1
|
Yang Y, Xu Q, Gu W, Nan K, Chen S, Wang S, Zhang J, Zhao Q. Oxidative stress-augmented Cu-doped hollow mesoporous carbon nanozyme for photothermal/photodynamic synergistic therapy. J Colloid Interface Sci 2025; 683:910-925. [PMID: 39709766 DOI: 10.1016/j.jcis.2024.12.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Photodynamic therapy (PDT) has witnessed remarkable progress in recent years owing to its specific properties. Given that the antioxidation system of tumor microenvironment (TME) adversely affects treatment outcomes, powerful TME modulators can significantly resolve the limitation of PDT. Herein, we developed a PEG-modified Cu2+-doped hollow mesoporous carbon nanozyme (CHC-PEG) and loaded insoluble photosensitizer IR780 into its pores and cavities to construct the multifunctional nano-system IR780/CHCP. CHC-PEG nanozyme could perform photothermal therapy (PTT) effect and protect IR780 from aggregation-caused quenching (ACQ) effect, while exerting peroxidase (POD)-mimetic activity and the ability of consuming glutathione (GSH) to achieve oxidative stress-augmented PDT effect. When exposed to near-infrared (NIR) light, IR780 was stimulated to produce singlet oxygen (1O2) and CHC-PEG could increase the temperature of TME to exert stronger POD-mimetic activity for producing more hydroxyl radicals (OH), therefore the IR780/CHCP nano-system exhibited remarkable tumor growth inhibition. Benefited by the enhanced synergistic effect, IR780/CHCP exhibited remarkable in vivo tumor growth inhibition, with the tumor inhibition rate of 93 %, and had no significant effect on major organs. Above all, IR780/CHCP could resist the antioxidant system in TME to enhance the level of oxidative stress, thereby enabling effective anti-tumor therapy. This study introduced a novel strategy to effectively promote the synergistic PTT/PDT effect by the enhanced oxidative stress.
Collapse
Affiliation(s)
- Yuanqi Yang
- Department of Microbial and Biochemical Pharmacy, School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qingqing Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Wei Gu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Kaisheng Nan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Siyu Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jinghai Zhang
- Department of Microbial and Biochemical Pharmacy, School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
2
|
Zhang H, Yang M, Wu Q, Xue J, Liu H. Engineering Two-Dimensional Nanomaterials for Photothermal Therapy. Angew Chem Int Ed Engl 2025; 64:e202424768. [PMID: 39936912 DOI: 10.1002/anie.202424768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/13/2025]
Abstract
Two-dimensional (2D) nanomaterials offer a transformative platform for photothermal therapy (PTT) due to their unique physicochemical properties and exceptional photothermal conversion efficiencies. This Minireview summarizes the photothermal mechanisms of common 2D nanomaterials and details their synthesis, surface modification, and optimization strategies. Recent advances leveraging 2D nanomaterials for enhanced PTT are highlighted, with particular emphasis on synergistic therapeutic modalities. Despite the significant potential of 2D nanomaterials in PTT, challenges persist, including scalable and reproducible manufacturing, precise targeted delivery, understanding of the underlying biological interactions, and comprehensive assessment of long-term biocompatibility and toxicity. Looking forward, emerging technologies such as machine learning are expected to play a crucial role in accelerating the design and optimization of 2D nanomaterials for PTT, enabling the prediction of optimal structures, properties, and therapeutic efficacy, and ultimately paving the way for personalized nanomedicine.
Collapse
Affiliation(s)
- Haoyuan Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No. 15, East of North Third Ring Road, Chaoyang District, Beijing, 100029, China
| | - Min Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No. 15, East of North Third Ring Road, Chaoyang District, Beijing, 100029, China
| | - Qingyuan Wu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, No. 30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Jiajia Xue
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No. 15, East of North Third Ring Road, Chaoyang District, Beijing, 100029, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No. 15, East of North Third Ring Road, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
3
|
Zhuang J, Jia L, Li C, Yang R, Wang J, Wang WA, Zhou H, Luo X. Recent advances in photothermal nanomaterials for ophthalmic applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:195-215. [PMID: 39995756 PMCID: PMC11849557 DOI: 10.3762/bjnano.16.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025]
Abstract
The human eye, with its remarkable resolution of up to 576 million pixels, grants us the ability to perceive the world with astonishing accuracy. Despite this, over 2 billion people globally suffer from visual impairments or blindness, primarily because of the limitations of current ophthalmic treatment technologies. This underscores an urgent need for more advanced therapeutic approaches to effectively halt or even reverse the progression of eye diseases. The rapid advancement of nanotechnology offers promising pathways for the development of novel ophthalmic therapies. Notably, photothermal nanomaterials, particularly well-suited for the transparent tissues of the eye, have emerged as a potential game changer. These materials enable precise and controllable photothermal therapy by effectively manipulating the distribution of the thermal field. Moreover, they extend beyond the conventional boundaries of thermal therapy, achieving unparalleled therapeutic effects through their diverse composite structures and demonstrating enormous potential in promoting retinal drug delivery and photoacoustic imaging. This paper provides a comprehensive summary of the structure-activity relationship between the photothermal properties of these nanomaterials and their innovative therapeutic mechanisms. We review the latest research on photothermal nanomaterial-based treatments for various eye diseases. Additionally, we discuss the current challenges and future perspectives in this field, with a focus on enhancing global visual health.
Collapse
Affiliation(s)
- Jiayuan Zhuang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- School of Public Health, Yangzhou University, Yangzhou 225009, P. R. China
| | - Linhui Jia
- School of Marine Science and Engineering, Hainan University, Haikou 570228, P. R. China
| | - Chenghao Li
- Medical College, Yangzhou University, Yangzhou 225009, P. R. China
| | - Rui Yang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Jiapeng Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Wen-an Wang
- The first school of clinical medicine, Lanzhou University, Lanzhou 730000, P. R. China
| | - Heng Zhou
- School of Public Health, Yangzhou University, Yangzhou 225009, P. R. China
| | - Xiangxia Luo
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- Gansu Provincial Hospital of TCM, Lanzhou 730000, P. R. China
| |
Collapse
|
4
|
Yim J, Park J, Kim G, Lee HH, Chung JS, Jo A, Koh M, Park J. Conditional PROTAC: Recent Strategies for Modulating Targeted Protein Degradation. ChemMedChem 2024; 19:e202400326. [PMID: 38993102 PMCID: PMC11581424 DOI: 10.1002/cmdc.202400326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) have emerged as a promising technology for inducing targeted protein degradation by leveraging the intrinsic ubiquitin-proteasome system (UPS). While the potential druggability of PROTACs toward undruggable proteins has accelerated their rapid development and the wide-range of applications across diverse disease contexts, off-tissue effects and side-effects of PROTACs have recently received attentions to improve their efficacy. To address these issues, spatial or temporal target protein degradation by PROTACs has been spotlighted. In this review, we explore chemical strategies for modulating protein degradation in a cell type-specific (spatio-) and time-specific (temporal-) manner, thereby offering insights for expanding PROTAC applications to overcome the current limitations of target protein degradation strategy.
Collapse
Affiliation(s)
- Junhyeong Yim
- Department of ChemistryKangwon National UniversityChuncheon24341Republic of Korea
- Multidimensional Genomics Research CenterKangwon National UniversityChuncheon24341Republic of Korea
| | - Junyoung Park
- Department of ChemistryKangwon National UniversityChuncheon24341Republic of Korea
- Institute for Molecular Science and Fusion TechnologyKangwon National UniversityChuncheon24341Republic of Korea
| | - Gabin Kim
- Department of Chemistry and ChemistryInstitute for Functional MaterialsPusan National UniversityBusan46241Republic of Korea
| | - Hyung Ho Lee
- Department of UrologyUrological Cancer CenterResearch Institute and Hospital of National Cancer CenterGoyang10408Republic of Korea
| | - Jin Soo Chung
- Department of UrologyUrological Cancer CenterResearch Institute and Hospital of National Cancer CenterGoyang10408Republic of Korea
| | - Ala Jo
- Center for NanomedicineInstitute for Basic ScienceSeoul03722Republic of Korea
| | - Minseob Koh
- Department of Chemistry and ChemistryInstitute for Functional MaterialsPusan National UniversityBusan46241Republic of Korea
| | - Jongmin Park
- Department of ChemistryKangwon National UniversityChuncheon24341Republic of Korea
- Multidimensional Genomics Research CenterKangwon National UniversityChuncheon24341Republic of Korea
- Institute for Molecular Science and Fusion TechnologyKangwon National UniversityChuncheon24341Republic of Korea
| |
Collapse
|
5
|
Cao X, Li S, Wang S, Guo R, Dong Q, Chen L, Chen Z. Graphene-Metal Nanocrystal Hybrid Materials for Bioapplications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51816-51825. [PMID: 39315731 DOI: 10.1021/acsami.4c11442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The development of functional nanomaterials is crucial for advancing personalized and precision medicine. Graphene-metal nanocrystal hybrid materials not only possess the intrinsic advantages of graphene-based materials but also exhibit additional optical, magnetic, and catalytic properties of various metal nanocrystals, showing great synergies in bioapplications, including biosensing, bioimaging, and disease treatments. In this Perspective, we discuss the advantages and design principles of graphene-metal nanocrystal hybrid materials and provide an overview of their applications in biological fields. Finally, we highlight the challenges and future directions for their practical implementation.
Collapse
Affiliation(s)
- Xiaoxu Cao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shengkai Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Shen Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Rongshen Guo
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qian Dong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Long Chen
- Faculty of Science and Technology University of Macau Taipa, Macau 999078, China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Environmental Science &Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Ruan M, Wang X, Guo M, Hu Z, Hu W, Guo Z, Chen W, Li S, Wu K, Du S, Han N. Gambogic acid and IR780 self-assembled nanoparticles for combined chemo-phototherapy. Colloids Surf B Biointerfaces 2024; 245:114254. [PMID: 39299039 DOI: 10.1016/j.colsurfb.2024.114254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/11/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Combined chemo-phototherapy has shown considerable advantages and potential in cancer treatment. For this purpose, self-assembled nanoparticles by gambogic acid (GA) and IR780 (referred to as GA-IR780 NPs) were prepared. Herein, GA, an active compound derived from Garcinia hanburyi Hook.f, was selected as a chemo-agent. IR780 was used as a photothermal agent as well as a photosensitizer, which could kill tumor cells via photothermal effect and photodynamic effect. The obtained GA-IR780 NPs were uniform spheres with particle size of ca. 50 nm. The drug loading efficiency of GA and IR780 was 38.42 % and 56.64 %, respectively. The GA-IR780 NPs exhibited excellent photothermal properties as well as photodynamic effect when irradiated by near infrared (NIR) light (808 nm, 2.0 W/cm2). Moreover, the GA-IR780 NPs showed enhanced cytotoxicity with NIR light activation. Results of animal experiments showed that GA-IR780 NPs had the most significant tumor inhibition when irradiated by laser, and the results of H&E, Ki-67 and TUNEL staining confirmed that the GA-IR780 NPs+Laser group caused the most severe tumor tissue damage. The above results indicated that GA-mediated chemotherapy combining with IR780-based phototherapy could significantly improve the anti-tumor efficacy.
