1
|
Zhang K, Wang B, Sun F, Yang Z. Semiconducting Perylene Diimide J-aggregates Cross-linked Hydrogel Enables High-Efficiency Photothermal Controlled Release of Nitric Oxide for Antibiofilm Therapy. Adv Healthc Mater 2025; 14:e2404754. [PMID: 39924765 DOI: 10.1002/adhm.202404754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/18/2025] [Indexed: 02/11/2025]
Abstract
Antibiofilm treatment, particularly drug-containing wound healing dressings, does not typically penetrate the robust protective extracellular polymeric substance of biofilm and eradicate the bacteria. Here, a rational design of nitric oxide (NO) donor N,N'-di-sec-butyl-N,N'-dinitroso-1,4-phenylenediamine (BNN6)-based injectable hydrogel, is reported in which the NO release can be triggered by a photothermal effect owing to semiconducting perylene diimide (PDI) J-aggregation fibers. The synthetic PDI derivatives self-assembling into 0D nanoparticles and then aggregating to 1D J fiber is accompanied by absorbance red-shifting from 700 to 790 nm and then to 852 nm. After encapsulating BNN6, a "sandwich roll" (SR) like structure is evenly crosslinked into an injectable hydrogel (SRH) exhibiting a high photothermal convenience efficiency of 72%, which enables the SRH to achieve highly efficient photocontrol NO release. The SRH shows excellent injectability, shape adaptability, and effective antibacterial efficacy over 99% to the E.coli and S. aureus. and remarkable in vivo antibiofilm efficiency of 99.58% by laser irradiation. Furthermore, the synergistic treatment displays the ability to eliminate inflammation, facilitate angiogenesis, and promote collagen deposition, thereby significantly stimulating the healing process of wounds. The semiconducting J-aggregation injectable hydrogel can be a versatile strategy for the treatment of biofilm.
Collapse
Affiliation(s)
- Kangxin Zhang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Bo Wang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Fengwei Sun
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| |
Collapse
|
2
|
Liu C, Ma H, Yuan S, Jin Y, Tian W. Living Cell-Mediated Self-Assembly: From Monomer Design and Morphology Regulation to Biomedical Applications. ACS NANO 2025; 19:2047-2069. [PMID: 39779487 DOI: 10.1021/acsnano.4c16669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The self-assembly of molecules into highly ordered architectures is a ubiquitous and natural process, wherein molecules spontaneously organize into large structures to perform diverse functions. Drawing inspiration from the formation of natural nanostructures, cell-mediated self-assembly has been developed to create functional assemblies both inside and outside living cells. These techniques have been employed to regulate the cellular world by leveraging the dynamic intracellular and extracellular microenvironment. This review highlights the recent advances and future trends in living cell-mediated self-assembly, ranging from their cytocompatible monomer designs, synthetic strategies, and morphological control to functional applications. The assembly behaviors are also discussed based on the dimensionality of the self-assembled morphologies from zero to three dimensions. Finally, this review explores its promising potential for biomedical applications, clarifying the relationship between initial morphological regulation and the therapeutic effects of subsequent artificial assemblies. Through rationally designing molecular structures and precisely controlling assembly morphologies, living cell mediated self-assembly would provide an innovative platform for executing biological functions.
Collapse
Affiliation(s)
- Chengfei Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, P. R. China
| | - Haonan Ma
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, P. R. China
| | - Shengzhuo Yuan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, P. R. China
| | - Yifan Jin
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, P. R. China
| |
Collapse
|
3
|
Li Y, Huang Y, Gao Z, Song G, Lv F, Bai H, Wang S. Living Cell-Mediated Catalyst-Free Spontaneous Polymerization of Zwitterionic Methacrylates for Preparation of Probiotic-Loaded Hydrogels. Angew Chem Int Ed Engl 2025; 64:e202414400. [PMID: 39352272 DOI: 10.1002/anie.202414400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Indexed: 11/07/2024]
Abstract
Living cell-mediated polymerization offers promising applications in biomaterials, yet its further biological utilization is hindered by the need for metal ions or radical initiators with available methods. In this study, we introduce a living cell-mediated polymerization that leverages the intrinsic metabolic activities of living cells to initiate and sustain free radical polymerization of zwitterionic methacrylates. The polymerization proceeded in the absence of transition metal catalysts, radical initiators, or light sources. The conversion of zwitterionic methacrylate strongly correlated with cellular activities and achieved a maximum conversion of 98 % within 48 hours. Living cells efflux redox power across membranes through metabolism and that terminal electron fluxes are captured by zwitterionic methacrylates pre-assembled on the living cell surface to initiate radical polymerization reactions. The polymerization caused significant changes to the cell membrane surface and synthesized hydrogels with tailored mechanical properties. The polymer hydrogel obtained via probiotic E. coli Nissle 1917 was able to release the in situ encapsulated molecules, which demonstrated living cell-mediated polymer hydrogel as a vehicle for the delivery of both cellular and molecular therapeutic agents. This research offered a green and efficient method for synthesizing bioactive materials and advancing the field of cellular therapeutics and drug delivery.
Collapse
Affiliation(s)
- Yuke Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhiqiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Gang Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
4
|
Song G, Yang Z, Huang Y, Bai H, Lv F, Wang S. Chemically engineered exogenous organic reactions in living cells for in situ fluorescence imaging and biomedical applications. J Mater Chem B 2024; 12:11852-11866. [PMID: 39485083 DOI: 10.1039/d4tb01925c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The unique microenvironment within living cells, characterized by high glutathione levels, reactive oxygen species concentrations, and active enzymes, facilitates the execution of chemical reactions. Recent advances in organic chemistry and chemical biology have leveraged living cells as reactors for chemical synthesis. This review summarizes recent reports on key intracellular in situ synthesis processes, including the synthesis of near-infrared fluorescent dyes, intracellular oxidative cross-linking, bioorthogonal reactions, and intracellular polymerization reactions. These methods have been applied to fluorescence imaging, tumor treatment, and the enhancement of biological functions. Finally, we discuss the challenges and opportunities in the field of in situ intracellular synthesis. We aim to guide the design of chemical molecules for in situ synthesis, improving the efficiency and control of artificial reactions in living cells, and ultimately achieving cell factory-like exogenous biological synthesis, biological function enhancement, and biomedical applications.
Collapse
Affiliation(s)
- Gang Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Shen Q, Song G, Lin H, Bai H, Huang Y, Lv F, Wang S. Sensing, Imaging, and Therapeutic Strategies Endowing by Conjugate Polymers for Precision Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310032. [PMID: 38316396 DOI: 10.1002/adma.202310032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Conjugated polymers (CPs) have promising applications in biomedical fields, such as disease monitoring, real-time imaging diagnosis, and disease treatment. As a promising luminescent material with tunable emission, high brightness and excellent stability, CPs are widely used as fluorescent probes in biological detection and imaging. Rational molecular design and structural optimization have broadened absorption/emission range of CPs, which are more conductive for disease diagnosis and precision therapy. This review provides a comprehensive overview of recent advances in the application of CPs, aiming to elucidate their structural and functional relationships. The fluorescence properties of CPs and the mechanism of detection signal amplification are first discussed, followed by an elucidation of their emerging applications in biological detection. Subsequently, CPs-based imaging systems and therapeutic strategies are illustrated systematically. Finally, recent advancements in utilizing CPs as electroactive materials for bioelectronic devices are also investigated. Moreover, the challenges and outlooks of CPs for precision medicine are discussed. Through this systematic review, it is hoped to highlight the frontier progress of CPs and promote new breakthroughs in fundamental research and clinical transformation.
Collapse
Affiliation(s)
- Qi Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Gang Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hongrui Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
6
|
Mann A, Wang C, Dumlao BL, Weck M. Functionalized [2.2]Paracyclophanedienes as Monomers for Poly( p-phenylenevinylene)s. ACS Macro Lett 2024:112-117. [PMID: 38190696 PMCID: PMC10883051 DOI: 10.1021/acsmacrolett.3c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Poly(p-phenylenevinylene)s (PPVs) featuring complex side-chains, to date, have only been synthesized by nonliving polymerization methods which have no control over PPV molecular weights, dispersities, or end groups. [2.2]Paracyclophane-1,9-diene (pCpd) has gained attention as a monomer for its ability to be ring-opened to PPV in a living fashion. pCpd, an organic cyclic scaffold with planar chirality, has seen minimal structural diversity due to the harsh reaction conditions required to afford the highly strained compound. Herein, we introduce a general method to overcome this by targeting the synthesis of a monohydroxy-pCpd via mono-demethylation of a dialkoxy-pCpd. The monohydroxy-pCpd can then be functionalized easily, which we demonstrate using three distinct side-chains with four moieties commonly incorporated in conjugated polymers: an alkyl bromide, an oligo(ethylene glycol) chain, an enantiomerically pure side-chain, and a Boc-protected amine. These monofunctionalized-pCpds were investigated as monomers in the ring-opening metathesis polymerization (ROMP) to afford functionalized PPVs in a living manner. The functional-group-containing PPVs are synthesized with full control over their end groups, repeat units, and dispersities. The feasibility of post-polymerization modifications to incorporate any desired moiety to PPV fabricated by this method was demonstrated using an azide-alkyne click reaction. All synthesized PPVs were soluble in organic solvents and display the same fluorescent emission, indicating their conjugated backbones are unaltered.
