient to induce phoretic motion among the passive particles. Mediated by this effective interaction, the suspension undergoes separation resembling a vapor-liquid phase transition. Via simulations incorporating Langevin dynamics, we construct the related steady-state phase diagram. We exploit this knowledge to study structure and growth associated with kinetics following sudden quenches of homogeneous systems into the miscibility gap, for far-from-critical and near-critical densities. An advanced finite-size scaling technique is employed to calculate the growth exponents in the thermodynamically large system size limit, using data from systems of different finite sizes, for each of the cases. The growth data are described well by a recently constructed analytical function, irrespective of system size and particle density. Our results demonstrate enhancement in the growth exponent when the phoretic strength is increased. For the off-critical case, we have discussed the possible mechanism(s) in the background of an appropriate theoretical picture.
Collapse
Affiliation(s)
- Manisha Jhajhria
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Subir K Das
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Snigdha Thakur
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| |
Collapse
|
3
|
Chand R, Shukla A, Boby S, Kumar GVP. Optothermally induced active and chiral motion of colloidal structures. SOFT MATTER 2025. [PMID: 40376814 DOI: 10.1039/d4sm01348d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Artificial soft matter systems have proven to be important tools to harness mechanical motion for microscale manipulation. Typically, this motion is driven either by external fields or by mutual interactions between the colloids. In the latter scenario, dynamics arise from non-reciprocal interactions among colloids within a chemical environment. In contrast, we eliminate the need for a chemical environment by utilizing a large area of optical illumination to generate thermal fields. The resulting optothermal interactions introduce non-reciprocity to the system, enabling active motion of the colloidal structure. Our approach involves two types of colloids: passive and thermally active. The thermally active colloids contain absorbing elements that capture energy from the incident optical beam, creating localized thermal fields around them. In a suspension of these colloids, the thermal gradients generated drive nearby particles through attractive thermo-osmotic forces. We investigate the resulting dynamics, which lead to various swimming modes, including active propulsion and chiral motion. We have also simulated the dynamics of the colloidal structures by solving the coupled Langevin equations to gain insight into the emerging motion. By exploring the interplay between optical forces, thermal effects, and particle interactions, we aim to gain insights into controlling colloidal behavior in non-equilibrium systems. This research has significant implications for directed self-assembly, microfluidic manipulation, and the study of active matter.
Collapse
Affiliation(s)
- Rahul Chand
- Department of Physics, Indian Institute of Science Education and Research (IISER) Pune, Pune, 411008, India.
| | - Ashutosh Shukla
- Department of Physics, Indian Institute of Science Education and Research (IISER) Pune, Pune, 411008, India.
| | - Sneha Boby
- Department of Physics, Indian Institute of Science Education and Research (IISER) Pune, Pune, 411008, India.
| | - G V Pavan Kumar
- Department of Physics, Indian Institute of Science Education and Research (IISER) Pune, Pune, 411008, India.
| |
Collapse
|
4
|
Han K, Snezhko A. Field-Driven Out-of-Equilibrium Collective Patterns for Swarm Micro-Robotics. ACS NANO 2025; 19:16248-16266. [PMID: 40292636 DOI: 10.1021/acsnano.5c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Soft robotics has been rapidly advancing, offering significant improvements over traditional rigid robotic systems through the use of compliant materials that enhance adaptability and interaction with the environment. However, current approaches face critical challenges, including the reliance on complex "top-down" fabrication techniques and the difficulty of wireless powering and control at the microscale. Swarm robotics introduces a paradigm shift, leveraging collective dynamics to achieve cooperative and adaptable behaviors among multiple robotic units. Inspired by nature, this "bottom-up" approach enables swarm robots to execute task-specific reconfigurations, enhancing flexibility and robustness. Field-driven active colloids emerge as a promising platform for swarm microrobotics, capable of self-propulsion and self-organization into dynamic collective patterns under external field excitation and manipulation. These systems mimic biologically inspired swarm behaviors, such as flocking and vortex formation, providing a versatile foundation for designing innovative swarm microrobots. This review discusses the principles of electric and magnetic field-driven collective self-organization, focusing on the particle dynamics, the emergence of collective swarm patterns, and illustrative examples of functional swarm microrobots. It concludes with future perspectives on harnessing these systems for adaptive, scalable, and multifunctional microrobotic applications.
Collapse
Affiliation(s)
- Koohee Han
- Department of Chemical Engineering, School of Chemical Engineering and Applied Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Alexey Snezhko
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
5
|
Panda SK, Das S, Singh DP. Tailoring the Propulsion Dynamics of Rod-Shaped Colloidal Micromotors Driven by Passive Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410997. [PMID: 40195918 DOI: 10.1002/smll.202410997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/17/2025] [Indexed: 04/09/2025]
Abstract
Studying the interactions among the active and passive units in a heterogeneous fluid medium is an attractive regime in active matter systems. It is of paramount importance to investigate those systems not only to understand the complex dynamics behavior but also to design reconfigurable novel structures. Here, the light-activated rod-like colloidal micromotors show intriguing swimming patterns when attached to inert silica spheres. The active colloidal systems comprise rod-like swimmers made of semiconducting material like silica-titania, fabricated primarily by the Glancing Angle Deposition (GLAD)-based Physical Vapor Deposition (PVD) technique. The activity of the rods is solely triggered upon UV illumination, resulting in phoretic slip flows around the rods, which push them into a translational swimming mode. Interestingly, their swimming behavior changes upon encountering passive silica particles, transitioning from an inherent random path to spiral, linear, or orbital patterns depending on the number and size of the attached particles. Numerical modeling is also performed, which accurately predicts these behaviors, aligning with experimental results. This study not only advances the ability to control active particle behavior in inert colloidal fluid mediums but also enhances the understanding of similar cumbersome phenomena in other biological and artificial nonequilibrium systems.
Collapse
Affiliation(s)
- Suvendu Kumar Panda
- Department of Physics, IIT Bhilai, Kutelabhata, Durg, Chhattisgarh, 491002, India
| | - Sayan Das
- Department of Mechanical Engineering, BITS Pilani, Hyderabad Campus, Telangana, 500078, India
| | - Dhruv Pratap Singh
- Department of Physics, IIT Bhilai, Kutelabhata, Durg, Chhattisgarh, 491002, India
| |
Collapse
|
6
|
Khoshzaban A, Magazzú A, Donato MG, Maragò OM, Unlu MB, Cizmeciyan MN, Elahi P. Dynamics of Pulsed-Laser Interaction with Janus Particles. ACS PHOTONICS 2025; 12:1936-1943. [PMID: 40255514 PMCID: PMC12007091 DOI: 10.1021/acsphotonics.4c02388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 04/22/2025]
Abstract
Janus particles, with their flexible chemistry and multifunctionality, have broadened the scope of the optical manipulation field as an emerging class of materials. Laser-based manipulation is particularly promising for half-metal-coated particles, offering a platform to study optical and thermal effects. However, the role of the laser's operation regime in particle behavior needs to be understood better. Hence, in this work, we studied the interaction of nanosecond-pulsed lasers on 4.1 μm Au-Janus particles with a 100 nm gold cap. We focused on the interaction in three sections: (1) We observed three pulse energy influence regimes: In the low-influence regime (less than ∼10 nJ), the particle maintains its intrinsic Brownian motion. In the medium-influence regime (less than ∼40 nJ), the particle exhibits an extended range of motion. In the high-influence regime (higher than ∼40 nJ), the particle undergoes superdiffusion and establishes a new equilibrium position. (2) During optical manipulation trials, a threshold pulse energy of 4 nJ (average power of 40 μW) was sufficient to move Au-Janus particles against the laser spot. We achieved translation velocities of 0.9-5.1 μm/s at 4-50 nJ. (3) The gold cap is damaged at 20 nJ (fluence of 0.7 J/cm2) when the laser is focused on the particle, consistent with theoretical predictions, and the ablation process generates micro- and submicrometer gold particles. These findings reveal the potential of pulsed lasers for precise, power-efficient manipulation of Janus particles, advancing our understanding of laser-particle interactions and opening new pathways for optical manipulation applications.
Collapse
Affiliation(s)
- Alireza Khoshzaban
- Institute
of Biomedical Engineering, Boğaziçi
University, 34684 Istanbul, Turkey
| | - Alessandro Magazzú
- CNR-IPCF,
Istituto per i Processi Chimico-Fisici, I-98158 Messina, Italy
| | | | - Onofrio M. Maragò
- CNR-IPCF,
Istituto per i Processi Chimico-Fisici, I-98158 Messina, Italy
| | - Mehmet Burcin Unlu
- Faculty
of Engineering, Özyeğin University, 34794 Istanbul, Turkey
- Faculty
of Aviation and Aeronautical Sciences, Özyeğin
University, 34794 Istanbul, Turkey
| | - M. Natali Cizmeciyan
- Faculty
of Engineering, Özyeğin University, 34794 Istanbul, Turkey
- Center
for Life Sciences and Technologies, Boğaziçi
University, 34342 Istanbul, Turkey
| | - Parviz Elahi
- Department
of Natural and Mathematical Sciences, Özyeğin
University, 34794 Istanbul, Turkey
| |
Collapse
|
7
|
Yang Y, Jeon Y, Dong Z, Yang JKW, Haddadi Moghaddam M, Kim DS, Oh DK, Lee J, Hentschel M, Giessen H, Kang D, Kim G, Tanaka T, Zhao Y, Bürger J, Maier SA, Ren H, Jung W, Choi M, Bae G, Chen H, Jeon S, Kim J, Lee E, Kang H, Park Y, Du Nguyen D, Kim I, Cencillo-Abad P, Chanda D, Jing X, Liu N, Martynenko IV, Liedl T, Kwak Y, Nam JM, Park SM, Odom TW, Lee HE, Kim RM, Nam KT, Kwon H, Jeong HH, Fischer P, Yoon J, Kim SH, Shim S, Lee D, Pérez LA, Qi X, Mihi A, Keum H, Shim M, Kim S, Jang H, Jung YS, Rossner C, König TAF, Fery A, Li Z, Aydin K, Mirkin CA, Seong J, Jeon N, Xu Z, Gu T, Hu J, Kwon H, Jung H, Alijani H, Aharonovich I, Kim J, Rho J. Nanofabrication for Nanophotonics. ACS NANO 2025; 19:12491-12605. [PMID: 40152322 DOI: 10.1021/acsnano.4c10964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Nanofabrication, a pivotal technology at the intersection of nanoscale engineering and high-resolution patterning, has substantially advanced over recent decades. This technology enables the creation of nanopatterns on substrates crucial for developing nanophotonic devices and other applications in diverse fields including electronics and biosciences. Here, this mega-review comprehensively explores various facets of nanofabrication focusing on its application in nanophotonics. It delves into high-resolution techniques like focused ion beam and electron beam lithography, methods for 3D complex structure fabrication, scalable manufacturing approaches, and material compatibility considerations. Special attention is given to emerging trends such as the utilization of two-photon lithography for 3D structures and advanced materials like phase change substances and 2D materials with excitonic properties. By highlighting these advancements, the review aims to provide insights into the ongoing evolution of nanofabrication, encouraging further research and application in creating functional nanostructures. This work encapsulates critical developments and future perspectives, offering a detailed narrative on the state-of-the-art in nanofabrication tailored for both new researchers and seasoned experts in the field.