Collapse
Affiliation(s)
- Mingyue Ruan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinran Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mingxue Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zucheng Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wenjun Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zishuo Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wanling Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shiyan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Kai Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Ning Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
7
|
Xiao S, Mu M, Feng C, Pan S, Chen N. The application of bacteria-nanomaterial hybrids in antitumor therapy. J Nanobiotechnology 2024; 22:536. [PMID: 39227831 PMCID: PMC11373302 DOI: 10.1186/s12951-024-02793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Adverse effects and multidrug resistance remain significant obstacles in conventional cancer therapy. Nanomedicines, with their intrinsic properties such as nano-sized dimensions and tunable surface characteristics, have the potential to mitigate the side effects of traditional cancer treatments. While nanomaterials have been widely applied in cancer treatment, challenges such as low targeting efficiency and poor tumor penetration persist. Recent research has shown that anaerobic bacteria exhibit high selectivity for primary tumors and metastatic cancers, offering good safety and superior tumor penetration capabilities. This suggests that combining nanomaterials with bacteria could complement their respective limitations, opening vast potential applications in cancer therapy. The use of bacteria in combination with nanomaterials for anticancer treatments, including chemotherapy, radiotherapy, and photothermal/photodynamic therapy, has contributed to the rapid development of the field of bacterial oncology treatments. This review explores the mechanisms of bacterial tumor targeting and summarizes strategies for synthesizing bacterial-nanomaterial and their application in cancer therapy. The combination of bacterial-nanomaterial hybrids with modern therapeutic approaches represents a promising avenue for future cancer treatment research, with the potential to improve treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Susu Xiao
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Mu
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chenqian Feng
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shulin Pan
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nianyong Chen
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Gorav G, Khedekar V, Varier GK, Nandakumar P. Role of charge in enhanced nuclear transport and retention of graphene quantum dots. Sci Rep 2024; 14:19044. [PMID: 39152185 PMCID: PMC11329721 DOI: 10.1038/s41598-024-69809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
The nuclear pore complexes on the nuclear membrane serve as the exclusive gateway for communication between the nucleus and the cytoplasm, regulating the transport of various molecules, including nucleic acids and proteins. The present work investigates the kinetics of the transport of negatively charged graphene quantum dots through nuclear membranes, focusing on quantifying their transport characteristics. Experiments are carried out in permeabilized HeLa cells using time-lapse confocal fluorescence microscopy. Our findings indicate that negatively charged graphene quantum dots exhibit rapid transport to the nuclei, involving two distinct transport pathways in the translocation process. Complementary experiments on the nuclear import and export of graphene quantum dots validate the bi-directionality of transport, as evidenced by comparable transport rates. The study also shows that the negatively charged graphene quantum dots possess favorable retention properties, underscoring their potential as drug carriers.
Collapse
Affiliation(s)
- Gorav Gorav
- Department of Physics, Birla Institute of Technology and Science, Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa, 403726, India
| | - Vrushali Khedekar
- Department of Physics, Birla Institute of Technology and Science, Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa, 403726, India
| | - Geetha K Varier
- Department of Physics, Birla Institute of Technology and Science, Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa, 403726, India
| | - P Nandakumar
- Department of Physics, Birla Institute of Technology and Science, Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa, 403726, India.
| |
Collapse
|
9
|
Zhang W, Fan M, Yang R, Li Z, Qiu Y, Dong M, Song P, Wang N, Yang Y, Wang Q. New features of edge-selectively hydroxylated graphene nanosheets as NIR-II photothermal agent and sonothermal agent for tumor therapy. J Mater Chem B 2024; 12:7892-7904. [PMID: 39027988 DOI: 10.1039/d4tb00866a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Second near-infrared (NIR-II) laser-mediated photothermal therapy and sonothermal therapy using low-intensity focused ultrasound exposure for tumors have attracted increasing attention owing to their ability to penetrate deep tissues and provide noninvasive ablation with high therapeutic efficacy. However, their applications were limited by the shortness of optimal NIR-II photothermal agents and sonothermal agents. In this study, we discovered that the edge-selectively hydroxylated graphene nanosheets (EHG NSs) with excellent water dispersibility and an "intact conjugated plane" were not only an outstanding NIR-II photothermal agent but also an effective sonothermal agent for tumor therapy. EHG NSs were incorporated into an injectable adhesive thermosensitive hydrogel with a characteristic sol-gel phase transition behavior. EHG NSs endowed the injectable hydrogel with an exceptional photothermal effect under the laser irradiation (1064 nm, 1.0 W cm-2) as well as an effective sonothermal effect under ultrasonic exposure (3.0 MHz, 2.1 W cm-2), effectively killing tumor cells in vitro and inhibiting tumor growth after intratumoral injection. Especially, the NIR-II photothermal therapy based on the hybrid hydrogel completely ablated the primary tumors and effectively activated systemic anti-tumor immune responses benefiting from the protein adsorption capacity of the injectable hydrogel, significantly inhibiting the growth of the distal tumors. Collectively, EHG nanosheets loaded in the injectable hydrogel will be a promising "all-rounder" for noninvasive deep penetrating thermotherapy and a potent platform that integrates various therapies.
Collapse
Affiliation(s)
- Wenqian Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Man Fan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Ruchao Yang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Zhihao Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yuzhi Qiu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Mengna Dong
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Peng Song
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Nan Wang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yajiang Yang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
- National Engineering Research Center for Nanomedicine, Wuhan 430074, China
| | - Qin Wang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
- National Engineering Research Center for Nanomedicine, Wuhan 430074, China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science & Technology), Ministry of Education, Wuhan, 430074, China
| |
Collapse
|
10
|
Mousavi SM, Kalashgrani MY, Javanmardi N, Riazi M, Akmal MH, Rahmanian V, Gholami A, Chiang WH. Recent breakthroughs in graphene quantum dot-enhanced sonodynamic and photodynamic therapy. J Mater Chem B 2024; 12:7041-7062. [PMID: 38946657 DOI: 10.1039/d4tb00767k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Water-soluble graphene quantum dots (GQDs) have recently exhibited considerable potential for diverse biomedical applications owing to their exceptional optical and chemical properties. However, the pronounced heterogeneity in the composition, size, and morphology of GQDs poses challenges for a comprehensive understanding of the intricate correlation between their structural attributes and functional properties. This variability also introduces complexities in scaling the production processes and addressing safety considerations. Light and sound have firmly established their role in clinical applications as pivotal energy sources for minimally invasive therapeutic interventions. Given the limited penetration depth of light, photodynamic therapy (PDT) predominantly targets superficial conditions such as dermatological disorders, head and neck malignancies, ocular ailments, and early-stage esophageal cancer. Conversely, ultrasound-based sonodynamic therapy (SDT) capitalizes on its superior ability to propagate and focus ultrasound within biological tissues, enabling a diverse range of therapeutic applications, including the management of gliomas, breast cancer, hematological tumors, and modulation of the blood-brain barrier (BBB). Considering the advancements in theranostic and precision therapies, reevaluating these conventional energy sources and their associated sensitizers is imperative. This review introduces three prevalent treatment modalities that harness light and sound stimuli: PDT, SDT, and a synergistic approach that integrates PDT and SDT. This study delineated the therapeutic dynamics and contemporary designs of sensitizers tailored to these modalities. By exploring the historical context of the field and elucidating the latest design strategies, this review underscores the pivotal role of GQDs in propelling the evolution of PDT and SDT. This aspires to stimulate researchers to develop "multimodal" therapies integrating both light and sound stimuli.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | | | - Negar Javanmardi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mohsen Riazi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Muhammad Hussnain Akmal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Vahid Rahmanian
- Department of Mechanical Engineering, Université du Québec à Trois-Rivières, Drummondville, Quebec, J2C 0R5, Canada.
- Centre national intégré du manufacturier intelligent (CNIMI), Université du Québec à Trois-Rivières, Drummondville, QC, Canada
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
- Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan
- Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan
| |
Collapse
|
11
|
Sabatelle RC, Colson YL, Sachdeva U, Grinstaff MW. Drug Delivery Opportunities in Esophageal Cancer: Current Treatments and Future Prospects. Mol Pharm 2024; 21:3103-3120. [PMID: 38888089 PMCID: PMC11331583 DOI: 10.1021/acs.molpharmaceut.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
With one of the highest mortality rates of all malignancies, the 5-year survival rate for esophageal cancer is under 20%. Depending on the stage and extent of the disease, the current standard of care treatment paradigm includes chemotherapy or chemoradiotherapy followed by surgical esophagogastrectomy, with consideration for adjuvant immunotherapy for residual disease. This regimen has high morbidity, due to anatomic changes inherent in surgery, the acuity of surgical complications, and off-target effects of systemic chemotherapy and immunotherapy. We begin with a review of current treatments, then discuss new and emerging targets for therapies and advanced drug delivery systems. Recent and ongoing preclinical and early clinical studies are evaluating traditional tumor targets (e.g., human epidermal growth factor receptor 2), as well as promising new targets such as Yes-associated protein 1 or mammalian target of rapamycin to develop new treatments for this disease. Due the function and location of the esophagus, opportunities also exist to pair these treatments with a drug delivery strategy to increase tumor targeting, bioavailability, and intratumor concentrations, with the two most common delivery platforms being stents and nanoparticles. Finally, early results with antibody drug conjugates and chimeric antigenic receptor T cells show promise as upcoming therapies. This review discusses these innovations in therapeutics and drug delivery in the context of their successes and failures, with the goal of identifying those solutions that demonstrate the most promise to shift the paradigm in treating this deadly disease.
Collapse
Affiliation(s)
- Robert C. Sabatelle
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA, 02215, USA
| | - Yolonda L. Colson
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Uma Sachdeva
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
12
|
Cabral RLB, Galvão ERVP, Fechine PBA, Galvão FMF, do Nascimento JHO. A minireview on the utilization of petroleum coke as a precursor for carbon-based nanomaterials (CNMs): perspectives and potential applications. RSC Adv 2024; 14:19953-19968. [PMID: 38903671 PMCID: PMC11189030 DOI: 10.1039/d4ra01196a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
The remarkable properties of carbon-based nanomaterials (CNMs) have stimulated a significant increase in studies on different 0D, 1D and 2D nanostructures, which have promising applications in various fields of science and technology. However, the use of graphite as a raw material, which is essential for their production, limits the scalability of these nanostructures. In this context, petroleum coke (PC), a by-product of the coking process in petrochemical industry with a high carbon content (>80 wt%), is emerging as an attractive and low-cost option for the synthesis of carbonaceous nanostructures. This brief review presents recent research related to the use of PC as a precursor for CNMs, such as graphene and its oxidized (GO) and reduced (RGO) variants, among other carbon-based nanostructures. The work highlights the performance of these materials in specific areas of application. In addition, this review describes and analyzes strategies for transforming low-cost, environmentally friendly waste into advanced technological innovations with greater added value, in line with the UN's 2030 Agenda.