Collapse
Affiliation(s)
- Arielle Mann
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Chengyuan Wang
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Bianca L Dumlao
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Marcus Weck
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| |
Collapse
|
7
|
Zhang T, Luo X, Xu K, Zhong W. Peptide-containing nanoformulations: Skin barrier penetration and activity contribution. Adv Drug Deliv Rev 2023; 203:115139. [PMID: 37951358 DOI: 10.1016/j.addr.2023.115139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Transdermal drug delivery presents a less invasive pathway, circumventing the need to pass through the gastrointestinal tract and liver, thereby reducing drug breakdown, initial metabolism, and gastrointestinal discomfort. Nevertheless, the unique composition and dense structure of the stratum corneum present a significant barrier to transdermal delivery. This article presents an overview of the current developments in peptides and nanotechnology to address this challenge. Initially, we sum up peptide-containing nanoformulations for transdermal drug delivery, examining them through the lenses of both inorganic and organic materials. Particular emphasis is placed on the diverse roles that peptides play within these nanoformulations, including conferring functionality upon nanocarriers and enhancing the biological efficacy of drugs. Subsequently, we summarize innovative strategies for enhancing skin penetration, categorizing them into passive and active approaches. Lastly, we discuss the therapeutic potential of peptide-containing nanoformulations in addressing a range of diseases, drawing insights from the biological activities and functions of peptides. Furthermore, the challenges hindering clinical translation are also discussed, providing valuable insights for future advancements in transdermal drug delivery.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xuan Luo
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Keming Xu
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China.
| | - Wenying Zhong
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
8
|
Zhang L, Huang J, Chen M, Huang H, Xiao Y, Yang R, Zhang Y, He X, Wang K. Self-assembled super-small AIEgen nanoprobe for highly sensitive and selective detection of protamine and trypsin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3586-3591. [PMID: 37463001 DOI: 10.1039/d3ay00753g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Amphiphilic aggregation-induced emission (AIE) molecules show superior potential for fabricating novel ultrasmall nanoprobes. Here, an anionic dipyridyl tetraphenylethene (TPE) derivative is rationally designed and a super-small self-assembled AIEgen nanoprobe (TPE-2Py-SO3NaNPs, ca. 2.48 nm) is thus conveniently constructed for the supersensitive detection of protamine and trypsin. In HEPES/DMSO solution (8 : 2, v/v, pH = 7.4), negatively charged TPE-2Py-SO3NaNPs exhibited an AIE effect in the presence of positively charged protamine, presenting a fluorescence enhancement at 498 nm together with a large Stokes shift of 150 nm and a low detection limit of 8.0 ng mL-1. In addition, the in situ formed TPE-2Py-SO3Na/protamine nanocomposite can be dissociated by trypsin due to the highly selective degradation of protamine via enzymatic hydrolysis, achieving a detection limit for trypsin as low as 5.0 ng mL-1.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Jiyan Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Mixue Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Hongmei Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Yi Xiao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Ronghua Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, PR China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
9
|
Liu C, Xianyu B, Dai Y, Pan S, Li T, Xu H. Intracellular Hyperbranched Polymerization for Circumventing Cancer Drug Resistance. ACS NANO 2023. [PMID: 37285408 DOI: 10.1021/acsnano.3c03512] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polymerization inside living cells provides chemists with a multitude of possibilities to modulate cell activities. Considering the advantages of hyperbranched polymers, such as a large surface area for target sites and multilevel branched structures for resistance to the efflux effect, we reported a hyperbranched polymerization in living cells based on the oxidative polymerization of organotellurides and intracellular redox environment. The intracellular hyperbranched polymerization was triggered by reactive oxygen species (ROS) in the intracellular redox microenvironment, effectively disrupting antioxidant systems in cells by an interaction between Te (+4) and selenoproteins, thus inducing selective apoptosis of cancer cells. Importantly, the obtained hyperbranched polymer aggregated into branched nanostructures in cells, which could effectively evade drug pumps and decrease drug efflux, ensuring the polymerization for persistent treatment. Finally, in vitro and in vivo studies confirmed that our strategy presented selective anticancer efficacy and well biosafety. This approach provides a way for intracellular polymerization with desirable biological applications to regulate cell activities.
Collapse
Affiliation(s)
- Chengfei Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Banruo Xianyu
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yiheng Dai
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shuojiong Pan
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, United States
| | - Huaping Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Wu D, Lei J, Zhang Z, Huang F, Buljan M, Yu G. Polymerization in living organisms. Chem Soc Rev 2023; 52:2911-2945. [PMID: 36987988 DOI: 10.1039/d2cs00759b] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Vital biomacromolecules, such as RNA, DNA, polysaccharides and proteins, are synthesized inside cells via the polymerization of small biomolecules to support and multiply life. The study of polymerization reactions in living organisms is an emerging field in which the high diversity and efficiency of chemistry as well as the flexibility and ingeniousness of physiological environment are incisively and vividly embodied. Efforts have been made to design and develop in situ intra/extracellular polymerization reactions. Many important research areas, including cell surface engineering, biocompatible polymerization, cell behavior regulation, living cell imaging, targeted bacteriostasis and precise tumor therapy, have witnessed the elegant demeanour of polymerization reactions in living organisms. In this review, recent advances in polymerization in living organisms are summarized and presented according to different polymerization methods. The inspiration from biomacromolecule synthesis in nature highlights the feasibility and uniqueness of triggering living polymerization for cell-based biological applications. A series of examples of polymerization reactions in living organisms are discussed, along with their designs, mechanisms of action, and corresponding applications. The current challenges and prospects in this lifeful field are also proposed.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou, 310014, P. R. China
| | - Jiaqi Lei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Zhankui Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou, 310014, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China
| | - Marija Buljan
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
- School of Medicine, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
11
|
Kowalczyk A, Nisiewicz MK, Bamburowicz-Klimkowska M, Kasprzak A, Ruzycka-Ayoush M, Koszytkowska-Stawińska M, Nowicka AM. Effective voltammetric tool for simultaneous detection of MMP-1, MMP-2, and MMP-9; important non-small cell lung cancer biomarkers. Biosens Bioelectron 2023; 229:115212. [PMID: 36958204 DOI: 10.1016/j.bios.2023.115212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Simultaneous detection of multiple biomarkers can allow to reduce the costs of medical diagnostics, and thus improve the accuracy and effectiveness of disease diagnosis and prognosis. Here, for the first time, we present a low-cost, simple, and rapid method for simultaneous detection of three matrix metalloproteinases (MMP-1, MMP-2, and MMP-9) that play important roles in the progression of lung cancer. The sensor matrix was constructed using a G2 polyamidoamine dendrimer (PAMAM) containing amino, carboxyl, and sulfhydryl groups. The recognition process was based on specific enzymatic cleavage of the Gly-Ile peptide bond by MMP-1, Gly-Leu bond by MMP-2, and Gly-Met bond by MMP-9, and monitoring was done by square wave voltammetry. The activity of metalloproteinases was detected based on the change of current signals of redox receptors (dipeptides labeled with electroactive compounds) covalently anchored onto the electrode surface. The conditions of the biosensor construction, including the concentration of receptors on the sensor surface and the time of interaction of the receptor with the analyte, were carefully optimized. Under optimal conditions, the linear response of the developed method ranged from 1.0⋅10-8 to 1.0 mg⋅L-1, and the limit of detection for MMP-1, MMP-2, and MMP-9 was 0.35, 0.62, and 1.10 fg⋅mL-1, respectively. The constructed biosensor enabled us to efficiently profile the levels of active forms of MMP-1, MMP-2, and MMP-9 in tissue samples (plasma and lung and tumor extracts). Thus, the developed biosensor can aid in the early detection and diagnosis of lung cancer.
Collapse
Affiliation(s)
- Agata Kowalczyk
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland
| | - Monika K Nisiewicz
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland; Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, PL 00-664, Warsaw, Poland
| | - Magdalena Bamburowicz-Klimkowska
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland; Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, PL 02-097, Warsaw, Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, PL 00-664, Warsaw, Poland
| | - Monika Ruzycka-Ayoush
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland; Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, PL 02-097, Warsaw, Poland
| | | | - Anna M Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland.
| |
Collapse
|
12
|
Gao Z, Wang J, Yu W, Bai H, Lv F, Huang Y. Bacteria-mediated in situ polymerization of peptide-modified acrylamide for enhancing antimicrobial activity. Chem Commun (Camb) 2022; 58:9946-9949. [PMID: 35983768 DOI: 10.1039/d2cc03858g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacteria-mediated reactions can utilize the natural activities of bacteria to produce bioactive products. Here, bacteria-mediated polymerization of the acrylamide-functionalized peptide Trp-Arg-Lys (Am-WRK) afforded an antibacterial polymer, PAm-WRK, which simulates the cationic and hydrophobic structures of antimicrobial peptides. Facultative anaerobes with strong reductive abilities exhibited better reactivity and achieved selective antibacterial effects through non-covalent interactions with bacterial membranes. This bacteria-mediated synthesis of AMP-mimic polymers provides a new strategy for overcoming bacterial resistance and for the in situ generation of bioactive functional materials.
Collapse
Affiliation(s)
- Zhiqiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiahe Wang
- Department of Chemistry, Brandeis University, MA 02453, USA
| | - Wen Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
13
|
Sun H, Schanze KS. Functionalization of Water-Soluble Conjugated Polymers for Bioapplications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20506-20519. [PMID: 35473368 DOI: 10.1021/acsami.2c02475] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Water-soluble conjugated polymers (WS-CPs) have found widespread use in bioapplications ranging from in vitro optical sensing to in vivo phototherapy. Modification of WS-CPs with specific molecular functional units is necessary to enable them to interact with biological targets. These targets include proteins, nucleic acids, antibodies, cells, and intracellular components. WS-CPs have been modified with covalently linked sugars, peptides, nucleic acids, biotin, proteins, and other biorecognition elements. The objective of this article is to comprehensively review the various synthetic chemistries that have been used to covalently link biofunctional groups onto WS-CP platforms. These chemistries include amidation, nucleophilic substitution, Click reactions, and conjugate addition. Different types of WS-CP backbones have been used as platforms including poly(fluorene), poly(phenylene ethynylene), polythiophene, poly(phenylenevinylene), and others. Example applications of biofunctionalized WS-CPs are also reviewed. These include examples of protein sensing, flow cytometry labeling, and cancer therapy. The major challenges and future development of functionalized conjugated polymers are also discussed.