Collapse
Affiliation(s)
- Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Youngsun Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Joel K W Yang
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Mahsa Haddadi Moghaddam
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Mario Hentschel
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Harald Giessen
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Dohyun Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gyeongtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Takuo Tanaka
- RIKEN Center for Advanced Photonics, Wako 351-0198, Japan
- Institute of Post-LED Photonics, Tokushima University, Tokushima 770-8501, Japan
| | - Yang Zhao
- Department of Electrical and Computer Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Johannes Bürger
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Ludwig-Maximilians-Universität, Munich 80539, Germany
| | - Stefan A Maier
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
- Department of Physics, Imperial College London, London SW72AZ, United Kingdom
| | - Haoran Ren
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
| | - Wooik Jung
- Department of Creative Convergence Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Mansoo Choi
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Gwangmin Bae
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Haomin Chen
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunji Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yujin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dang Du Nguyen
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pablo Cencillo-Abad
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
| | - Debashis Chanda
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
- Department of Physics, University of Central Florida, Florida 32816, United States
- The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
| | - Xinxin Jing
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Na Liu
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Irina V Martynenko
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
| | - Yuna Kwak
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Min Park
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunah Kwon
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Yonsei University, Seoul, 03722, Republic of Korea
| | - Jiwon Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sangmin Shim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Dasol Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Luis A Pérez
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Xiaoyu Qi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Agustin Mihi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Hohyun Keum
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Moonsub Shim
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, Illinois 61801, United States
| | - Seok Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hanhwi Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Christian Rossner
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Department of Polymers, University of Chemistry and Technology Prague, Prague 6 166 28, Czech Republic
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden 01069, Germany
| | - Zhiwei Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Mayland 20742, United States
| | - Koray Aydin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Nara Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhiyun Xu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tian Gu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Juejun Hu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyounghan Kwon
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Quantum Information, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hojoong Jung
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hossein Alijani
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
8
|
Prakash P, Baig Y, Peaudecerf FJ, Goldstein RE. Dynamics of an algae-bacteria microcosm: Photosynthesis, chemotaxis, and expulsion in inhomogeneous active matter. Proc Natl Acad Sci U S A 2025; 122:e2410225122. [PMID: 40096603 PMCID: PMC11962504 DOI: 10.1073/pnas.2410225122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 01/21/2025] [Indexed: 03/19/2025] Open
Abstract
In nature, there are significant relationships known between microorganisms from two kingdoms of life, as in the supply of vitamin B12 by bacteria to algae. Such interactions motivate general investigations into the spatiotemporal dynamics of metabolite exchanges. Here we study by experiment and theory a model system: a coculture of the bacterium Bacillus subtilis, an obligate aerobe that is chemotactic to oxygen, and a nonmotile mutant of the alga Chlamydomonas reinhardtii, which photosynthetically produces oxygen when illuminated. Strikingly, when a shaft of light illuminates a thin, initially uniform suspension of the two, the chemotactic influx of bacteria to the photosynthetically active region leads to expulsion of the algae from that area. We propose that this effect arises from advection by the inhomogeneous bacterial concentration. The resulting generalization of Fick's law has been proposed in the context of chemotaxis and is mathematically related to the "turbulent pumping" in magnetohydrodynamics.
Collapse
Affiliation(s)
- Praneet Prakash
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, CambridgeCB3 0WA, United Kingdom
| | - Yasa Baig
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, CambridgeCB3 0WA, United Kingdom
| | | | - Raymond E. Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, CambridgeCB3 0WA, United Kingdom
| |
Collapse
|
9
|
Carrasco C, Martinet Q, Shen Z, Lintuvuori J, Palacci J, Aubret A. Characterization of Nonequilibrium Interactions of Catalytic Microswimmers Using Phoretically Responsive Nanotracers. ACS NANO 2025; 19:11133-11145. [PMID: 40069094 DOI: 10.1021/acsnano.4c18078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Catalytic microswimmers convert the chemical energy from fuel into motion. They sustain chemical gradients and fluid flows that propel them by phoresis. This leads to unconventional behavior and collective dynamics, such as self-organization into complex structures. Characterizing the nonequilibrium interactions of microswimmers is crucial for advancing our understanding of active systems. However, this remains a challenge owing to the importance of fluctuations at the microscale and the difficulty in disentangling the different contributions to the interactions. Here, we show a massive dependence of the nonequilibrium interactions on the shape of catalytic microswimmers. We perform tracking experiments at high throughput to map interactions between nanocolloidal tracers and dimeric microswimmers of various aspect ratios. Our method leverages dual tracers with differing phoretic mobilities to quantitatively disentangle phoretic motion from hydrodynamic advection. This approach is validated through experiments on single chemically active sites and on immobilized catalytic microswimmers. We further investigate the activity-driven interactions of free microswimmers and directly measure their phoretic interactions. When compared to standard models, our findings highlight the important role of osmotic flows for microswimmers near surfaces and reveal an enhanced contribution of hydrodynamic advection relative to phoretic motion as the size of the microswimmer increases. Our study provides robust measurements of the nonequilibrium interactions from catalytic microswimmers and lays the groundwork for a realistic description of active systems.
Collapse
Affiliation(s)
- Celso Carrasco
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | | | - Zaiyi Shen
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of Engineering, Peking University, No.5, Yiheyuan Road, Haidian District, Beijing 100871, P. R. China
| | - Juho Lintuvuori
- CNRS-LOMA, UMR 5798, 351 cours de la Libération, F-33400 Talence, France
| | | | - Antoine Aubret
- CNRS-LOMA, UMR 5798, 351 cours de la Libération, F-33400 Talence, France
| |
Collapse
|
10
|
Zhao W, Wang S, Zhou Y, Li Y, Tang S, Zheng Y, Zhu P. Programmable assemblies of photothermal anisotropic micromotors for multimodal motion. MATERIALS HORIZONS 2025; 12:1168-1178. [PMID: 39789938 DOI: 10.1039/d4mh01346h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Light-driven micromotors with multiple motion modes offer significantly greater application potential than single-mode micromotors. However, achieving such versatility often requires complex structural designs and precise light focusing on specific micromotor regions, presenting challenges for dynamic operations and microscale precisions. This study introduces programmable assemblies of anisotropic micromotors driven by the photothermal Marangoni effect, produced in bulk via microfluidic technology. Under full-area near-infrared (NIR) irradiation, the micromotor exhibits multiple motion modes, including translation and revolution, while micromotor assemblies display additional rotational motion. Self-assembly of these micromotors is highly controllable and programmable, enabling easy customization of assembled structures to achieve desired motion modes. These features are expected to advance the development of various intelligent self-propelling systems, using multimodal individual micromotors as foundational building blocks.
Collapse
Affiliation(s)
- Wenchang Zhao
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Shiyu Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Ying Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Yanhong Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Shuxian Tang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Yutong Zheng
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
11
|
Huang Y, Yang L, Yang S, Chen H, Lou C, Tang Y, Lin X, He Q. Shape-Directed Dynamic Assembly of Active Colloidal Metamachines. ACS NANO 2025; 19:4754-4767. [PMID: 39854017 DOI: 10.1021/acsnano.4c15465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Modularly organizing active micromachines into high-grade metamachines makes a great leap for operating the microscopic world in a biomimetic way. However, modulating the nonreciprocal interactions among different colloidal motors through chemical reactions to achieve the controllable construction of active colloidal metamachines with specific dynamic properties remains challenging. Here, we report the phototactic active colloidal metamachines constructed by shape-directed dynamic self-assembly of chemically driven peanut-shaped TiO2 colloidal motors and Janus spherical Pt/SiO2 colloidal motors. The long-range diffusiophoretic attraction generated by the photocatalytic reaction dominates the sensing and collision of peanut TiO2 motors with Janus Pt/SiO2 motors. The coupling of local chemical concentration gradient fields between the two types of motors generates short-range site-selective interactions, promoting the shape-directed assembly toward active colloidal metamachines with well-defined spatial configurations. Metamachines, made of colloidal motors, exhibit configuration-dependent kinematics. The colloidal metamachines can be reversibly reconstructed by adjusting lighting conditions and can move phototactically along a predetermined path under the structured light field. Such chemically driven colloidal metamachines that integrate multiple active agents provide a significant avenue for fabricating active soft matter materials and intelligent robotic systems with advanced applications.
Collapse
Affiliation(s)
- Yang Huang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Ling Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Sipeng Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Hao Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Celi Lou
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yunqing Tang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Xiankun Lin
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| | - Qiang He
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| |
Collapse
|
12
|
Chen Y, Gonçalves JM, Ferrer Campos R, Villa K. Dual-Energy Integration in Photoresponsive Micro/Nanomotors: From Strategic Design to Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410901. [PMID: 39716841 PMCID: PMC11817945 DOI: 10.1002/smll.202410901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Indexed: 12/25/2024]
Abstract
Micro/nanomotors (MNMs) are highly versatile small-scale devices capable of converting external energy inputs into active motion. Among the various energy sources, light stands out due to its abundance and ability to provide spatiotemporal control. However, the effectiveness of light-driven motion in complex environments, such as biological tissues or turbid water, is often limited by light scattering and reduced penetration. To overcome these challenges, recent innovations have integrated light-based actuation with other external stimuli-such as magnetic, acoustic, and electrical fields-broadening the functional range and control of MNMs. This review highlights the cutting-edge developments in dual-energy powered MNMs, emphasizing examples where light is paired with secondary energy sources for enhanced propulsion and task performance. Furthermore, insights are offered into the fabrication techniques, biomedical applications, and the future directions of such hybrid MNMs, while addressing the remaining challenges in this rapidly evolving field.
