1
|
Wang P, Andrei P. Quasi-Solid-State Zn-Ion Batteries Based on Sol-Gel Transition and in Situ Electrodeposition of MnO 2. ACS OMEGA 2025; 10:16589-16596. [PMID: 40321574 PMCID: PMC12044473 DOI: 10.1021/acsomega.4c11717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/04/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025]
Abstract
Zinc-ion batteries (ZIBs) have received much attention recently, because they are low-cost and environmentally friendly. In addition, ZIBs can be safer than lithium-ion batteries (LIBs) if issues, such as dendrite formation, side reactions, and hydrogen evolution, are resolved. Overcoming these challenges is crucial for the large-scale commercialization of ZIBs. In this article, Kevlar derivatized Aramid nanofiber combined with poly(vinyl alcohol) hydrogel was used to prevent the Zn dendrite growth and side reactions and increase the cyclability of the cells. A fast and simple method that involves sol-gel transition and in situ electrodeposition of the MnO2 cathode was developed to fabricate quasi-solid-state ZIB cells with an initial capacity of 5.2 and 3.3 mA h after 900 cycles at 10C. In addition, we have optimized the assembling process of ZIBs pouch cells by taking advantage of sol-gel transition and eliminating the conventional complex slurry-casting-drying steps. This work paves the way to efficiently assemble ZIB pouch cells with excellent rate performance and cycling stability.
Collapse
Affiliation(s)
- Peng Wang
- Department of Electrical
and Computer Engineering, Florida State
University, Tallahassee, Florida 32310, United States
| | - Petru Andrei
- Department of Electrical
and Computer Engineering, Florida State
University, Tallahassee, Florida 32310, United States
| |
Collapse
|
2
|
Kim HJ, Kim H, Choi YH, Lee ES, Kim YH, Lee GH, Chae HG, Eom Y. Rapid Fabrication of Tendon-inspired Ultrastrong, Water-rich Hydrogel Fibers: Synergistic Engineering of Cyano- p-aramid Nanofibers and Poly(vinyl alcohol). ACS NANO 2025; 19:8316-8327. [PMID: 39988896 DOI: 10.1021/acsnano.4c18686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Load-bearing fibrous tissues, like tendons, have remarkable strength with high water content (∼60%) due to the anisotropic network of collagen fibers. However, the scalability of biomimetic anisotropic hydrogels is limited by time-intensive fabrication processes involving cross-linking and stretching, often spanning several hours to days. Here, we present a rapid, scalable approach for fabricating tendon-mimetic hydrogel fibers within 1 min using the synergistic engineering of cyano-p-aramid nanofibers (CY-ANFs) and poly(vinyl alcohol) (PVA). Through continuous air-gap spinning, the formation of the anisotropic CY-ANF network drives instant gelation, producing hundreds of meters of hydrogel fibers without additional gelation treatment. From the perspective of properties, the hydrophilic PVA matrix affords flexibility, while the hydrophobic CY-ANF network provides a nonswelling feature and load-bearing ability, resulting in ultrastrong, water-rich hydrogel fibers. These hydrogel fibers exhibit a water content exceeding 80 wt %, along with exceptional strength (∼17.9 MPa), surpassing the mechanical properties of natural tendons (strength and modulus of approximately 10 and 100 MPa, respectively). Lengthy hydrogel fibers are integrated into larger-sized fabrics by knitting or weaving while also possessing strain-sensing capabilities. With excellent biocompatibility, these hydrogel fibers are promising candidates for artificial fibrous tissues and various biotechnological applications.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Department of Organic and Nano Engineering, Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyeonjeong Kim
- Department of Organic and Nano Engineering, Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
| | - Yun Hyeong Choi
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Eun Seong Lee
- Department of Biomedical Chemical Engineering, The Catholic University of Korea (CUK), Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Yong Hyeon Kim
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Ga-Hyeun Lee
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Han Gi Chae
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Youngho Eom
- Department of Organic and Nano Engineering, Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
3
|
Chen Z, Yu C, Zhong W. Preparation of Mechanically Strong Aramid Nanofiber Gel Film with Surprising Entanglements and Orientation Structure Through Aprotic Donor Solvent Exchange. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1142. [PMID: 40077367 PMCID: PMC11901970 DOI: 10.3390/ma18051142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
Aramid nanofiber (ANF), a nanoscale building block with a prominently complex structure, can be prepared by splitting poly(p-phenylene terephthalamide) (PPTA) fibers into negatively charged ANFs in a deprotonating manner in a DMSO/KOH solvent system, followed by a subsequent re-protonation process using a proton-donor reagent. There are rare reports regarding the utilization of an aprotic donor reagent to convert deprotonated ANF dispersion into film or gel with a controllable structure and high mechanical properties. In this work, dichloromethane, as an anhydrous aprotic donor solvent, has been introduced into the deprotonated ANF dispersion to replace DMSO, containing PPTA molecules and hydroxyl ions, leading to the gelation of deprotonated ANF dispersions, forming a film (ANFDCM) possessing a surprisingly highly entangled and oriented structure, as proven by SEM results. Due to the attenuation of electrostatic repulsion in the dispersion, partially deprotonated ANFs intertwined and cross-linked through π-π conjugation among a large number of benzene rings in PPTA molecules. After treating ANFDCM with water for re-protonation, the as-prepared film (ANFDCM-W) exhibited high tensile strength (307.7 MPa) and toughness (74.7 MJ m-3).
Collapse
Affiliation(s)
| | | | - Wenbin Zhong
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China; (Z.C.); (C.Y.)
| |
Collapse
|
4
|
Liu Z, Zhang H, Zhou R, Gao H, Wu Y, Wang Y, Wu H, Guan C, Wang L, Tang L, Song P, Xue H, Gao J. Thermoplastic Elastomer-Reinforced Hydrogels with Excellent Mechanical Properties, Swelling Resistance, and Biocompatibility. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414339. [PMID: 39921315 PMCID: PMC11948048 DOI: 10.1002/advs.202414339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/21/2025] [Indexed: 02/10/2025]
Abstract
Strong and tough hydrogels are promising candidates for artificial soft tissues, yet significant challenges remain in developing biocompatible, anti-swelling hydrogels that simultaneously exhibit high strength, fracture strain, toughness, and fatigue resistance. Herein, thermoplastic elastomer-reinforced polyvinyl alcohol (PVA) hydrogels are prepared through a synergistic combination of phase separation, wet-annealing, and quenching. This approach markedly enhances the crystallinity of the hydrogels and the interfacial interaction between PVA and thermoplastic polyurethane (TPU). This strategy results in the simultaneous improvement of the mechanical properties of the hydrogels, achieving a tensile strength of 11.19 ± 0.80 MPa, toughness of 62.67 ± 10.66 MJ m-3, fracture strain of 1030 ± 106%, and fatigue threshold of 1377.83 ± 62.78 J m-2. Furthermore, the composite hydrogels demonstrate excellent swelling resistance, biocompatibility, and cytocompatibility. This study presents a novel approach for fabricating strong, tough, stretchable, biocompatible, and fatigue- and swelling-resistant hydrogels with promising applications in soft tissues, flexible electronics, and load-bearing biomaterials.
Collapse
Affiliation(s)
- Zhanqi Liu
- School of Chemistry and Chemical EngineeringYangzhou UniversityNo 180, Road SiwangtingYangzhouJiangsu225002China
| | - Hechuan Zhang
- School of Chemistry and Chemical EngineeringYangzhou UniversityNo 180, Road SiwangtingYangzhouJiangsu225002China
| | - Ruigang Zhou
- College of Veterinary MedicineYangzhou UniversityYangzhou225009China
| | - Haiyang Gao
- Department of ChemistryCollege of Liberal Arts and SciencesUniversity of FloridaGainesvilleFL32611USA
| | - Yongchuan Wu
- School of Chemistry and Chemical EngineeringYangzhou UniversityNo 180, Road SiwangtingYangzhouJiangsu225002China
| | - Yuqing Wang
- School of Chemistry and Chemical EngineeringYangzhou UniversityNo 180, Road SiwangtingYangzhouJiangsu225002China
| | - Haidi Wu
- School of Chemistry and Chemical EngineeringYangzhou UniversityNo 180, Road SiwangtingYangzhouJiangsu225002China
| | - Cheng Guan
- School of Chemistry and Chemical EngineeringYangzhou UniversityNo 180, Road SiwangtingYangzhouJiangsu225002China
| | - Ling Wang
- School of Chemistry and Chemical EngineeringAnqing Normal UniversityAnqing246011China
| | - Longcheng Tang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Pingan Song
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfieldQLD4350Australia
| | - Huaiguo Xue
- School of Chemistry and Chemical EngineeringYangzhou UniversityNo 180, Road SiwangtingYangzhouJiangsu225002China
| | - Jiefeng Gao
- School of Chemistry and Chemical EngineeringYangzhou UniversityNo 180, Road SiwangtingYangzhouJiangsu225002China
| |
Collapse
|
5
|
Liu L, Zhang D, Bai P, Fang Y, Guo J, Li Q, Ma R. Fatigue-resistant and super-tough thermocells. Nat Commun 2025; 16:1963. [PMID: 40000631 PMCID: PMC11861941 DOI: 10.1038/s41467-025-57233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Wearable thermocells offer a sustainable energy solution for wearable electronics but are hindered by poor fatigue resistance, low fracture energy, and thermal inefficiencies. In this study, we present a high-strength, fatigue-resistant thermocell with enhanced thermoelectric performance through solvent exchange-assisted annealing and chaotropic effect-enhanced thermoelectric properties. The mechanical strength and toughness are improved by forming macromolecular crystal domains and entangling polymer chains. Guanidine ions, with strong chaotropic properties, optimize the solvation layer of redox ion couple, boosting thermoelectric efficiency. Compared to existing anti-fatigue thermocells, the current design exhibits a 20-fold increase in mechanical toughness (368 kJ m-2) and a 3-fold increase in Seebeck coefficient (5.4 mV K-1). With an ultimate tensile strength of 12 MPa, a fatigue threshold of 4.1 kJ m-2, and a specific output power density of 714 μW m-2 K-2, this thermocell outperforms existing designs, enabling more reliable and efficient wearable electronics and stretchable devices.
Collapse
Affiliation(s)
- Lili Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Ding Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.
| | - Peijia Bai
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Yanjie Fang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Jiaqi Guo
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Qi Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Rujun Ma
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.
| |
Collapse
|
6
|
Yu Y, Li Y, Gong Z, Liao P, Ma Y, Zhou L, Gong J. A Moldable, Tough Mineral-Dominated Nanocomposite as a Recyclable Structural Material. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410266. [PMID: 39757557 DOI: 10.1002/smll.202410266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Indexed: 01/07/2025]
Abstract
Flexible hybrid minerals, primarily composed of inorganic ionic crystal nanolines and a small amount of organic molecules, have significant potential for the development of sustainable structural materials. However, the weak interactions and insufficient crosslinking among the inorganic nanolines limit the mechanical enhancement and application of these hybrid minerals in high-strength structural materials. Inspired by tough biominerals and modern reinforced concrete structures, this study proposes introducing an aramid nanofiber (ANF) network as a flexible framework during the polymerization of calcium phosphate oligomers (CPO), crosslinked by polyvinyl alcohol (PVA) and sodium alginate (SA). This approach allows the flexible inorganic nanolines formed through CPO polymerization to be integrated into the organic framework, thereby creating tough mineral-based structural materials (inorganic content: 70.7 wt.%), denoted as PVA/SA/ANF/CPO (PSAC). The multiple intermolecular interactions between the organic and inorganic phases, combined with the integrated nano-reinforced concrete structure, endow PSAC with significantly enhanced tensile strength (86.6 ± 8.6 MPa), comparable to that of high-strength polymer plastics. Moreover, PSAC possesses excellent plasticity and flame retardancy. The noncovalent molecular interactions within PSAC enable efficient recyclability. Consequently, PSAC has the potential to replace high-strength polymer plastics and structural components, providing a promising avenue for developing high-strength and toughness mineral-based structural materials.