Collapse
Affiliation(s)
- Han Sun
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
14
|
Di Y, Zhang E, Yang Z, Shen Q, Fu X, Song G, Zhu C, Bai H, Huang Y, Lv F, Liu L, Wang S. Selective Fluorescence Imaging of Cancer Cells Based on ROS-Triggered Intracellular Cross-Linking of Artificial Enzyme. Angew Chem Int Ed Engl 2022; 61:e202116457. [PMID: 35064623 DOI: 10.1002/anie.202116457] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 01/23/2023]
Abstract
Inside living cells, regulation of catalytic activity of artificial enzymes remains challenging due to issues such as biocompatibility, efficiency, and stability of the catalyst, by which the practical applications of artificial enzymes have been severely hindered. Here, an artificial enzyme, PTT-SGH, with responsiveness to reactive oxygen species (ROS), was obtained by introducing a catalytic histidine residue to pentaerythritol tetra(3-mercaptopropionate) (PTT). The artificial enzyme formed large aggregates in cells via the intracellular ROS-mediated oxidation of thiol groups. The process was significantly facilitated in tumor cells because of the higher ROS concentration in the tumor microenvironment. The catalytic activity of this artificial enzyme was intensively enhanced through deprotonation of cross-linked PTT-SGH, which showed typical esterase activities. Selective fluorescence imaging of tumor cells was achieved using the artificial enzyme to trigger the cleavage of the ester bond of the caged fluorophore inside living cells.
Collapse
Affiliation(s)
- Yufei Di
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Endong Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiwen Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qi Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuancheng Fu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Gang Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chuanwei Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
15
|
Liu L, Zeng F, Li Y, Li W, Yu H, Zeng Q, Chen Q, Qin H. Undifferentiated destruction of mitochondria by photoacoustic shockwave to overcome chemoresistance and radiation resistance in cancer therapy. NANOSCALE 2022; 14:4073-4081. [PMID: 35244120 DOI: 10.1039/d1nr07449k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Resistance to either radiation or chemotherapy remains a complex and stubborn obstacle in cancer therapy and is responsible for a significant portion of the treatment failure. While the underlying mechanisms of the resistance are often associated with multiple factors, direct destruction of mitochondria is likely to ensure the ultimate death of the cell. Herein, a strategy of precise mitochondrial destruction using a photoacoustic (PA) shockwave was proposed to overcome chemoresistance and radiation resistance in cancer therapy. A nanoparticle featuring mitochondria-targeting and high near-infrared absorbance is constructed. The nanoparticle was found to indiscriminately localize in the mitochondria of both parental and its corresponding resistant tumor cells due to the mitochondrial transmembrane potential. By absorbing a controllable amount of energy from a pulsed laser, the nanoparticle could generate a mechanical PA shockwave that physically damages the mitochondria leading to the opening of apoptotic pathways and thus yielding a precision antitumor effect. The cell-killing efficiency was validated in vitro and in vivo. The results demonstrate that a PA shockwave can result in undifferentiated killing of the resistant tumor cells via destruction of mitochondria. Given the critical importance of resistant tumor cells, although at its preliminary stage, the proposed modality may open a new window in cancer therapy.
Collapse
Affiliation(s)
- Liming Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Fanchu Zeng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yujie Li
- Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Wenjing Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Hui Yu
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Qingxing Zeng
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Qun Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Huan Qin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
16
|
Gao Z, Zhang E, Zhao H, Xia S, Bai H, Huang Y, Lv F, Liu L, Wang S. Bacteria-Mediated Intracellular Click Reaction for Drug Enrichment and Selective Apoptosis of Drug-Resistant Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12106-12115. [PMID: 35257582 DOI: 10.1021/acsami.2c01493] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Functionalized biocarriers that can perform bio-orthogonal reactions in tumor cells may provide solutions to overcome the efflux of the chemotherapeutic agent from drug-resistant tumor cells. Herein, we report the enrichment of therapeutic drugs in tumor cells through intracellular click reaction with functionalized bacteria. Specifically, an intracellular bioactive drug enrichment template (OPV@Escherichia coli) is constructed by combining positively charged oligo(phenylene-vinylene)-alkyne (OPV-C≡CH) with E. coli via electrostatic interaction. After the cell uptake of OPV@E. coli and Cu(II)-based complex, Cu(I) generated in situ can catalyze the bio-orthogonal click reaction to covalently anchor the azide-bearing molecules of cyanine 5 (Cy5-N3) and paclitaxel (PTX-N3) on OPV@E. coli. These molecules and their functions were retained and enriched inside the drug-resistant tumor cells A549T, which can label cells with fluorescent probes and selectively induce the apoptosis of drug-resistant tumor cells.
Collapse
Affiliation(s)
- Zhiqiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Endong Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hao Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shengpeng Xia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
17
|
Di Y, Zhang E, Yang Z, Shen Q, Fu X, Song G, Zhu C, Bai H, Huang Y, Lv F, Liu L, Wang S. Selective Fluorescence Imaging of Cancer Cells Based on ROS‐Triggered Intracellular Cross‐Linking of Artificial Enzyme. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yufei Di
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Endong Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhiwen Yang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qi Shen
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xuancheng Fu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Gang Song
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chuanwei Zhu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
18
|
Lin H, Bai H, Yang Z, Shen Q, Li M, Huang Y, Lv F, Wang S. Conjugated Polymers for Biomedical Applications. Chem Commun (Camb) 2022; 58:7232-7244. [DOI: 10.1039/d2cc02177c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Conjugated polymers (CPs) are a series of organic semiconductor materials with large π-conjugated backbones and delocalized electronic structures. Due to their specific photophysical properties and photoelectric effects, plenty of CPs...
Collapse
|
19
|
Wang C, Chen L, Sun Y, Guo W, Taouil AK, Ojima I. Design, synthesis and SAR study of Fluorine-containing 3rd-generation taxoids. Bioorg Chem 2021; 119:105578. [PMID: 34979464 DOI: 10.1016/j.bioorg.2021.105578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022]
Abstract
It has been shown that the incorporation of fluorine or organofluorine groups into pharmaceutical and agricultural drugs often induces desirable pharmacological properties through unique protein-drug interactions involving fluorine. We have reported separately remarkable effects of the 2,2-difluorovinyl (DFV) group at the C3' position, as well as those of the CF3O and CHF2O groups at the 3-position of the C2-benzoyl moiety of the 2nd- and 3rd-generation taxoids on their potency and pharmacological properties. Thus, it was very natural for us to investigate the combination of these two modifications in the 3rd-generation taxoids and to find out whether these two modifications are cooperative at the binding site in the β-tubulin or not, as well as to see how these effects are reflected in the biological activities of the new 3rd-generation DFV-taxoids. Accordingly, we designed, synthesized and fully characterized 14 new 3rd-generation DFV-taxoids. These new DFV-taxoids exhibited remarkable cytotoxicity against human breast, lung, colon, pancreatic and prostate cancer cell lines. All of these new DFV-taxoids exhibited subnanomolar IC50 values against drug-sensitive cell lines, A549, HT29, Vcap and PC3, as well as CFPAC-1. All of the novel DFV-taxoids exhibited 2-4 orders of magnitude greater potency against extremely drug-resistant cancer cell lines, LCC6-MDR and DLD-1, as compared to paclitaxel, indicating that these new DFV-taxoids can overcome MDR caused by the overexpression of Pgp and other ABC cassette transporters. Dose-response (kill) curve analysis of the new DFV-taxoids in LCC6-MDR and DLD-1 cell lines revealed highly impressive profiles of several new DFV-taxoids. The cooperative effects of the combination of the 3'-DFV group and 3-CF3O/CHF2O-benzoyl moiety at the C2 position were investigated in detail by molecular docking analysis. We found that both the 3'-DFV moiety and the 3-CF3O/3-CHF2O group of the C2-benzoate moiety are nicely accommodated to the deep hydrophobic pocket of the paclitaxel/taxoid binding site in the β-tubulin, enabling an enhanced binding mode through unique attractive interactions between fluorine/CF3O/CHF2O and the protein beyond those of paclitaxel and new-generation taxoids without bearing organofluorine groups, which are reflected in the remarkable potency of the new 3rd-generation DFV-taxoids.
Collapse
Affiliation(s)
- Changwei Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA; Drug Discovery Pipeline, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China
| | - Lei Chen
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Yi Sun
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Wanrong Guo
- Drug Discovery Pipeline, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China
| | - Adam K Taouil
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA.
| |
Collapse
|
20
|
Dong L, Zhang MY, Han HH, Zang Y, Chen GR, Li J, He XP, Vidal S. A general strategy to the intracellular sensing of glycosidases using AIE-based glycoclusters. Chem Sci 2021; 13:247-256. [PMID: 35059174 PMCID: PMC8694377 DOI: 10.1039/d1sc05057e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022] Open
Abstract
Glycosidases, which are the enzymes responsible for the removal of residual monosaccharides from glycoconjugates, are involved in many different biological and pathological events. The ability to detect sensitively the activity and spatiotemporal distribution of glycosidases in cells will provide useful tools for disease diagnosis. However, the currently developed fluorogenic probes for glycosidases are generally based on the glycosylation of the phenol group of a donor-acceptor type fluorogen. This molecular scaffold has potential drawbacks in terms of substrate scope, sensitivity because of aggregation-caused quenching (ACQ), and the inability for long-term cell tracking. Here, we developed glycoclusters characterized by aggregation-induced emission (AIE) properties as a general platform for the sensing of a variety of glycosidases. To overcome the low chemical reactivity associated with phenol glycosylation, here we developed an AIE-based scaffold, which is composed of tetraphenylethylene conjugated with dicyanomethylene-4H-pyran (TPE-DCM) with a red fluorescence emission. Subsequently, a pair of dendritic linkages was introduced to both sides of the fluorophore, to which six copies of monosaccharides (d-glucose, d-galactose or l-fucose) were introduced through azide-alkyne click chemistry. The resulting AIE-active glycoclusters were shown to be capable of (1) fluorogenic sensing of a diverse range of glycosidases including β-d-galactosidase, β-d-glucosidase and α-l-fucosidase through the AIE mechanism, (2) fluorescence imaging of the endogenous glycosidase activities in healthy and cancer cells, and during cell senescence, and (3) glycosidase-activated, long-term imaging of cells. The present study provides a general strategy to the functional, in situ imaging of glycosidase activities through the multivalent display of sugar epitopes of interest onto properly designed AIE-active fluorogens.