Collapse
Affiliation(s)
- Yufen Chen
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology (BIST)Av. Països Catalans, 16TarragonaE‐43007Spain
| | - João Marcos Gonçalves
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology (BIST)Av. Països Catalans, 16TarragonaE‐43007Spain
| | - Rebeca Ferrer Campos
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology (BIST)Av. Països Catalans, 16TarragonaE‐43007Spain
| | - Katherine Villa
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology (BIST)Av. Països Catalans, 16TarragonaE‐43007Spain
| |
Collapse
|
13
|
Peng Y, Yasir Khan M, Gao Y, Wang W. Self-Generated Ions Modify the Pair Interaction and the Phase Separation of Chemically Active Colloids. Chem Asian J 2025; 20:e202400923. [PMID: 39533512 DOI: 10.1002/asia.202400923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Chemically active colloids that release/consume ions are an important class of active matter, and exhibit interesting collective behaviors such as phase separation, swarming, and waves. Key to these behaviors is the pair-wise interactions mediated by the concentration gradient of self-generated ions. This interaction is often simplified as a pair-wise force decaying at 1/r2, where r is the interparticle distance. Here, we show that this simplification fails for isotropic and immotile active colloids with net ion production, such as Ag colloids in H2O2. Specifically, the production of ions on the surface of the Ag colloids increases the local ion concentration, c, and attenuates the pair-wise interaction force that scales with ∇c/c. As a result, the attractive force between an Ag colloid and its neighbor (active or passive) decays at 1/r or 1/r2 for small or large r, respectively. In a population, the attraction of a colloid by a growing cluster also scales with ∇c/c, so that medium-sized clusters grow fastest, and that the cluster coarsening slows with time. These results, supported by finite element and Brownian dynamic simulations, highlight the important role of self-generated ions in shaping the collective behavior of chemically active colloids.
Collapse
Affiliation(s)
- Yixin Peng
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Mohd Yasir Khan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yongxiang Gao
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
14
|
Wang Y, Chen H, Xie L, Liu J, Zhang L, Yu J. Swarm Autonomy: From Agent Functionalization to Machine Intelligence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312956. [PMID: 38653192 PMCID: PMC11733729 DOI: 10.1002/adma.202312956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Swarm behaviors are common in nature, where individual organisms collaborate via perception, communication, and adaptation. Emulating these dynamics, large groups of active agents can self-organize through localized interactions, giving rise to complex swarm behaviors, which exhibit potential for applications across various domains. This review presents a comprehensive summary and perspective of synthetic swarms, to bridge the gap between the microscale individual agents and potential applications of synthetic swarms. It is begun by examining active agents, the fundamental units of synthetic swarms, to understand the origins of their motility and functionality in the presence of external stimuli. Then inter-agent communications and agent-environment communications that contribute to the swarm generation are summarized. Furthermore, the swarm behaviors reported to date and the emergence of machine intelligence within these behaviors are reviewed. Eventually, the applications enabled by distinct synthetic swarms are summarized. By discussing the emergent machine intelligence in swarm behaviors, insights are offered into the design and deployment of autonomous synthetic swarms for real-world applications.
Collapse
Affiliation(s)
- Yibin Wang
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Hui Chen
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Leiming Xie
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Jinbo Liu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Li Zhang
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong Kong999077China
| | - Jiangfan Yu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| |
Collapse
|
15
|
Damman P, Démery V, Palumbo G, Thomas Q. Algebraic Depletion Interactions in Two-Temperature Mixtures. PHYSICAL REVIEW LETTERS 2024; 133:267103. [PMID: 39879003 DOI: 10.1103/physrevlett.133.267103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/21/2024] [Accepted: 11/18/2024] [Indexed: 01/31/2025]
Abstract
The phase separation that occurs in two-temperature mixtures, which are driven out of equilibrium at the local scale, has been thoroughly characterized, but much less is known about the depletion interactions that drive it. Using numerical simulations in dimension 2, we show that the depletion interactions extend beyond two particle diameters in dilute systems, as expected at equilibrium, and decay algebraically with an exponent -4. Solving for the N-particle distribution function in the stationary state, perturbatively in the interaction potential, we show that algebraic correlations with an exponent -2d arise from triplets of particles at different temperatures in spatial dimension d. Finally, simulations allow us to extend our results beyond the perturbative limit.
Collapse
Affiliation(s)
- Pascal Damman
- Université de Mons, Laboratoire Interfaces & Fluides Complexes, 20 Place du Parc, B-7000 Mons, Belgium
| | - Vincent Démery
- PSL Research University, ESPCI Paris, Gulliver, CNRS, 10 rue Vauquelin, 75005 Paris, France
- ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Guillaume Palumbo
- Université de Mons, Laboratoire Interfaces & Fluides Complexes, 20 Place du Parc, B-7000 Mons, Belgium
| | - Quentin Thomas
- Université de Mons, Laboratoire Interfaces & Fluides Complexes, 20 Place du Parc, B-7000 Mons, Belgium
| |
Collapse
|
16
|
Navas SF, Klapp SHL. Discrete state model of a self-aggregating colloidal system with directional interactions. J Chem Phys 2024; 161:234903. [PMID: 39679522 DOI: 10.1063/5.0243978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
The construction of coarse-grained descriptions of a system's kinetics is well established in biophysics. One prominent example is Markov state models in protein folding dynamics. In this paper, we develop a coarse-grained, discrete state model of a self-aggregating colloidal particle system inspired by the concepts of Markov state modeling. The specific self-aggregating system studied here involves field-responsive colloidal particles in orthogonal electric and magnetic fields. Starting from particle-resolved (Brownian dynamics) simulations, we define the discrete states by categorizing each particle according to its local structure. We then describe the kinetics between these states as a series of stochastic, memoryless jumps. In contrast to other works on colloidal self-assembly, our coarse-grained approach describes the simultaneous formation and evolution of multiple aggregates from single particles. Our discrete model also takes into account the changes in transition dynamics between the discrete states as the size of the largest cluster grows. We validate the coarse-grained model by comparing the predicted population fraction in each of the discrete states with those calculated directly from the particle-resolved simulations as a function of the largest cluster size. We then predict population fractions in the presence of noise-averaging and in a situation where a model parameter is changed instantaneously after a certain time. Finally, we explore the validity of the detailed balance condition in the various stages of aggregation.
Collapse
Affiliation(s)
- Salman Fariz Navas
- Institute for Theoretical Physics, Technical University of Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Sabine H L Klapp
- Institute for Theoretical Physics, Technical University of Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| |
Collapse
|
17
|
Debata S, Panda SK, Singh DP. Engineering light-driven micromotors with fluorescent dye coatings for easy detection and tracking. NANOSCALE 2024; 16:21893-21901. [PMID: 39499261 DOI: 10.1039/d4nr03274h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Micromotors are the backbone of material research as they are small-sized, self-propelled, intelligent systems capable of performing multiple tasks ranging from biomedicine to environmental monitoring. One of the primary obstacles the field faces is the live detection and differentiation of individual units through a complex environment. In this study, we demonstrate a facile approach for designing light-activated dye-tagged micromotors on a large scale. The micromotors are titanium dioxide (TiO2)/copper oxide (Cu2O)-silica Janus spheres that are self-propelled under the illumination of low-intensity light in aqueous peroxide medium. The micromotors were modified with different dyes, such as Alq3, Alizarin, zinc phthalocyanine, etc. The fabrication of micromotors and coating with dyes were performed using a simple and versatile physical vapor deposition-based glancing angle deposition (GLAD) technique. The fluorescent dyes help to detect the motion and position of micromotors independently. Moreover, they also help to identify the swimming direction as well as differentiate the micromotors in a complex medium consisting of similar configurations of other particles (bacteria and passive fluorescent particles). Light provides full control over the dynamics as well as the fluorescence nature of micromotors. To present the versatility of our design scheme, micromotors of different shapes, materials, and dye coatings are designed and explored for fluorescence-based observations. The simplistic design approach with easy-to-load multiple fluorescent dyes is an interesting feature that makes the micromotors suitable candidates for various microfluidic and lab-on-a-chip studies, including biological or fluorescent samples.
Collapse
Affiliation(s)
- Srikanta Debata
- Department of Physics, IIT Bhilai, Kutelabhata, Durg, Chhattisgarh, 491001, India.
| | - Suvendu Kumar Panda
- Department of Physics, IIT Bhilai, Kutelabhata, Durg, Chhattisgarh, 491001, India.
| | - Dhruv Pratap Singh
- Department of Physics, IIT Bhilai, Kutelabhata, Durg, Chhattisgarh, 491001, India.
| |
Collapse
|
18
|
Basharat M, Zhang J, Yu N, Li R, Zhang Y, Wang Y, Gao Y. In-situ isomerization and reversible self-assembly of photoresponsive polymeric colloidal molecules enabled by ON and OFF light control. J Colloid Interface Sci 2024; 680:278-285. [PMID: 39566415 DOI: 10.1016/j.jcis.2024.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
Photocatalytic colloids enable light-triggered nonequilibrium interactions and are emerging as key components for the self-assembly of colloidal molecules (CMs) out of equilibrium. However, the material choices have largely been limited to inorganic substances and the potential for reconfiguring structures through dynamic light control remains underexplored, despite light being a convenient handle for tuning nonequilibrium interactions. Here, we introduce photoresponsive N,O-containing covalent organic polymer (NOCOP) colloids, which display multi-wavelength triggered fluorescence and switchable diffusiophoretic interactions with the addition of triethanolamine. Our system can form various flexible structures, including ABn-type molecules and linear chains. By varying the relative sizes of active to passive colloids, we significantly increase the structural diversity of A2B2-type molecules. Most importantly, we demonstrate in-situ transitions between different isomeric configurations and the reversible assembly of various structures, enabled by on-demand light ON and OFF control of diffusiophoretic interactions. Our work introduces a new photoresponsive colloidal system and a novel strategy for constructing and reconfiguring colloidal assemblies, with promising applications in microrobotics, optical devices, and smart materials.
Collapse
Affiliation(s)
- Majid Basharat
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Jiayu Zhang
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Nan Yu
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Ruiyao Li
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Yiyang Zhang
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Yufeng Wang
- Department of Chemistry, the University of Hong Kong, Hong Kong 999077, China
| | - Yongxiang Gao
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China.
| |
Collapse
|
19
|
Anand SK. A computer simulation study of a chiral active ring polymer. J Chem Phys 2024; 161:184901. [PMID: 39513442 DOI: 10.1063/5.0232538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
We investigate a ring polymer under the influence of chiral active Brownian forces in two dimensions using coarse-grained computer simulations. We observe a non-monotonic behavior of the radius of gyration of an active Brownian ring as a function of active force. However, the shrinkage of the ring in the intermediate strength of active forces becomes more pronounced in the presence of chiral active forces, and the shrinkage is monotonic at a given activity level as a function of the angular frequency controlling the direction of the active force. The distribution of radius of gyration, inter-monomer distance, and radial distribution suggest that the monomers come close to each other, eventually leading to the shrinkage of the ring. Moreover, the bond-correlation suggests that the chirality introduces a local folding of the monomers. Furthermore, using the diameter correlation function, we show that the ring performs tank-treading motion with a frequency following power-law relation with active force with exponent 3/2. The mean squared displacement of the monomers further assists the tank-treading dynamics by exhibiting oscillatory behavior.