Collapse
Affiliation(s)
- Yadong Yu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin, 300072, P. R. China
| | - Yexuan Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Zeyu Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Peng Liao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yanyu Ma
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Lina Zhou
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Junbo Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin, 300072, P. R. China
| |
Collapse
|
7
|
Zha XJ, Pan KQ, Jia J, Pu JH, Ke K, Bao RY, Liu ZY, Xu J, Yang W. Anisotropic Nanofluidic Ionic Skin for Pressure-Independent Thermosensing. ACS NANO 2025; 19:1845-1855. [PMID: 39749714 DOI: 10.1021/acsnano.4c17386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Ionic skin can mimic human skin to sense both temperature and pressure simultaneously. However, a significant challenge remains in creating precise ionic skins resistant to external stimuli interference when subjected to pressure. In this study, we present an innovative approach to address this challenge by introducing a highly anisotropic nanofluidic ionic skin (ANIS) composed of carboxylated cellulose nanofibril (CNF)-reinforced poly(vinyl alcohol) (PVA) nanofibrillar network achieved through a straightforward one-step hot drawing method. The inherent anisotropic nanostructures endowed the ANIS with a modulus (20.9 ± 4.9 MPa) comparable to that of human cartilage and skin, alongside higher fracture energy (41.4 ± 0.3 kJ/m2) and fatigue threshold (1360 J/m2). Incorporating carboxylated CNF not only improves the negative potential but also increases the ionic conductivity of ANIS up to 0.001 S/cm, even at very low ionic concentration (1.0 × 10-6 M). Furthermore, the ANIS exhibits pressure-independent temperature sensitivity due to its high deformation-resistant performance. Thus, this work introduces a facile strategy for fabricating ANIS with pressure-independent thermosensing properties, promising prospects for practical healthcare applications.
Collapse
Affiliation(s)
- Xiang-Jun Zha
- Department of Ultrasound, Medical Research Center, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu 610031 Sichuan, China
| | | | - Jin Jia
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065 Sichuan, China
| | | | - Kai Ke
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065 Sichuan, China
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065 Sichuan, China
| | - Zheng-Ying Liu
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065 Sichuan, China
| | | | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065 Sichuan, China
| |
Collapse
|
8
|
Zhang J, Zhang M, Wan H, Zhou J, Lu A. Coordinatively stiffen and toughen polymeric gels via the synergy of crystal-domain cross-linking and chelation cross-linking. Nat Commun 2025; 16:320. [PMID: 39746978 PMCID: PMC11695677 DOI: 10.1038/s41467-024-55245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Polymer gels have been widely used in flexible electronics, soft machines and impact protection materials. Conventional gels usually suffer from the inherent conflict between stiffness and toughness, severely hampering their applications. This work proposes a facile yet versatile strategy to break through this trade-off via the synergistic effect of crystal-domain cross-linking and chelation cross-linking, without the need for specific structure design or adding other reinforcements. Both effects are proven to boost the mechanical performance of the originally weak gel, and result in a stiff and tough conductive gel, achieving significant enhancements in elastic modulus and toughness by up to 366-, and 104-folds, respectively. The resultant gel achieves coordinatively enhanced stiffness (110.26 MPa) and toughness (219.93 MJ m-3), reconciling the challenging trade-off between them. In addition, the presented strategy is found generalizable to a variety of metal ions and polymers, offering a promising way to expand the applicability of gels.
Collapse
Affiliation(s)
- Jipeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Miaoqian Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Huixiong Wan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Jinping Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Ang Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
9
|
Luo W, Ren L, Hu B, Zhang H, Yang Z, Jin L, Zhang D. Recent Development of Fibrous Hydrogels: Properties, Applications and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408657. [PMID: 39530645 PMCID: PMC11714238 DOI: 10.1002/advs.202408657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Fibrous hydrogels (FGs), characterized by a 3D network structure made from prefabricated fibers, fibrils and polymeric materials, have emerged as significant materials in numerous fields. However, the challenge of balancing mechanical properties and functions hinders their further development. This article reviews the main advantages of FGs, including enhanced mechanical properties, high conductivity, high antimicrobial and anti-inflammatory properties, stimulus responsiveness, and an extracellular matrix (ECM)-like structure. It also discusses the influence of assembly methods, such as fiber cross-linking, interfacial treatments of fibers with hydrogel matrices, and supramolecular assembly, on the diverse functionalities of FGs. Furthermore, the mechanisms for improving the performance of the above five aspects are discussed, such as creating ion carrier channels for conductivity, in situ gelation of drugs to enhance antibacterial and anti-inflammatory properties, and entanglement and hydrophobic interactions between fibers, resulting in ECM-like structured FGs. In addition, this review addresses the application of FGs in sensors, dressings, and tissue scaffolds based on the synergistic effects of optimizing the performance. Finally, challenges and future applications of FGs are discussed, providing a theoretical foundation and new insights for the design and application of cutting-edge FGs.
Collapse
Affiliation(s)
- Wen Luo
- International Joint Research Laboratory for Biomedical Nanomaterials of HenanHenan Key Laboratory of Rare Earth Functional MaterialsZhoukou Normal UniversityZhoukou466001P. R. China
| | - Liujiao Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Bin Hu
- International Joint Research Laboratory for Biomedical Nanomaterials of HenanHenan Key Laboratory of Rare Earth Functional MaterialsZhoukou Normal UniversityZhoukou466001P. R. China
| | - Huali Zhang
- International Joint Research Laboratory for Biomedical Nanomaterials of HenanHenan Key Laboratory of Rare Earth Functional MaterialsZhoukou Normal UniversityZhoukou466001P. R. China
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Research Institute of Xi'an Jiaotong UniversityHangzhou311200P. R. China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of HenanHenan Key Laboratory of Rare Earth Functional MaterialsZhoukou Normal UniversityZhoukou466001P. R. China
| | - Di Zhang
- Department of General Surgery (Colorectal Surgery)Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesGuangdong Institute of GastroenterologyBiomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655P. R. China
| |
Collapse
|
10
|
Tang Y, Wu B, Li J, Lu C, Wu J, Xiong R. Biomimetic Structural Hydrogels Reinforced by Gradient Twisted Plywood Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411372. [PMID: 39487623 DOI: 10.1002/adma.202411372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/16/2024] [Indexed: 11/04/2024]
Abstract
Naturally structural hydrogels such as crustacean exoskeletons possess a remarkable combination of seemingly contradictory properties: high strength, modulus, and toughness coupled with exceptional fatigue resistance, owing to their hierarchical structures across multiple length scales. However, replicating these unique mechanical properties in synthetic hydrogels remains a significant challenge. This work presents a synergistic approach for constructing hierarchical structural hydrogels by employing cholesteric liquid crystal self-assembly followed by nanocrystalline engineering. The resulting hydrogels exhibit a long-range ordered gradient twisted plywood structure with high crystallinity to mimic the design of crustacean exoskeletons. Consequently, the structural hydrogels achieve an unprecedented combination of ultrahigh strength (46 ± 3 MPa), modulus (496 ± 25 MPa), and toughness (170 ± 14 MJ m-3), together with recorded high fatigue threshold (32.5 kJ m-2) and superior impact resistance (48 ± 2 kJ m-1). Additionally, through controlling geometry and compositional gradients of the hierarchical structures, a programmable shape morphing process allows for the fabrication of complex 3D hydrogels. This study not only offers valuable insights into advanced design strategies applicable to a broad range of promising hierarchical materials, but also pave the ways for load-bearing applications in tissue engineering, wearable devices, and soft robotics.
Collapse
Affiliation(s)
- Yulu Tang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Bentao Wu
- School of Advanced Manufacturing, Sun Yat-sen University, Shenzhen, 51000, P. R. China
| | - Jie Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Jianing Wu
- School of Advanced Manufacturing, Sun Yat-sen University, Shenzhen, 51000, P. R. China
| | - Rui Xiong
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
11
|
Deng J, Chen N, Yang S, Xie S, Guo K, Song J, Tao Y, Liu J, Wang Z. Supercooling-Driven Homogenization and Strengthening of Hydrogel Networks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54587-54596. [PMID: 39321391 DOI: 10.1021/acsami.4c11192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
By leveraging principles from metal grain refinement, we introduce a transformative technique for fabricating poly(vinyl alcohol) (PVA) hydrogels via supercooling-coupled wet annealing, significantly enhancing their mechanical robustness and isotropy while maintaining their exceptionally high water content. Our methodology involves the dissolving PVA in water at elevated temperatures, mirroring the homogeneity achieved with a molten metal, in order to ensure a uniform distribution of polymer chains. This uniformity facilitates a rapid cooling phase that generates ultrafine ice crystals, setting the stage for a crucial solvent exchange with ethylene glycol (EG). The EG-mediated supercooling technique ensures the polymer homogeneity and structure integrity and induces the PVA chains to aggregate and form high-density hydrogen bonds, leading to a uniformly distributed, interconnected PVA network with high crystallinity. The process is further strengthened by EG-enabled wet annealing, which promotes the formation of densely packed crystalline domains within the polymer network. This rigorous process yields PVA hydrogels with superior mechanical properties, including a tensile strength of 13.65 MPa and a fracture toughness of 35.39 MJ m-3, alongside remarkable water content nearing 80%. These advances not only surpass the capabilities of conventional hydrogels but also broaden their application potential, highlighting the innovative integration of supercooling principles in polymer science.
Collapse
Affiliation(s)
- Jie Deng
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Ningxin Chen
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Shanchen Yang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Sida Xie
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Kunkun Guo
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Jinwei Song
- Zhejiang Fulai New Materials Co., Ltd, Jiashan County 314100, China
| | - Yue Tao
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhaohui Wang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
12
|
Kaur H, Gogoi B, Sharma I, Das DK, Azad MA, Pramanik DD, Pramanik A. Hydrogels as a Potential Biomaterial for Multimodal Therapeutic Applications. Mol Pharm 2024; 21:4827-4848. [PMID: 39290162 PMCID: PMC11462506 DOI: 10.1021/acs.molpharmaceut.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Hydrogels, composed of hydrophilic polymer networks, have emerged as versatile materials in biomedical applications due to their high water content, biocompatibility, and tunable properties. They mimic natural tissue environments, enhancing cell viability and function. Hydrogels' tunable physical properties allow for tailored antibacterial biomaterial, wound dressings, cancer treatment, and tissue engineering scaffolds. Their ability to respond to physiological stimuli enables the controlled release of therapeutics, while their porous structure supports nutrient diffusion and waste removal, fostering tissue regeneration and repair. In wound healing, hydrogels provide a moist environment, promote cell migration, and deliver bioactive agents and antibiotics, enhancing the healing process. For cancer therapy, they offer localized drug delivery systems that target tumors, minimizing systemic toxicity and improving therapeutic efficacy. Ocular therapy benefits from hydrogels' capacity to form contact lenses and drug delivery systems that maintain prolonged contact with the eye surface, improving treatment outcomes for various eye diseases. In mucosal delivery, hydrogels facilitate the administration of therapeutics across mucosal barriers, ensuring sustained release and the improved bioavailability of drugs. Tissue regeneration sees hydrogels as scaffolds that mimic the extracellular matrix, supporting cell growth and differentiation for repairing damaged tissues. Similarly, in bone regeneration, hydrogels loaded with growth factors and stem cells promote osteogenesis and accelerate bone healing. This article highlights some of the recent advances in the use of hydrogels for various biomedical applications, driven by their ability to be engineered for specific therapeutic needs and their interactive properties with biological tissues.