Collapse
Affiliation(s)
- Lei Dong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 P. R. China
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2-Glycochimie, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Université de Lyon 1 Rue Victor Grignard F-69622 Villeurbanne France
| | - Min-Yu Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 P. R. China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 P. R. China
| | - Yi Zang
- National Centre for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 P. R. China
| | - Jia Li
- National Centre for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 P. R. China
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2-Glycochimie, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Université de Lyon 1 Rue Victor Grignard F-69622 Villeurbanne France
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301 91198 Gif-sur-Yvette France
| |
Collapse
|
21
|
Niu D, He J, Qin X, Liu Y, Liu H, Hu P, Li Y, Shi J. Superstable and Large-Scalable Organosilica-Micellar Hybrid Nanosystem via a Confined Gelation Strategy for Ultrahigh-Dosage Chemotherapy. NANO LETTERS 2021; 21:9388-9397. [PMID: 34747626 DOI: 10.1021/acs.nanolett.1c02342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although various drug nanocarriers have been developed for treating solid tumors, their clinical transformation is greatly limited by the difficulties in quantity production and unpredictable in vivo toxic effects. Herein, a facile "confined-gelation" strategy is developed to quantity-produce intelligent pluronic organosilica micelles (designated as IPOMs) with an undetectable critical micelle concentration (CMC), which features the self-assembly induced core confinement by block copolymers, the inner hydrolysis-condensation of silane to the oligomer skeleton, and oxidative cross-linking of disulfide skeleton to core gelation. The docetaxel-loaded IPOMs (DTX@IPOMs) with precise glutathione (GSH) responsiveness not only display an ultrahigh tolerated dose (360 mg/kg) in healthy Kunming mice model but also exhibit a remarkable tumor inhibition efficacy in both subcutaneous and orthotopic mice tumor models upon an extraordinarily large dosage (50 mg/kg). The present confined-gelation strategy provides a novel pathway to design and quantity-produce low-toxic and high-efficacy organic-inorganic hybrid nanodrugs in future clinical transformations.
Collapse
Affiliation(s)
- Dechao Niu
- Low Dimensional Materials Chemistry Laboratory, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianping He
- Low Dimensional Materials Chemistry Laboratory, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xing Qin
- Low Dimensional Materials Chemistry Laboratory, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yu Liu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ping Hu
- State Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yongsheng Li
- Low Dimensional Materials Chemistry Laboratory, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Jianlin Shi
- Low Dimensional Materials Chemistry Laboratory, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- State Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
22
|
Sun X, Dong Y, Liu Y, Song N, Li F, Yang D. Self-assembly of artificial architectures in living cells — design and applications. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1091-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Zhang X, Chen Y, He X, Zhang Y, Zhou M, Peng C, He Z, Gui S, Li Z. Smart Nanogatekeepers for Tumor Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103712. [PMID: 34677898 DOI: 10.1002/smll.202103712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Nanoparticulate drug delivery systems (nano-DDSs) are required to reliably arrive and persistently reside at the tumor site with minimal off-target side effects for clinical theranostics. However, due to the complicated environment and high interstitial pressure in tumor tissue, they can return to the bloodstream and cause secondary side effects in normal organs. Recently, a number of nanogatekeepers have been engineered via structure-transformable/stable strategies to overcome this undesirable dilemma. The emerging structure-transformable nanogatekeepers for tumor imaging and therapy are first overviewed here, particularly for nanogatekeepers undergoing structural transformation in tumor microenvironments, cell membranes, and organelles. Thereafter, intelligent structure-stable nanogatekeepers through reversible activation and artificial individualization receptors are overviewed. Finally, the ongoing challenges and prospects of nanogatekeepers for clinical translation are briefly discussed.
Collapse
Affiliation(s)
- Xunfa Zhang
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Yang Chen
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xian He
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| | - Yachao Zhang
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| | - Mei Zhou
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Chengjun Peng
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| | - Zhenbao Li
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| |
Collapse
|
24
|
Agarwal A, Singh A, Banerjee BD, Rai MP, Mukherjee M. Exotic Hydrogel Matrix as an Efficient Platform for Sustainable Production of Biomass and Lipid from Chlorella sorokiniana. ACS APPLIED BIO MATERIALS 2021; 4:6304-6315. [PMID: 35006875 DOI: 10.1021/acsabm.1c00570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Concerning the climate crisis, energy disaster, and greenhouse effects, microalgae have paved the way for consideration as a biofuel feed material. The advent of polymeric materials with unique architecture at nanoscale, in combination with microalgae, has given direction for the bioeconomic yield of highly valued compounds, essentially lipid. Herein, we discuss the paramount significance of exotic hydrogel matrix (HM) with efficient violet light absorption, far-red emission, CO2-adsorbing capability and catalyst-free condition that could increase the photosynthesis activity, alleviating the microalgal growth for the effective augmentation of lipid, protein, and chlorophyll. The intrinsic morphological and structural features of HM were revealed by a suite of characterizations that confirm its hollow tubular architecture. Fluorescence intensity measurement confirmed the electron transfer from HM to Chlorella sorokiniana, accelerating the photosynthetic rate for the improved production of lipids (98%), proteins (60%), and chlorophyll a (121%), compared to untreated C. sorokiniana control cells. Moreover, by visualizing the Nile red (NR) fluorescence response from C. sorokiniana/HM cells, a high lipid content was observed with a larger cell size (14.6 μm) compared to control cells (8.7 μm). Fatty acid methyl esters (FAMEs), obtained from C. sorokiniana/HM, were noted with a large-scale volume of C16:C18 fatty acids (>80%). We, therefore, envisage that HM plays a significant role in enhancing the generation of lipids and proteins from C. sorokiniana. These outcomes assure a qualitative transit in the bioenergy domain.
Collapse
Affiliation(s)
- Aakanksha Agarwal
- Molecular Sciences and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida 201301, India
| | - Aarti Singh
- Molecular Sciences and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida 201301, India
| | - Basu Dev Banerjee
- Environmental Biochemistry & Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences & GTB Hospital, University of Delhi, Delhi 110095, India
| | - Monika Prakash Rai
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201301, India
| | - Monalisa Mukherjee
- Molecular Sciences and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida 201301, India.,Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201301, India
| |
Collapse
|
25
|
Du H, Zhang L, Mao W, Zhao Y, Huang H, Xiao Y, Zhang Y, He X, Wang K. Ultrafine fluorene-pyridine oligoelectrolyte nanoparticles for supersensitive fluorescence sensing of heparin and protamine. Chem Commun (Camb) 2021; 57:8304-8307. [PMID: 34318803 DOI: 10.1039/d1cc01969d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A new fluorene-pyridine oligoelectrolyte (OFP) is rationally proposed and readily synthesized via a simple one-pot Sonogashira approach. Hence, an unexpectedly small cationic oligomer nanosensor (i.e. OFPNPs, ∼ 1.2 nm in diameter) was conveniently fabricated owing to the enhanced flexibility endowed by the meta-substituted pyridyl unit. Inspiringly, this facile nanoplatform with low cytotoxicity favors the ultrasensitive fluorescence assay for heparin and protamine with a detection limit (LOD, S/N = 3) as low as 1.2 ng mL-1 and 0.5 ng mL-1, respectively, involving heparin-induced aggregation of OFPNPs through electrostatic interaction or competitive rebinding of protamine to heparin.
Collapse
Affiliation(s)
- Huifeng Du
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Li L, Xu Z, Huang X. Whole-Cell-Based Photosynthetic Biohybrid Systems for Energy and Environmental Applications. Chempluschem 2021; 86:1021-1036. [PMID: 34286914 DOI: 10.1002/cplu.202100171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/07/2021] [Indexed: 12/17/2022]
Abstract
With the increasing awareness of sustainable development, energy and environment are becoming two of the most important issues of concern to the world today. Whole-cell-based photosynthetic biohybrid systems (PBSs), an emerging interdisciplinary field, are considered as attractive biosynthetic platforms with great prospects in energy and environment, combining the superiorities of semiconductor materials with high energy conversion efficiency and living cells with distinguished biosynthetic capacity. This review presents a systematic discussion on the synthesis strategies of whole-cell-based PBSs that demonstrate a promising potential for applications in sustainable solar-to-chemical conversion, including light-facilitated carbon dioxide reduction and biohydrogen production. In the end, the explicit perspectives on the challenges and future directions in this burgeoning field are discussed.
Collapse
Affiliation(s)
- Luxuan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Zhijun Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| |
Collapse
|
27
|
Grosso R, de-Paz MV. Thiolated-Polymer-Based Nanoparticles as an Avant-Garde Approach for Anticancer Therapies-Reviewing Thiomers from Chitosan and Hyaluronic Acid. Pharmaceutics 2021; 13:854. [PMID: 34201403 PMCID: PMC8227107 DOI: 10.3390/pharmaceutics13060854] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022] Open
Abstract
Thiomers (or thiolated polymers) have broken through as avant-garde approaches in anticancer therapy. Their distinguished reactivity and properties, closely linked to their final applications, justify the extensive research conducted on their preparation and use as smart drug-delivery systems (DDSs). Multiple studies have demonstrated that thiomer-rich nanoformulations can overcome major drawbacks found when administering diverse active pharmaceutical ingredients (APIs), especially in cancer therapy. This work focuses on providing a complete and concise review of the synthetic tools available to thiolate cationic and anionic polymers, in particular chitosan (CTS) and hyaluronic acid (HA), respectively, drawing attention to the most successful procedures. Their chemical reactivity and most relevant properties regarding their use in anticancer formulations are also discussed. In addition, a variety of NP formation procedures are outlined, as well as their use in cancer therapy, particularly for taxanes and siRNA. It is expected that the current work could clarify the main synthetic strategies available, with their scope and drawbacks, as well as provide some insight into thiomer chemistry. Therefore, this review can inspire new research strategies in the development of efficient formulations for the treatment of cancer.