Collapse
Affiliation(s)
- Shalabh K Anand
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom and Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
20
|
Lopez-Ceja J, Flores V, Juliano S, Machler S, Smith S, Mansingh G, Shen M, Tanjeem N. Programmable Crowding and Tunable Phases in a Binary Mixture of Colloidal Particles under Light-Driven Thermal Convection. J Phys Chem B 2024; 128:9244-9254. [PMID: 39047259 DOI: 10.1021/acs.jpcb.4c02301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
We employ photothermally driven self-assembly of colloidal particles to design microscopic structures with programmable size and tunable order. The experimental system is based on a binary mixture of "plasmonic heater" gold nanoparticles and "assembly building block" microparticles. Photothermal heating of the gold nanoparticles under visible light causes a natural convection flow that efficiently assembles the microscale building block particles (diameter 1-10 μm) into a monolayer. We identify the onset of active Brownian motion of colloidal particles under this convective flow by varying the conditions of light intensity, gold nanoparticle concentration, and sample height. We realize a crowded assembly of microparticles around the center of illumination and show that the size of the particle crowd can be programmed using patterned light illumination. In a binary mixture of gold nanoparticles and polystyrene microparticles, we demonstrate the formation of rapid and large-scale crystalline monolayers, covering an area of 0.88 mm2 within 10 min. We find that the structural order of the assembly can be tuned by varying the surface charge of the nanoparticles and the size of the microparticles, giving rise to the formation of different phases-colloidal crystals, crowds, and gels. Using Monte Carlo simulations, we explain how the phases emerge from the interplay between hydrodynamic and electrostatic interactions, as well as the assembly kinetics. Our study demonstrates the promise of self-assembly with programmable shapes and structural order under nonequilibrium conditions using an accessible setup comprising only binary mixtures and LED light.
Collapse
Affiliation(s)
- Jose Lopez-Ceja
- Department of Mechanical Engineering, California State University, Fullerton, California 92831, United states
| | - Vanessa Flores
- Department of Mechanical Engineering, California State University, Fullerton, California 92831, United states
| | - Shirlaine Juliano
- Department of Biology, California State University, Fullerton, California 92831, United states
| | - Sean Machler
- Department of Physics, California State University, Fullerton, California 92831, United states
| | - Stephen Smith
- Department of Physics, California State University, Fullerton, California 92831, United states
| | - Gargi Mansingh
- Department of Physics, California State University, Fullerton, California 92831, United states
| | - Meng Shen
- Department of Physics, California State University, Fullerton, California 92831, United states
| | - Nabila Tanjeem
- Department of Physics, California State University, Fullerton, California 92831, United states
| |
Collapse
|
21
|
Akter M, Kabir AMR, Keya JJ, Sada K, Asanuma H, Kakugo A. Localized Control of the Swarming of Kinesin-Driven Microtubules Using Light. ACS OMEGA 2024; 9:37748-37753. [PMID: 39281908 PMCID: PMC11391547 DOI: 10.1021/acsomega.4c03216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024]
Abstract
The swarming of self-propelled cytoskeletal filaments has emerged as a new aspect in the field of molecular machines or robotics, as it has overcome one of the major challenges of controlling the mutual interaction of a large number of individuals at a time. Recently, we reported on the photoregulated swarming of kinesin-driven cytoskeletal microtubule filaments in which visible (VIS) and ultraviolet (UV) light triggered the association and dissociation of the swarm, respectively. However, systematic control of this potential system has yet to be achieved to optimize swarming for further applications in molecular machines or robotics. Here, we demonstrate the precise and localized control of a biomolecular motor-based swarm system by varying different parameters related to photoirradiation. We control the reversibility of the swarming by changing the wavelength or intensity of light and the number of azobenzenes in DNA. In addition, we regulate the swarming in local regions by introducing different-sized or shaped patterns in the UV light system. Such a detailed study of the precise control of swarming would provide new perspectives for developing a molecular swarm system for further applications in engineering systems.
Collapse
Affiliation(s)
- Mousumi Akter
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, 48108, Michigan United States
| | | | - Jakia Jannat Keya
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Kazuki Sada
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Akira Kakugo
- Department of Physics, Kyoto University, Kyoto 606-8224, Japan
| |
Collapse
|
22
|
Qin L, Wang H, Zhang Z. Synthesis and Assembly of Photoresponsive Colloidal Tubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402389. [PMID: 38757548 DOI: 10.1002/smll.202402389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Inspired by the sophisticated multicomponent and multistage assembly of proteins and their mixtures in living cells, this study rationally designs and fabricates photoresponsive colloidal tubes that can self-assemble and hybrid-assemble when mixed with colloidal spheres and rods. Time-resolved observation and computer simulation reveal that the assembly is driven by phoretic attraction originating from osmotic pressures. These pressures are induced by the chemical concentration gradients generated by the photochemical reaction caused by colloidal tubes in a H2O2 solution under ultraviolet (UV) irradiation. The assembled structure is dictated by the size and shape of the constituent colloids as well as the intensity of the UV irradiation. Additionally, the resulting assembly can undergo self-propelled motion originating from the broken symmetry of the surrounding concentration gradients. This motion can be steered by a magnetic field and used for microscale cargo delivery. The study demonstrates a facile synthesis method for colloidal tubes and highlights their unique potential for controlled, hierarchical self-assembly and hybrid-assembly.
Collapse
Affiliation(s)
- Lulu Qin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Huaguang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Institute for Advanced Study, Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, 215006, China
| |
Collapse
|
23
|
Navas SF, Klapp SHL. Impact of non-reciprocal interactions on colloidal self-assembly with tunable anisotropy. J Chem Phys 2024; 161:054908. [PMID: 39105552 DOI: 10.1063/5.0214730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024] Open
Abstract
Non-reciprocal (NR) effective interactions violating Newton's third law occur in many biological systems, but can also be engineered in synthetic, colloidal systems. Recent research has shown that such NR interactions can have tremendous effects on the overall collective behavior and pattern formation, but can also influence aggregation processes on the particle scale. Here, we focus on the impact of non-reciprocity on the self-assembly of a colloidal system (originally passive) with anisotropic interactions whose character is tunable by external fields. In the absence of non-reciprocity, that is, under equilibrium conditions, the colloids form square-like and hexagonal aggregates with extremely long lifetimes yet no large-scale phase separation [Kogler et al., Soft Matter 11, 7356 (2015)], indicating kinetic trapping. Here, we study, based on Brownian dynamics simulations in 2D, an NR version of this model consisting of two species with reciprocal isotropic, but NR anisotropic interactions. We find that NR induces an effective propulsion of particle pairs and small aggregates ("active colloidal molecules") forming at the initial stages of self-assembly, an indication of the NR-induced non-equilibrium. The shape and stability of these initial clusters strongly depend on the degree of anisotropy. At longer times, we find, for weak NR interactions, large (even system-spanning) clusters where single particles can escape and enter at the boundaries, in stark contrast to the small rigid aggregates appearing at the same time in the passive case. In this sense, weak NR shortcuts the aggregation. Increasing the degree of NR (and thus, propulsion), we even observe large-scale phase separation if the interactions are weakly anisotropic. In contrast, systems with strong NR and anisotropy remain essentially disordered. Overall, the NR interactions are shown to destabilize the rigid aggregates interrupting self-assembly and phase separation in the passive case, thereby helping the system to overcome kinetic barriers.
Collapse
Affiliation(s)
- Salman Fariz Navas
- Institute for Theoretical Physics, Technical University of Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Sabine H L Klapp
- Institute for Theoretical Physics, Technical University of Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| |
Collapse
|
24
|
Polev K, Paneru G, Visyn V, Cybulski O, Lach S, Kolygina DV, Edel E, Grzybowski BA. Light-Driven, Dynamic Assembly of Micron-To-Centimeter Parts, Micromachines and Microbot Swarms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402263. [PMID: 38924658 PMCID: PMC11348064 DOI: 10.1002/advs.202402263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/27/2024] [Indexed: 06/28/2024]
Abstract
This work describes light-driven assembly of dynamic formations and functional particle swarms controlled by appropriately programmed light patterns. The system capitalizes on the use of a fluidic bed whose low thermal conductivity assures that light-generated heat remains "localized" and sets strong convective flows in the immediate vicinity of the particles being irradiated. In this way, even low-power laser light or light from a desktop slide projector can be used to organize dynamic formations of objects spanning four orders of magnitude in size (from microns to centimeters) and over nine orders of magnitude in terms of mass. These dynamic assemblies include open-lattice structures with individual particles performing intricate translational and/or rotational motions, density-gradient particle arrays, nested architectures of mechanical components (e.g., planetary gears), or swarms of light-actuated microbots controlling assembly of other objects.