Collapse
Affiliation(s)
- Harpreet Kaur
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Bishmita Gogoi
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Ira Sharma
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Deepak Kumar Das
- Department
of Chemistry and Nanoscience, GLA University, Mathura, Uttar Pradesh 281 406, India
| | - Mohd Ashif Azad
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | | | - Arindam Pramanik
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
- School
of Medicine, University of Leeds, Leeds LS97TF, United Kingdom
| |
Collapse
|
13
|
Cui P, Chen J, Fu K, Deng J, Sun T, Chen K, Yin P. Bioinspired Bouligand-Structured Cellulose Nanocrystals/Poly(vinyl alcohol) Composite Hydrogel for Enhanced Impact Resistance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53022-53032. [PMID: 39306751 DOI: 10.1021/acsami.4c13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Impact-protective materials are gaining importance because of the widespread occurrence of impact damage. Hydrogels have emerged as promising candidates owing to their lightweight and flexible nature. However, achieving soft impact-resistant hydrogels with exceptional stiffness, strength, and toughness remains a challenge. Inspired by the Bouligand structure found in the smasher dactyl club of stomatopods, we propose a straightforward multiscale hierarchical structural design strategy. This strategy integrates self-assembly and salting-out techniques to enhance the impact resistance of soft hydrogels. Rigid cellulose nanocrystals (CNCs) self-assemble into Bouligand-like structures within soft poly(vinyl alcohol) (PVA) matrix via supramolecular interactions. This rational structural design combines the CNC Bouligand structure with a cross-linked network of soft PVA crystalline domains, resulting in a composite hydrogel with impressive mechanical properties: high tensile fracture strength (30.2 MPa), elastic modulus (62.7 MPa), and fracture energy (75.6 kJ m-2), surpassing those of other tough hydrogels. Moreover, the multiscale hierarchical structure facilitates various energy dissipation mechanisms, including crack twisting, tortuous crack paths, and PVA chain orientation, resulting in notable force attenuation (80.4%) in the composite hydrogel. This biomimetic design strategy opens new avenues for developing soft and lightweight impact-resistant materials.
Collapse
Affiliation(s)
- Pengcheng Cui
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Jiadong Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Kewen Fu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Jie Deng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Taolin Sun
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Kun Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
14
|
Kuang Q, Feng S, Yang M. Biomimetic Aramid Nanofiber/β-FeOOH Composite Coating for Polypropylene Separators in Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39358833 DOI: 10.1021/acsami.4c10381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Aramid nanofibers (ANFs), with attractive mechanical and thermal properties, have attracted much attention as key building units for the design of high-performance composite materials. Although great progress has been made, the potential of ANFs as fibrous protein mimetics for controlling the growth of inorganic materials has not been fully revealed, which is critical for avoiding phase separation associated with typical solution blending. In this work, we show that ANFs could template the oriented growth of β-FeOOH nanowhiskers, which enables the synthesis of ANFs/β-FeOOH hybrids as composite coatings for polypropylene (PP) separators in Li-S batteries. The modified PP separator exhibits enhanced mechanical properties, heightened thermal performance, optimized electrolyte wettability, and improved ion conductivity, leading to superior electrochemical properties, including high initial specific capacity, better rate capability, and long cycling stability, which are superior to those of the commercial PP separators. Importantly, the addition of β-FeOOH to ANFs could further contribute to the suppression of lithium polysulfide shuttling by chemical immobilization, inhibition of the growth of lithium dendrites because of the intrinsic high modulus and hardness, and promotion of reaction dynamics due to the catalytic effect. We believe that our work may provide a potent biomimetic pathway for the development of advanced battery separators based on ANFs.
Collapse
Affiliation(s)
- Qingxia Kuang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Ming Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
15
|
Luo H, Mu Q, Zhu R, Li M, Shen H, Lu H, Hu L, Tian J, Cui W, Ran R. An Organic-Inorganic Hydrogel with Exceptional Mechanical Properties via Anion-Induced Synergistic Toughening for Accelerating Osteogenic Differentiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403322. [PMID: 38898720 DOI: 10.1002/smll.202403322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Mineralized bio-tissues achieve exceptional mechanical properties through the assembly of rigid inorganic minerals and soft organic matrices, providing abundant inspiration for synthetic materials. Hydrogels, serving as an ideal candidate to mimic the organic matrix in bio-tissues, can be strengthened by the direct introduction of minerals. However, this enhancement often comes at the expense of toughness due to interfacial mismatch. This study reveals that extreme toughening of hydrogels can be realized through simultaneous in situ mineralization and salting-out, without the need for special chemical modification or additional reinforcements. The key to this strategy lies in harnessing the kosmotropic and precipitation behavior of specific anions as they penetrate a hydrogel system containing both anion-sensitive polymers and multivalent cations. The resulting mineralized hydrogels demonstrate significant improvements in fracture stress, fracture energy, and fatigue threshold due to a multiscale energy dissipation mechanism, with optimal values reaching 12 MPa, 49 kJ m-2, and 2.98 kJ m-2. This simple strategy also proves to be generalizable to other anions, resulting in tough hydrogels with osteoconductivity for promoting in vitro mineralization of human adipose-derived mesenchymal stem cells. This work introduces a universal route to toughen hydrogels without compromising other parameters, holding promise for biological applications demanding integrated mechanical properties.
Collapse
Affiliation(s)
- Hongmei Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qifeng Mu
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Ruijie Zhu
- Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Min Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Huanwei Shen
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Honglang Lu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Longyu Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiajun Tian
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Cui
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Rong Ran
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
16
|
Santos F, Marto-Costa C, Branco AC, Oliveira AS, Galhano Dos Santos R, Salema-Oom M, Diaz RL, Williams S, Colaço R, Figueiredo-Pina C, Serro AP. Tribomechanical Properties of PVA/Nomex ® Composite Hydrogels for Articular Cartilage Repair. Gels 2024; 10:514. [PMID: 39195043 DOI: 10.3390/gels10080514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Due to the increasing prevalence of articular cartilage diseases and limitations faced by current therapeutic methodologies, there is an unmet need for new materials to replace damaged cartilage. In this work, poly(vinyl alcohol) (PVA) hydrogels were reinforced with different amounts of Nomex® (known for its high mechanical toughness, flexibility, and resilience) and sterilized by gamma irradiation. Samples were studied concerning morphology, chemical structure, thermal behavior, water content, wettability, mechanical properties, and rheological and tribological behavior. Overall, it was found that the incorporation of aramid nanostructures improved the hydrogel's mechanical performance, likely due to the reinforcement's intrinsic strength and hydrogen bonding to PVA chains. Additionally, the sterilization of the materials also led to superior mechanical properties, possibly related to the increased crosslinking density through the hydrogen bonding caused by the irradiation. The water content, wettability, and tribological performance of PVA hydrogels were not compromised by either the reinforcement or the sterilization process. The best-performing composite, containing 1.5% wt. of Nomex®, did not induce cytotoxicity in human chondrocytes. Plugs of this hydrogel were inserted in porcine femoral heads and tested in an anatomical hip simulator. No significant changes were observed in the hydrogel or cartilage, demonstrating the material's potential to be used in cartilage replacement.
Collapse
Affiliation(s)
- Francisco Santos
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Carolina Marto-Costa
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Monte da Caparica, 2829-511 Almada, Portugal
| | - Ana Catarina Branco
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Monte da Caparica, 2829-511 Almada, Portugal
- Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal
| | - Andreia Sofia Oliveira
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Monte da Caparica, 2829-511 Almada, Portugal
- Instituto de Engenharia Mecânica (IDMEC), Department of Mechanical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Rui Galhano Dos Santos
- CERENA-Centre for Natural Resources and the Environment, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Madalena Salema-Oom
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Monte da Caparica, 2829-511 Almada, Portugal
| | - Roberto Leonardo Diaz
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Woodhouse, Leeds LS2 9JT, UK
| | - Sophie Williams
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Woodhouse, Leeds LS2 9JT, UK
| | - Rogério Colaço
- Instituto de Engenharia Mecânica (IDMEC), Department of Mechanical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Célio Figueiredo-Pina
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Monte da Caparica, 2829-511 Almada, Portugal
- Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal
- CeFEMA-Center of Physiscs and Engineering of Advanced Materials, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Ana Paula Serro
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Monte da Caparica, 2829-511 Almada, Portugal
| |
Collapse
|
17
|
Li H, Zhang W, Liao X, Xu L. Kirigami enabled reconfigurable three-dimensional evaporator arrays for dynamic solar tracking and high efficiency desalination. SCIENCE ADVANCES 2024; 10:eado1019. [PMID: 38924404 PMCID: PMC11204288 DOI: 10.1126/sciadv.ado1019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
A kirigami-engineered composite hydrogel membrane is exploited for the construction of three dimensional (3D) solar-tracking evaporator arrays with outstanding evaporation performance and salt tolerance. The hybrid nanofiber network in the hydrogel membrane offers favorable water transport dynamics combined with excellent structural robustness, which are beneficial for the engineering of 3D dynamic structures. Periodic triangular cuts patterned into the membrane allow formation and reconfiguration of 3D conical arrays controlled by uniaxial stretching. With these structures, the tilt angles of the membrane surface are actively tuned to follow the solar trajectory, leading to a solar evaporation rate ~80% higher than that of static planar devices. Furthermore, the tapered 3D flaps and their micro-structured surfaces are capable of localized salt crystallization for prolonged solar desalination, enabling a stable evaporation rate of 3.4 kg m-2 hour-1 even in saturated brine. This versatile design may facilitate the implementation of solar evaporators for desalination and provide inspirations for other soft functional devices with dynamic 3D configurations.
Collapse
Affiliation(s)
- Hao Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Weixin Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR 999077, China
| | - Xi Liao
- School of Construction Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
- Department of Architecture, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Lizhi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR 999077, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen 518057, China
| |
Collapse
|
18
|
Tang Y, Lu C, Xiong R. Biomimetic Mechanically Robust Chiroptical Hydrogel Enabled by Hierarchical Bouligand Structure Engineering. ACS NANO 2024; 18:14629-14639. [PMID: 38776427 DOI: 10.1021/acsnano.4c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Natural bouligand structures enable crustacean exoskeletons and fruits to strike a combination of exceptional mechanical robustness and brilliant chiroptical properties owing to multiscale structural hierarchy. However, integrating such a high strength-stiffness-toughness combination and photonic functionalities into synthetic hydrogels still remains a grand challenge. In this work, we report a simple yet general biomimetic strategy to construct an ultrarobust chiroptical hydrogel by closely mimicking the natural bouligand structure at multilength scale. The hierarchical structural engineering of long-range ordered cellulose nanocrystals' bouligand structure, well-defined poly(vinyl alcohol) nanocrystalline domains, and dynamic interfacial interaction synergistically contributes to the integration of high strength (23.3 MPa), superior modulus (264 MPa), and high toughness (54.7 MJ m-3), as well as extraordinary impact resistance, which far exceed their natural counterparts and synthetic photonic hydrogels. More importantly, seamless chiroptical and solvent-responsive patterns with high resolution can also be scalably integrated into the hydrogel by localized manipulation of the photonic band, while maintaining good ionic conductivity. Such exceptional mechanical-photonic combination holds tremendous potential for applications in wearable sensors, encryption, displays, and soft robotics.