Collapse
Affiliation(s)
| | - M.-Violante de-Paz
- Departamento Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
| |
Collapse
|
28
|
Shi M, Fu Z, Pan W, Chen Y, Wang K, Zhou P, Li N, Tang B. A Protein‐Binding Molecular Photothermal Agent for Tumor Ablation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mingwan Shi
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Zhongliang Fu
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Yuanyuan Chen
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Kaiye Wang
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Ping Zhou
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
29
|
Shi M, Fu Z, Pan W, Chen Y, Wang K, Zhou P, Li N, Tang B. A Protein-Binding Molecular Photothermal Agent for Tumor Ablation. Angew Chem Int Ed Engl 2021; 60:13564-13568. [PMID: 33783939 DOI: 10.1002/anie.202101009] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/23/2021] [Indexed: 12/20/2022]
Abstract
Photothermal therapy usually requires a high power density to activate photothermal agent for effective treatment, which inevitably leads to damage to normal tissues and inflammation in tumor tissues. Herein, we rationally design a protein-binding strategy to build a molecular photothermal agent for photothermal ablation of tumor. The synthesized photothermal agent can covalently bind to the thiol groups on the intracellular proteins. The heat generated by the photothermal agent directly destroyed the bioactive proteins in the cells, effectively reducing the heat loss and the molecular leakage. Under a low power density of 0.2 W cm-2 , the temperature produced by the photothermal agent was sufficient to induce apoptosis. In vitro and in vivo experiments showed that the therapeutic effect of photothermal therapy can be efficiently improved with the protein-binding strategy.
Collapse
Affiliation(s)
- Mingwan Shi
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Zhongliang Fu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yuanyuan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Kaiye Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Ping Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China
| |
Collapse
|
30
|
Yi X, Hu JJ, Dai J, Lou X, Zhao Z, Xia F, Tang BZ. Self-Guiding Polymeric Prodrug Micelles with Two Aggregation-Induced Emission Photosensitizers for Enhanced Chemo-Photodynamic Therapy. ACS NANO 2021; 15:3026-3037. [PMID: 33449627 DOI: 10.1021/acsnano.0c09407] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nowadays, aggregation-induced emission luminogens (AIEgens) with reactive oxygen species (ROS) generating ability have been used as photosensitizers for imaging guided photodynamic therapy (PDT). To achieve enhanced antitumor outcomes, combining AIEgens-based PDT with chemotherapy is an efficient strategy. However, the therapeutic efficiency is hampered by the limited cellular uptake efficiency and the appropriate light irradiation occasion. In this paper, a self-guiding polymeric micelle (TB@PMPT) composed of two AIE photosensitizers and a reduction-sensitive paclitaxel prodrug (PTX-SS-N3) was established for enhanced chemo-photodynamic therapy by a dual-stage light irradiation strategy. When the micelles were accumulated in tumor tissues, the first light irradiation (L1, 6 min) was utilized to facilitate cellular uptake by "photochemical internalization" (PCI). Then, the intracellular glutathione (GSH) would induce the PTX release, micelles disassembly and the aggregation state change of AIEgens. The fluorescence signal change of two AIEgens-based ratiometric fluorescent probe could not only precisely guide the second light irradiation (L2, 18 min) for sufficient ROS production, but also monitor the nonfluorescent drug PTX release in turn. Both in vivo and in vitro studies demonstrated that the dual-stage light irradiation strategy employed for TB@PMPT micelles exhibited a superior therapeutic effect over only 24 min continuous light irradiation.
Collapse
Affiliation(s)
- Xiaoqing Yi
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Jing-Jing Hu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
31
|
Liu L, Wang X, Zhu S, Li L. Different Surface Interactions between Fluorescent Conjugated Polymers and Biological Targets. ACS APPLIED BIO MATERIALS 2021; 4:1211-1220. [PMID: 35014474 DOI: 10.1021/acsabm.0c01567] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fluorescent conjugated polymers (CPs) have attracted considerable interest in biosensing owing to their high fluorescence, tunable bandgap, and good biocompatibility. Aiming at acquiring the desired optical responses of CPs for bioapplications, it is essential that the CPs bind to biological targets with high efficacy and affinity. However, the efficient binding of CPs is largely driven by their effective interaction with target surfaces. In this Review, we will focus on the different surface interactions that pervade between CPs and biological targets. The multiple surface interactions can lead to changes in spatial conformation and distribution of CPs, which manifest alterable optical properties of CPs based on accumulation of target-directed CPs, Förster resonance energy transfer mechanism, and metal-enhanced fluorescence mechanism. Then, we display diverse bioapplications applying CPs-based surface interactions, such as cell imaging, imaging-guided detection, and photodynamic therapy. Finally, the challenges and future developments to control the efficient attachment of CPs to biological targets are discussed. We expect that the understanding of surface interactions between CPs and biological targets benefits the CPs-based system design and expands their applications in biological detections and therapies.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiaoyu Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Shuxian Zhu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
32
|
A Compressive Review about Taxol ®: History and Future Challenges. Molecules 2020; 25:molecules25245986. [PMID: 33348838 PMCID: PMC7767101 DOI: 10.3390/molecules25245986] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Taxol®, which is also known as paclitaxel, is a chemotherapeutic agent widely used to treat different cancers. Since the discovery of its antitumoral activity, Taxol® has been used to treat over one million patients, making it one of the most widely employed antitumoral drugs. Taxol® was the first microtubule targeting agent described in the literature, with its main mechanism of action consisting of the disruption of microtubule dynamics, thus inducing mitotic arrest and cell death. However, secondary mechanisms for achieving apoptosis have also been demonstrated. Despite its wide use, Taxol® has certain disadvantages. The main challenges facing Taxol® are the need to find an environmentally sustainable production method based on the use of microorganisms, increase its bioavailability without exerting adverse effects on the health of patients and minimize the resistance presented by a high percentage of cells treated with paclitaxel. This review details, in a succinct manner, the main aspects of this important drug, from its discovery to the present day. We highlight the main challenges that must be faced in the coming years, in order to increase the effectiveness of Taxol® as an anticancer agent.
Collapse
|
33
|
Qiu X, Lu R. Synthesis and Optical Properties of Monodisperse Phenothiazinevinylene‐Based Conjugated Oligomers. ChemistrySelect 2020. [DOI: 10.1002/slct.202003194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xianping Qiu
- Science and Technology on Aerospace Chemical Power Laboratory Hubei Institute of Aerospace Chemotechnology Xiangyang Hubei 441003 P. R. China
| | - Ran Lu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| |
Collapse
|
34
|
Zhang Y, Zhao Y, Shi L, Zhang L, Du H, Huang H, Xiao Y, Zhang Y, He X, Wang K. Novel pyrene-pyridine oligomer nanorods for super-sensitive fluorescent detection of Pd 2. Analyst 2020; 145:5631-5637. [PMID: 32638711 DOI: 10.1039/d0an00049c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Conjugated polymers (CPs) can be fabricated into conjugated polymer nanoparticles of various shapes, thus tuning the hydrophobicity and sensing performances of the parent polymers. Herein, two new hydrophobic oligomeric CPs containing pyrene-pyridyl moieties, P1 and P2, were directly prepared and conveniently converted into hydrophilic nanorods, i.e. P1NRs and P2NRs (about 4-21 and 6-20 nm in diameter), by a modified microemulsion method. Notably, separated P1NRs exhibit excellent stability while P2NRs tend to stack on each other perhaps due to their different rigidity of π-delocalized backbones, which may have a profound effect on their fluorescence properties. In addition, Pd2+ can coordinate with the pyridyl N atoms, thereby causing ultrasensitive fluorescence quenching of P1NRs and P2NRs owing to the aggregation of oligomeric CP nanorods. These two simple nanosensors can help to determine Pd2+ with detection limits as low as 1 and 70 nM, respectively. It is worth noting that biocompatible P1NRs with bright blue fluorescence can be employed for efficient imaging of trace level Pd2+ ions in live cells.
Collapse
Affiliation(s)
- Yanran Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhou X, Zeng Y, Tang Y, Huang Y, Lv F, Liu L, Wang S. Artificial regulation of state transition for augmenting plant photosynthesis using synthetic light-harvesting polymer materials. SCIENCE ADVANCES 2020; 6:eabc5237. [PMID: 32923652 PMCID: PMC7449672 DOI: 10.1126/sciadv.abc5237] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/13/2020] [Indexed: 05/27/2023]
Abstract
Artificial regulation of state transition between photosystem I (PSI) and PSII will be a smart and promising way to improve efficiency of natural photosynthesis. In this work, we found that a synthetic light-harvesting polymer [poly(boron-dipyrromethene-co-fluorene) (PBF)] with green light absorption and far-red emission could improve PSI activity of algae Chlorella pyrenoidosa, followed by further upgrading PSII activity to augment natural photosynthesis. For light-dependent reactions, PBF accelerated photosynthetic electron transfer, and the productions of oxygen, ATP and NADPH were increased by 120, 97, and 76%, respectively. For light-independent reactions, the RuBisCO activity was enhanced by 1.5-fold, while the expression levels of rbcL encoding RuBisCO and prk encoding phosphoribulokinase were up-regulated by 2.6 and 1.5-fold, respectively. Furthermore, PBF could be absorbed by the Arabidopsis thaliana to speed up cell mitosis and enhance photosynthesis. By improving the efficiency of natural photosynthesis, synthetic light-harvesting polymer materials show promising potential applications for biofuel production.