Collapse
Affiliation(s)
- Konstantin Polev
- Center for Algorithmic and Robotized Synthesis (CARS)Korea's Institute for Basic Science (IBS)Ulsan44919South Korea
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919South Korea
| | - Govind Paneru
- Center for Algorithmic and Robotized Synthesis (CARS)Korea's Institute for Basic Science (IBS)Ulsan44919South Korea
- Department of PhysicsUlsan National Institute of Science and Technology (UNIST)Ulsan44919South Korea
| | - Valentin Visyn
- Center for Algorithmic and Robotized Synthesis (CARS)Korea's Institute for Basic Science (IBS)Ulsan44919South Korea
| | - Olgierd Cybulski
- Center for Algorithmic and Robotized Synthesis (CARS)Korea's Institute for Basic Science (IBS)Ulsan44919South Korea
| | - Slawomir Lach
- Center for Algorithmic and Robotized Synthesis (CARS)Korea's Institute for Basic Science (IBS)Ulsan44919South Korea
| | - Diana V. Kolygina
- Center for Algorithmic and Robotized Synthesis (CARS)Korea's Institute for Basic Science (IBS)Ulsan44919South Korea
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919South Korea
| | - Evelyn Edel
- Center for Algorithmic and Robotized Synthesis (CARS)Korea's Institute for Basic Science (IBS)Ulsan44919South Korea
| | - Bartosz A. Grzybowski
- Center for Algorithmic and Robotized Synthesis (CARS)Korea's Institute for Basic Science (IBS)Ulsan44919South Korea
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST)Ulsan44919South Korea
| |
Collapse
|
25
|
Li W, Liu B, Ou L, Li G, Lei D, Xiong Z, Xu H, Wang J, Tang J, Li D. Arbitrary Construction of Versatile NIR-Driven Microrobots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402482. [PMID: 38940072 DOI: 10.1002/adma.202402482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Emerging light-driven micro/nanorobots (LMNRs) showcase profound potential for sophisticated manipulation and various applications. However, the realization of a versatile and straightforward fabrication technique remains a challenging pursuit. This study introduces an innovative bulk heterojunction organic semiconductor solar cell (OSC)-based spin-coating approach, aiming to facilitate the arbitrary construction of LMNRs. Leveraging the distinctive properties of a near-infrared (NIR)-responsive organic semiconductor heterojunction solution, this technique enables uniform coating across various dimensional structures (0D, 1D, 2D, 3D) to be LMNRs, denoted as "motorization." The film, with a slender profile measuring ≈140 nm in thickness, effectively preserves the original morphology of objects while imparting actuation capabilities exceeding hundreds of times their own weight. The propelled motion of these microrobots is realized through NIR-driven photoelectrochemical reaction-induced self-diffusiophoresis, showcasing a versatile array of controllable motion profiles. The strategic customization of arbitrary microrobot construction addresses specific applications, ranging from 0D microrobots inducing living crystal formation to intricate, multidimensional structures designed for tasks such as microplastic extraction, cargo delivery, and phototactic precise maneuvers. This study advances user-friendly and versatile LMNR technologies, unlocking new possibilities for various applications, signaling a transformative era in multifunctional micro/nanorobot technologies.
Collapse
Affiliation(s)
- Wanyuan Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Baiyao Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Leyan Ou
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Gangzhou Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Dapeng Lei
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Ze Xiong
- Wireless and Smart Bioelectronics Lab, School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Huihua Xu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Jizhuang Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
26
|
Liu S, Li Y, Xu H, Kearns DB, Wu Y. Active interface bulging in Bacillus subtilis swarms promotes self-assembly and biofilm formation. Proc Natl Acad Sci U S A 2024; 121:e2322025121. [PMID: 39052827 PMCID: PMC11295035 DOI: 10.1073/pnas.2322025121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Microbial communities such as biofilms are commonly found at interfaces. However, it is unclear how the physical environment of interfaces may contribute to the development and behavior of surface-associated microbial communities. Combining multimode imaging, single-cell tracking, and numerical simulations, here, we found that activity-induced interface bulging promotes colony biofilm formation in Bacillus subtilis swarms presumably via segregation and enrichment of sessile cells in the bulging area. Specifically, the diffusivity of passive particles is ~50% lower inside the bulging area than elsewhere, which enables a diffusion-trapping mechanism for self-assembly and may account for the enrichment of sessile cells. We also uncovered a quasilinear relation between cell speed and surface-packing density that underlies the process of active interface bulging. Guided by the speed-density relation, we demonstrated reversible formation of liquid bulges by manipulating the speed and local density of cells with light. Over the course of development, the active bulges turned into striped biofilm structures, which eventually give rise to a large-scale ridge pattern. Our findings reveal a unique physical mechanism of biofilm formation at air-solid interface, which is pertinent to engineering living materials and directed self-assembly in active fluids.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Physics and Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
| | - Ye Li
- Department of Physics and Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong518055, China
| | - Haoran Xu
- Department of Physics and Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, IN47405-7005
| | - Yilin Wu
- Department of Physics and Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
| |
Collapse
|
27
|
McDonald MN, Tree DR, Peterson CK. Chemical herding as a multiplicative factor for top-down manipulation of colloids. Phys Rev E 2024; 109:064609. [PMID: 39020876 DOI: 10.1103/physreve.109.064609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/21/2024] [Indexed: 07/20/2024]
Abstract
Colloidal particles can create reconfigurable nanomaterials, with applications such as color-changing, self-repairing, and self-regulating materials and reconfigurable drug delivery systems. However, top-down methods for manipulating colloids are limited in the scale they can control. We consider here a new method for using chemical reactions to multiply the effects of existing top-down colloidal manipulation methods to arrange large numbers of colloids with single-particle precision, which we refer to as chemical herding. Using simulation-based methods, we show that if a set of chemically active colloids (herders) can be steered using external forces (i.e., electrophoretic, dielectrophoretic, magnetic, or optical forces), then a larger set of colloids (followers) that move in response to the chemical gradients produced by the herders can be steered using the control algorithms given in this paper. We also derive bounds that predict the maximum number of particles that can be steered in this way, and we illustrate the effectiveness of this approach using Brownian dynamics simulations. Based on the theoretical results and simulations, we conclude that chemical herding is a viable method for multiplying the effects of existing colloidal manipulation methods to create useful structures and materials.
Collapse
|
28
|
Panda SK, Debata S, Kherani NA, Singh DP. Dynamics and phase behavior of metallo-dielectric rod-shaped microswimmers driven by alternating current electric field. SOFT MATTER 2024; 20:3971-3979. [PMID: 38686451 DOI: 10.1039/d4sm00206g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The ability to move and self-organize in response to external stimuli is a fascinating feature of living active matter. Here, the metallo-dielectric rod-shaped microswimmers are shown to have a similar behavior in the presence of an AC electric field. The silica-copper Janus microrods were fabricated using the physical vapor deposition-based glancing angle deposition technique (GLAD). When the aqueous solution of the microrods was under the influence of an external AC electric field, they were found to exhibit different phases such as clustering, swimming, and vertical standing in response to variation of the applied frequency. The swimming behavior (5-90 kHz) of the rods is attributed to the induced-charge electrophoresis (ICEP) phenomenon, whereas the dynamic clustering (<5 kHz) could be explained in terms of the electrohydrodynamic (EHD) interaction. Interestingly, the rods flip to attain the vertically standing position when responding to the applied electric field above 90 kHz. The reorientation and switching of the major axis of the rod along the field direction is attributed to the electro-orientation phenomenon. This is basically due to the dominance of the electric torque above the upper limit of the characteristic frequency, where the strength of slip flows around the microrods is predicted to be poor. The present study not only offers insight into the fundamental aspects of the dynamics and the phase behavior of rod-shaped microswimmers, but also opens an avenue to design reconfigurable active matter systems with features inspired by biological systems.
Collapse
Affiliation(s)
- Suvendu Kumar Panda
- Department of Physics, IIT Bhilai, Kutelabhata, Durg, Chhattisgarh, 491002, India.
| | - Srikanta Debata
- Department of Physics, IIT Bhilai, Kutelabhata, Durg, Chhattisgarh, 491002, India.
| | - Nomaan Alam Kherani
- Department of Physics, IIT Bhilai, Kutelabhata, Durg, Chhattisgarh, 491002, India.
| | - Dhruv Pratap Singh
- Department of Physics, IIT Bhilai, Kutelabhata, Durg, Chhattisgarh, 491002, India.
| |
Collapse
|
29
|
Feng K, Shen W, Chen L, Gong J, Palberg T, Qu J, Niu R. Weak Ion-Exchange Based Magnetic Swarm for Targeted Drug Delivery and Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306798. [PMID: 38059804 DOI: 10.1002/smll.202306798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/06/2023] [Indexed: 12/08/2023]
Abstract
Swimming microrobots that are actuated by multiple stimuli/fields display various intriguing collective behaviors, ranging from phase separation to clustering and giant number fluctuation; however, it is still chanllenging to achieve multiple responses and functionalities within one colloidal system to emulate high environmental adaptability and improved tasking capability of natural swarms. In this work, a weak ion-exchange based swarm is presented that can self-organize and reconfigure by chemical, light, and magnetic fields, showing living crystal, amorphous glass, liquid, chain, and wheel-like structures. By changing the frequency and strength of the rotating magnetic field, various well-controlled and fast transformations are obtained. Experiments show the high adaptability and functionality of the microrobot swarm in delivering drugs in confined spaces, such as narrow channels with turns or obstacles. The drug-carrying swarm exhibits excellent chemtherapy for Hela and CT26 cells due to the pH-enhanced drug release and locomotion. This reconfigurable microswarm provides a new platform for biomedical and environmental applications.
Collapse
Affiliation(s)
- Kai Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wenqi Shen
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Ling Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiang Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Thomas Palberg
- Institut für physics, Johannes Gutenberg-Universtät Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - Jinping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Ran Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
30
|
Chen S, Prado-Morales C, Sánchez-deAlcázar D, Sánchez S. Enzymatic micro/nanomotors in biomedicine: from single motors to swarms. J Mater Chem B 2024; 12:2711-2719. [PMID: 38239179 DOI: 10.1039/d3tb02457a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Micro/nanomotors (MNMs) have evolved from single self-propelled entities to versatile systems capable of performing one or multiple biomedical tasks. When single MNMs self-assemble into coordinated swarms, either under external control or triggered by chemical reactions, they offer advantages that individual MNMs cannot achieve. These benefits include intelligent multitasking and adaptability to changes in the surrounding environment. Here, we provide our perspective on the evolution of MNMs, beginning with the development of enzymatic MNMs since the first theoretical model was proposed in 2005. These enzymatic MNMs hold immense promise in biomedicine due to their advantages in biocompatibility and fuel availability. Subsequently, we introduce the design and application of single motors in biomedicine, followed by the control of MNM swarms and their biomedical applications. In the end, we propose viable solutions for advancing the development of MNM swarms and anticipate valuable insights into the creation of more intelligent and controllable MNM swarms for biomedical applications.
Collapse
Affiliation(s)
- Shuqin Chen
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 10-12, 08028 Barcelona, Spain.
| | - Carles Prado-Morales
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 10-12, 08028 Barcelona, Spain.
| | - Daniel Sánchez-deAlcázar
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 10-12, 08028 Barcelona, Spain.