Collapse
Affiliation(s)
- Rivaldo Leonn Bezerra Cabral
- Postgraduate Program in Chemical Engineering, Center of Technology, Federal University of Rio Grande do Norte CEP 59072970 Natal RN Brazil
| | | | - Pierre Basílio Almeida Fechine
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará - UFC Campus do Pici, CP 12100 CEP 60451-970 Fortaleza CE Brazil
| | - Felipe Mendonça Fontes Galvão
- Postgraduate Program in Chemical Engineering, Center of Technology, Federal University of Rio Grande do Norte CEP 59072970 Natal RN Brazil
| | - José Heriberto Oliveira do Nascimento
- Postgraduate Program in Chemical Engineering, Center of Technology, Federal University of Rio Grande do Norte CEP 59072970 Natal RN Brazil
- Postgraduate Program in Textile Engineering, Center of Technology, Federal University of Rio Grande do Norte Natal RN Brazil
| |
Collapse
|
13
|
Peng J, Li S, Ti H. Sensitize Tumor Immunotherapy: Immunogenic Cell Death Inducing Nanosystems. Int J Nanomedicine 2024; 19:5895-5930. [PMID: 38895146 PMCID: PMC11184231 DOI: 10.2147/ijn.s457782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Low immunogenicity of tumors poses a challenge in the development of effective tumor immunotherapy. However, emerging evidence suggests that certain therapeutic approaches, such as chemotherapy, radiotherapy, and phototherapy, can induce varying degrees of immunogenic cell death (ICD). This ICD phenomenon leads to the release of tumor antigens and the maturation of dendritic cells (DCs), thereby enhancing tumor immunogenicity and promoting immune responses. However, the use of a single conventional ICD inducer often fails to achieve in situ tumor ablation and establish long-term anti-tumor immune responses. Furthermore, the induction of ICD induction varies among different approaches, and the distribution of the therapeutic agent within the body influences the level of ICD and the occurrence of toxic side effects. To address these challenges and further boost tumor immunity, researchers have explored nanosystems as inducers of ICD in combination with tumor immunotherapy. This review examines the mechanisms of ICD and different induction methods, with a specific focus on the relationship between ICD and tumor immunity. The aim is to explore the research advancements utilizing various nanomaterials to enhance the body's anti-tumor effects by inducing ICD. This paper aims to contribute to the development and clinical application of nanomaterial-based ICD inducers in the field of cancer immunotherapy by providing important theoretical guidance and practical references.
Collapse
Affiliation(s)
- Jianlan Peng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Shiying Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Huihui Ti
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Precise Medicine and Big Data Engineering Technology Research Center for Traditional Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
14
|
Dilenko H, Bartoň Tománková K, Válková L, Hošíková B, Kolaříková M, Malina L, Bajgar R, Kolářová H. Graphene-Based Photodynamic Therapy and Overcoming Cancer Resistance Mechanisms: A Comprehensive Review. Int J Nanomedicine 2024; 19:5637-5680. [PMID: 38882538 PMCID: PMC11179671 DOI: 10.2147/ijn.s461300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/09/2024] [Indexed: 06/18/2024] Open
Abstract
Photodynamic therapy (PDT) is a non-invasive therapy that has made significant progress in treating different diseases, including cancer, by utilizing new nanotechnology products such as graphene and its derivatives. Graphene-based materials have large surface area and photothermal effects thereby making them suitable candidates for PDT or photo-active drug carriers. The remarkable photophysical properties of graphene derivates facilitate the efficient generation of reactive oxygen species (ROS) upon light irradiation, which destroys cancer cells. Surface functionalization of graphene and its materials can also enhance their biocompatibility and anticancer activity. The paper delves into the distinct roles played by graphene-based materials in PDT such as photosensitizers (PS) and drug carriers while at the same time considers how these materials could be used to circumvent cancer resistance. This will provide readers with an extensive discussion of various pathways contributing to PDT inefficiency. Consequently, this comprehensive review underscores the vital roles that graphene and its derivatives may play in emerging PDT strategies for cancer treatment and other medical purposes. With a better comprehension of the current state of research and the existing challenges, the integration of graphene-based materials in PDT holds great promise for developing targeted, effective, and personalized cancer treatments.
Collapse
Affiliation(s)
- Hanna Dilenko
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Kateřina Bartoň Tománková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lucie Válková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Barbora Hošíková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Markéta Kolaříková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lukáš Malina
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Robert Bajgar
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hana Kolářová
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
15
|
Wang Y, Chang L, Gao H, Yu C, Gao Y, Peng Q. Nanomaterials-based advanced systems for photothermal / photodynamic therapy of oral cancer. Eur J Med Chem 2024; 272:116508. [PMID: 38761583 DOI: 10.1016/j.ejmech.2024.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
The traditional clinical approaches for oral cancer consist of surgery, chemotherapy, radiotherapy, immunotherapy, and so on. However, these treatments often induce side effects and exhibit limited efficacy. Photothermal therapy (PTT) emerges as a promising adjuvant treatment, utilizing photothermal agents (PTAs) to convert light energy into heat for tumor ablation. Another innovative approach, photodynamic therapy (PDT), leverages photosensitizers (PSs) and specific wavelength laser irradiation to generate reactive oxygen species (ROS), offering an effective and non-toxic alternative. The relevant combination therapies have been reported in the field of oral cancer. Simultaneously, the advancement of nanomaterials has propelled the clinical application of PTT and PDT. Therefore, a comprehensive understanding of PTT and PDT is required for better application in oral cancer treatment. Here, we review the use of PTT and PDT in oral cancer, including noble metal materials (e.g., Au nanoparticles), carbon materials (e.g., graphene oxide), organic dye molecules (e.g., indocyanine green), organic molecule-based agents (e.g., porphyrin-analog phthalocyanine) and other inorganic materials (e.g., MXenes), exemplify the advantages and disadvantages of common PTAs and PSs, and summarize the combination therapies of PTT with PDT, PTT/PDT with chemotherapy, PTT with radiotherapy, PTT/PDT with immunotherapy, and PTT/PDT with gene therapy in the treatment of oral cancer. The challenges related to the PTT/PDT combination therapy and potential solutions are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lili Chang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hongyu Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chenhao Yu
- Department of Periodontology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Yujie Gao
- Department of Stomatology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610500, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Li F, Wang H, Ye T, Guo P, Lin X, Hu Y, Wei W, Wang S, Ma G. Recent Advances in Material Technology for Leukemia Treatments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313955. [PMID: 38547845 DOI: 10.1002/adma.202313955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/11/2024] [Indexed: 04/13/2024]
Abstract
Leukemia is a widespread hematological malignancy characterized by an elevated white blood cell count in both the blood and the bone marrow. Despite notable advancements in leukemia intervention in the clinic, a large proportion of patients, especially acute leukemia patients, fail to achieve long-term remission or complete remission following treatment. Therefore, leukemia therapy necessitates optimization to meet the treatment requirements. In recent years, a multitude of materials have undergone rigorous study to serve as delivery vectors or direct intervention agents to bolster the effectiveness of leukemia therapy. These materials include liposomes, protein-based materials, polymeric materials, cell-derived materials, and inorganic materials. They possess unique characteristics and are applied in a broad array of therapeutic modalities, including chemotherapy, gene therapy, immunotherapy, radiotherapy, hematopoietic stem cell transplantation, and other evolving treatments. Here, an overview of these materials is presented, describing their physicochemical properties, their role in leukemia treatment, and the challenges they face in the context of clinical translation. This review inspires researchers to further develop various materials that can be used to augment the efficacy of multiple therapeutic modalities for novel applications in leukemia treatment.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huaiji Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Ye
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyun Lin
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Pieklarz K, Galita G, Majsterek I, Owczarz P, Modrzejewska Z. Nanoarchitectonics and Biological Properties of Nanocomposite Thermosensitive Chitosan Hydrogels Obtained with the Use of Uridine 5'-Monophosphate Disodium Salt. Int J Mol Sci 2024; 25:5989. [PMID: 38892176 PMCID: PMC11172958 DOI: 10.3390/ijms25115989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Currently, an important group of biomaterials used in the research in the field of tissue engineering is thermosensitive chitosan hydrogels. Their main advantage is the possibility of introducing their precursors (sols) into the implantation site using a minimally invasive method-by injection. In this publication, the results of studies on the new chitosan structures in the form of thermosensitive hydrogels containing graphene oxide as a nanofiller are presented. These systems were prepared from chitosan lactate and chitosan chloride solutions with the use of a salt of pyrimidine nucleotide-uridine 5'-monophosphate disodium salt-as the cross-linking agent. In order to perform the characterization of the developed hydrogels, the sol-gel transition temperature of the colloidal systems was first determined based on rheological measurements. The hydrogels were also analyzed using FTIR spectroscopy and SEM. Biological studies assessed the cytotoxicity (resazurin assay) and genotoxicity (alkaline version of the comet assay) of the nanocomposite chitosan hydrogels against normal human BJ fibroblasts. The conducted research allowed us to conclude that the developed hydrogels containing graphene oxide are an attractive material for potential use as scaffolds for the regeneration of damaged tissues.
Collapse
Affiliation(s)
- Katarzyna Pieklarz
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, 93-005 Lodz, Poland
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (G.G.); (I.M.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (G.G.); (I.M.)
| | - Piotr Owczarz
- Department of Chemical Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, 93-005 Lodz, Poland;
| | - Zofia Modrzejewska
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, 93-005 Lodz, Poland
| |
Collapse
|
18
|
Chen MM, Li Y, Zhu Y, Geng WC, Chen FY, Li JJ, Wang ZH, Hu XY, Tang Q, Yu Y, Sun T, Guo DS. Supramolecular 3 in 1: A Lubrication and Co-Delivery System for Synergistic Advanced Osteoarthritis Therapy. ACS NANO 2024; 18:13117-13129. [PMID: 38727027 DOI: 10.1021/acsnano.4c01939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The complexity, heterogeneity, and drug resistance of diseases necessitate a shift in therapeutic paradigms from monotherapy to combination therapy, which could augment treatment efficiency. Effective treatment of advanced osteoarthritis (OA) requires addressing three key factors contributing to its deterioration: chronic joint inflammation, lubrication dysfunction, and cartilage-tissue degradation. Herein, we present a supramolecular nanomedicine of multifunctionality via molecular recognition and self-assembly. The employed macrocyclic carrier, zwitterion-modified cavitand (CV-2), not only accurately loads various drugs but also functions as a therapeutic agent with lubricating properties for the treatment of OA. Kartogenin (KGN), a drug for articular cartilage regeneration and protection, and flurbiprofen (FP), an anti-inflammatory agent, were coloaded onto CV-2 assembly, forming a supramolecular nanomedicine KGN&FP@CV-2. The three-in-one combination therapy of KGN&FP@CV-2 addresses the three pathological features for treating OA collectively, and thus provides long-term therapeutic benefits for OA through sustained drug release and intrinsic lubrication in vivo. The multifunctional integration of macrocyclic delivery and therapeutics provides a simple, flexible, and universal platform for the synergistic treatment of diseases involving multiple drugs.