Collapse
Affiliation(s)
- Xin Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yue Zeng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yongyan Tang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
36
|
Chen X, Niu S, Bremner DH, Zhang X, Zhang H, Zhang Y, Li S, Zhu LM. Co-delivery of doxorubicin and oleanolic acid by triple-sensitive nanocomposite based on chitosan for effective promoting tumor apoptosis. Carbohydr Polym 2020; 247:116672. [PMID: 32829800 DOI: 10.1016/j.carbpol.2020.116672] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022]
Abstract
Nanocomposites as "stevedores" for co-delivery of multidrugs hold great promise in addressing the drawbacks of traditional cancer chemotherapy. In this work, our strategy presents a new avenue for the stepwise release of two co-delivered agents into the tumor cells. The hybrid nanocomposite consists of a pH-responsive chitosan (CS), a thermosensitive poly(N-vinylcaprolactam) (PNVCL) and a functionalized cell-penetrating peptide (H6R6). Doxorubicin (DOX) and oleanolic acid (OA) are loaded into the nanocomposite (H6R6-CS-g-PNVCL). The system displayed a suitable size (∼190 nm), a high DOX loading (13.2 %) and OA loading efficiency (7.3 %). The tumor microenvironment triggered the nanocomposite to be selectively retained in tumor cells, then releasing the drugs. Both in vitro and in vivo studies showed a significant enhancement in antitumor activity of the co-delivered system in comparison to mono-delivery. This approach which relies on redox, pH and temperature effects utilizing co-delivery nanosystems may be beneficial for future applications in cancer chemotherapy.
Collapse
Affiliation(s)
- Xia Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Shiwei Niu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China; Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, PR China
| | - David H Bremner
- School of Science, Engineering and Technology, Kydd Building, Abertay University, Dundee, DD1 1HG, Scotland, UK
| | - Xuejing Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Hongmei Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Yanyan Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Shude Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, PR China.
| | - Li-Min Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China.
| |
Collapse
|
37
|
Yang Z, Li L, Jin AJ, Huang W, Chen X. Rational design of semiconducting polymer brushes as cancer theranostics. MATERIALS HORIZONS 2020; 7:1474-1494. [PMID: 33777400 PMCID: PMC7990392 DOI: 10.1039/d0mh00012d] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Photonic theranostics (PTs) generally contain optical agents for the optical sensing of biomolecules and therapeutic components for converting light into heat or chemical energy. Semiconducting polymer nanoparticles (SPNs) as advanced PTs possessing good biocompatibility, stable photophysical properties, and sensitive and tunable optical responses from the ultraviolet to near-infrared (NIR) II window (300-1700 nm) have recently aroused great interest. Although semiconducting polymers (SPs) with various building blocks have been synthesized and developed to meet the demands of biophotonic applications, most of the SPNs were made by a nanoprecipitation method that used amphiphilic surfactants to encapsulate SPs. Such binary SP micelles usually exhibit weakened photophysical properties of SPs and undergo dissociation in vivo. SP brushes (SPBs) are products of functional post-modification of SP backbones, which endows unique features to SPNs (e.g. enhanced optical properties and multiple chemical reaction sites for the conjunction of organic/inorganic imaging agents and therapeutics). Furthermore, the SPB-based SPNs can be highly stable due to supramolecular self-assembly and/or chemical crosslinking. In this review, we highlight the recent progress in the development of SPBs for advanced theranostics.
Collapse
Affiliation(s)
- Zhen Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ling Li
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Albert J. Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Wei Huang
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
38
|
Dai N, Zhao H, Qi R, Chen Y, Lv F, Liu L, Wang S. Fluorescent and Biocompatible Ruthenium-Coordinated Oligo(p-phenylenevinylene) Nanocatalysts for Transfer Hydrogenation in the Mitochondria of Living Cells. Chemistry 2020; 26:4489-4495. [PMID: 32073730 DOI: 10.1002/chem.201905448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/18/2020] [Indexed: 12/21/2022]
Abstract
It is challenging to design metal catalysts for in situ transformation of endogenous biomolecules with good performance inside living cells. Herein, we report a multifunctional metal catalyst, ruthenium-coordinated oligo(p-phenylenevinylene) (OPV-Ru), for intracellular catalysis of transfer hydrogenation of nicotinamide adenine dinucleotide (NAD+ ) to its reduced format (NADH). Owing to its amphiphilic characteristic, OPV-Ru possesses good self-assembly capability in water to form nanoparticles through hydrophobic interaction and π-π stacking, and numerous positive charges on the surface of nanoparticles displayed a strong electrostatic interaction with negatively charged substrate molecules, creating a local microenvironment for enhancing the catalysis efficiency in comparison to dispersed catalytic center molecule (TOF value was enhanced by about 15 fold). OPV-Ru could selectively accumulate in the mitochondria of living cells. Benefiting from its inherent fluorescence, the dynamic distribution in cells and uptake behavior of OPV-Ru could be visualized under fluorescence microscopy. This work represents the first demonstration of a multifunctional organometallic complex catalyzing natural hydrogenation transformation in specific subcellular compartments of living cells with excellent performance, fluorescent imaging ability, specific mitochondria targeting and good chemoselectivity with high catalysis efficiency.
Collapse
Affiliation(s)
- Nan Dai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hao Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruilian Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanyan Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
39
|
Xu X, Liu Y, Fu W, Yao M, Ding Z, Xuan J, Li D, Wang S, Xia Y, Cao M. Poly(N-isopropylacrylamide)-Based Thermoresponsive Composite Hydrogels for Biomedical Applications. Polymers (Basel) 2020; 12:polym12030580. [PMID: 32150904 PMCID: PMC7182829 DOI: 10.3390/polym12030580] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAM)-based thermosensitive hydrogels demonstrate great potential in biomedical applications. However, they have inherent drawbacks such as low mechanical strength, limited drug loading capacity and low biodegradability. Formulating PNIPAM with other functional components to form composited hydrogels is an effective strategy to make up for these deficiencies, which can greatly benefit their practical applications. This review seeks to provide a comprehensive observation about the PNIPAM-based composite hydrogels for biomedical applications so as to guide related research. It covers the general principles from the materials choice to the hybridization strategies as well as the performance improvement by focusing on several application areas including drug delivery, tissue engineering and wound dressing. The most effective strategies include incorporation of functional inorganic nanoparticles or self-assembled structures to give composite hydrogels and linking PNIPAM with other polymer blocks of unique properties to produce copolymeric hydrogels, which can improve the properties of the hydrogels by enhancing the mechanical strength, giving higher biocompatibility and biodegradability, introducing multi-stimuli responsibility, enabling higher drug loading capacity as well as controlled release. These aspects will be of great help for promoting the development of PNIPAM-based composite materials for biomedical applications.
Collapse
Affiliation(s)
- Xiaomin Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Yang Liu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Wenbo Fu
- Heze Key Laboratory of Water Pollution Treatment, Heze Vocational College, Heze 274000, China;
| | - Mingyu Yao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Zhen Ding
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Jiaming Xuan
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Dongxiang Li
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
| | - Shengjie Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Yongqing Xia
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Meiwen Cao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
- Correspondence: ; Tel./Fax: +86-532-86983455
| |
Collapse
|
40
|
Khatoon SS, Chen Y, Zhao H, Lv F, Liu L, Wang S. In situ self-assembly of conjugated polyelectrolytes for cancer targeted imaging and photodynamic therapy. Biomater Sci 2020; 8:2156-2163. [PMID: 32073034 DOI: 10.1039/c9bm01912j] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The construction of intelligent self-assembly systems with cancer targeting photodynamic therapy abilities is highly required for increasing the precise therapeutic efficiency in clinical treatment. Herein, a cationic water soluble conjugated polymer (PFT-SH) functionalized with thiol groups was designed and synthesized via a palladium-catalyzed Suzuki coupling reaction. Firstly, PFT-SH can enter cells and form loose aggregations by hydrophobic and π-π stacking interactions. Secondly, a high level of H2O2 in cancer cells oxidizes sulfhydryl groups to disulfide bonds and then forms more and larger aggregations. Finally, PFT-SH showed remarkable ROS producing ability under white light irradiation with 78% quantum yields (ΦΔ). Due to this unique self-aggregation property, PFT-SH was successfully used to achieve in situ self-assembly specifically inside cancer cells for targeted imaging. Both the specific aggregation of PFT-SH in cancer cells and its ROS producing ability led to its use in the targeted killing of cancer cells through efficient photodynamic therapy.
Collapse
Affiliation(s)
- Syeda Sadia Khatoon
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | | | | | | | | | | |
Collapse
|
41
|
An HW, Hou D, Zheng R, Wang MD, Zeng XZ, Xiao WY, Yan TD, Wang JQ, Zhao CH, Cheng LM, Zhang JM, Wang L, Wang ZQ, Wang H, Xu W. A Near-Infrared Peptide Probe with Tumor-Specific Excretion-Retarded Effect for Image-Guided Surgery of Renal Cell Carcinoma. ACS NANO 2020; 14:927-936. [PMID: 31927974 DOI: 10.1021/acsnano.9b08209] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Image-guided surgery plays a crucial role in realizing complete tumor removal, reducing postoperative recurrence and increasing patient survival. However, imaging of tumor lesion in the typical metabolic organs, e.g., kidney and liver, still has great challenges due to the intrinsic nonspecific accumulation of imaging probes in those organs. Herein, we report an in situ self-assembled near-infrared (NIR) peptide probe with tumor-specific excretion-retarded (TER) effect in tumor lesions, enabling high-performance imaging of human renal cell carcinoma (RCC) and achieving complete tumor removal, ultimately reducing postoperative recurrence. The NIR peptide probe first specifically recognizes αvβ3 integrin overexpressed in renal cancer cells, then is cleaved by MMP-2/9, which is up-regulated in the tumor microenvironment. The probe residue spontaneously self-assembles into nanofibers that exhibit an excretion-retarded effect in the kidney, which contributes to a high signal-to-noise (S/N) ratio in orthotopic RCC mice. Intriguingly, the TER effect also enables precisely identifying eye-invisible tiny lesions (<1 mm), which contributes to complete tumor removal and significantly reduces the postoperative recurrence compared with traditional surgery. Finally, the TER strategy is successfully employed in high-performance identification of human RCC in an ex vivo kidney perfusion model. Taken together, this NIR peptide probe based on the TER strategy is a promising method for detecting tumors in metabolic organs in diverse biomedical applications.