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 10-12, 08028 Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Psg. Lluís Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
31
|
Wu B, Rivas DP, Das S. Upstream mobility and swarming of light activated micromotors. MATERIALS ADVANCES 2024; 5:1875-1879. [PMID: 38444934 PMCID: PMC10911229 DOI: 10.1039/d3ma00814b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/24/2023] [Indexed: 03/07/2024]
Abstract
Micromotors have been proposed for applications such as targeted drug delivery, thrombolysis, or sensing. However, single micrormotors are limited in the amount of payload they can deliver or force they can exert. Swarms of micromotors can overcome many of these challenges, however creating and controlling such swarms presents many challenges of its own. In particular, utilizing swarms in fluid flows is of significant importance for biomedical or lab-on-chip applications. Here, the upstream mobility and swarm formation of light driven micromotors in microchannel flows is demonstrated with maximum speeds around 0.1 mm s-1. Additionally, the light actuated microrobots operate in fairly low concentrations of hydrogen peroxide of approximately 1%. The micromotors form swarms at the boundary of the locally applied light pattern and the swarms can be moved by translating the light up or downstream.
Collapse
Affiliation(s)
- Bingzhi Wu
- Department of Mechanical Engineering, University of Delaware 210 South College Ave Newark DE 19716 USA
| | - David P Rivas
- Department of Mechanical Engineering, University of Delaware 210 South College Ave Newark DE 19716 USA
| | - Sambeeta Das
- Department of Mechanical Engineering, University of Delaware 210 South College Ave Newark DE 19716 USA
| |
Collapse
|
32
|
den Hoed FM, Carlotti M, Palagi S, Raffa P, Mattoli V. Evolution of the Microrobots: Stimuli-Responsive Materials and Additive Manufacturing Technologies Turn Small Structures into Microscale Robots. MICROMACHINES 2024; 15:275. [PMID: 38399003 PMCID: PMC10893381 DOI: 10.3390/mi15020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
The development of functional microsystems and microrobots that have characterized the last decade is the result of a synergistic and effective interaction between the progress of fabrication techniques and the increased availability of smart and responsive materials to be employed in the latter. Functional structures on the microscale have been relevant for a vast plethora of technologies that find application in different sectors including automotive, sensing devices, and consumer electronics, but are now also entering medical clinics. Working on or inside the human body requires increasing complexity and functionality on an ever-smaller scale, which is becoming possible as a result of emerging technology and smart materials over the past decades. In recent years, additive manufacturing has risen to the forefront of this evolution as the most prominent method to fabricate complex 3D structures. In this review, we discuss the rapid 3D manufacturing techniques that have emerged and how they have enabled a great leap in microrobotic applications. The arrival of smart materials with inherent functionalities has propelled microrobots to great complexity and complex applications. We focus on which materials are important for actuation and what the possibilities are for supplying the required energy. Furthermore, we provide an updated view of a new generation of microrobots in terms of both materials and fabrication technology. While two-photon lithography may be the state-of-the-art technology at the moment, in terms of resolution and design freedom, new methods such as two-step are on the horizon. In the more distant future, innovations like molecular motors could make microscale robots redundant and bring about nanofabrication.
Collapse
Affiliation(s)
- Frank Marco den Hoed
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, Via R. Piaggio 34, 56025 Pontedera, Italy;
- Smart and Sustainable Polymeric Products, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Marco Carlotti
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, Via R. Piaggio 34, 56025 Pontedera, Italy;
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Stefano Palagi
- BioRobotics Institute, Sant’Anna School of Advanced Studies, P.zza Martiri della Libertà 33, 56127 Pisa, Italy;
| | - Patrizio Raffa
- Smart and Sustainable Polymeric Products, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Virgilio Mattoli
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, Via R. Piaggio 34, 56025 Pontedera, Italy;
| |
Collapse
|
33
|
Zhou H, Ouyang W, Zou S, Xu S. The Control of the Expansion or Compression of Colloidal Crystals Lattice with Salt Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:355. [PMID: 38392728 PMCID: PMC10893356 DOI: 10.3390/nano14040355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
Tuning the lattice spacing or stop bands holds great significance in the design and application of materials with colloidal crystals. Typically, particle surface modifications or the application of external physical fields are needed. In this study, we demonstrated the ability to expand or compress the lattice of colloidal crystals simply by utilizing a salt solution, without the need for any special treatments to the colloidal particles. We found that by only considering the diffusiophoresis effect we cannot explain the reversion of lattice expansion to lattice compression with the increase in the salt concentration and that the diffusioosmotic flow originating from the container wall must be taken into account. Further analysis revealed that variations in the salt concentration altered the relative amplitudes between diffusiophoresis and diffusioosmosis through changing the zeta potentials of the particles and the wall, and the competition between the particle diffusiophoresis and wall diffusioosmosis lay at the center of the underlying mechanism.
Collapse
Affiliation(s)
- Hongwei Zhou
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; (H.Z.); (W.O.); (S.Z.)
| | - Wenze Ouyang
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; (H.Z.); (W.O.); (S.Z.)
| | - Shuangyang Zou
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; (H.Z.); (W.O.); (S.Z.)
| | - Shenghua Xu
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; (H.Z.); (W.O.); (S.Z.)
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Chen X, Liu X, Khan MY, Yan Z, Cao D, Duan S, Fu L, Wang W. Reconfigurable Assembly of Planar Colloidal Molecules via Chemical Reaction and Electric Polarization. RESEARCH (WASHINGTON, D.C.) 2024; 7:0490. [PMID: 39351072 PMCID: PMC11440515 DOI: 10.34133/research.0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
Colloidal molecules, ordered structures assembled from micro- and nanoparticles, serve as a valuable model for understanding the behavior of real molecules and for constructing materials with tunable properties. In this work, we introduce a universal strategy for assembling colloidal molecules consisting of a central active particle surrounded by several passive particles as ligands. During the assembly process, active particles attract the surrounding passive particles through phoresis and osmosis resulting from the chemical reactions on the surface of the active particles, while passive particles repel each other due to the electric polarization induced by an alternating current (AC) electric field. By carefully selecting particles of varying structures and sizes, we have assembled colloidal molecules of symmetric and asymmetric dimers, trimers, and multimers. Furthermore, the coordination number of these colloidal molecules can be regulated in real time and in situ by tuning the interaction forces between the constituent particles. Brownian dynamics simulations reproduced the formation of the colloidal molecules and validated that the self-assembly arises from chemically induced attraction and electrical dipolar repulsion. This strategy for reconfigurable colloidal assemblies poses the potential for designing adaptive micro-nanomachines.
Collapse
Affiliation(s)
- Xi Chen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xianghong Liu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Mohd Yasir Khan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Zuyao Yan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Dezhou Cao
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Shifang Duan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Lingshan Fu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| |
Collapse
|
35
|
Yu N, Shah ZH, Yang M, Gao Y. Morphology-Tailored Dynamic State Transition in Active-Passive Colloidal Assemblies. RESEARCH (WASHINGTON, D.C.) 2024; 7:0304. [PMID: 38269028 PMCID: PMC10807723 DOI: 10.34133/research.0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024]
Abstract
Mixtures of active self-propelled and passive colloidal particles promise rich assembly and dynamic states that are beyond reach via equilibrium routes. Yet, controllable transition between different dynamic states remains rare. Here, we reveal a plethora of dynamic behaviors emerging in assemblies of chemically propelled snowman-like active colloids and passive spherical particles as the particle shape, size, and composition are tuned. For example, assembles of one or more active colloids with one passive particle exhibit distinct translating or orbiting states while those composed of one active colloid with 2 passive particles display persistent "8"-like cyclic motion or hopping between circling states around one passive particle in the plane and around the waist of 2 passive ones out of the plane, controlled by the shape of the active colloid and the size of the passive particles, respectively. These morphology-tailored dynamic transitions are in excellent agreement with state diagrams predicted by mesoscale dynamics simulations. Our work discloses new dynamic states and corresponding transition strategies, which promise new applications of active systems such as micromachines with functions that are otherwise impossible.
Collapse
Affiliation(s)
- Nan Yu
- Institute for Advanced Study,
Shenzhen University, 518060, Shenzhen, China
- Key Laboratory of Optoelectronic Device and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering,
Shenzhen University, 518060, Shenzhen, China
| | - Zameer H. Shah
- Institute for Advanced Study,
Shenzhen University, 518060, Shenzhen, China
- Key Laboratory of Optoelectronic Device and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering,
Shenzhen University, 518060, Shenzhen, China
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yongxiang Gao
- Institute for Advanced Study,
Shenzhen University, 518060, Shenzhen, China
| |
Collapse
|
36
|
Huang H, Yang S, Ying Y, Chen X, Puigmartí-Luis J, Zhang L, Pané S. 3D Motion Manipulation for Micro- and Nanomachines: Progress and Future Directions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305925. [PMID: 37801654 DOI: 10.1002/adma.202305925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Indexed: 10/08/2023]
Abstract
In the past decade, micro- and nanomachines (MNMs) have made outstanding achievements in the fields of targeted drug delivery, tumor therapy, microsurgery, biological detection, and environmental monitoring and remediation. Researchers have made significant efforts to accelerate the rapid development of MNMs capable of moving through fluids by means of different energy sources (chemical reactions, ultrasound, light, electricity, magnetism, heat, or their combinations). However, the motion of MNMs is primarily investigated in confined two-dimensional (2D) horizontal setups. Furthermore, three-dimensional (3D) motion control remains challenging, especially for vertical movement and control, significantly limiting its potential applications in cargo transportation, environmental remediation, and biotherapy. Hence, an urgent need is to develop MNMs that can overcome self-gravity and controllably move in 3D spaces. This review delves into the latest progress made in MNMs with 3D motion capabilities under different manipulation approaches, discusses the underlying motion mechanisms, explores potential design concepts inspired by nature for controllable 3D motion in MNMs, and presents the available 3D observation and tracking systems.
Collapse
Affiliation(s)
- Hai Huang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shihao Yang
- Department of Mechanical and Automation Engineering, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong, 999077, China
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiangzhong Chen
- Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200433, China
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Li Zhang
- Department of Mechanical and Automation Engineering, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong, 999077, China
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannenstrasse 3, Zürich, CH-8092, Switzerland
| |
Collapse
|
37
|
Zhang T, Lyu D, Xu W, Feng X, Ni R, Wang Y. Janus particles with tunable patch symmetry and their assembly into chiral colloidal clusters. Nat Commun 2023; 14:8494. [PMID: 38129397 PMCID: PMC10739893 DOI: 10.1038/s41467-023-44154-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Janus particles, which have an attractive patch on the otherwise repulsive surface, have been commonly employed for anisotropic colloidal assembly. While current methods of particle synthesis allow for control over the patch size, they are generally limited to producing dome-shaped patches with a high symmetry (C∞). Here, we report on the synthesis of Janus particles with patches of various tunable shapes, having reduced symmetries ranging from C2v to C3v and C4v. The Janus particles are synthesized by partial encapsulation of an octahedral metal-organic framework particle (UiO-66) in a polymer matrix. The extent of encapsulation is precisely regulated by a stepwise, asymmetric dewetting process that exposes selected facets of the UiO-66 particle. With depletion interaction, the Janus particles spontaneously assemble into colloidal clusters reflecting the particles' shapes and patch symmetries. We observe the formation of chiral structures, whereby chirality emerges from achiral building blocks. With the ability to encode symmetry and directional bonding information, our strategy could give access to more complex colloidal superstructures through assembly.