Collapse
Affiliation(s)
- Yulu Tang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Rui Xiong
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
19
|
Li S, Zhi L, Chen Q, Zhao W, Zhao C. Reversibly Adhesive, Anti-Swelling, and Antibacterial Hydrogels for Tooth-Extraction Wound Healing. Adv Healthc Mater 2024; 13:e2400089. [PMID: 38354105 DOI: 10.1002/adhm.202400089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Oral wound treatment faces challenges due to the complex oral environment, thus, sealing the wound quickly becomes necessary. Although some materials have achieved adhesion and sterilization, how to effectively solve the contradiction between strong adhesion and on-demand removal remains a challenge. Herein, a reversibly adhesive hydrogel is designed by free radical copolymerization of cationic monomer [2-(acryloyloxy) ethyl] trimethylammonium chloride (ATAC), hydrophobic monomer ethylene glycol phenyl ether acrylate (PEA) and N-isopropylacrylamide (NIPAAm). The cationic quaternary ammonium salts provide electrostatic interactions, the hydrophobic groups provide hydrophobic interactions, and the PNIPAAm chain segments provide hydrogen bonding, leading to strong adhesion. Therefore, the hydrogel obtains an adhesion strength of 18.67 KPa to oral mucosa and can seal wounds fast within 10 s. Furthermore, unlike pure PNIPAAm, the hydrogel has a lower critical solution temperature of 40.3 °C due to the contribution of ATAC and PEA, enabling rapid removal with 40 °C water after treatment. In addition, the hydrogel realizes excellent anti-swelling ratio (≈80%) and antibacterial efficiency (over 90%). Animal experiments prove that the hydrogel effectively reduces inflammation infiltration, promotes collagen deposition and vascular regeneration. Thus, hydrogel as a multi-functional dressing has great application prospects in oral wound management.
Collapse
Affiliation(s)
- Siyu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Lunhao Zhi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qin Chen
- Department of Nursing, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
20
|
Wang XQ, Xie AQ, Cao P, Yang J, Ong WL, Zhang KQ, Ho GW. Structuring and Shaping of Mechanically Robust and Functional Hydrogels toward Wearable and Implantable Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309952. [PMID: 38389497 DOI: 10.1002/adma.202309952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Hydrogels possess unique features such as softness, wetness, responsiveness, and biocompatibility, making them highly suitable for biointegrated applications that have close interactions with living organisms. However, conventional man-made hydrogels are usually soft and brittle, making them inferior to the mechanically robust biological hydrogels. To ensure reliable and durable operation of biointegrated wearable and implantable devices, mechanical matching and shape adaptivity of hydrogels to tissues and organs are essential. Recent advances in polymer science and processing technologies have enabled mechanical engineering and shaping of hydrogels for various biointegrated applications. In this review, polymer network structuring strategies at micro/nanoscales for toughening hydrogels are summarized, and representative mechanical functionalities that exist in biological materials but are not easily achieved in synthetic hydrogels are further discussed. Three categories of processing technologies, namely, 3D printing, spinning, and coating for fabrication of tough hydrogel constructs with complex shapes are reviewed, and the corresponding hydrogel toughening strategies are also highlighted. These developments enable adaptive fabrication of mechanically robust and functional hydrogel devices, and promote application of hydrogels in the fields of biomedical engineering, bioelectronics, and soft robotics.
Collapse
Affiliation(s)
- Xiao-Qiao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - An-Quan Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Pengle Cao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Jian Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Wei Li Ong
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| |
Collapse
|
21
|
Ji D, Zhang Z, Sun J, Cao W, Wang Z, Wang X, Cao T, Han J, Zhu J. Strong, Tough, and Biocompatible Poly(vinyl alcohol)-Poly(vinylpyrrolidone) Multiscale Network Hydrogels Reinforced by Aramid Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38654450 DOI: 10.1021/acsami.4c02354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Poly(vinyl alcohol) (PVA) hydrogels are water-rich, three-dimensional (3D) network materials that are similar to the tissue structure of living organisms. This feature gives hydrogels a wide range of potential applications, including drug delivery systems, articular cartilage regeneration, and tissue engineering. Due to the large amount of water contained in hydrogels, achieving hydrogels with comprehensive properties remains a major challenge, especially for isotropic hydrogels. This study innovatively prepares a multiscale-reinforced PVA hydrogel from molecular-level coupling to nanoscale enhancement by chemically cross-linking poly(vinylpyrrolidone) (PVP) and in situ assembled aromatic polyamide nanofibers (ANFs). The optimized ANFs-PVA-PVP (APP) hydrogels have a tensile strength of ≈9.7 MPa, an elongation at break of ≈585%, a toughness of ≈31.84 MJ/m3, a compressive strength of ≈10.6 MPa, and a high-water content of ≈80%. It is excellent among all reported PVA hydrogels and even comparable to some anisotropic hydrogels. System characterizations show that those performances are attributed to the particular multiscale load-bearing structure and multiple interactions between ANFs and PVA. Moreover, APP hydrogels exhibit excellent biocompatibility and a low friction coefficient (≈0.4). These valuable performances pave the way for broad potential in many advanced applications such as biological tissue replacement, flexible wearable devices, electronic skin, and in vivo sensors.
Collapse
Affiliation(s)
- Dongchao Ji
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, P. R. China
| | - Zhibo Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, P. R. China
| | - Jingxuan Sun
- School of Stomatology, Harbin Medical University, Harbin 150001, P. R. China
| | - Wenxin Cao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, P. R. China
| | - Zhuochao Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Xiaolei Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Tengyue Cao
- Beijing No. 80 High School, Beijing 100000, P. R. China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jiaqi Zhu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, P. R. China
| |
Collapse
|
22
|
Wu Y, Zhang Y, Liao Z, Wen J, Zhang H, Wu H, Liu Z, Shi Y, Song P, Tang L, Xue H, Gao J. Water vapor assisted aramid nanofiber reinforcement for strong, tough and ionically conductive organohydrogels as high-performance strain sensors. MATERIALS HORIZONS 2024; 11:1272-1282. [PMID: 38165275 DOI: 10.1039/d3mh01560b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Conductive organohydrogels have gained increasing attention in wearable sensors, flexible batteries, and soft robots due to their exceptional environment adaptability and controllable conductivity. However, it is still difficult for conductive organohydrogels to achieve simultaneous improvement in mechanical and electrical properties. Here, we propose a novel "water vapor assisted aramid nanofiber (ANF) reinforcement" strategy to prepare robust and ionically conductive organohydrogels. Water vapor diffusion can induce the pre-gelation of the polymer solution and ensure the uniform dispersion of ANFs in organohydrogels. ANF reinforced organohydrogels have remarkable mechanical properties with a tensile strength, stretchability and toughness of up to 1.88 ± 0.04 MPa, 633 ± 30%, and 6.75 ± 0.38 MJ m-3, respectively. Furthermore, the organohydrogels exhibit great crack propagation resistance with the fracture energy and fatigue threshold as high as 3793 ± 167 J m-2 and ∼328 J m-2, respectively. As strain sensors, the conductive organohydrogel demonstrates a short response time of 112 ms, a large working strain and superior cycling stability (1200 cycles at 40% strain), enabling effective monitoring of a wide range of complex human motions. This study provides a new yet effective design strategy for high performance and multi-functional nanofiller reinforced organohydrogels.
Collapse
Affiliation(s)
- Yongchuan Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Ya Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Zimin Liao
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Jing Wen
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Hechuan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Haidi Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Zhanqi Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Yongqian Shi
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Campus, QLD 4300, Australia
| | - Longcheng Tang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| |
Collapse
|
23
|
Petelinšek N, Mommer S. Tough Hydrogels for Load-Bearing Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307404. [PMID: 38225751 PMCID: PMC10966577 DOI: 10.1002/advs.202307404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Indexed: 01/17/2024]
Abstract
Tough hydrogels have emerged as a promising class of materials to target load-bearing applications, where the material has to resist multiple cycles of extreme mechanical impact. A variety of chemical interactions and network architectures are used to enhance the mechanical properties and fracture mechanics of hydrogels making them stiffer and tougher. In recent years, the mechanical properties of tough, high-performance hydrogels have been benchmarked, however, this is often incomplete as important variables like water content are largely ignored. In this review, the aim is to clarify the reported mechanical properties of state-of-the-art tough hydrogels by providing a comprehensive library of fracture and mechanical property data. First, common methods for mechanical characterization of such high-performance hydrogels are introduced. Then, various modes of energy dissipation to obtain tough hydrogels are discussed and used to categorize the individual datasets helping to asses the material's (fracture) mechanical properties. Finally, current applications are considered, tough high-performance hydrogels are compared with existing materials, and promising future opportunities are discussed.
Collapse
Affiliation(s)
- Nika Petelinšek
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Stefan Mommer
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| |
Collapse
|
24
|
Lee M, Kwak H, Eom Y, Park SA, Sakai T, Jeon H, Koo JM, Kim D, Cha C, Hwang SY, Park J, Oh DX. Network of cyano-p-aramid nanofibres creates ultrastiff and water-rich hydrospongels. NATURE MATERIALS 2024; 23:414-423. [PMID: 38182810 DOI: 10.1038/s41563-023-01760-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/14/2023] [Indexed: 01/07/2024]
Abstract
The structure-property paradox of biological tissues, in which water-rich porous structures efficiently transfer mass while remaining highly mechanically stiff, remains unsolved. Although hydrogel/sponge hybridization is the key to understanding this phenomenon, material incompatibility makes this a challenging task. Here we describe hydrogel/sponge hybrids (hydrospongels) that behave as both ultrastiff water-rich gels and reversibly squeezable sponges. The self-organizing network of cyano-p-aramid nanofibres holds approximately 5,000 times more water than its solid content. Hydrospongels, even at a water concentration exceeding 90 wt%, are hard as cartilage with an elastic modulus of 50-80 MPa, and are 10-1,000 times stiffer than typical hydrogels. They endure a compressive strain above 85% through poroelastic relaxation and hydrothermal pressure at 120 °C. This performance is produced by amphiphilic surfaces, high rigidity and an interfibrillar, interaction-driven percolating network of nanofibres. These features can inspire the development of future biofunctional materials.
Collapse
Affiliation(s)
- Minkyung Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Hojung Kwak
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Youngho Eom
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
- Department of Polymer Engineering, Pukyong National University, Busan, Republic of Korea
| | - Seul-A Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Hyeonyeol Jeon
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Jun Mo Koo
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, Republic of Korea
| | - Dowan Kim
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Chaenyung Cha
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sung Yeon Hwang
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea.
- Department of Plant & Environmental New Resources and Graduate School of Biotechnology, Kyung Hee University, Gyeonggi-Do, Republic of Korea.
| | - Jeyoung Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea.
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
| | - Dongyeop X Oh
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea.