Collapse
Affiliation(s)
- Hong-Wei An
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics , Yuquan Road , Beijing , 100049 , China
| | - Dayong Hou
- Department of Urology , Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology , Harbin , 150001 , China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy , Harbin Medical University , Harbin , 150001 , China
| | - Rui Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
| | - Man-Di Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
| | - Xiang-Zhong Zeng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
| | - Wu-Yi Xiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
| | - Tong-Da Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
| | - Jia-Qi Wang
- Department of Urology , Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology , Harbin , 150001 , China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy , Harbin Medical University , Harbin , 150001 , China
| | - Chang-Hao Zhao
- Department of Urology , Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology , Harbin , 150001 , China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy , Harbin Medical University , Harbin , 150001 , China
| | - Li-Ming Cheng
- Department of Urology , Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology , Harbin , 150001 , China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy , Harbin Medical University , Harbin , 150001 , China
| | - Jin-Ming Zhang
- Department of Urology , Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology , Harbin , 150001 , China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy , Harbin Medical University , Harbin , 150001 , China
| | - Lu Wang
- Department of Urology , Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology , Harbin , 150001 , China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy , Harbin Medical University , Harbin , 150001 , China
| | - Zi-Qi Wang
- Department of Urology , Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology , Harbin , 150001 , China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy , Harbin Medical University , Harbin , 150001 , China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy , Harbin Medical University , Harbin , 150001 , China
| | - Wanhai Xu
- Department of Urology , Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology , Harbin , 150001 , China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy , Harbin Medical University , Harbin , 150001 , China
| |
Collapse
|
42
|
Hao B, Li W, Zhang S, Zhu Y, Li Y, Ding A, Huang X. A facile PEG/thiol-functionalized nanographene oxide carrier with an appropriate glutathione-responsive switch. Polym Chem 2020. [DOI: 10.1039/d0py00110d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel nanographene oxide/PEG-based bioreduction-responsive smart drug delivery system with a GSH-responsive disulfide linker as the controlled release switch can selectively release anti-cancer drugs in cancer cells.
Collapse
Affiliation(s)
- Bingjie Hao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Wei Li
- Division of Physical Biology and Bioimaging Center
- Shanghai Synchrotron Radiation Facility
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- University of Chinese Academy of Sciences
| | - Sen Zhang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Ying Zhu
- Division of Physical Biology and Bioimaging Center
- Shanghai Synchrotron Radiation Facility
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- University of Chinese Academy of Sciences
| | - Yongjun Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Aishun Ding
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
43
|
Wang C, Wang X, Sun Y, Taouil AK, Yan S, Botchkina GI, Ojima I. Design, synthesis and SAR study of 3rd-generation taxoids bearing 3-CH 3, 3-CF 3O and 3-CHF 2O groups at the C2-benzoate position. Bioorg Chem 2019; 95:103523. [PMID: 31911305 DOI: 10.1016/j.bioorg.2019.103523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
It has been shown that inclusion of CF3O and CHF2O groups to drug candidates often improve their pharmacological properties, especially metabolic stability, membrane permeability and PK profile. Moreover, the unique non-spherical structure of the OCHF2 group can provide interesting and beneficial characteristics. Accordingly, new 3rd-generation taxoids, bearing 3-OCF3 or 3-OCF2H (and 3-CH3 for comparison) at the C2 benzoate moiety, were synthesized and their potencies against drug-sensitive and drug-resistant cancer cell lines examined. In this study, our previous SAR studies on 3rd-generation taxoids were expanded to disclose that CH3, CF3O and CHF2O groups are well tolerated at this position and enhance potency, especially against MDR-cancer cell lines so that these taxoids can virtually overcome MDR. These new taxoids exhibit up to 7 times higher cytotoxicity (IC50) than paclitaxel against drug-sensitive cancer cell lines (MCF7 and LCC6-WT) and 2-3 orders of magnitude higher potency than paclitaxel against drug-resistant ovarian, breast and colon cancer cell lines with MDR-phenotype (NCI/ADR, LCC6-MDR and LDL-1), as well as pancreatic cancer cell line, CFPAC-1. Since it has been shown that a bulky group at this position reduces potency, it is noteworthy that rather bulky CF3O and CHF2O groups are well tolerated. Molecular modeling analysis indicated the favorable van der Waals interactions of CF3O and CHF2O groups in the binding site. It is also worthy of note that new taxoids, bearing a CHF2O group at the C2 benzoate position (1-06 series), exhibited the highest potencies against MDR-cancer cell lines and cancer stem cell (CSC)-enriched cancer cell lines. These new 3rd-generation taxoids are promising candidates for highly potent chemotherapeutic agents, as well as payloads for tumor-targeting drug conjugates such as antibody-drug conjugates (ADCs).
Collapse
Affiliation(s)
- Changwei Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA; Drug Discovery Pipeline, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China
| | - Xin Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Yi Sun
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Adam K Taouil
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Su Yan
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Galina I Botchkina
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA; Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA.
| |
Collapse
|
44
|
Zhou L, Lv F, Liu L, Wang S. Water-Soluble Conjugated Organic Molecules as Optical and Electrochemical Materials for Interdisciplinary Biological Applications. Acc Chem Res 2019; 52:3211-3222. [PMID: 31609571 DOI: 10.1021/acs.accounts.9b00427] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Apart from the wide applications in the field of electronic and optoelectronic devices, conjugated molecules have been established as useful functional materials for biological applications. By introducing hydrophilic side chains to conjugated backbones, water-soluble conjugated polymers or oligomers (CPs or COs) inherit the attractive optical and electronic properties from conjugated molecules, while their water solubility ensures interaction with biological substrates such as biomacromolecules, microorganisms, and living cells for further biological applications. Benefiting from high brightness, large extinction coefficients, excellent photostability, low cytotoxicity, stability in bodily fluids, and versatile structural modifications, water-soluble conjugated polymers and oligomers have offered powerful alternatives in a variety of biological applications including biological and chemical sensors, fluorescence imaging, disease diagnostics, and therapy. This Account will focus on our recent advances in design, synthesis, and interdisciplinary biological applications of a series of new water-soluble CP and CO materials, starting with a brief introduction to water-soluble CPs and COs and various methods and strategies developed for the preparation of advanced water-soluble CPs and COs. Since their properties can be tuned by rational design and synthesis at the level of the conjugated repeat unit and versatile pendant groups, CPs and COs provide a diverse toolbox for satisfying interdisciplinary biological applications. The application of water-soluble CPs and COs in the past five years can be broadly categorized into four areas. Specifically, integrating the unique optoelectronic properties of water-soluble CPs and COs with self-assembly and supramolecular strategies, efficacy regulation of antibiotic and anticancer drugs has been achieved, meanwhile drug resistance could be overcome and drug resistant "superbacteria" can be inhibited. For applications regulating cellular functions and biological processes, we introduce CPs and COs with the ability to regulate intracellular oxidative stress, cell-cell communication, cellular proliferation, cell membrane permeability, and quorum sensing of bacteria cells. By covalent linkage of reactive groups upon CPs and COs, these molecules are endowed with abilities like disassembly of amyloid polypeptides, biased distribution in cells, selective imaging of organelles, and distinguished interactions with biomolecules. For photothermal therapy (PTT) applications, photothermal-responsive conjugated polymer materials have been utilized for remote control of gene expression in living cells and in vivo photothermal therapy of cancer. Beyond these applications, we have achieved new interdisciplinary applications of water-soluble CP and CO materials for biological optoelectronic devices including photosynthesis, photocatalysis, and bioenergy. Specific features or properties of water-soluble CPs and COs are leveraged to bring opportunities for each of these applications. These studies open a new frontier for development of new functional conjugated molecule materials and provide better understanding of their interactions with biological systems as well as structure/property relationships. Current limitations confronted by CPs and COs are raised, and developmental direction for the future is proposed.
Collapse
Affiliation(s)
- Lingyun Zhou
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | | | | | - Shu Wang
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
45
|
Zhang F, Hu C, Kong Q, Luo R, Wang Y. Peptide-/Drug-Directed Self-Assembly of Hybrid Polyurethane Hydrogels for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37147-37155. [PMID: 31513742 DOI: 10.1021/acsami.9b13708] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug-loading hydrogels are promising candidates in the bioengineering research field; nevertheless, hydrophobic drug loading into a hydrophilic carrier system remains unsolved and is full of challenges. In this work, following the potential dual interactions between peptides and aromatic drugs, we developed a potent hybrid hydrogel formation method, namely, "peptide-/drug-directed self-assembly". The hybrid hydrogels were synthesized using polyethylene glycol (PEG)-based Fmoc-FF peptide hybrid polyurethane, in which curcumin could be encapsulated through self-assembly with Fmoc-FF peptide via π-π stacking. On the basis of this, curcumin loading capacity could be improved to as high as 3.3 wt % with sustained release. In addition, the curcumin loading enhanced the hydrogel mechanical properties from 4 kPa to over 10 kPa, similar to that of natural soft tissues. Furthermore, the hydrogels were injectable with self-healing properties since the Fmoc-FF peptide/curcumin coassembly was noncovalent and reversible. Spectroscopy results confirmed the existence of the coassembly of Fmoc-FF peptide/curcumin. Further in vivo experiments effectively demonstrated that the hydrogels could improve the cutaneous wound healing in a full-thickness skin defected model. This peptide-/drug-directed self-assembly of hybrid polyurethane hydrogel could be used as a promising platform for tissue-engineering scaffold and biomedical application.