Collapse
Affiliation(s)
- Tianran Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Dengping Lyu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Wei Xu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xuan Feng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Ran Ni
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|
38
|
McNeill J, Mallouk TE. Acoustically Powered Nano- and Microswimmers: From Individual to Collective Behavior. ACS NANOSCIENCE AU 2023; 3:424-440. [PMID: 38144701 PMCID: PMC10740144 DOI: 10.1021/acsnanoscienceau.3c00038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023]
Abstract
Micro- and nanoscopic particles that swim autonomously and self-assemble under the influence of chemical fuels and external fields show promise for realizing systems capable of carrying out large-scale, predetermined tasks. Different behaviors can be realized by tuning swimmer interactions at the individual level in a manner analogous to the emergent collective behavior of bacteria and mammalian cells. However, the limited toolbox of weak forces with which to drive these systems has made it difficult to achieve useful collective functions. Here, we review recent research on driving swimming and particle self-organization using acoustic fields, which offers capabilities complementary to those of the other methods used to power microswimmers. With either chemical or acoustic propulsion (or a combination of the two), understanding individual swimming mechanisms and the forces that arise between individual particles is a prerequisite to harnessing their interactions to realize collective phenomena and macroscopic functionality. We discuss here the ingredients necessary to drive the motion of microscopic particles using ultrasound, the theory that describes that behavior, and the gaps in our understanding. We then cover the combination of acoustically powered systems with other cross-compatible driving forces and the use of ultrasound in generating collective behavior. Finally, we highlight the demonstrated applications of acoustically powered microswimmers, and we offer a perspective on the state of the field, open questions, and opportunities. We hope that this review will serve as a guide to students beginning their work in this area and motivate others to consider research in microswimmers and acoustic fields.
Collapse
Affiliation(s)
- Jeffrey
M. McNeill
- Department of Chemistry, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Thomas E. Mallouk
- Department of Chemistry, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
39
|
Abstract
Chemically powered nano- and micromotors are microscopic devices that convert chemical energy into motion. Interest in these motors has grown over the past 20 years because they exhibit interesting collective behaviors and have found potential uses in biomedical and environmental applications. Understanding how these motors operate both individually and collectively and how environments affect their operation is of both fundamental and applied significance. However, there are still significant gaps in our knowledge. This Perspective highlights several open questions regarding the propulsion mechanisms of, interactions among, and impact of confinements on nano- and micromotors driven by self-generated chemical gradients. These questions are based on my own experience as an experimentalist. For each open question, I describe the problem and its significance, analyze the status-quo, identify the bottleneck problem, and propose potential solutions. An underlying theme for these questions is the interplay among reaction kinetics, physicochemical distributions, and fluid flows. Unraveling this interplay requires careful measurements as well as a close collaboration between experimentalists and theoreticians/numerical experts. The interdisciplinary nature of these challenges suggests that their solutions could bring new revelations and opportunities across disciplines such as colloidal sciences, material sciences, soft matter physics, robotics, and beyond.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China, 518055
| |
Collapse
|
40
|
Yu N, Shah ZH, Basharat M, Wang S, Zhou X, Lin G, Edwards SA, Yang M, Gao Y. Active self-assembly of colloidal machines with passive rotational parts via coordination of phoresis and osmosis. SOFT MATTER 2023. [PMID: 38044703 DOI: 10.1039/d3sm01451g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The organization of microscopic objects into specific structures with movable parts is a prerequisite for building sophisticated micromachines with complex functions, as exemplified by their macroscopic counterparts. Here we report the self-assembly of active and passive colloids into micromachinery with passive rotational parts. Depending on the attachment of the active colloid to a substrate, which varies the degrees of free freedom of the assembly, colloidal machines with rich internal rotational dynamics are realized. Energetic analysis reveals that the energy efficiency increases with the degrees of freedom of the machine. The experimental results can be rationalized by the cooperation of phoretic interaction and osmotic flow encoded in the shape of the active colloid, which site-specifically binds and exerts a torque to passive colloids, supported by finite element calculations and mesoscale simulations. Our work offers a new design principle that utilizes nonequilibrium interfacial phenomena for spontaneous construction of multiple-component reconfigurable micromachinery.
Collapse
Affiliation(s)
- Nan Yu
- Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China.
- Key Laboratory of Optoelectronic Device and Systems of Ministry of Education and Guangdong Provice, College of Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Zameer Hussain Shah
- Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China.
- Key Laboratory of Optoelectronic Device and Systems of Ministry of Education and Guangdong Provice, College of Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Majid Basharat
- Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China.
- Key Laboratory of Optoelectronic Device and Systems of Ministry of Education and Guangdong Provice, College of Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Shuo Wang
- Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China.
- Key Laboratory of Optoelectronic Device and Systems of Ministry of Education and Guangdong Provice, College of Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Xuemao Zhou
- Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China.
- Key Laboratory of Optoelectronic Device and Systems of Ministry of Education and Guangdong Provice, College of Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Guanhua Lin
- Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China.
| | - Scott A Edwards
- Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China.
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yongxiang Gao
- Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China.
| |
Collapse
|
41
|
Debata S, Panda SK, Trivedi S, Uspal W, Singh DP. pH-Responsive swimming behavior of light-powered rod-shaped micromotors. NANOSCALE 2023; 15:17534-17543. [PMID: 37870073 DOI: 10.1039/d3nr03775d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Micromotors have emerged as promising devices for a wide range of applications e.g., microfluidics, lab-on-a-chip devices, active matter, environmental monitoring, etc. The control over the activity of micromotors with the ability to exhibit multimode swimming is one of the most desirable features for many of the applications. Here, we demonstrate a rod-shaped light-driven micromotor whose activity and swimming behavior can easily be controlled. The rod-shaped micromotors are fabricated through the dynamic shadowing growth (DSG) technique, where a 2 μm long arm of titanium dioxide (TiO2) is grown over spherical silica (SiO2) particles (1 μm diameter). Under low-intensity UV light exposure, the micromotors exhibit self-propulsion in an aqueous peroxide medium. When activated, the swimming behavior of micromotors greatly depends on the pH of the medium. The swimming direction, i.e., forward or backward movement, as well as swimming modes like translational or rotational motion, can be controlled by changing the pH values. The observed dynamics has been rationalized using a theoretical model incorporating chemical activity, hydrodynamic flow, and the effect of gravity for a rod-shaped active particle near a planar wall. The pH-dependent translational and rotational dynamics of micromotors provide a versatile platform for achieving controlled and responsive behaviors. Continued research and development in this area hold great promise for advancing micromotors and enabling novel applications in microfluidics, micromachining, environmental sciences, and biomedicine.
Collapse
Affiliation(s)
- Srikanta Debata
- Department of Physics, IIT Bhilai, Kutelabhata, Durg, Chhattisgarh, 491001, India.
| | - Suvendu Kumar Panda
- Department of Physics, IIT Bhilai, Kutelabhata, Durg, Chhattisgarh, 491001, India.
| | - Satyaprakash Trivedi
- Department of Physics, IIT Bhilai, Kutelabhata, Durg, Chhattisgarh, 491001, India.
| | - William Uspal
- Department of Mechanical Engineering, University of Hawai'i at Mānoa, 2540 Dole Street, Holmes Hall 302, Honolulu, HI 96822, USA.
| | - Dhruv Pratap Singh
- Department of Physics, IIT Bhilai, Kutelabhata, Durg, Chhattisgarh, 491001, India.
| |
Collapse
|
42
|
Urso M, Ussia M, Peng X, Oral CM, Pumera M. Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification. Nat Commun 2023; 14:6969. [PMID: 37914692 PMCID: PMC10620202 DOI: 10.1038/s41467-023-42674-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
The development of artificial small-scale robotic swarms with nature-mimicking collective behaviors represents the frontier of research in robotics. While microrobot swarming under magnetic manipulation has been extensively explored, light-induced self-organization of micro- and nanorobots is still challenging. This study demonstrates the interaction-controlled, reconfigurable, reversible, and active self-assembly of TiO2/α-Fe2O3 microrobots, consisting of peanut-shaped α-Fe2O3 (hematite) microparticles synthesized by a hydrothermal method and covered with a thin layer of TiO2 by atomic layer deposition (ALD). Due to their photocatalytic and ferromagnetic properties, microrobots autonomously move in water under light irradiation, while a magnetic field precisely controls their direction. In the presence of H2O2 fuel, concentration gradients around the illuminated microrobots result in mutual attraction by phoretic interactions, inducing their spontaneous organization into self-propelled clusters. In the dark, clusters reversibly reconfigure into microchains where microrobots are aligned due to magnetic dipole-dipole interactions. Microrobots' active motion and photocatalytic properties were investigated for water remediation from pesticides, obtaining the rapid degradation of the extensively used, persistent, and hazardous herbicide 2,4-Dichlorophenoxyacetic acid (2,4D). This study potentially impacts the realization of future intelligent adaptive metamachines and the application of light-powered self-propelled micro- and nanomotors toward the degradation of persistent organic pollutants (POPs) or micro- and nanoplastics.
Collapse
Affiliation(s)
- Mario Urso
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic
| | - Martina Ussia
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic
| | - Xia Peng
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic
| | - Cagatay M Oral
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic.
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 70800, Ostrava, Czech Republic.
- Department of Medical Research, China Medical University Hospital, China Medical University, Hsueh-Shih Road 91, 40402, Taichung, Taiwan.
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| |
Collapse
|
43
|
Liang Z, Joh H, Lian B, Fan DE. Light-stimulated micromotor swarms in an electric field with accurate spatial, temporal, and mode control. SCIENCE ADVANCES 2023; 9:eadi9932. [PMID: 37878697 PMCID: PMC10599615 DOI: 10.1126/sciadv.adi9932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Swarming, a phenomenon widely present in nature, is a hallmark of nonequilibrium living systems that harness external energy into collective locomotion. The creation and study of manmade swarms may provide insights into their biological counterparts and shed light to the rules of life. Here, we propose an innovative mechanism for rationally creating multimodal swarms with unprecedented spatial, temporal, and mode control. The research is realized in a system made of optoelectric semiconductor nanorods that can rapidly morph into three distinct modes, i.e., network formation, collectively enhanced rotation, and droplet-like clustering, pattern, and switch in-between under light stimulation in an electric field. Theoretical analysis and semiquantitative modeling well explain the observation by understanding the competition between two countering effects: the electrostatic assembly for orderliness and electrospinning-induced disassembly for disorderliness. This work could inspire the rational creation of new classes of reconfigurable swarms for both fundamental research and emerging applications.