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
25
|
Liu S, Yang M, Barton H, Xu W. Designed Microbial Biosynthesis of Hierarchical Bone-Mimetic Biocomposites in 3D-Printed Soft Bioreactors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5513-5521. [PMID: 38261734 DOI: 10.1021/acsami.3c15706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The creation of 3D biomimetic composite structures has important applications in tissue engineering, lightweight structures, drug delivery, and sensing. Previous approaches in fabricating 3D biomimetic composites have relied on blending or assembling chemically synthesized molecules or structures, making it challenging to achieve precise control of the size, geometry, and internal structure of the biomimetic composites. Here, we present a new approach for the creation of 3D bone-mimetic biocomposites with precisely controlled shape, hierarchical structure, and functionalities. Our approach is based on the integration of programmable microbial biosynthesis with 3D printing of gas-permeable and customizable bioreactors. The organic and inorganic components are bacterial cellulose and calcium hydroxyapatite via a mineral precursor, which are generated by Komagataeibacter xylinus and Bacillus simplex P6A, respectively, in 3D-printed silicone bioreactors in consecutive culturing cycles. This study is of high significance to biocomposites, biofabrication, and tissue engineering as it paves the way for the synergistic integration of microbial biosynthesis and additive manufacturing.
Collapse
Affiliation(s)
- Shan Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Muxuan Yang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Hazel Barton
- Department of Biology, The University of Akron, Akron, Ohio 44325, United States
| | - Weinan Xu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
26
|
Zhang T, Gai K, Li R, Liang Y, Li L, Chen J, Nie M. Robust and self-lubricating polyvinyl alcohol tubes with a mucosa-like hierarchical architecture for endotracheal intubation. J Mater Chem B 2024; 12:1330-1343. [PMID: 38230443 DOI: 10.1039/d3tb02402d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Mechanical mismatch between interventional intubation tubes and human tissues often triggers inevitable friction and causes secondary injury to patients during interventional therapy. Herein, we propose a fabrication strategy of a self-lubricating polyvinyl alcohol (PVA) tube by industrial extrusion technology followed by simple infiltration with water. First, biocompatible glycerin was introduced to weaken the intrinsic hydrogen interaction of PVA by new molecular complexation, broadening the gap between the melting and decomposition temperatures and enabling the stable extrusion of the PVA tube. Subsequently, the as-prepared PVA tube was infiltrated with an aqueous solution to construct a strong hydrogen bonding network between PVA and water molecules, forming a soft hydration layer similar to the upper epithelium layer of mucosa. Benefiting from the solid and liquid properties of the hydration layer as well as the small proportion relative to the whole, the infiltrated PVA tube exhibited excellent hydration lubrication behavior and robust mechanical property. The friction coefficient, tensile strength and elongation at break were measured to be 0.05, 26.2 MPa and 654%, respectively, surpassing the values of 0.5, 16.4 MPa and 240% observed in a commercial polyvinyl chloride tube. In vitro, the PVA intubation tube demonstrated significant biocompatibility, and short-term exposure exhibited minimal impacts on the morphology and proliferation of L929 cells. Ultimately, the potential of the infiltrated PVA tube for interventional intubation was demonstrated successfully using an in vivo rabbit model, providing a new idea for the follow-up development of interventional intubation tubes.
Collapse
Affiliation(s)
- Tongrui Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Kuo Gai
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Ruyi Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yi Liang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Li Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Junyu Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Min Nie
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
27
|
Tian R, Jia X, Bai Y, Yang J, Song H. Fluorinated Graphene Thermally Conductive Hydrogel with a Solid-Liquid Interpenetrating Heat Conduction Network. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1451-1460. [PMID: 38112199 DOI: 10.1021/acsami.3c14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Hydrogels with excellent mechanical flexibility are widely used in flexible electronic devices. However, it is difficult to meet further applications of high-power integrated flexible electronics as a result of their low thermal conductivity. Herein, highly thermally conductive composite hydrogels with a solid-liquid interpenetrating thermal conductivity network are constructed by aromatic polyamide nanofibers (ANF) and fluorinated graphene (FG) reinforced poly(vinyl alcohol) (PVA) and cross-linked by tannic acid (TA) solution immersion to obtain a hydrogel with a double cross-linked network. The PVA-ANF-FG3T-11.1% composite hydrogel exhibits good mechanical properties compared to PVA-ANFT, with a tensile modulus of up to 0.89 MPa, a tensile strength of up to 1.23 MPa, and an energy of rupture of up to 3.45 MJ cm-3, which is mainly attributed to the multihydrogen bonding interactions in the composite hydrogel. In addition, the friction coefficient of the PVA-ANF-FG3T-11.1% composite hydrogel is 0.178, making it suitable for use in high-friction coefficient applications. The thermal conductivity of the PVA-ANF-FG3T-11.1% composite hydrogel is 1.42 W m-1 K-1, which is attributed to the synergistic effect of the solid thermal conductivity network and the liquid convection network, resulting in a high thermal conductivity of the composite hydrogel. The high thermal conductivity of the PVA-ANF-FG3T-11.1% composite hydrogel shows great potential for flexible wearable electronics and cooling paste applications.
Collapse
Affiliation(s)
- Rui Tian
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Xiaohua Jia
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Yunfei Bai
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Jin Yang
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Haojie Song
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, P. R. China
| |
Collapse
|
28
|
Liu Y, Fu Y, Xu Z, Xiao X, Li P, Wang X, Guo H. Solubilization of Fully Hydrolyzed Poly(vinyl alcohol) at Room Temperature for Fabricating Recyclable Hydrogels. ACS Macro Lett 2023; 12:1543-1548. [PMID: 37916618 DOI: 10.1021/acsmacrolett.3c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The versatility of poly(vinyl alcohol) (PVA) makes it extensively utilized across various industries, while the solubilization of PVA in aqueous media is essential for its applications. However, the high crystallinity of the fully hydrolyzed PVA poses a big challenge in terms of its dissolution in aqueous media at room temperature. In this work, we present a straightforward, efficient, and safe strategy to achieve this objective by the integration of inorganic additives. The crucial aspect of additives lies in the interference of hydrogen bonds and breaking of the crystal domain within PVA chains, therefore greatly enhancing the solubility. At the optimal condition, the solubility of PVA can reach up to 45 wt% at 25 °C in 4 M HBr solution. It is further proven that the solubility of PVA follows the Hofmeister series well, where the chaotropes facilitate the solubilization process. In addition, the solubility is also significantly determined by the PVA type and additive concentration. By harnessing this feature, we successfully engineer recyclable PVA hydrogels with programmable mechanical properties. The hydrogels exhibit remarkable recyclability by affording a minimum of 8 regeneration cycles without experiencing significant deterioration in mechanical properties. Collectively, this research may significantly contribute to the advancement of PVA applications.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Taipa, 999078, Macao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yuanmao Fu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Zhuoning Xu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Xuemei Xiao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Ping Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Xiaolin Wang
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Taipa, 999078, Macao
| | - Hui Guo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| |
Collapse
|
29
|
Yang X, Xu L, Wang C, Wu J, Zhu B, Meng X, Qiu D. Reinforcing Hydrogel by Nonsolvent-Quenching-Facilitated In Situ Nanofibrosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303728. [PMID: 37448332 DOI: 10.1002/adma.202303728] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/23/2023] [Accepted: 07/12/2023] [Indexed: 07/15/2023]
Abstract
Nanofibrous hydrogels are pervasive in load-bearing soft tissues, which are believed to be key to their extraordinary mechanical properties. Enlighted by this phenomenon, a novel reinforcing strategy for polymeric hydrogels is proposed, where polymer segments in the hydrogels are induced to form nanofibers in situ by bolstering their controllable aggregation at the nanoscale level. Poly(vinyl alcohol) hydrogels are chosen to demonstrate the virtue of this strategy. A nonsolvent-quenching step is introduced into the conventional solvent-exchange hydrogel preparation approach, which readily promotes the formation of nanofibrous hydrogels in the following solvent-tempering process. The resultant nanofibrous hydrogels demonstrate significantly improved mechanical properties and swelling resistance, compared to the conventional solvent-exchange hydrogels with identical compositions. This work validates the hypothesis that bundling polymer chains to form nanofibers can lead to nanofibrous hydrogels with remarkably enhanced mechanical performances, which may open a new horizon for single-component hydrogel reinforcement.
Collapse
Affiliation(s)
- Xule Yang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liju Xu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen Wang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jilin Wu
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Bin Zhu
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Xiaohui Meng
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
30
|
Chen H, Wei P, Qi Y, Xie Y, Huang X. Water-Induced Cellulose Nanofibers/Poly(vinyl alcohol) Hydrogels Regulated by Hydrogen Bonding for In Situ Water Shutoff. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39883-39895. [PMID: 37578297 DOI: 10.1021/acsami.3c07989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Hydrogels have been widely applied to the water shutoff in oilfields due to their excellent three-dimensional network and thermal and physicochemical stability, and it is still a huge challenge to develop new hydrogels with simple preparation, low cost, and high mechanical performance that can meet the requirements of practical applications. Herein, we devised a simple and universal manufacturing method for regulating the hydrogen bonds between poly(vinyl alcohol) (PVA) and cellulose nanofibers (CNF) via the water-diffusion action, thus fabricating a physically tough PVA-CNF hydrogel for the in situ water shutoff. This method allowed the polymer chains to strengthen the molecular interactions between polymers upon replacing with water (a poor solvent) to regulate the cross-linking structure, characterizing by the nano-crystallinity domains and fibrillar segments, which also accounted for the thermal stability, extraordinary elasticity, high stretchability, and toughness of PVA-CNF hydrogel. Further, the obtained PVA-CNF hydrogel exhibited superb plugging performance, that is, the breakthrough pressure gradient could reach 71.56 MPa·m-1, surpassing all currently reported gelling water shutoff agents. This water-induced in situ hydrogelation made it well suited as a water shutoff agent in oilfields and may provide a promising strategy to fabricate mechanically robust smart materials for the water shutoff projects with low cost, simple processing, and high efficiency.
Collapse
Affiliation(s)
- Hongjie Chen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources & MOE Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Peng Wei
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources & MOE Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Ying Qi
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources & MOE Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Yahong Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources & MOE Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Xueli Huang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources & MOE Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
31
|
Wen J, Wu Y, Gao Y, Su Q, Liu Y, Wu H, Zhang H, Liu Z, Yao H, Huang X, Tang L, Shi Y, Song P, Xue H, Gao J. Nanofiber Composite Reinforced Organohydrogels for Multifunctional and Wearable Electronics. NANO-MICRO LETTERS 2023; 15:174. [PMID: 37420043 PMCID: PMC10328881 DOI: 10.1007/s40820-023-01148-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/11/2023] [Indexed: 07/09/2023]
Abstract
Composite organohydrogels have been widely used in wearable electronics. However, it remains a great challenge to develop mechanically robust and multifunctional composite organohydrogels with good dispersion of nanofillers and strong interfacial interactions. Here, multifunctional nanofiber composite reinforced organohydrogels (NCROs) are prepared. The NCRO with a sandwich-like structure possesses excellent multi-level interfacial bonding. Simultaneously, the synergistic strengthening and toughening mechanism at three different length scales endow the NCRO with outstanding mechanical properties with a tensile strength (up to 7.38 ± 0.24 MPa), fracture strain (up to 941 ± 17%), toughness (up to 31.59 ± 1.53 MJ m-3) and fracture energy (up to 5.41 ± 0.63 kJ m-2). Moreover, the NCRO can be used for high performance electromagnetic interference shielding and strain sensing due to its high conductivity and excellent environmental tolerance such as anti-freezing performance. Remarkably, owing to the organohydrogel stabilized conductive network, the NCRO exhibits superior long-term sensing stability and durability compared to the nanofiber composite itself. This work provides new ideas for the design of high-strength, tough, stretchable, anti-freezing and conductive organohydrogels with potential applications in multifunctional and wearable electronics.