Collapse
Affiliation(s)
- Meng-Meng Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yuqiao Li
- Spine Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Yujie Zhu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Wen-Chao Geng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Fang-Yuan Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Juan-Juan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ze-Han Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xin-Yue Hu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qiong Tang
- Department of Respiratory, Tianjin Union Medical Center, Tianjin 300121, China
| | - Yang Yu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Tianwei Sun
- Spine Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China
| |
Collapse
|
19
|
Zheng J, He Z, Shen L, Chen X, Chen P, Zhang B, Qin H, Xiong Z, Zhang S. Microwave-Responsive Edge-Oxidized Graphene for Imaging-Guided Neoadjuvant Thermal Immunotherapy via Promoting Immunogenic Cell Death and Redressing Hypoxia. ACS APPLIED NANO MATERIALS 2024; 7:10243-10256. [DOI: 10.1021/acsanm.4c00580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Jieling Zheng
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510627, China
| | - Zicong He
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510627, China
| | - Luyan Shen
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xiaoyu Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Pei Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510627, China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510627, China
| | - Huan Qin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zhiyuan Xiong
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510627, China
| |
Collapse
|
20
|
Ye W, Li H, Zhao J, Lu D, Tao T, Zhu X. Graphene therapy-related lncRNAs as prognostic and immune microenvironmental biomarkers in hepatocellular carcinoma. Transl Oncol 2024; 43:101915. [PMID: 38368713 PMCID: PMC10884496 DOI: 10.1016/j.tranon.2024.101915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Graphene materials have the capacity to influence the tumor microenvironment and intracellular signaling responsiveness. However, the process of graphene-assisted liver cancer treatment still lacks specific biomarkers for assessing its efficacy. METHODS We identified graphene therapy-related lncRNAs (GTLncRNAs) through gene analysis and correlation tests. Multivariate COX and LASSO regression analyses yielded significant lncRNAs for a risk score model. We evaluated clinicopathological factors and tumor microenvironment using ssGSEA. We scrutinized the pathways of immune function, the evasion of tumor immunity, and the potential for immunotherapy. GTLncRNAs with differential expression were subjected to GO/KEGG analysis, and prospective chemotherapy drugs were discerned utilizing the pRRophetic algorithm. The prognostic model was authenticated through the examination of the Imvigor210 cohort, and an analysis of mRNA stemness was executed. RESULTS The researchers constructed a prognostic model based on 22 graphene therapy-related lncRNAs. Protective lncRNAs (AC010280.2, AL365361.1, and LINC01549) and negative lncRNAs (AC026412.3, AL031985.3, ELFN1-AS1, SNHG4, and EB2-AS1) were identified. Higher risk scores correlated with shorter survival. Low-risk immune pathways included Type_II_IFN_Reponse and cytolytic_activity. Subgroups differed significantly in TMB, TIDE, MDSC, exclusion, and dysfunction. Low TMB values correlated with longer survival. The high-risk subgroup showed increased sensitivity to screened compounds, and mRNAsi was higher in cancer tissue. CONCLUSIONS Our GTLncRNAs-based model accurately predicted survival of HCC patients and underscored the influence of graphene therapy-related genes on the tumor microenvironment. Potential treatment compounds were identified, and the mRNAsi index demonstrated prognostic value.
Collapse
Affiliation(s)
- Weilong Ye
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, PR China
| | - Hui Li
- Department of Internal Medicine, Huadu District People's Hospital of Guangzhou (The Third School of Clinical Medicine, Southern Medical University), PR China
| | - Juan Zhao
- Department of the Clinical Laboratory, Huadu District People's Hospital of Guangzhou (The Third School of Clinical Medicine, Southern Medical University), PR China
| | - Deshuai Lu
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, PR China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, PR China.
| | - Xiao Zhu
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, PR China.
| |
Collapse
|
21
|
Wu Q, Li Z, Zhou X, Wei Z, Ramadan S, Xu Y, Xu L, Li D. Photothermal Ferrotherapy - Induced Immunogenic Cell Death via Iron-Based Ternary Chalcogenide Nanoparticles Against Triple-Negative Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306766. [PMID: 38095479 DOI: 10.1002/smll.202306766] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/14/2023] [Indexed: 02/01/2024]
Abstract
Triple-negative breast cancer (TNBC) is highly malignant and prone to recurrence and metastasis. Patients with TNBC have limited therapeutic options, often resulting in poor prognosis. Some new treatments for TNBC have been considered in the past decade, such as immunotherapy, photothermal therapy (PTT), and ferroptosis therapy, that allow the rapid and minimally invasive ablation of cancer. However, a multifunctional nanodrug system with more potent efficacy for TNBC is still needed. The use of iron-based ternary chalcogenide nanoparticles (NPs), namely AgFeS2, is reported, which synergistically combines photothermal therapy, ferrotherapy, and immunotherapy in one system for the treatment of TNBC. AgFeS2 possesses excellent photothermal conversion performance for tumor near-infrared (NIR) phototherapy. Upon photoirradiation, these NPs generate heat, accelerate the release of iron ions, and effectively catalyze the Fenton reaction, resulting in cell apoptosis and ferroptosis. Additionally, AgFeS2 promotes the release of tumor-specific antigens and triggers an immune response via immunogenic cell death (ICD), thereby providing unique synergistic mechanisms for cancer therapy. The present study demonstrates the great potential of iron-based ternary chalcogenide as a new therapeutic platform for a combination of photothermal therapy, ferrotherapy, and immunotherapy for the suppression of TNBC.
Collapse
Affiliation(s)
- Qiang Wu
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhuoyuan Li
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xin Zhou
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhewei Wei
- Department of Gastrointestinopancreatic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Sami Ramadan
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Yunsheng Xu
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, China
| | - Lizhou Xu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Danyang Li
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, China
| |
Collapse
|
22
|
Svigelj R, Toniolo R, Bertoni C, Fraleoni-Morgera A. Synergistic Applications of Graphene-Based Materials and Deep Eutectic Solvents in Sustainable Sensing: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:2403. [PMID: 38676019 PMCID: PMC11054382 DOI: 10.3390/s24082403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
The recently explored synergistic combination of graphene-based materials and deep eutectic solvents (DESs) is opening novel and effective avenues for developing sensing devices with optimized features. In more detail, remarkable potential in terms of simplicity, sustainability, and cost-effectiveness of this combination have been demonstrated for sensors, resulting in the creation of hybrid devices with enhanced signal-to-noise ratios, linearities, and selectivity. Therefore, this review aims to provide a comprehensive overview of the currently available scientific literature discussing investigations and applications of sensors that integrate graphene-based materials and deep eutectic solvents, with an outlook for the most promising developments of this approach.
Collapse
Affiliation(s)
- Rossella Svigelj
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - Rosanna Toniolo
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | | | | |
Collapse
|
23
|
Fioravanti G, Galante A, Fattibene P, Torrieri Di Tullio L, Colacicchi S, De Thomasis G, Perrozzi F, De Berardinis N, Profeta G, Ottaviano L, Alecci M. Disentangling the intrinsic relaxivities of highly purified graphene oxide. NANOTECHNOLOGY 2024; 35:245101. [PMID: 38467058 DOI: 10.1088/1361-6528/ad3253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/10/2024] [Indexed: 03/13/2024]
Abstract
The chemistry of contrast agents (CAs) for magnetic resonance imaging (MRI) applications is an active area of research and, in recent work, it was shown that CA-based graphene oxide (GO) has valuable properties for biomedical uses. GO has a potential as MRI CAs thanks to several functionalities, like its ability to penetrate tissues and cell membranes, as well as easy coupling with therapeutic agents, therefore showing the potential for both a diagnostic and therapeutic role. In this study, we performed a thorough cleaning of the GO sample (synthesized using a modified Hummers method), minimizing the amount of residual manganese down to 73 ppm. Using a wide range of physical-chemical methods (morphology, chemical composition, elemental analysis, spectroscopies, and imaging), we characterized the intrinsic longitudinal and transverse relaxivities of highly purified GO nanosheets. X-band electron paramagnetic resonance allowed to recognize the paramagnetic species involved, and 1.0 T MRI was used to disentangle the relative contributions to the MRI contrast of pristine GO nanosheets arising from structural defects and residual paramagnetic manganese impurities embedded in the nanomaterial. Although experiments show that the MRI relaxivity of GO nanosheets arises from the cumulative effect of structural defects and paramagnetic impurities, we conclude that the latter contribution to the longitudinal and transverse relaxivities becomes irrelevant for highly purified (pristine) GO. This novel finding clearly demonstrates that, apart from trivial manganese inclusion, pristine GO produces an inherent MRI response via structural defects, and therefore it is on its own a suitable candidate as MRI contrast agent.