Collapse
Affiliation(s)
- Fanjun Zhang
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Qunshou Kong
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| |
Collapse
|
46
|
Cao M, Xing R, Chang R, Wang Y, Yan X. Peptide-coordination self-assembly for the precise design of theranostic nanodrugs. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Zhou L, Lv F, Liu L, Wang S. In Situ-Induced Multivalent Anticancer Drug Clusters in Cancer Cells for Enhancing Drug Efficacy. CCS CHEMISTRY 2019. [DOI: 10.31635/ccschem.019.20180015] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Increasing intracellular drug concentration is an effective way for cancer chemotherapeutics to enhance efficacy and combat drug resistance. In this work, a series of anticancer drug conjugates were prepared by linking thiol-modified oligo( p-phenylene vinylene) with paclitaxel, vincristine, teniposide, tamoxifen, doxorubicin, or podophyllotoxin (OPV-S-Drugs) through a Michael addition reaction. These OPV-S-Drugs could undergo intracellular assembly and aggregation upon oxidation to yield multivalent anticancer drug clusters, which inhibited their diffusion from cancer cells. The intracellular aggregation of OPV-S-Drugs originates from π–π stacking and hydrophobic interactions between OPV backbones, followed by cross-linking via disulfide bond formation in the presence of reactive oxygen species (ROS). The drug clusters occur only in the cytoplasm of cancer cells expressing high ROS levels, but not in healthy mammalian cells, thus reducing the cytotoxicity to normal cells. Specifically, the super-toxicity of podophyllotoxin to normal cells was obviously suppressed while the drug efficacy was maintained through our new strategy. The diverse action mechanisms of OPV-S-Drugs toward cancer cells is proposed.
Collapse
Affiliation(s)
- Lingyun Zhou
- Institute of Chemistry, Chinese Academy of Sciences
| | - Fengting Lv
- Institute of Chemistry, Chinese Academy of Sciences
| | - Libing Liu
- Institute of Chemistry, Chinese Academy of Sciences
| | - Shu Wang
- Institute of Chemistry, Chinese Academy of Sciences
| |
Collapse
|
48
|
Yang Z, Dai Y, Shan L, Shen Z, Wang Z, Yung BC, Jacobson O, Liu Y, Tang W, Wang S, Lin L, Niu G, Huang P, Chen X. Tumour microenvironment-responsive semiconducting polymer-based self-assembly nanotheranostics. NANOSCALE HORIZONS 2019; 4:426-433. [PMID: 31565239 PMCID: PMC6764780 DOI: 10.1039/c8nh00307f] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A Pt prodrug polyphenol and gadolinium ion loaded cancer theranostics nanoplatform based on mild acidic pH and thermal sensitive polymer was designed for photoacoustic (PA)/ magnetic resonance(MR)/ positron emission tomography (PET) multimodal imaging-guided chemo-photothermal combination therapy. The Pt drug release can be controlled by tumour-specific acidic pH and heat generated by external NIR irradiation. The nanoparticles were stable under normal physiological environment and released the drug under tumour acidic pH and NIR laser irradiation, which can reduce the side effect of drug to normal organs. Moreover, the MR signal can be significantly enhanced (~3-fold increase in T1 relaxivity) under the acidic tumour microenvironment, which is favorable for cancer diagnosis. The nanoparticles exhibited excellent tumour accumulation and led to complete tumour eradication with low power NIR laser irradiation. This promising approach provides a new avenue for imaging-guided combination therapy.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Ultrasound in Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine. No. 88 Jiefang Road, Hangzhou.310009, P. R. China.
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States.
| | - Yunlu Dai
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, P. R. China.
| | - Lingling Shan
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States.
| | - Zheyu Shen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States.
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States.
| | - Bryant C Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States.
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States.
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States.
| | - Wei Tang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States.
| | - Sheng Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States.
| | - Lisen Lin
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States.
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States.
| | - Pintong Huang
- Department of Ultrasound in Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine. No. 88 Jiefang Road, Hangzhou.310009, P. R. China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States.
| |
Collapse
|
49
|
Gu K, Qiu W, Guo Z, Yan C, Zhu S, Yao D, Shi P, Tian H, Zhu WH. An enzyme-activatable probe liberating AIEgens: on-site sensing and long-term tracking of β-galactosidase in ovarian cancer cells. Chem Sci 2019; 10:398-405. [PMID: 30746088 PMCID: PMC6334664 DOI: 10.1039/c8sc04266g] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
Development of fluorescent probes for on-site sensing and long-term tracking of specific biomarkers is particularly desirable for the early detection of diseases. However, available small-molecule probes tend to facilely diffuse across the cell membrane or remain at the activation site but always suffer from the aggregation-caused quenching (ACQ) effect. Here we report an enzyme-activatable aggregation-induced emission (AIE) probe QM-βgal, which is composed of a hydrophilic β-galactosidase (β-gal)-triggered galactose moiety and a hydrophobic AIE-active fluorophore QM-OH. The probe is virtually non-emissive in aqueous media, but when activated by β-gal, specific enzymatic turnover would liberate hydrophobic AIE luminogen (AIEgen) QM-OH, and then highly fluorescent nanoaggregates are in situ generated as a result of the AIE process, allowing for on-site sensing of endogenous β-gal activity in living cells. Notably, taking advantage of the improved intracellular retention of nanoaggregates, we further exemplify QM-βgal for long-term (∼12 h) visualization of β-gal-overexpressing ovarian cancer cells with high fidelity, which is essential for biomedicine and diagnostics. Thus, this enzyme-activatable AIE probe not only is a potent tool for elucidating the roles of β-gal in biological systems, but also offers an enzyme-regulated liberation strategy to exploit multifunctional probes for preclinical applications.
Collapse
Affiliation(s)
- Kaizhi Gu
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Advanced Materials and Institute of Fine Chemicals , Joint International Research Laboratory of Precision Chemistry and Molecular Engineering , Feringa Nobel Prize Scientist Joint Research Center , School of Chemistry and Molecular Engineering , East China University of Science & Technology , Shanghai 200237 , China .
| | - Wanshan Qiu
- Department of Cardiothoracic Surgery , Children's Hospital of Fudan University , Shanghai 201102 , China
| | - Zhiqian Guo
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Advanced Materials and Institute of Fine Chemicals , Joint International Research Laboratory of Precision Chemistry and Molecular Engineering , Feringa Nobel Prize Scientist Joint Research Center , School of Chemistry and Molecular Engineering , East China University of Science & Technology , Shanghai 200237 , China .
- State Key Laboratory of Bioreactor Engineering , East China University of Science & Technology , Shanghai 200237 , China
| | - Chenxu Yan
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Advanced Materials and Institute of Fine Chemicals , Joint International Research Laboratory of Precision Chemistry and Molecular Engineering , Feringa Nobel Prize Scientist Joint Research Center , School of Chemistry and Molecular Engineering , East China University of Science & Technology , Shanghai 200237 , China .
| | - Shiqin Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Advanced Materials and Institute of Fine Chemicals , Joint International Research Laboratory of Precision Chemistry and Molecular Engineering , Feringa Nobel Prize Scientist Joint Research Center , School of Chemistry and Molecular Engineering , East China University of Science & Technology , Shanghai 200237 , China .
| | - Defan Yao
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Advanced Materials and Institute of Fine Chemicals , Joint International Research Laboratory of Precision Chemistry and Molecular Engineering , Feringa Nobel Prize Scientist Joint Research Center , School of Chemistry and Molecular Engineering , East China University of Science & Technology , Shanghai 200237 , China .
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering , East China University of Science & Technology , Shanghai 200237 , China
| | - He Tian
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Advanced Materials and Institute of Fine Chemicals , Joint International Research Laboratory of Precision Chemistry and Molecular Engineering , Feringa Nobel Prize Scientist Joint Research Center , School of Chemistry and Molecular Engineering , East China University of Science & Technology , Shanghai 200237 , China .
| | - Wei-Hong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Advanced Materials and Institute of Fine Chemicals , Joint International Research Laboratory of Precision Chemistry and Molecular Engineering , Feringa Nobel Prize Scientist Joint Research Center , School of Chemistry and Molecular Engineering , East China University of Science & Technology , Shanghai 200237 , China .
| |
Collapse
|
50
|
Oxygenated theranostic nanoplatforms with intracellular agglomeration behavior for improving the treatment efficacy of hypoxic tumors. Biomaterials 2019; 197:129-145. [PMID: 30641264 DOI: 10.1016/j.biomaterials.2019.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/31/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022]
Abstract
Hypoxia plays vital roles in the development of tumor resistance against typical anticancer therapies and local reoxygenation has proved effective to overcome the hypoxia-induced chemoresistance. Perfluorocarbon (PFC) is an FDA approved oxygen carrier and currently vigorously investigated for oxygen delivery to tumors. This study reports a perfluorocarbon and etoposide (EP) loaded porous hollow Fe3O4-based theranostic nanoplatform capable of delivering oxygen to solid tumors to enhance their susceptibility against EP. Results show that oxygen could be released at a moderate rate from the porous hollow magnetic Fe3O4 nanoparticles (PHMNPs) over an extended period of time, therefore effectively reducing the hypoxia-induced EP resistance of tumor cells. Moreover, the surface of PHMNPs was modified with lactobionic acid (LA)-containing amphiphilic polymers via hydrophobic interaction, which could provide targeting effect against certain types of tumors. The hydrophilic moiety would be subsequently shed by the intratumoral GSH after cellular internalization and result in the agglomeration of nanocarriers inside tumor cells, consequently impeding the nanoparticle exocytosis to enhance their intracellular retention. The enhanced retention could elevate the intracellular EP level and effectively boost the tumor cell killing effect. In addition to the therapeutic benefits, the Fe3O4 nanocage could also be used for the magnetic resonance imaging of the tumor area. The assorted benefits of the composite nanosystem are anticipated to be advantageous for the treatment of drug-resistant hypoxic tumors.
Collapse
|