Collapse
Affiliation(s)
- Jing Wen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Yongchuan Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Yuxin Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Qin Su
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Yuntao Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Haidi Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Hechuan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Zhanqi Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China.
| | - Xuewu Huang
- Testing Center, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Longcheng Tang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Yongqian Shi
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central, 4300, Australia
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China.
| |
Collapse
|
32
|
Fu L, Li L, Bian Q, Xue B, Jin J, Li J, Cao Y, Jiang Q, Li H. Cartilage-like protein hydrogels engineered via entanglement. Nature 2023; 618:740-747. [PMID: 37344650 DOI: 10.1038/s41586-023-06037-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/31/2023] [Indexed: 06/23/2023]
Abstract
Load-bearing tissues, such as muscle and cartilage, exhibit high elasticity, high toughness and fast recovery, but have different stiffness (with cartilage being significantly stiffer than muscle)1-8. Muscle achieves its toughness through finely controlled forced domain unfolding-refolding in the muscle protein titin, whereas articular cartilage achieves its high stiffness and toughness through an entangled network comprising collagen and proteoglycans. Advancements in protein mechanics and engineering have made it possible to engineer titin-mimetic elastomeric proteins and soft protein biomaterials thereof to mimic the passive elasticity of muscle9-11. However, it is more challenging to engineer highly stiff and tough protein biomaterials to mimic stiff tissues such as cartilage, or develop stiff synthetic matrices for cartilage stem and progenitor cell differentiation12. Here we report the use of chain entanglements to significantly stiffen protein-based hydrogels without compromising their toughness. By introducing chain entanglements13 into the hydrogel network made of folded elastomeric proteins, we are able to engineer highly stiff and tough protein hydrogels, which seamlessly combine mutually incompatible mechanical properties, including high stiffness, high toughness, fast recovery and ultrahigh compressive strength, effectively converting soft protein biomaterials into stiff and tough materials exhibiting mechanical properties close to those of cartilage. Our study provides a general route towards engineering protein-based, stiff and tough biomaterials, which will find applications in biomedical engineering, such as osteochondral defect repair, and material sciences and engineering.
Collapse
Affiliation(s)
- Linglan Fu
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Drum Tower Hospital affiliated to Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Qingyuan Bian
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Bin Xue
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing, People's Republic of China
| | - Jing Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Drum Tower Hospital affiliated to Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Jiayu Li
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yi Cao
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing, People's Republic of China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Drum Tower Hospital affiliated to Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Hongbin Li
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
33
|
Virdi C, Lu Z, Zreiqat H, No YJ. Theta-Gel-Reinforced Hydrogel Composites for Potential Tensile Load-Bearing Soft Tissue Repair Applications. J Funct Biomater 2023; 14:291. [PMID: 37367255 DOI: 10.3390/jfb14060291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Engineering synthetic hydrogels for the repair and augmentation of load-bearing soft tissues with simultaneously high-water content and mechanical strength is a long-standing challenge. Prior formulations to enhance the strength have involved using chemical crosslinkers where residues remain a risk for implantation or complex processes such as freeze-casting and self-assembly, requiring specialised equipment and technical expertise to manufacture reliably. In this study, we report for the first time that the tensile strength of high-water content (>60 wt.%), biocompatible polyvinyl alcohol hydrogels can exceed 1.0 MPa through a combination of facile manufacturing strategies via physical crosslinking, mechanical drawing, post-fabrication freeze drying, and deliberate hierarchical design. It is anticipated that the findings in this paper can also be used in conjunction with other strategies to enhance the mechanical properties of hydrogel platforms in the design and construction of synthetic grafts for load-bearing soft tissues.
Collapse
Affiliation(s)
- Charenpreet Virdi
- School of Biomedical Engineering, University of Sydney, Darlington, NSW 2006, Australia
| | - Zufu Lu
- School of Biomedical Engineering, University of Sydney, Darlington, NSW 2006, Australia
| | - Hala Zreiqat
- School of Biomedical Engineering, University of Sydney, Darlington, NSW 2006, Australia
| | - Young Jung No
- School of Biomedical Engineering, University of Sydney, Darlington, NSW 2006, Australia
| |
Collapse
|
34
|
Wang Z, Zhu H, Li H, Wang Z, Sun M, Yang B, Wang Y, Wang L, Xu L. High-Strength Magnetic Hydrogels with Photoweldability Made by Stepwise Assembly of Magnetic-Nanoparticle-Integrated Aramid Nanofiber Composites. ACS NANO 2023; 17:9622-9632. [PMID: 37134301 DOI: 10.1021/acsnano.3c03156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hydrogels capable of transforming in response to a magnetic field hold great promise for applications in soft actuators and biomedical robots. However, achieving high mechanical strength and good manufacturability in magnetic hydrogels remains challenging. Here, inspired by natural load-bearing soft tissues, a class of composite magnetic hydrogels is developed with tissue-mimetic mechanical properties and photothermal welding/healing capability. In these hydrogels, a hybrid network involving aramid nanofibers, Fe3O4 nanoparticles, and poly(vinyl alcohol) is accomplished by a stepwise assembly of the functional components. The engineered interactions between nanoscale constituents enable facile materials processing and confer a combination of excellent mechanical properties, magnetism, water content, and porosity. Furthermore, the photothermal property of Fe3O4 nanoparticles organized around the nanofiber network allows near-infrared welding of the hydrogels, providing a versatile means to fabricate heterogeneous structures with custom designs. Complex modes of magnetic actuation are made possible with the manufactured heterogeneous hydrogel structures, suggesting opportunities for further applications in implantable soft robots, drug delivery systems, human-machine interactions, and other technologies.
Collapse
Affiliation(s)
- Zuochen Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR 999077, China
| | - Hengjia Zhu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Hegeng Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhisheng Wang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Mingze Sun
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Bin Yang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR 999077, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Liqiu Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Lizhi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR 999077, China
| |
Collapse
|
35
|
Qian K, Zhou J, Miao M, Wu H, Thaiboonrod S, Fang J, Feng X. Highly Ordered Thermoplastic Polyurethane/Aramid Nanofiber Conductive Foams Modulated by Kevlar Polyanion for Piezoresistive Sensing and Electromagnetic Interference Shielding. NANO-MICRO LETTERS 2023; 15:88. [PMID: 37029266 PMCID: PMC10082146 DOI: 10.1007/s40820-023-01062-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Highly ordered and uniformly porous structure of conductive foams is a vital issue for various functional purposes such as piezoresistive sensing and electromagnetic interference (EMI) shielding. With the aids of Kevlar polyanionic chains, thermoplastic polyurethane (TPU) foams reinforced by aramid nanofibers (ANF) with adjustable pore-size distribution were successfully obtained via a non-solvent-induced phase separation. In this regard, the most outstanding result is the in situ formation of ANF in TPU foams after protonation of Kevlar polyanion during the NIPS process. Furthermore, in situ growth of copper nanoparticles (Cu NPs) on TPU/ANF foams was performed according to the electroless deposition by using the tiny amount of pre-blended Ti3C2Tx MXene as reducing agents. Particularly, the existence of Cu NPs layers significantly promoted the storage modulus in 2,932% increments, and the well-designed TPU/ANF/Ti3C2Tx MXene (PAM-Cu) composite foams showed distinguished compressive cycle stability. Taking virtues of the highly ordered and elastic porous architectures, the PAM-Cu foams were utilized as piezoresistive sensor exhibiting board compressive interval of 0-344.5 kPa (50% strain) with good sensitivity at 0.46 kPa-1. Meanwhile, the PAM-Cu foams displayed remarkable EMI shielding effectiveness at 79.09 dB in X band. This work provides an ideal strategy to fabricate highly ordered TPU foams with outstanding elastic recovery and excellent EMI shielding performance, which can be used as a promising candidate in integration of satisfactory piezoresistive sensor and EMI shielding applications for human-machine interfaces.
Collapse
Affiliation(s)
- Kunpeng Qian
- School of Materials Sciences and Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jianyu Zhou
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Miao Miao
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Hongmin Wu
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Sineenat Thaiboonrod
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Jianhui Fang
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Xin Feng
- School of Materials Sciences and Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
36
|
Liu D, Cao Y, Jiang P, Wang Y, Lu Y, Ji Z, Wang X, Liu W. Tough, Transparent, and Slippery PVA Hydrogel Led by Syneresis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206819. [PMID: 36592418 DOI: 10.1002/smll.202206819] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Slippery and transparent polyvinyl alcohol (PVA) hydrogels with mechanical robustness exhibit broad applications in artificial biological soft tissues, flexible wearable electronics, and implantable biomedical devices. Most of the current PVA hydrogels, however, are unable to integrate these features, which compromises its performance in biological and engineering applications. To achieve such purpose, herein, a novel tactic is proposed, salting-out-after-syneresis of PVA, to realize a mechanically robust and highly transparent slippery PVA hydrogel. The syneresis of PVA sol is first conducted to form highly dense and transparent PVA polymer networks, then the salting-out effect tunes the aggregation of the polymer chains to rapidly induce the phase separation and crystallization. The resultant hydrogels show the transparency up to 98% in the visible region, the tribological coefficient down to 0.0081, and the excellent mechanical properties with strength, modulus, and toughness of 26.72 ± 1.05, 6.66 ± 0.29 MPa, and 55.21 ± 1.62 MJ m-3 , respectively. To reveal the potentials, PVA contact lens that combine remarkable lubrication, anti-protein adhesion, biocompatibility, and drug-loading functions are demonstrated. This strategy provides a simple and new avenue for developing the mechanically robust, transparent, and hydrated hydrogels, showing the potential in biomedicine and wearable devices.
Collapse
Affiliation(s)
- Desheng Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufei Cao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Pan Jiang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yixian Wang
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Yaozhong Lu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhongying Ji
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Xiaolong Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
37
|
Cheng Q, Lyu J, Shi N, Zhang X. Smart Energy-Absorbing Aerogel-Based Honeycombs with Selectively Nanoconfined Shear-Stiffening Gel. SMALL METHODS 2023; 7:e2300002. [PMID: 36732848 DOI: 10.1002/smtd.202300002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Aerogels, shaped as fibers, films, as well as monoliths, have demonstrated a plethora of applications in both academia and industry due to charming properties including ultralow density, large specific surface area, high porosity, etc., however studies on more complicated aerogel forms (e.g., honeycombs) with more powerful applications have not been fully explored. Herein, the Kevlar aerogel honeycomb is firstly constructed through a dry ice-assisted 3D printing method, where the Kevlar nanofiber ink is printed directly in dry ice freezing atmosphere, followed by supercritical fluid drying. The subsequent 3D Kevlar/shear-stiffening gel (SSG) honeycomb (3D-KSH) can be obtained by selective nanoconfining of SSG into nanopores of the aerogel skeleton wall (with the loading amount of 93 wt%) rather than into open honeycomb channels, solving the leakage, creep deformation, and shape design infeasibility of the SSG. Combining the advantages of Kevlar, honeycomb and SSG, the fabricated 3D-KSH shows obvious smart responsive behavior to external stimulus. Additionally, the 3D-KSH has high strain rate sensitivity (sensitivity factor of 4.16 × 10-4 ) and excellent impact protection performance (energy absorption value up to 176 J g-1 at the strain rate of 6300 s-1 ), which will significantly broaden application prospect in some intelligent protection fields.