Collapse
Affiliation(s)
- Giulia Fioravanti
- Department of Physical and Chemical Sciences, University of L'Aquila, I-67100 L'Aquila, Italy
| | - Angelo Galante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy
- National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), I-67100 L'Aquila, Italy
- CNR-SPIN, c/o Department of Physical and Chemical Sciences, I-67100 L'Aquila, Italy
| | - Paola Fattibene
- Istituto Superiore di Sanità, Core Facilities, Viale Regina Elena 299, I-00161 Rome, Italy
| | - Laura Torrieri Di Tullio
- Istituto Superiore di Sanità, Core Facilities, Viale Regina Elena 299, I-00161 Rome, Italy
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, Viale Regina Elena 332, I-00185 Rome, Italy
| | - Silvia Colacicchi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy
| | - Giorgio De Thomasis
- Department of Life, Health and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy
| | - Francesco Perrozzi
- Department of Physical and Chemical Sciences, University of L'Aquila, I-67100 L'Aquila, Italy
| | - Niccolò De Berardinis
- Department of Life, Health and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy
| | - Gianni Profeta
- Department of Physical and Chemical Sciences, University of L'Aquila, I-67100 L'Aquila, Italy
- CNR-SPIN, c/o Department of Physical and Chemical Sciences, I-67100 L'Aquila, Italy
| | - Luca Ottaviano
- Department of Physical and Chemical Sciences, University of L'Aquila, I-67100 L'Aquila, Italy
- CNR-SPIN, c/o Department of Physical and Chemical Sciences, I-67100 L'Aquila, Italy
| | - Marcello Alecci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy
- National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), I-67100 L'Aquila, Italy
- CNR-SPIN, c/o Department of Physical and Chemical Sciences, I-67100 L'Aquila, Italy
| |
Collapse
|
24
|
Wang J, Fang Z, Zhao C, Sun Z, Gao S, Zhang B, Qiu D, Yang M, Sheng F, Gao S, Hou Y. Intelligent Size-Switchable Iron Carbide-Based Nanocapsules with Cascade Delivery Capacity for Hyperthermia-Enhanced Deep Tumor Ferroptosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307006. [PMID: 37924225 DOI: 10.1002/adma.202307006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/31/2023] [Indexed: 11/06/2023]
Abstract
The ferroptosis pathway is recognized as an essential strategy for tumor treatment. However, killing tumor cells in deep tumor regions with ferroptosis agents is still challenging because of distinct size requirements for intratumoral accumulation and deep tumor penetration. Herein, intelligent nanocapsules with size-switchable capability that responds to acid/hyperthermia stimulation to achieve deep tumor ferroptosis are developed. These nanocapsules are constructed using poly(lactic-co-glycolic) acid and Pluronic F127 as carrier materials, with Au-Fe2 C Janus nanoparticles serving as photothermal and ferroptosis agents, and sorafenib (SRF) as the ferroptosis enhancer. The PFP@Au-Fe2 C-SRF nanocapsules, designed with an appropriate size, exhibit superior intratumoral accumulation compared to free Au-Fe2 C nanoparticles, as evidenced by photoacoustic and magnetic resonance imaging. These nanocapsules can degrade within the acidic tumor microenvironment when subjected to laser irradiation, releasing free Au-Fe2 C nanoparticles. This enables them to penetrate deep into tumor regions and disrupt intracellular redox balance. Under the guidance of imaging, these PFP@Au-Fe2 C-SRF nanocapsules effectively inhibit tumor growth when exposed to laser irradiation, capitalizing on the synergistic photothermal and ferroptosis effects. This study presents an intelligent formulation based on iron carbide for achieving deep tumor ferroptosis through size-switchable cascade delivery, thereby advancing the comprehension of ferroptosis in the context of tumor theranostics.
Collapse
Affiliation(s)
- Jingjing Wang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Zhi Fang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Chenyang Zhao
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhaoli Sun
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Shen Gao
- Department of Radiology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Biao Zhang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Daping Qiu
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Meng Yang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Fugeng Sheng
- Department of Radiology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Song Gao
- Institute of Spin-X Science and Technology, South China University of Technology, Guangzhou, 510641, China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
25
|
Silva FALS, Chang HP, Incorvia JAC, Oliveira MJ, Sarmento B, Santos SG, Magalhães FD, Pinto AM. 2D Nanomaterials and Their Drug Conjugates for Phototherapy and Magnetic Hyperthermia Therapy of Cancer and Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306137. [PMID: 37963826 DOI: 10.1002/smll.202306137] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/26/2023] [Indexed: 11/16/2023]
Abstract
Photothermal therapy (PTT) and magnetic hyperthermia therapy (MHT) using 2D nanomaterials (2DnMat) have recently emerged as promising alternative treatments for cancer and bacterial infections, both important global health challenges. The present review intends to provide not only a comprehensive overview, but also an integrative approach of the state-of-the-art knowledge on 2DnMat for PTT and MHT of cancer and infections. High surface area, high extinction coefficient in near-infra-red (NIR) region, responsiveness to external stimuli like magnetic fields, and the endless possibilities of surface functionalization, make 2DnMat ideal platforms for PTT and MHT. Most of these materials are biocompatible with mammalian cells, presenting some cytotoxicity against bacteria. However, each material must be comprehensively characterized physiochemically and biologically, since small variations can have significant biological impact. Highly efficient and selective in vitro and in vivo PTTs for the treatment of cancer and infections are reported, using a wide range of 2DnMat concentrations and incubation times. MHT is described to be more effective against bacterial infections than against cancer therapy. Despite the promising results attained, some challenges remain, such as improving 2DnMat conjugation with drugs, understanding their in vivo biodegradation, and refining the evaluation criteria to measure PTT or MHT effects.
Collapse
Affiliation(s)
- Filipa A L S Silva
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Hui-Ping Chang
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jean Anne C Incorvia
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Maria J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- IUCS - CESPU, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Fernão D Magalhães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
| | - Artur M Pinto
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| |
Collapse
|
26
|
Malode SJ, Pandiaraj S, Alodhayb A, Shetti NP. Carbon Nanomaterials for Biomedical Applications: Progress and Outlook. ACS APPLIED BIO MATERIALS 2024; 7:752-777. [PMID: 38271214 DOI: 10.1021/acsabm.3c00983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Recent developments in nanoscale materials have found extensive use in various fields, especially in the biomedical industry. Several substantial obstacles must be overcome, particularly those related to nanostructured materials in biomedicine, before they can be used in therapeutic applications. Significant concerns in biomedicine include biological processes, adaptability, toxic effects, and nano-biointerfacial properties. Biomedical researchers have difficulty choosing suitable materials for drug carriers, cancer treatment, and antiviral uses. Carbon nanomaterials are among the various nanoparticle forms that are continually receiving interest for biomedical applications. They are suitable materials owing to their distinctive physical and chemical properties, such as electrical, high-temperature, mechanical, and optical diversification. An individualized, controlled, dependable, low-carcinogenic, target-specific drug delivery system can diagnose and treat infections in biomedical applications. The variety of carbon materials at the nanoscale is remarkable. Allotropes and other forms of the same element, carbon, are represented in nanoscale dimensions. These show promise for a wide range of applications. Carbon nanostructured materials with exceptional mechanical, electrical, and thermal properties include graphene and carbon nanotubes. They can potentially revolutionize industries, including electronics, energy, and medicine. Ongoing investigation and expansion efforts continue to unlock possibilities for these materials, making them a key player in shaping the future of advanced technology. Carbon nanostructured materials explore the potential positive effects of reducing the greenhouse effect. The current state of nanostructured materials in the biomedical sector is covered in this review, along with their synthesis techniques and potential uses.
Collapse
Affiliation(s)
- Shweta J Malode
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alodhayb
- Department of Physics and Astronomy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali 140413, Panjab, India
| |
Collapse
|
27
|
Wang Y, Zhang X, Yue H. Two-dimensional nanomaterials induced nano-bio interfacial effects and biomedical applications in cancer treatment. J Nanobiotechnology 2024; 22:67. [PMID: 38369468 PMCID: PMC10874567 DOI: 10.1186/s12951-024-02319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 02/20/2024] Open
Abstract
Two-dimensional nanomaterials (2D NMs), characterized by a large number of atoms or molecules arranged in one dimension (typically thickness) while having tiny dimensions in the other two dimensions, have emerged as a pivotal class of materials with unique properties. Their flat and sheet-like structure imparts distinctive physical, chemical, and electronic attributes, which offers several advantages in biomedical applications, including enhanced surface area for efficient drug loading, surface-exposed atoms allowing precise chemical modifications, and the ability to form hierarchical multilayer structures for synergistic functionality. Exploring their nano-bio interfacial interactions with biological components holds significant importance in comprehensively and systematically guiding safe applications. However, the current lack of in-depth analysis and comprehensive understanding of interfacial effects on cancer treatment motivates our ongoing efforts in this field. This study provides a comprehensive survey of recent advances in utilizing 2D NMs for cancer treatment. It offers insights into the structural characteristics, synthesis methods, and surface modifications of diverse 2D NMs. The investigation further delves into the formation of nano-bio interfaces during their in vivo utilization. Notably, the study discusses a wide array of biomedical applications in cancer treatment. With their potential to revolutionize therapeutic strategies and outcomes, 2D NMs are poised at the forefront of cancer treatment, holding the promise of transformative advancements.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Zhao L, Wang Q, Cui X, Li H, Zhao L, Wang Z, Zhou X, Wang X, Ma Z, Pu Q. Assessing the Redox Toxicity of 2D Nanosheets Based on Their Redox Effect on Cytochrome c in Microchannels. Anal Chem 2024; 96:1913-1921. [PMID: 38266028 DOI: 10.1021/acs.analchem.3c04062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
2D nanosheets (NSs) have been widely used in drug-related applications. However, a comprehensive investigation into the cytotoxicity mechanism linked to the redox activity is lacking. In this study, with cytochrome c (Cyt c) as the model biospecies, the cytotoxicity of 2D NSs was evaluated systematically based on their redox effect with microfluidic techniques. The interface interaction, dissolution, and redox effect of 2D NSs on Cyt c were monitored with pulsed streaming potential (SP) measurement and capillary electrophoresis (CE). The relationship between the redox activity of 2D NSs and the function of Cyt c was evaluated in vitro with Hela cells. The results indicated that the dissolution and redox activity of 2D NSs can be simultaneously monitored with CE under weak interface interactions and at low sample volumes. Both WS2 NSs and MoS2 NSs can reduce Cyt c without significant dissolution, with reduction rates measured at 6.24 × 10-5 M for WS2 NSs and 3.76 × 10-5 M for MoS2 NSs. Furthermore, exposure to 2D NSs exhibited heightened reducibility, which prompted more pronounced alterations associated with Cyt c dysfunction, encompassing ATP synthesis, modifications in mitochondrial membrane potential, and increased reactive oxygen species production. These observations suggest a positive correlation between the redox activity of 2D NSs and their redox toxicity in Hela cells. These findings provide valuable insight into the redox properties of 2D NSs regarding cytotoxicity and offer the possibility to modify the 2D NSs to reduce their redox toxicity for clinical applications.
Collapse
Affiliation(s)
- Lei Zhao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education; Gansu Tech Innovation Center of Animal; China-Malaysia National Joint Laboratory, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Qiaoyan Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Xiaohu Cui
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, P. R. China
| | - Lizhi Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Zifan Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education; Gansu Tech Innovation Center of Animal; China-Malaysia National Joint Laboratory, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Xueyan Zhou
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Xiayan Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, P. R. China
| | - Zhongren Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education; Gansu Tech Innovation Center of Animal; China-Malaysia National Joint Laboratory, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
29
|
Yuan S, Zhou J, Wang J, Ma X, Liu F, Chen S, Fan JX, Yan GP. Advances of Photothermal Agents with Fluorescence Imaging/Enhancement Ability in the Field of Photothermal Therapy and Diagnosis. Mol Pharm 2024; 21:467-480. [PMID: 38266250 DOI: 10.1021/acs.molpharmaceut.3c01073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Photothermal therapy (PTT) is an effective cancer treatment method. Due to its easy focusing and tunability of the irradiation light, direct and accurate local treatment can be performed in a noninvasive manner by PTT. This treatment strategy requires the use of photothermal agents to convert light energy into heat energy, thereby achieving local heating and triggering biochemical processes to kill tumor cells. As a key factor in PTT, the photothermal conversion ability of photothermal agents directly determines the efficacy of PTT. In addition, photothermal agents generally have photothermal imaging (PTI) and photoacoustic imaging (PAI) functions, which can not only guide the optimization of irradiation conditions but also achieve the integration of disease diagnosis. If the photothermal agents have function of fluorescence imaging (FLI) or fluorescence enhancement, they can not only further improve the accuracy in disease diagnosis but also accurately determine the tumor location through multimodal imaging for corresponding treatment. In this paper, we summarize recent advances in photothermal agents with FLI or fluorescence enhancement functions for PTT and tumor diagnosis. According to the different recognition sites, the application of specific targeting photothermal agents is introduced. Finally, limitations and challenges of photothermal agents with fluorescence imaging/enhancement in the field of PTT and tumor diagnosis are prospected.