Collapse
Affiliation(s)
- Zexi Liang
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hyungmok Joh
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Bin Lian
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Donglei Emma Fan
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
44
|
Chattopadhyay P, Ariza-Tarazona MC, Cedillo-González EI, Siligardi C, Simmchen J. Combining photocatalytic collection and degradation of microplastics using self-asymmetric Pac-Man TiO 2. NANOSCALE 2023; 15:14774-14781. [PMID: 37465854 DOI: 10.1039/d3nr01512b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Microplastics are a significant environmental threat and the lack of efficient removal techniques further amplifies this crisis. Photocatalytic semiconducting nanoparticles have the potential to degrade micropollutants, among them microplastics. The hydrodynamic effects leading to the propulsion of micromotors can lead to the accumulation of microplastics in close vicinity of the micromotor. Incorporating these different properties into a single photocatalytic micromotor (self-propulsion, phoretic assembly of passive colloids and photocatalytic oxidation of contaminants), we achieve a highly scalable, inherently-asymmetric Pac-Man TiO2 micromotor with the ability to actively collect and degrade microplastics. The target microplastics are homogeneous polystyrene microspheres (PS) to facilitate the optical degradation measurements. We cross-correlate the degradation with catalytic activity studies and critically evaluate the timescales required for all involved processes.
Collapse
Affiliation(s)
| | - Maria Camila Ariza-Tarazona
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, 41125 Modena, Italy
| | - Erika Iveth Cedillo-González
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, 41125 Modena, Italy
| | - Cristina Siligardi
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, 41125 Modena, Italy
| | - Juliane Simmchen
- Chair of Physical Chemistry, TU Dresden, Zellescher Weg 19, Dresden, Germany.
- Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1BX, UK
| |
Collapse
|
45
|
Gao R, Beladi-Mousavi SM, Salinas G, Garrigue P, Zhang L, Kuhn A. Spatial Precision Tailoring the Catalytic Activity of Graphene Monolayers for Designing Janus Swimmers. NANO LETTERS 2023; 23:8180-8185. [PMID: 37642420 DOI: 10.1021/acs.nanolett.3c02314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Graphene monolayers have interesting applications in many fields due to their intrinsic physicochemical properties, especially when they can be postmodified with high precision. Herein, we describe the highly site-selective functionalization of freestanding graphene monolayers with platinum (Pt) clusters by bipolar electrochemistry. The deposition of such metal spots leads to catalytically active hybrid two-dimensional (2D) nanomaterials. Their catalytic functionality is illustrated by the spatially controlled decomposition of hydrogen peroxide, inducing motion at the water/air interface due to oxygen bubble evolution. A series of such 2D Janus structures with Pt deposition at predefined positions (corners and edges) is studied with respect to the generation of autonomous motion. The type and speed of motion can be fine-tuned by controlling the deposition time and location of the Pt clusters. These proof-of-principle experiments indicate that this type of hybrid 2D object opens up interesting perspectives in terms of applications, such as environmental detection or remediation.
Collapse
Affiliation(s)
- Ruchao Gao
- Engineering Research Center for Nanomaterials, Henan University, 475000 Kaifeng, China
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607 Pessac, France
| | | | - Gerardo Salinas
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607 Pessac, France
| | - Patrick Garrigue
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607 Pessac, France
| | - Lin Zhang
- Engineering Research Center for Nanomaterials, Henan University, 475000 Kaifeng, China
| | - Alexander Kuhn
- Engineering Research Center for Nanomaterials, Henan University, 475000 Kaifeng, China
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607 Pessac, France
| |
Collapse
|
46
|
Zhang H, Feng X, Xia X, Zhu J, Wang H, Ni R, Zhang Z. Shape-Dictated Self-Assembly of Photoresponsive Hybrid Colloids. SMALL METHODS 2023; 7:e2300383. [PMID: 37183306 DOI: 10.1002/smtd.202300383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Indexed: 05/16/2023]
Abstract
The shape-dictated self-assembly of hybrid colloids induced by chemical concentration gradients generated by photocatalytic reactions of the colloids is studied. Different shapes enable the formation of assemblies with distinct lattice structures including hexagons, distorted hexagons, and squares, which are corroborated by computer simulations. Furthermore, assemblies change from lattices to chains when increasing the attraction between the colloids. The results show that photoresponsive hybrid colloids possess a unique capability for shape-dependent self-assembly, offering a practical and versatile approach to manipulate self-assembly at the microscale.
Collapse
Affiliation(s)
- Haiyang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xuan Feng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Xiuyang Xia
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Jiao Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Huaguang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ran Ni
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Institute for Advanced Study, Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, 215006, China
| |
Collapse
|
47
|
Rivas DP, Sokolich M, Das S. Spatial Patterning of Micromotor Aggregation and Flux. CHEMNANOMAT : CHEMISTRY OF NANOMATERIALS FOR ENERGY, BIOLOGY AND MORE 2023; 9:e202300225. [PMID: 38292294 PMCID: PMC10827321 DOI: 10.1002/cnma.202300225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 02/01/2024]
Abstract
Using a spatially varying light pattern with light activated semi-conductor based magnetic TiO2 micromotors, we study the difference in micromotor flux between illuminated and non-illuminated regions in the presence and absence of an applied magnetic field. We find that the magnetic field enhances the flux of the motors which we attribute to a straightening of the micromotor trajectories which decreases the time they spend in the illuminated region. We also demonstrate spatially patterned light-induced aggregation of the micromotors and study its time evolution at various micromotor concentrations. Although light induced aggregation has been observed previously, spatial patterning of aggregation demonstrates a further means of control which could be relevant to swarm control or self-assembly applications. Overall, these results draw attention to the effect of trajectory shape on the flux of active colloids as well as the concentration dependence of aggregation and its time dependence within a spatially patterned region, which is not only pertinent to self-assembly and swarm control, but also provides insight into the behavior of active matter systems with spatially varying activity levels.
Collapse
Affiliation(s)
- David P Rivas
- Department of Mechanical Engineering, University of Delaware, 130 Academy Street, Newark, DE 19716
| | - Max Sokolich
- Department of Mechanical Engineering, University of Delaware, 130 Academy Street, Newark, DE 19716
| | - Sambeeta Das
- Department of Mechanical Engineering, University of Delaware, 130 Academy Street, Newark, DE 19716
| |
Collapse
|
48
|
Narayanan T, Chèvremont W, Zinn T. Small-angle X-ray scattering in the era of fourth-generation light sources. J Appl Crystallogr 2023; 56:939-946. [PMID: 37555224 PMCID: PMC10405582 DOI: 10.1107/s1600576723004971] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/05/2023] [Indexed: 08/10/2023] Open
Abstract
Recently, fourth-generation synchrotron sources with several orders of magnitude higher brightness and higher degree of coherence compared with third-generation sources have come into operation. These new X-ray sources offer exciting opportunities for the investigation of soft matter and biological specimens by small-angle X-ray scattering (SAXS) and related scattering methods. The improved beam properties together with the advanced pixel array detectors readily enhance the angular resolution of SAXS and ultra-small-angle X-ray scattering in the pinhole collimation. The high degree of coherence is a major boost for the X-ray photon correlation spectroscopy (XPCS) technique, enabling the equilibrium dynamics to be probed over broader time and length scales. This article presents some representative examples illustrating the performance of SAXS and XPCS with the Extremely Brilliant Source at the European Synchrotron Radiation Facility. The rapid onset of radiation damage is a significant challenge with the vast majority of samples, and appropriate protocols need to be adopted for circumventing this problem.
Collapse
Affiliation(s)
| | | | - Thomas Zinn
- ESRF – The European Synchrotron, 38043 Grenoble, France
- Diamond Light Source, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
49
|
Wei M, Ben Zion MY, Dauchot O. Reconfiguration, Interrupted Aging, and Enhanced Dynamics of a Colloidal Gel Using Photoswitchable Active Doping. PHYSICAL REVIEW LETTERS 2023; 131:018301. [PMID: 37478452 DOI: 10.1103/physrevlett.131.018301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/06/2023] [Accepted: 06/01/2023] [Indexed: 07/23/2023]
Abstract
We study quasi-2D gels made of a colloidal network doped with Janus particles activated by light. Following the gel formation, we monitor both the structure and dynamics before, during, and after the activation period. Before activity is switched on, the gel is slowly aging. During the activation, the mobility of the passive particles exhibits a characteristic scale-dependent response, while the colloidal network remains connected, and the gel maintains its structural integrity. Once activity is switched off, the gel stops aging and keeps the memory of the structure inherited from the active phase. Remarkably, the motility remains larger than that of the gel, before the active period. The system has turned into a genuinely softer gel, with frozen dynamics, but with more space for thermal fluctuations. The above conclusions remain valid long after the activity period.
Collapse
Affiliation(s)
- Mengshi Wei
- Gulliver UMR CNRS 7083, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Matan Yah Ben Zion
- School of Physics and Astronomy, and the Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Olivier Dauchot
- Gulliver UMR CNRS 7083, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
50
|
Wang Q, Jin D. Active Micro/Nanoparticles in Colloidal Microswarms. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1687. [PMID: 37242103 PMCID: PMC10220621 DOI: 10.3390/nano13101687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Colloidal microswarms have attracted increasing attention in the last decade due to their unique capabilities in various complex tasks. Thousands or even millions of tiny active agents are gathered with distinctive features and emerging behaviors, demonstrating fascinating equilibrium and non-equilibrium collective states. In recent studies, with the development of materials design, remote control strategies, and the understanding of pair interactions between building blocks, microswarms have shown advantages in manipulation and targeted delivery tasks with high adaptability and on-demand pattern transformation. This review focuses on the recent progress in active micro/nanoparticles (MNPs) in colloidal microswarms under the input of an external field, including the response of MNPs to external fields, MNP-MNP interactions, and MNP-environment interactions. A fundamental understanding of how building blocks behave in a collective system provides the foundation for designing microswarm systems with autonomy and intelligence, aiming for practical application in diverse environments. It is envisioned that colloidal microswarms will significantly impact active delivery and manipulation applications on small scales.
Collapse
Affiliation(s)
- Qianqian Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211000, China
| | - Dongdong Jin
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
| |
Collapse
|