Collapse
Affiliation(s)
- Qingqing Cheng
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Jing Lyu
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Nan Shi
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Xuetong Zhang
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- Division of Surgery & Interventional Science, University College London, London, NW3 2PF, UK
| |
Collapse
|
38
|
Wu Y, Zhang Y, Wu H, Wen J, Zhang S, Xing W, Zhang H, Xue H, Gao J, Mai Y. Solvent-Exchange-Assisted Wet Annealing: A New Strategy for Superstrong, Tough, Stretchable, and Anti-Fatigue Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210624. [PMID: 36648109 DOI: 10.1002/adma.202210624] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Hydrogels are widely used in tissue engineering, soft robots, wearable electronics, etc. However, it remains a great challenge to develop hydrogels possessing simultaneously high strength, large stretchability, great fracture energy, and good fatigue threshold to suit different applications. Herein, a novel solvent-exchange-assisted wet-annealing strategy is proposed to prepare high performance poly(vinyl alcohol) hydrogels by extensively tuning the macromolecular chain movement and optimizing the polymer network. The reinforcing and toughening mechanisms are found to be "macromolecule crystallization and entanglement". These hydrogels have large tensile strengths up to 11.19 ± 0.27 MPa and extremely high fracture strains of 1879 ± 10%. In addition, the fracture energy and fatigue threshold can reach as high as 25.39 ± 6.64 kJ m-2 and ≈1233 J m-2 , respectively. These superb mechanical properties compare favorably to those of other tough hydrogels, organogels, and even natural tendons and synthetic rubbers. This work provides a new and effective method to fabricate superstrong, tough, stretchable, and anti-fatigue hydrogels with potential applications in artificial tendons and ligaments.
Collapse
Affiliation(s)
- Yongchuan Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, No. 180, Road Siwangting, Yangzhou, Jiangsu, 225002, P. R. China
| | - Ya Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, No. 180, Road Siwangting, Yangzhou, Jiangsu, 225002, P. R. China
| | - Haidi Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, No. 180, Road Siwangting, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jing Wen
- School of Chemistry and Chemical Engineering, Yangzhou University, No. 180, Road Siwangting, Yangzhou, Jiangsu, 225002, P. R. China
| | - Shu Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, No. 180, Road Siwangting, Yangzhou, Jiangsu, 225002, P. R. China
| | - Wenqian Xing
- School of Chemistry and Chemical Engineering, Yangzhou University, No. 180, Road Siwangting, Yangzhou, Jiangsu, 225002, P. R. China
| | - Hechuan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, No. 180, Road Siwangting, Yangzhou, Jiangsu, 225002, P. R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, No. 180, Road Siwangting, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, No. 180, Road Siwangting, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yiuwing Mai
- Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering J07, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
39
|
Xu L, Qiao Y, Qiu D. Coordinatively Stiffen and Toughen Hydrogels with Adaptable Crystal-Domain Cross-Linking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209913. [PMID: 36628947 DOI: 10.1002/adma.202209913] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Conventional hydrogels usually suffer from the inherent conflict between stiffness and toughness, severely hampering their applications as load-bearing materials. Herein, an adaptable crystal-domain cross-linking design is reported to overcome this inherent trade-off for hydrogels by taking full advantage of both deformation-resisting and energy-dissipating capacities of cross-linking points. Through solvent exchange to homogenize the polymer network, followed by salting out to foster crystallization, a class of sal-exogels with high number densities of uniform crystalline domains embedded in homogeneous networks is constructed. During the deformation, those adaptive crystalline domains initially survive to arrest deformation, while later gradually disentangle to efficiently dissipate energy, crucial to the realization of the desirable compatibility between stiffness and toughness. The resultant sal-exogel achieves coordinatively enhanced stiffness (52.3 ± 2.7 MPa) and toughness (120.7 ± 11.7 kJ m-2 ), reconciling the challenging trade-off between them. This finding provides a practical and universal route to design stiff and tough hydrogels and has a profound impact on many applications requiring hydrogels with such combined mechanical properties.
Collapse
Affiliation(s)
- Liju Xu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
40
|
Sun M, Li H, Hou Y, Huang N, Xia X, Zhu H, Xu Q, Lin Y, Xu L. Multifunctional tendon-mimetic hydrogels. SCIENCE ADVANCES 2023; 9:eade6973. [PMID: 36800416 PMCID: PMC9937573 DOI: 10.1126/sciadv.ade6973] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/18/2023] [Indexed: 05/21/2023]
Abstract
We report multifunctional tendon-mimetic hydrogels constructed from anisotropic assembly of aramid nanofiber composites. The stiff nanofibers and soft polyvinyl alcohol in these anisotropic composite hydrogels (ACHs) mimic the structural interplay between aligned collagen fibers and proteoglycans in tendons. The ACHs exhibit a high modulus of ~1.1 GPa, strength of ~72 MPa, fracture toughness of 7333 J/m2, and many additional characteristics matching those of natural tendons, which was not achieved with previous synthetic hydrogels. The surfaces of ACHs were functionalized with bioactive molecules to present biophysical cues for the modulation of morphology, phenotypes, and other behaviors of attached cells. Moreover, soft bioelectronic components can be integrated on ACHs, enabling in situ sensing of various physiological parameters. The outstanding mechanics and functionality of these tendon mimetics suggest their further applications in advanced tissue engineering, implantable prosthetics, human-machine interactions, and other technologies.
Collapse
Affiliation(s)
- Mingze Sun
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Hegeng Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Yong Hou
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Nan Huang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Xingyu Xia
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Hengjia Zhu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Qin Xu
- Department of Physics, Faculty of Sciences, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR, China
| | - Lizhi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR, China
| |
Collapse
|
41
|
He H, Li H, Pu A, Li W, Ban K, Xu L. Hybrid assembly of polymeric nanofiber network for robust and electronically conductive hydrogels. Nat Commun 2023; 14:759. [PMID: 36765072 PMCID: PMC9918487 DOI: 10.1038/s41467-023-36438-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Electroconductive hydrogels have been applied in implantable bioelectronics, tissue engineering platforms, soft actuators, and other emerging technologies. However, achieving high conductivity and mechanical robustness remains challenging. Here we report an approach to fabricating electroconductive hydrogels based on the hybrid assembly of polymeric nanofiber networks. In these hydrogels, conducting polymers self-organize into highly connected three dimensional nanostructures with an ultralow threshold (~1 wt%) for electrical percolation, assisted by templating effects from aramid nanofibers, to achieve high electronic conductivity and structural robustness without sacrificing porosity or water content. We show that a hydrogel composed of polypyrrole, aramid nanofibers and polyvinyl alcohol achieves conductivity of ~80 S cm-1, mechanical strength of ~9.4 MPa and stretchability of ~36%. We show that patterned conductive nanofiber hydrogels can be used as electrodes and interconnects with favorable electrochemical impedance and charge injection capacity for electrophysiological applications. In addition, we demonstrate that cardiomyocytes cultured on soft and conductive nanofiber hydrogel substrates exhibit spontaneous and synchronous beating, suggesting opportunities for the development of advanced implantable devices and tissue engineering technologies.
Collapse
Affiliation(s)
- Huimin He
- grid.194645.b0000000121742757Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Hao Li
- grid.194645.b0000000121742757Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Aoyang Pu
- grid.35030.350000 0004 1792 6846Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Wenxiu Li
- grid.35030.350000 0004 1792 6846Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Kiwon Ban
- grid.35030.350000 0004 1792 6846Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Lizhi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China. .,Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR, China.
| |
Collapse
|
42
|
Qiu F, Fan X, Chen W, Xu C, Li Y, Xie R. Recent Progress in Hydrogel-Based Synthetic Cartilage: Focus on Lubrication and Load-Bearing Capacities. Gels 2023; 9:gels9020144. [PMID: 36826314 PMCID: PMC9957070 DOI: 10.3390/gels9020144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Articular cartilage (AC), which covers the ends of bones in joints, particularly the knee joints, provides a robust interface to maintain frictionless movement during daily life due to its remarkable lubricating and load-bearing capacities. However, osteoarthritis (OA), characterized by the progressive degradation of AC, compromises the properties of AC and thus leads to frayed and rough interfaces between the bones, which subsequently accelerates the progression of OA. Hydrogels, composed of highly hydrated and interconnected polymer chains, are potential candidates for AC replacement due to their physical and chemical properties being similar to those of AC. In this review, we summarize the recent progress of hydrogel-based synthetic cartilage, or cartilage-like hydrogels, with a particular focus on their lubrication and load-bearing properties. The different formulations, current limitations, and challenges of such hydrogels are also discussed. Moreover, we discuss the future directions of hydrogel-based synthetic cartilage to repair and even regenerate the damaged AC.
Collapse
Affiliation(s)
- Fei Qiu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Biomaterials and Bio-Fabrication in Tissue Engineering of Jiangxi Province, Ganzhou 341000, China
| | - Xiaopeng Fan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Wen Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Biomaterials and Bio-Fabrication in Tissue Engineering of Jiangxi Province, Ganzhou 341000, China
| | - Chunming Xu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Biomaterials and Bio-Fabrication in Tissue Engineering of Jiangxi Province, Ganzhou 341000, China
| | - Yumei Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Biomaterials and Bio-Fabrication in Tissue Engineering of Jiangxi Province, Ganzhou 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
- Correspondence: (Y.L.); (R.X.)
| | - Renjian Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Biomaterials and Bio-Fabrication in Tissue Engineering of Jiangxi Province, Ganzhou 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
- Correspondence: (Y.L.); (R.X.)
| |
Collapse
|
43
|
Oliveira AS, Silva JC, Loureiro MV, Marques AC, Kotov NA, Colaço R, Serro AP. Super-Strong Hydrogel Composites Reinforced with PBO Nanofibers for Cartilage Replacement. Macromol Biosci 2023; 23:e2200240. [PMID: 36443994 DOI: 10.1002/mabi.202200240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/28/2022] [Indexed: 11/30/2022]
Abstract
Cartilage replacement materials exhibiting a set of demanding properties such as high water content, high mechanical stiffness, low friction, and excellent biocompatibility are quite difficult to achieve. Here, poly(p-phenylene-2,6-benzobisoxazole) (PBO) nanofibers are combined with polyvinyl alcohol (PVA) to form a super-strong structure with a performance that surpasses the vast majority of previously existing hydrogels. PVA-PBO composites with water contents in the 59-76% range exhibit tensile and compressive moduli reaching 20.3 and 4.5 MPa, respectively, and a coefficient of friction below 0.08. Further, they are biocompatible and support the viability of chondrocytes for 1 week, with significant improvements in cell adhesion, proliferation, and differentiation compared to PVA. The new composites can be safely sterilized by steam heat or gamma radiation without compromising their integrity and overall performance. In addition, they show potential to be used as local delivery platforms for anti-inflammatory drugs. These attractive features make PVA-PBO composites highly competitive engineered materials with remarkable potential for use in the design of load-bearing tissues. Complementary work has also revealed that these composites will be interesting alternatives in other industrial fields where high thermal and mechanical resistance are essential requirements, or which can take advantage of the pH responsiveness functionality.