Collapse
Affiliation(s)
- Siyi Yuan
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jun Zhou
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Juntong Wang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - XiaoYu Ma
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fan Liu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Si Chen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Key Laboratory of Green Chemical Process Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jin-Xuan Fan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guo-Ping Yan
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
30
|
Du Y, Yang J, He F, Zhao X, Zhou J, Zang P, Liu C, Xie Y, Zhang Y, Yang P. Revealing the Mutually Enhanced Mechanism of Necroptosis and Immunotherapy Induced by Defect Engineering and Piezoelectric Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304322. [PMID: 37824104 DOI: 10.1002/adma.202304322] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/22/2023] [Indexed: 10/13/2023]
Abstract
Owing to low immunogenicity-induced immune escape and short-term circulating immune responses, the efficiency of immunotherapy is unsatisfactory. Therefore, triggering immunogenic cell death and establishing a long-term, mutually reinforced treatment modality are urgent challenges. In this study, ultrathin CaBi2 Nb2 O9 nanosheets with tunable oxygen vacancies (abbreviated as CBNO-OV1) are prepared for synergistic necroptosis and immunotherapy. The optimized vacancy concentration significantly improves the piezoelectric effect under ultrasound irradiation, thereby considerably improving the generation of reactive oxygen species (ROS). Density functional theory shows that oxygen vacancies can improve the efficiency of electron hole separation by suppressing their recombination, thus resulting in enhanced piezocatalytic activity. Moreover, the piezoelectric effect improves the permeability of tumor cell membranes, thus resulting in Ca2+ influx. Additionally, CBNO-OV1 also releases a portion of Ca2+ , which induces necroptosis assisted by explosive ROS. Ribonucleic acid transcription tests suggest the mechanisms associated with immune response activation and necroptosis. More importantly, necroptosis can trigger a significant immune response in vivo, thus activating macrophage M1 polarization through the NF-kappa B pathway and promoting T-cell differentiation.Tumor Necrosis Factor-α differentiated from macrophages conversely promotes necroptosis, thus realizing a mutually enhanced effect. This study demonstrates the feasibility of mutually reinforced necroptosis and immunotherapy for amplifying tumor efficacy.
Collapse
Affiliation(s)
- Yaqian Du
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jiani Yang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xudong Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jialing Zhou
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Pengyu Zang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Changlin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150001, P. R. China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|
31
|
Premji TP, Dash BS, Das S, Chen JP. Functionalized Nanomaterials for Inhibiting ATP-Dependent Heat Shock Proteins in Cancer Photothermal/Photodynamic Therapy and Combination Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:112. [PMID: 38202567 PMCID: PMC10780407 DOI: 10.3390/nano14010112] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Phototherapies induced by photoactive nanomaterials have inspired and accentuated the importance of nanomedicine in cancer therapy in recent years. During these light-activated cancer therapies, a nanoagent can produce heat and cytotoxic reactive oxygen species by absorption of light energy for photothermal therapy (PTT) and photodynamic therapy (PDT). However, PTT is limited by the self-protective nature of cells, with upregulated production of heat shock proteins (HSP) under mild hyperthermia, which also influences PDT. To reduce HSP production in cancer cells and to enhance PTT/PDT, small HSP inhibitors that can competitively bind at the ATP-binding site of an HSP could be employed. Alternatively, reducing intracellular glucose concentration can also decrease ATP production from the metabolic pathways and downregulate HSP production from glucose deprivation. Other than reversing the thermal resistance of cancer cells for mild-temperature PTT, an HSP inhibitor can also be integrated into functionalized nanomaterials to alleviate tumor hypoxia and enhance the efficacy of PDT. Furthermore, the co-delivery of a small-molecule drug for direct HSP inhibition and a chemotherapeutic drug can integrate enhanced PTT/PDT with chemotherapy (CT). On the other hand, delivering a glucose-deprivation agent like glucose oxidase (GOx) can indirectly inhibit HSP and boost the efficacy of PTT/PDT while combining these therapies with cancer starvation therapy (ST). In this review, we intend to discuss different nanomaterial-based approaches that can inhibit HSP production via ATP regulation and their uses in PTT/PDT and cancer combination therapy such as CT and ST.
Collapse
Affiliation(s)
- Thejas P. Premji
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
| | - Suprava Das
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
- Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
32
|
Cui LW, Fan LY, Shen ZY. Application Research Progress of Nanomaterial Graphene and its Derivative Complexes in Tumor Diagnosis and Therapy. Curr Med Chem 2024; 31:6436-6459. [PMID: 38299292 DOI: 10.2174/0109298673251648231106112354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/05/2023] [Accepted: 10/05/2023] [Indexed: 02/02/2024]
Abstract
Functional nanomaterial graphene and its derivatives have attracted considerable attention in many fields because of their unique physical and chemical properties. Most notably, graphene has become a research hotspot in the biomedical field, especially in relation to malignant tumors. In this study, we briefly review relevant research from recent years on graphene and its derivatives in tumor diagnosis and antitumor therapy. The main contents of the study include the graphene-derivative diagnosis of tumors in the early stage, graphene quantum dots, photodynamics, MRI contrast agent, acoustic dynamics, and the effects of ultrasonic cavitation and graphene on tumor therapy. Moreover, the biocompatibility of graphene is briefly described. This review provides a broad overview of the applications of graphene and its derivatives in tumors. Conclusion, graphene and its derivatives play an important role in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Li Wen Cui
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, No. 30, North Tong-yang Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu 226361, China
| | - Lu Yao Fan
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, No. 30, North Tong-yang Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu 226361, China
| | - Zhi Yong Shen
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, No. 30, North Tong-yang Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu 226361, China
| |
Collapse
|
33
|
Priya L, Mehta S, Gevariya D, Sharma R, Panjwani D, Patel S, Ahlawat P, Dharamsi A, Patel A. Quantum Dot-based Bio-conjugates as an Emerging Bioimaging Tool for Cancer Theranostic- A Review. Curr Drug Targets 2024; 25:241-260. [PMID: 38288834 DOI: 10.2174/0113894501283669240123105250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 06/05/2024]
Abstract
Cancer is the most widely studied disorder in humans, but proper treatment has not yet been developed for it. Conventional therapies, like chemotherapy, radiation therapy, and surgery, have been employed. Such therapies target not only cancerous cells but also harm normal cells. Conventional therapy does not result in specific targeting and hence leads to severe side effects. The main objective of this study is to explore the QDs. QDs are used as nanocarriers for diagnosis and treatment at the same time. They are based on the principle of theranostic approach. QDs can be conjugated with antibodies via various methods that result in targeted therapy. This results in their dual function as a diagnostic and therapeutic tool. Nanotechnology involving such nanocarriers can increase the specificity and reduce the side effects, leaving the normal cells unaffected. This review pays attention to different methods for synthesising QDs. QDs can be obtained using either organic method and synthetic methods. It was found that QDs synthesised naturally are more feasible than the synthetic process. Top or bottom-up approaches have also emerged for the synthesis of QDs. QDs can be conjugated with an antibody via non-covalent and covalent binding. Covalent binding is much more feasible than any other method. Zero-length coupling plays an important role as EDC (1-Ethyl-3-Ethyl dimethylaminopropyl)carbodiimide is a strong crosslinker and is widely used for conjugating molecules. Antibodies work as surface ligands that lead to antigen- antibody interaction, resulting in site-specific targeting and leaving behind the normal cells unaffected. Cellular uptake of the molecule is done by either passive targeting or active targeting. QDs are tiny nanocrystals that are inorganic in nature and vary in size and range. Based on different sizes, they emit light of specific wavelengths. They have their own luminescent and optical properties that lead to the monitoring, imaging, and transport of the therapeutic moiety to a variety of targets in the body. The surface of the QDs is modified to boost their functioning. They act as a tool for diagnosis, imaging, and delivery of therapeutic moieties. For improved therapeutic effects, nanotechnology leads the cellular uptake of nanoparticles via passive targeting or active targeting. It is a crucial platform that not only leads to imaging and diagnosis but also helps to deliver therapeutic moieties to specific sites. Therefore, this review concludes that there are numerous drawbacks to the current cancer treatment options, which ultimately result in treatment failure. Therefore, nanotechnology that involves such a nanocarrier will serve as a tool for overcoming all limitations of the traditional therapeutic approach. This approach helps in reducing the dose of anticancer agents for effective treatment and hence improving the therapeutic index. QDs can not only diagnose a disease but also deliver drugs to the cancerous site.
Collapse
Affiliation(s)
- Lipika Priya
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Smit Mehta
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Darshan Gevariya
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Raghav Sharma
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Drishti Panjwani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Shruti Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Priyanka Ahlawat
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Abhay Dharamsi
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Asha Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| |
Collapse
|
34
|
Silva FALS, Timochenco L, Costa-Almeida R, Fernandes JR, Santos SG, Magalhães FD, Pinto AM. UV-C driven reduction of nanographene oxide opens path for new applications in phototherapy. Colloids Surf B Biointerfaces 2024; 233:113594. [PMID: 37979484 DOI: 10.1016/j.colsurfb.2023.113594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 11/20/2023]
Abstract
The main challenges associated to the application of graphene-based materials (GBM) in phototherapy are obtaining particles with lateral nanoscale dimensions and water stability that present high near-infrared (NIR) absorption. Nanosized graphene oxide (GOn) is stable in aqueous dispersion, due to the oxygen functionalities on its surface, but possesses low photothermal efficiency in NIR region. GOn total reduction originates reduced nanographene oxide (rGOn) that presents high NIR absorption, but poor water stability. In this work, we produced a partially reduced nanographene oxide (p-rGOn) by GOn photoreduction using ultraviolet radiation (UV-C), yielding nanometric particles that preserve the original water stability, but acquire high light-to-heat conversion efficiency. GOn and p-rGOn presented mean particle sizes of 170 ± 81 nm and 188 ± 99 nm, respectively. 8 h of UV-C irradiation allowed to obtain a p-rGOn stable for up 6 months in water, with a zeta potential of -32.3 ± 1.3 mV. p-rGOn water dispersions have shown to absorb NIR radiation, reaching 52.7 °C (250 µg mL-1) after 30 min NIR irradiation. Chemical characterization of p-rGOn showed a decrease in the number of characteristic oxygen functional groups, confirming GOn partial reduction. Furthermore, p-rGOn (250 µg mL-1) didn't cause any cytotoxicity (ISO10993-5:2009(E)) towards human skin fibroblasts (HFF-1) and human skin keratinocytes (HaCat), after 24 and 48 h incubation. An innovative custom-built NIR LED-system has been developed and validated for p-rGOn photothermal effect evaluation. Finally, exposure to p-rGOn+NIR-LEDs has caused no cytotoxicity towards HFF-1 or HaCat cells, revealing its potential to be used as a safe therapy.