Collapse
Affiliation(s)
- Andreia S Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, Caparica, 2829-511, Portugal.,Instituto de Engenharia Mecânica and Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - João C Silva
- Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal.,Centre for Rapid and Sustainable Product Development, Politécnico de Leiria, Rua de Portugal-Zona Industrial, Marinha Grande, 2430-028, Portugal
| | - Mónica V Loureiro
- Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - Ana C Marques
- Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - Nicholas A Kotov
- Biointerfaces Institute, Department of Chemical Engineering, and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rogério Colaço
- Instituto de Engenharia Mecânica and Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - Ana P Serro
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, Caparica, 2829-511, Portugal
| |
Collapse
|
44
|
Zhong W, Song Y, Yang S, Gong L, Shi D, Dong W, Zhang H. A monocarboxylic acid induction strategy to prepare tough and thermo-reversible poly(vinyl alcohol) physical gels with high transparency. SOFT MATTER 2023; 19:355-360. [PMID: 36598067 DOI: 10.1039/d2sm01417c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To date, poly(vinyl alcohol) (PVA) gels attract tremendous attention because of their potential applications in a wide variety of fields. Here, a novel monocarboxylic acid induction strategy was developed to fabricate tough and thermo-reversible PVA physical gels by introducing monocarboxylic acids into the PVA/dimethyl sulfoxide (DMSO) system. The obtained PVA gels exhibited appropriate crystalline architectures, leading to superior mechanical properties and high transparency. Furthermore, the role of monocarboxylic acids in the formation of PVA physical gels and the effects of alkyl chain length, concentration, and the induction time of monocarboxylic acids on the properties of PVA physical gels were also investigated.
Collapse
Affiliation(s)
- Weifeng Zhong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yufang Song
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Shuai Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Lihao Gong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Dongjian Shi
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Hongji Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
45
|
Yang X, Shi N, Liu J, Cheng Q, Li G, Lyu J, Ma F, Zhang X. 3D Printed Hybrid Aerogel Gauzes Enable Highly Efficient Hemostasis. Adv Healthc Mater 2023; 12:e2201591. [PMID: 36165237 PMCID: PMC11468894 DOI: 10.1002/adhm.202201591] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/21/2022] [Indexed: 02/03/2023]
Abstract
Hemostatic materials have played a significant role in mitigating traumatic injury by controlling bleeding, however, the fabrication of the desirable material's structure to enhance the accumulation of blood cells and platelets for highly efficient hemostasis is still a great challenge. In this work, directed assembly of poly(vinyl alcohol) (PVA) macromolecules covering the rigid Kevlar nanofiber (KNF) network during 3D printing process is utilized to fabricate hydrophilic, biocompatible, and mechanically stable KNF-PVA aerogel filaments for effective enriching blood components by fast water absorption. As such, KNF-PVA aerogel gauzes demonstrate remarkable water permeability (338 mL cm-2 s-1 bar-1 ), water absorption speed (as high as 9.64 g g-1 min-1 ) and capacity (more than ten times of self-weight), and ability to enrich micron-sized particles when contacting aqueous solution. All these properties favor efficient hemostasis and the resulting KNF-PVA aerogel gauzes significantly outperform the commercial product Quikclot Gauze (Z-Medica) during in vivo experiments with the rat liver laceration model, reducing the hemostasis time by half (60 ± 4 s) and the blood loss by two thirds (0.07 ± 0.01 g). These results demonstrate a robust strategy to design various aerogel gauzes for hemostasis applications.
Collapse
Affiliation(s)
- Xiaoxu Yang
- Key Laboratory of Rubber‐Plastics (Ministry of Education)School of Polymer Science and EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
- Suzhou Institute of Nano‐tech and Nano‐bionicsChinese Academy of SciencesSuzhou215123P. R. China
| | - Nan Shi
- Suzhou Institute of Nano‐tech and Nano‐bionicsChinese Academy of SciencesSuzhou215123P. R. China
| | - Jian Liu
- Suzhou Institute of Nano‐tech and Nano‐bionicsChinese Academy of SciencesSuzhou215123P. R. China
| | - Qingqing Cheng
- Suzhou Institute of Nano‐tech and Nano‐bionicsChinese Academy of SciencesSuzhou215123P. R. China
| | - Guangyong Li
- Suzhou Institute of Nano‐tech and Nano‐bionicsChinese Academy of SciencesSuzhou215123P. R. China
| | - Jing Lyu
- Suzhou Institute of Nano‐tech and Nano‐bionicsChinese Academy of SciencesSuzhou215123P. R. China
| | - Fengguo Ma
- Key Laboratory of Rubber‐Plastics (Ministry of Education)School of Polymer Science and EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| | - Xuetong Zhang
- Suzhou Institute of Nano‐tech and Nano‐bionicsChinese Academy of SciencesSuzhou215123P. R. China
- Division of Surgery & Interventional ScienceUniversity College LondonLondonNW3 2PFUK
| |
Collapse
|
46
|
Zhang ZB, He Z, Pan XF, Gao HL, Chen SM, Zhu Y, Cao S, Zhao C, Wu S, Gong X, Wu H, Yu SH. Bioinspired Impact-Resistant and Self-Monitoring Nanofibrous Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205219. [PMID: 36404124 DOI: 10.1002/smll.202205219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Lightweight and impact-resistant materials with self-monitoring capability are highly desired for protective applications, but are challenging to be artificially fabricated. Herein, a scalable-manufactured aramid nanofiber (ANF)-based composite combining these key properties is presented. Inspired by the strengthening and toughening mechanisms relying on recoverable interfaces commonly existing in biological composites, mechanically weak but dense hydrogen bonds are introduced into the ANF interfaces to achieve simultaneously enhanced tensile strength (300 MPa), toughness (55 MJ m-3 ), and impact resistance of the nanofibrous composite. The achieved mechanical property combination displays attractive advantages compared with that of most of previously reported nanocomposites. Additionally, the nanofibrous composite is designed with a capability for real-time self-monitoring of its structural safety during both quasi-static tensile and dynamic impact processes, based on the strain/damage-induced resistance variations of a conductive nanowire network inside it. These comprehensive properties enable the present nanofibrous composite with promising potential for protective applications.
Collapse
Affiliation(s)
- Zhen-Bang Zhang
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - ZeZhou He
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiao-Feng Pan
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Huai-Ling Gao
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Si-Ming Chen
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - YinBo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Saisai Cao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chunyu Zhao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shuang Wu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xinglong Gong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - HengAn Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
47
|
Liu H, Li H, Wang Z, Wei X, Zhu H, Sun M, Lin Y, Xu L. Robust and Multifunctional Kirigami Electronics with a Tough and Permeable Aramid Nanofiber Framework. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207350. [PMID: 36222392 DOI: 10.1002/adma.202207350] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Kirigami designs are advantageous for the construction of wearable electronics due to their high stretchability and conformability on the 3D dynamic surfaces of the skin. However, suitable materials technologies that enable robust kirigami devices with desired functionality for skin-interfaces remain limited. Here, a versatile materials platform based on a composite nanofiber framework (CNFF) is exploited for the engineering of wearable kirigami electronics. The self-assembled fibrillar network involving aramid nanofibers and poly(vinyl alcohol) combines high toughness, permeability, and manufacturability, which are desirable for the fabrication of hybrid devices. Multiscale simulations are conducted to explain the high fracture resistance of the CNFF-based kirigami structures and provide essential guidance for the design, which can be further generalized to other kirigami devices. Various microelectronic sensors and electroactive polymers are integrated onto a CNFF-based materials platform to achieve electrocardiogram (ECG), electromyogram (EMG), skin-temperature measurements, and measurement of other physiological parameters. These mechanically robust, multifunctional, lightweight, and biocompatible kirigami devices can shed new insights for the development of advanced wearable systems and human-machine interfaces.
Collapse
Affiliation(s)
- Hongzhen Liu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Hegeng Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Zuochen Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR, 999077, P. R. China
| | - Xi Wei
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR, 999077, P. R. China
| | - Hengjia Zhu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Mingze Sun
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR, 999077, P. R. China
| | - Lizhi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
48
|
Demott CJ, Grunlan MA. Emerging polymeric material strategies for cartilage repair. J Mater Chem B 2022; 10:9578-9589. [PMID: 36373438 DOI: 10.1039/d2tb02005j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cartilage is found throughout the body, serving an array of essential functions. Owing to the limited healing capacity of cartilage, damage or degeneration is often permanent and so requires clinical intervention. Established surgical techniques generally rely on biological grafting. However, recent advances in polymeric materials provide an encouraging alternative to overcome limits of auto- and allografts. For regenerative engineering of cartilage, a polymeric scaffold ideally supports and instructs tissue regeneration while also providing mechanical integrity. Scaffolds direct regeneration via chemical and mechanical cues, as well as delivery and support of exogenous cells and bioactive factors. Advanced polymeric scaffolds aim to direct regeneration locally, replicating the heterogeneities of native tissues. Alternatively, new cartilage-mimetic hydrogels have potential to serve as synthetic cartilage replacements. Prepared as multi-network or composite hydrogels, the most promising candidates have simultaneously realized the hydration, mechanical, and tribological properties of native cartilage. Collectively, the recent rise in polymers for cartilage regeneration and replacement proposes a changing paradigm, with a new generation of materials paving the way for improved clinical outcomes.
Collapse
Affiliation(s)
- Connor J Demott
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3003, USA.,Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843-3003, USA.,Department of Chemistry, Texas A&M University, College Station, TX 77843-3003, USA.
| |
Collapse
|
49
|
Serdiuk V, Shevchuk O, Tetiana K, Bukartyk N, Tokarev V. Synthesis of reactive copolymers with peroxide functionality for cross‐linking water‐soluble polymers. J Appl Polym Sci 2022. [DOI: 10.1002/app.53254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Oleh Shevchuk
- Department of Organic Chemistry, Institute of Chemistry and Chemical Technologies Lviv Polytechnic National University Lviv Ukraine
| | - Kovalenko Tetiana
- Department of Organic Chemistry, Institute of Chemistry and Chemical Technologies Lviv Polytechnic National University Lviv Ukraine
- Department of Heat Engineering and Thermal and Nuclear Power Plants Institute of Power Engineering and Control Systems, Lviv Polytechnic National University Lviv Ukraine
| | - Natalya Bukartyk
- Department of Organic Chemistry, Institute of Chemistry and Chemical Technologies Lviv Polytechnic National University Lviv Ukraine
| | - Viktor Tokarev
- Department of Organic Chemistry, Institute of Chemistry and Chemical Technologies Lviv Polytechnic National University Lviv Ukraine
| |
Collapse
|
50
|
Li J, Wang C, Han X, Liu S, Gao X, Guo C, Wu X. Aramid Nanofibers-Reinforced Rhein Fibrous Hydrogels as Antibacterial and Anti-Inflammatory Burn Wound Dressings. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45167-45177. [PMID: 36181475 DOI: 10.1021/acsami.2c12869] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Burn injuries are one of the most devastating traumas. The development of polymer-based hydrogel dressings to prevent bacterial infection and accelerate burn wound healing is continuously desired. Mechanical strong hydrogels that encapsulated antibacterial drugs have gained increasing attention. Herein, aramid nanofibers (ANFs)-reinforced rhein fibrous hydrogels (ANFs/Rhein) were fabricated through a one-pot procedure to serve as a possible treatment for the Staphylococcus aureus-infected burn wound. ANFs preserved the highly aligned backbones and the mechanical properties of Kevlar, and its combination with an antibacterial drug rhein produced a composite hydrogel that possesses favorable physicochemical properties including appropriate mechanical strength, high water holding capacity, satisfactory antibacterial efficiency, and excellent biocompatibility. As wound dressings, ANFs/Rhein hydrogels provided a moist environment for the wound site and released antibacterial drugs continuously to improve the wound healing rate by efficiently restraining bacterial infection, reducing inflammation, enhancing collagen deposition, and promoting the formation of blood vessels, in this way to offer a potential treatment strategy for bacteria-associated burn wound healing.
Collapse
Affiliation(s)
- Junyao Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chunru Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiangsheng Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Shuai Liu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xintao Gao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|