Collapse
Affiliation(s)
- Filipa A L S Silva
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Licínia Timochenco
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Raquel Costa-Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - José Ramiro Fernandes
- CQVR - Centro de Química Vila Real, Universidade de Trás-os-Montes e Alto Douro, Portugal; Physical Department, University of Trás-os-Montes and Alto Douro, Quinta dos Prados, 5000-801 Vila Real, Portugal
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Fernão D Magalhães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal
| | - Artur M Pinto
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal.
| |
Collapse
|
35
|
Kang MS, Jang HJ, Jo HJ, Raja IS, Han DW. MXene and Xene: promising frontier beyond graphene in tissue engineering and regenerative medicine. NANOSCALE HORIZONS 2023; 9:93-117. [PMID: 38032647 DOI: 10.1039/d3nh00428g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The emergence of 2D nanomaterials (2D NMs), which was initiated by the isolation of graphene (G) in 2004, revolutionized various biomedical applications, including bioimaging and -sensing, drug delivery, and tissue engineering, owing to their unique physicochemical and biological properties. Building on the success of G, a novel class of monoelemental 2D NMs, known as Xenes, has recently emerged, offering distinct advantages in the fields of tissue engineering and regenerative medicine. In this review, we focus on the comparison of G and Xene materials for use in fabricating tissue engineering scaffolds. After a brief introduction to the basic physicochemical properties of these materials, recent representative studies are classified in terms of the engineered tissue, i.e., bone, cartilage, neural, muscle, and skin tissues. We analyze several methods of improving the clinical potential of Xene-laden scaffolds using state-of-the-art fabrication technologies and innovative biomaterials. Despite the considerable advantages of Xene materials, critical concerns, such as biocompatibility, biodistribution and regulatory challenges, should be considered. This review and collaborative efforts should advance the field of Xene-based tissue engineering and enable innovative, effective solutions for use in future tissue regeneration.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | - Hee Jeong Jang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | - Hyo Jung Jo
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | | | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
36
|
Chen G, Yang Z, Yu X, Yu C, Sui S, Zhang C, Bao C, Zeng X, Chen Q, Peng Q. Intratumor delivery of amino-modified graphene oxide as a multifunctional photothermal agent for efficient antitumor phototherapy. J Colloid Interface Sci 2023; 652:1108-1116. [PMID: 37657211 DOI: 10.1016/j.jcis.2023.08.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
Due to the high selectivity and non-invasive property, phototherapy has attracted increasing attention in the treatment of cancer. Targeted delivery and retention of photoactive agents in tumor tissue is of great significance and importance for safe and efficient phototherapy. Herein, we report a multifunctional nanomaterial photothermal agent, namely amino-modified graphene oxide (AGO) for anti-oral cancer photothermal therapy (PTT). Compared to the parental graphene oxide (GO) which has a negative charge and weak photothermal effect, AGO possesses a positive charge (∼+50 mV) and the significantly enhanced photothermal effect. Positive charge allows AGO to efficiently interact with tumor cells and retain in tumor tissue after intratumor injection. The enhanced photothermal effect allows AGO to achieve the tunable and efficient PTT. In vitro results show that AGO (15 μg/mL) reduces the viability of HSC-3 cells (oral squamous cell carcinoma cell line) to 5% under near infrared (NIR) irradiation (temperature increased to 58.4 °C). In vivo antitumor study shows that intratumor delivery of AGO (200 μg/mouse) has no inhibition effects on tumor growth (454% of initial tumor size) without NIR. With a single dose of NIR irradiation, however, AGO significantly reduces the tumor size to 25% of initial size in 1 of 4 mice, and even induces the complete tumor ablation in 3 of 4 mice. Furthermore, the injected AGO falls off along with the scab after PTT. Our findings indicate that AGO is a potential nano-photothermal agent for tunable, convenient and efficient anticancer PTT.
Collapse
Affiliation(s)
- Geyun Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhenghao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaotong Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chenhao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shangyan Sui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chaoliang Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
37
|
Self A, Farell M, Samineni L, Kumar M, Gomez EW. 2D Materials for Combination Therapy to Address Challenges in the Treatment of Cancer. ADVANCED NANOBIOMED RESEARCH 2023; 3. [DOI: 10.1002/anbr.202300070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
2D materials exhibit a variety of characteristics that make them appealing platforms for cancer treatment such as high drug loading capacity and photothermal and photodynamic properties. A key advantage of 2D material platforms for oncological applications is the ability to harness multiple modalities including drug delivery, photothermal therapy, photodynamic therapy, chemodynamic therapy, gene delivery, and immunotherapy approaches for improved efficacy. In this review, a comparison of the unique properties of different classes of 2D materials that enable their usage as platforms for multimodal therapy is provided. Further, the benefits and drawbacks of different platforms are also highlighted. Finally, current challenges and emerging opportunities for future development of 2D materials to further enable combination therapy and translation from the bench to clinical oncology applications are discussed.
Collapse
Affiliation(s)
- Ava Self
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Megan Farell
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Laximicharan Samineni
- Department of Civil, Architectural, and Environmental Engineering The University of Texas at Austin Austin TX 78712 USA
- McKetta Department of Chemical Engineering The University of Texas at Austin Austin TX 78712 USA
| | - Manish Kumar
- Department of Civil, Architectural, and Environmental Engineering The University of Texas at Austin Austin TX 78712 USA
- McKetta Department of Chemical Engineering The University of Texas at Austin Austin TX 78712 USA
| | - Esther W. Gomez
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
38
|
Wu Y, Cao H, Yang S, Liu C, Han Z. Progress of near-infrared-II fluorescence in precision diagnosis and treatment of colorectal cancer. Heliyon 2023; 9:e23209. [PMID: 38149207 PMCID: PMC10750080 DOI: 10.1016/j.heliyon.2023.e23209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023] Open
Abstract
Colorectal cancer is a malignant tumour with high incidence and mortality worldwide; therefore, improving the early diagnosis of colorectal cancer and implementing a targeted "individualized treatment" strategy is of great concern. NIR-II fluorescence imaging is a large-depth, high-resolution optical bioimaging tool. Around the NIR-II window, researchers have developed a variety of luminescent probes, imaging systems, and treatment methods with colorectal cancer targeting capabilities, which can be visualized and image-guided in clinical surgery. This article aims to overcome the difficulties in diagnosing and treating colorectal cancer. The present review summarizes the latest results on using NIR-II fluorescence for targeted colorectal cancer imaging, expounds on the application prospects of NIR-II optical imaging for colorectal cancer, and discusses the imaging-guided multifunctional diagnosis and treatment platforms.
Collapse
Affiliation(s)
- Yong Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Hongtao Cao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shaoqing Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Chaohui Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Zhenguo Han
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
39
|
Wang R, Huang Z, Xiao Y, Huang T, Ming J. Photothermal therapy of copper incorporated nanomaterials for biomedicine. Biomater Res 2023; 27:121. [PMID: 38001505 PMCID: PMC10675977 DOI: 10.1186/s40824-023-00461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Studies have reported on the significance of copper incorporated nanomaterials (CINMs) in cancer theranostics and tissue regeneration. Given their unique physicochemical properties and tunable nanostructures, CINMs are used in photothermal therapy (PTT) and photothermal-derived combination therapies. They have the potential to overcome the challenges of unsatisfactory efficacy of conventional therapies in an efficient and non-invasive manner. This review summarizes the recent advances in CINMs-based PTT in biomedicine. First, the classification and structure of CINMs are introduced. CINMs-based PTT combination therapy in tumors and PTT guided by multiple imaging modalities are then reviewed. Various representative designs of CINMs-based PTT in bone, skin and other organs are presented. Furthermore, the biosafety of CINMs is discussed. Finally, this analysis delves into the current challenges that researchers face and offers an optimistic outlook on the prospects of clinical translational research in this field. This review aims at elucidating on the applications of CINMs-based PTT and derived combination therapies in biomedicine to encourage future design and clinical translation.
Collapse
Affiliation(s)
| | | | | | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
40
|
Xing C, Xue Y, Zheng X, Gao Y, Chen S, Li Y. Highly Selective Electrocatalytic Olefin Hydrogenation in Aqueous Solution. Angew Chem Int Ed Engl 2023; 62:e202310722. [PMID: 37642147 DOI: 10.1002/anie.202310722] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 08/31/2023]
Abstract
Selective hydrogenation of olefins with water as the hydrogen source at ambient conditions is still a big challenge in the field of catalysis. Herein, the electrocatalytic hydrogenation of purely aliphatic and functionalized olefins was achieved by using graphdiyne based copper oxide quantum dots (Cux O/GDY) as cathodic electrodes and water as the hydrogen source, with high activity and selectivity in aqueous solution at high current density under ambient temperature and pressure. In particular, the sp-/sp2 -hybridized graphdiyne catalyst allows the selective hydrogenation of cis-trans isomeric olefins. The chemical and electronic structure of the GDY results in the incomplete charge transfer between GDY and Cu atoms to optimize the adsorption/desorption of the reaction intermediates and results in high reaction selectivity and activity for hydrogenation reactions.
Collapse
Affiliation(s)
- Chengyu Xing
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yurui Xue
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Science School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Xuchen Zheng
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yang Gao
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Siao Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuliang Li
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
41
|
Guo R, Wang B, Liu D, Huang Y, Lu Y. Cascade catalysis-coordinated nanorobots toward synergistic cancer chemoimmunotherapy. J Mater Chem B 2023; 11:9201-9211. [PMID: 37740320 DOI: 10.1039/d3tb01279d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Cancer has always been the biggest threat to human health, but the effect of traditional treatments such as surgery, chemotherapy, and radiotherapy is not satisfactory. Currently, nanomedicine-based chemoimmunotherapy can improve clinical results through unique synergistic effects. However, it is mainly enriched at tumor sites based on EPR effects, without an active delivery strategy and relatively low tumor targeting distribution. Therefore, nanorobots (Cu@MPS-GOD) with magnetic responsiveness and enzyme-like activity were prepared, which can enrich and move to the tumor site under the action of a 3D magnetic field, and cause tumor cell immunogenic death by cascade catalytic Fenton reactions. Meanwhile, Cu@MPS-GOD can also activate immune cells or induce cancer cells to expose surface antigens, trigger systemic anti-cancer immunity, and have a good inhibitory effect on a breast tumor model in mice with an inhibition rate of 59.3%. This work provides an attractive strategy to expand the therapeutic effect of cancer when chemical dynamic therapy is combined with immunotherapy, which has a potential clinical application prospect.
Collapse
Affiliation(s)
- Ruirui Guo
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Bin Wang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Dong Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Yanjie Huang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
42
|
Wang Z, Li Z, Shi Y, Zeng L. Mesoporous polydopamine delivery system for intelligent drug release and photothermal-enhanced chemodynamic therapy using MnO 2 as gatekeeper. Regen Biomater 2023; 10:rbad087. [PMID: 37936892 PMCID: PMC10627289 DOI: 10.1093/rb/rbad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 11/09/2023] Open
Abstract
The non-specific leakage of drugs from nanocarriers seriously weakened the safety and efficacy of chemotherapy, and it was very critical of constructing tumor microenvironment (TME)-responsive delivery nanocarriers, achieving the modulation release of drugs. Herein, using manganese dioxide (MnO2) as gatekeeper, an intelligent nanoplatform based on mesoporous polydopamine (MPDA) was developed to deliver doxorubicin (DOX), by which the DOX release was precisely controlled, and simultaneously the photothermal therapy (PTT) and chemodynamic therapy (CDT) were realized. In normal physiological environment, the stable MnO2 shell effectively avoided the leakage of DOX. However, in TME, the overexpressed glutathione (GSH) degraded MnO2 shell, which caused the DOX release. Moreover, the photothermal effect of MPDA and the Fenton-like reaction of the generated Mn2+ further accelerated the cell death. Thus, the developed MPDA-DOX@MnO2 nanoplatform can intelligently modulate the release of DOX, and the combined CDT/PTT/chemotherapy possessed high-safety and high-efficacy against tumors.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P.R. China
| | - Zekai Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P.R. China
| | - Yuehua Shi
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P.R. China
| | - Leyong Zeng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P.R. China
| |
Collapse
|
43
|
Cheng W, He L, Ren W, Yue T, Xie X, Sun J, Chen X, Wu Z, Li F, Piao JG. Bacteria-nanodrug cancer treatment system: The combination of dual swords and the confrontation of needle tips. NANO TRANSMED 2023; 2:100008. [DOI: 10.1016/j.ntm.2023.100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2023]
|
44
|
Yu T, Cai Z, Chang X, Xing C, White S, Guo X, Jin J. Research Progress of Nanomaterials in Chemotherapy of Osteosarcoma. Orthop Surg 2023; 15:2244-2259. [PMID: 37403654 PMCID: PMC10475694 DOI: 10.1111/os.13806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Osteosarcoma (OS) is a common malignant bone tumor that occurs mostly in children and adolescents. At present, surgery after chemotherapy or postoperative adjuvant chemotherapy is the main treatment plan. However, the efficacy of chemotherapeutic drugs is limited by the occurrence of chemotherapeutic resistance, toxicity to normal cells, poor pharmacokinetic performance, and drug delivery failure. The delivery of chemotherapy drugs to the bone to treat OS may fail for a variety of reasons, such as a lack of selectivity for OS cells, initial sudden release, short-term release, and the presence of biological barriers (such as the blood-bone marrow barrier). Nanomaterials are new materials with at least one dimension on the nanometer scale (1-100 nm) in three-dimensional space. These materials have the ability to penetrate biological barriers and can accumulate preferentially in tumor cells. Studies have shown that the effective combination of nanomaterials and traditional chemotherapy can significantly improve the therapeutic effect. Therefore, this article reviews the latest research progress on the use of nanomaterials in OS chemotherapy.
Collapse
Affiliation(s)
- Tianci Yu
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Zongyan Cai
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Xingyu Chang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Chengwei Xing
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Sylvia White
- Pathology DepartmentYale School of MedicineNew HavenCTUSA
| | - Xiaoxue Guo
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Jiaxin Jin
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouChina
- Department of OrthopaedicsThe Second Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
45
|
Xiao R, Zeng J, Li F, Ling D. Gold-semiconductor nanohybrids as advanced phototherapeutics. Nanomedicine (Lond) 2023; 18:1585-1606. [PMID: 37830425 DOI: 10.2217/nnm-2023-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Phototherapeutics is gaining momentum as a mainstream treatment for cancer, with gold-semiconductor nanocomposites showing promise as potent phototherapeutic agents due to their structural tunability, biocompatibility and functional diversity. Such nanohybrids possess plasmonic characteristics in the presence of gold and the catalytic nature of semiconductor units, as well as the unexpected physicochemical properties arising from the contact interface. This perspective provides an overview of the latest research on gold-semiconductor nanocomposites for photodynamic, photothermal and photocatalytic therapy. The relationship between the spatial configuration of these nanohybrids and their practical performance was explored to deliver comprehensive insights and guidance for the design and fabrication of novel composite nanoplatforms to enhance the efficiency of phototherapeutics, promoting the development of nanotechnology-based advanced biomedical applications.
Collapse
Affiliation(s)
- Ruixue Xiao
- Frontiers Science Center for Transformative Molecules, School of Chemistry & Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jian Zeng
- Zhejiang Cancer Hospital, Hangzhou, 310022, PR China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, PR China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry & Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, PR China
| |
Collapse
|
46
|
Cao Z, Bian Y, Hu T, Yang Y, Cui Z, Wang T, Yang S, Weng X, Liang R, Tan C. Recent advances in two-dimensional nanomaterials for bone tissue engineering. JOURNAL OF MATERIOMICS 2023; 9:930-958. [DOI: 10.1016/j.jmat.2023.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
47
|
Cheng W, He L, Ren W, Yue T, Xie X, Sun J, Chen X, Wu Z, Li F, Piao JG. Bacteria-nanodrug cancer treatment system: The combination of dual swords and the confrontation of needle tips. NANO TRANSMED 2023; 2:100008. [DOI: 10.1016/j.ntm.2023.100008 received in revised form 24 august 2023; acce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2023]
|
48
|
Yu S, Wang X, Lv L, Liu T, Guan Q. Borneol-modified PEGylated graphene oxide as a nanocarrier for brain-targeted delivery of ginsenoside Rg1 against depression. Int J Pharm 2023; 643:123284. [PMID: 37527732 DOI: 10.1016/j.ijpharm.2023.123284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 07/29/2023] [Indexed: 08/03/2023]
Abstract
Depression is a chronic mental disorder which threatens human health and lives. However, the treatment of depression remains challenging largely due to blood brain barrier (BBB), which restricts drugs from entering the brain, resulting in a poor distribution of antidepressants in the brain. In this work, a novel brain-targeted drug delivery system was developed based on borneol-modified PEGylated graphene oxide (GO-PEG-BO). GO-PEG-BO was characterized and proved to possess excellent biocompatibility. By incorporating borneol, GO-PEG-BO could penetrate BBB efficiently by opening tight junctions and inhibiting the efflux system of BBB. The targeted distribution of GO-PEG-BO in the brain was observed by an in vivo biodistribution study. Moreover, GO-PEG-BO exhibited a neuroprotective effect, which is beneficial to the treatment of depression. Ginsenoside Rg1 (GRg1), which can relieve depressive symptoms but difficult to cross BBB, was loaded to GO-PEG-BO for the therapy of depression. In depressive rats, GRg1/GO-PEG-BO improved stress-induced anhedonia, despair and anxiety, and comprehensively relieved the depressive symptoms. In conclusion, GO-PEG-BO could serve as a promising nanocarrier for brain-targeted drug delivery, and provide a new strategy for the therapy of depression.
Collapse
Affiliation(s)
- Shangmin Yu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China; Department of Pharmaceutics, School of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui 233000, China
| | - Xinying Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Linlin Lv
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Tongyan Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Qingxiang Guan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China.
| |
Collapse
|
49
|
Luo Y, Zhang L, Wang S, Wang Y, Hua J, Wen C, Zhao S, Liang H. H 2O 2 Self-Supply and Glutathione Depletion Engineering Nanoassemblies for NIR-II Photoacoustic Imaging of Tumor Tissues and Photothermal-Enhanced Gas Starvation-Primed Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38309-38322. [PMID: 37534669 DOI: 10.1021/acsami.3c07227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The development of tumor microenvironment (TME)-activated nanoassemblies which can produce a photoacoustic (PA) signal and enhance the H2O2 level is critical to achieve accurate diagnosis and highly efficient chemodynamic therapy (CDT). In this study, we developed nanoassemblies consisting of oxygen vacancy titanium dioxide (TiO2-x) surface-constructed copper, sulfur-doped mesoporous organosilica and glucose oxidase (TiO2-x@Cu,S-MONs@GOx, hereafter TMG). We found that highly abundant glutathione (GSH) in the TME nanoassemblies can reduce tetrasulfide bonds and Cu2+ to sulfur ions and Cu+ in the TMG nanoassemblies, respectively, causing the breakage of the tetrasulfide bond and the mesoporous structure collapse, releasing Cu+ ions and TiO2-x nanoparticles, and producing hydrogen sulfide gas, thereby achieving synergistic multimodal tumor treatment through TME-activated NIR-II PA imaging and photothermal-enhanced gas starvation-primed CDT. Therefore, the TMG nanoassemblies form a smart nanoplatform that can serve as an excellent tumor diagnosis-treatment agent by playing an important role in imaging-guided precision diagnosis of cancer and efficient targeting treatment.
Collapse
Affiliation(s)
- Yanni Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Liangliang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Shulong Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Yang Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Jing Hua
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Changchun Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
50
|
Gao Z, Qin S, Ménard-Moyon C, Bianco A. Applications of graphene-based nanomaterials in drug design: The good, the bad and the ugly. Expert Opin Drug Discov 2023; 18:1321-1332. [PMID: 37661858 DOI: 10.1080/17460441.2023.2251879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
INTRODUCTION Graphene-based materials (GBMs) have unique physicochemical properties that make them extremely attractive as platforms for the design of new drugs. Indeed, their bidimensional (2D) morphology, high surface area, mechanical and optical properties, associated to different possibilities for functionalization of their surface, provides opportunities for their use as nanomedicines for drug delivery and/or phototherapies. AREAS COVERED This opinion paper provides an overview of the current status of GBMs in drug design, with a focus on their therapeutic applications, potential environmental and health risks, and some controversial results. The authors discuss the chemical modifications of GBMs for the treatment of various diseases. The potential toxicity associated with some GBMs is also presented, along with a safe-by-design approach to minimize the risks. Finally, the authors address some issues associated to the use of GBMs in the biomedical field, such as contradictory antibacterial effects, fluorescence quenching and imprecise chemical functionalization. EXPERT OPINION GBMs are a promising and exciting area of research in drug delivery. It is however important that responsible and safe use of these materials is ensured to fully exploit their advantages and overcome their drawbacks.
Collapse
Affiliation(s)
- Zhengfeng Gao
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Siyao Qin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| |
Collapse
|