1
|
Li X, Bie J, Wang Q, Li K, Lv Y, Lin X, Chen S, Sun Z, Liu X, Luo J. Two-Dimensional Layered Germanium Iodide Perovskite Ferroelectric Semiconductors. Angew Chem Int Ed Engl 2025; 64:e202424058. [PMID: 39833994 DOI: 10.1002/anie.202424058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
The discovery of ferroelectricity in two-dimensional (2D) semiconductors has opened a new and exciting chapter in next-generation electronics and spintronics due to their lattice-dimensionality-induced unique behaviors and fascinating functionalities brought by spontaneous polarization. The emerging layered halide perovskites with 2D lattices provide a great platform for generating reduced symmetry and low-dimensional ferroelectricity. Herein, inspired by the approach of reduced lattice dimensionality, a series of 2D layered germanium iodide perovskite ferroelectric semiconductors A2CsGe2I7 [where A=PA (propylammonium), BA (butylammonium) and AA (amylammonium)] was firstly developed, which demonstrates remarkable semiconducting features including narrow direct band gap (~1.8 eV) and high conductivity over 32.23 nS/cm. Emphatically, these layered germanium iodide perovskites manifest large in-plane ferroelectric polarization over ~10.0 μC/cm2, mainly attributed to the large off-centering ion displacement induced by stereo-active lone-pairs of Ge2+. More specifically, in contrast to three-dimensional ferroelectric CsGeI3, the representative 2D layered BA2CsGe2I7 manifests a superior polarization-sensitive bulk photovoltaic effect with a polarization ratio of 1.68 and high short circuit current density up to 81.25 μA/cm2, which is superior to those of reported layered halide perovskite ferroelectrics. This work provides an exciting pathway for the development of 2D ferroelectric semiconductors as well as sheds light on their further applications in photoelectronic fields.
Collapse
Affiliation(s)
- Xiaoqi Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Jie Bie
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Jiangsu, 210023, P. R. China
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Jiangsu, 210093, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Qianxi Wang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Kai Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yicong Lv
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Xiantan Lin
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Shuang Chen
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Jiangsu, 210023, P. R. China
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Jiangsu, 210093, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Zhihua Sun
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Xitao Liu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Niu J, Kim D, Li J, Lyu J, Lee Y, Lee S. Reconfigurable Sequential-Logic-in-Memory Implementation Utilizing Ferroelectric Field-Effect Transistors. ACS NANO 2025; 19:5493-5502. [PMID: 39746872 PMCID: PMC11823589 DOI: 10.1021/acsnano.4c14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
In modern digital systems, sequential logic circuits store and process information over time, whereas combinational logic circuits process only the current inputs. Conventional sequential systems, however, are complex and energy-inefficient due to the separation of volatile and nonvolatile memory components. This study proposes a compact, nonvolatile, and reconfigurable van der Waals (vdW) ferroelectric field-effect transistor (FeFET)-based sequential logic-in-memory (S-LiM) unit that performs sequential logic operations in two nonvolatile states. Unlike conventional edge computing systems that require separate combinational logic circuits, sequential logic circuits (such as latches for short-term data storage), and nonvolatile memory for long-term data storage, this innovative S-LiM unit integrates logic and memory into a single nonvolatile vdW FeFET device. The nonvolatile ferroelectric elements directly replace both sequential logic and memory in conventional systems, eliminating frequent data transfers, reducing static power, and increasing the storage density. Six distinct logic operations are implemented in a single vdW FeFET through voltage-controlled ferroelectric polarization, highlighting the unit's reconfigurability. The device shows significant potential for low-power edge computing, especially where frequent power cycling is necessary. Its nonvolatile polarization retains the state without the need for storing processes, enabling rapid recovery at startup, even after extended power-off periods of tens of minutes. These features make the vdW FeFET-based S-LiM unit ideal for energy-efficient, high-density, and low-power edge computing, especially in remote operations with unstable power supplies. This innovation contributes to the development of next-generation, low-power electronics with enhanced efficiency and storage density.
Collapse
Affiliation(s)
- Jingjie Niu
- SKKU
Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
- Department
of Nano Science and Technology, Sungkyunkwan
University, Suwon 16419, Korea
| | - Donggyu Kim
- Department
of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Jie Li
- IMEC, Kapeldeef 75, Heverlee 3001, Belgium
| | - Jiahui Lyu
- SKKU
Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
- Department
of Nano Science and Technology, Sungkyunkwan
University, Suwon 16419, Korea
| | - Yoonmyung Lee
- Department
of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Sungjoo Lee
- SKKU
Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
- Department
of Nano Science and Technology, Sungkyunkwan
University, Suwon 16419, Korea
- Department
of Nano Engineering, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
3
|
Jiang S, Wang Y, Zheng G. Two-Dimensional Ferroelectric Materials: From Prediction to Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:109. [PMID: 39852724 PMCID: PMC11767678 DOI: 10.3390/nano15020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025]
Abstract
Ferroelectric materials hold immense potential for diverse applications in sensors, actuators, memory storage, and microelectronics. The discovery of two-dimensional (2D) ferroelectrics, particularly ultrathin compounds with stable crystal structure and room-temperature ferroelectricity, has led to significant advancements in the field. However, challenges such as depolarization effects, low Curie temperature, and high energy barriers for polarization reversal remain in the development of 2D ferroelectrics with high performance. In this review, recent progress in the discovery and design of 2D ferroelectric materials is discussed, focusing on their properties, underlying mechanisms, and applications. Based on the work discussed in this review, we look ahead to theoretical prediction for 2D ferroelectric materials and their potential applications, such as the application in nonlinear optics. The progress in theoretical and experimental research could lead to the discovery and design of next-generation nanoelectronic and optoelectronic devices, facilitating the applications of 2D ferroelectric materials in emerging advanced technologies.
Collapse
Affiliation(s)
- Shujuan Jiang
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China;
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yongwei Wang
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China;
| | - Guangping Zheng
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
4
|
Chen C, Zhou Y, Tong L, Pang Y, Xu J. Emerging 2D Ferroelectric Devices for In-Sensor and In-Memory Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2400332. [PMID: 38739927 PMCID: PMC11733831 DOI: 10.1002/adma.202400332] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/19/2024] [Indexed: 05/16/2024]
Abstract
The quantity of sensor nodes within current computing systems is rapidly increasing in tandem with the sensing data. The presence of a bottleneck in data transmission between the sensors, computing, and memory units obstructs the system's efficiency and speed. To minimize the latency of data transmission between units, novel in-memory and in-sensor computing architectures are proposed as alternatives to the conventional von Neumann architecture, aiming for data-intensive sensing and computing applications. The integration of 2D materials and 2D ferroelectric materials has been expected to build these novel sensing and computing architectures due to the dangling-bond-free surface, ultra-fast polarization flipping, and ultra-low power consumption of the 2D ferroelectrics. Here, the recent progress of 2D ferroelectric devices for in-sensing and in-memory neuromorphic computing is reviewed. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics-integrated 2D devices and active ferroelectrics-integrated 2D devices, are reviewed followed by the integration of perception, memory, and computing application. Notably, 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing. As an emerging device configuration, 2D ferroelectric devices have the potential to expand into the sensor-memory and computing integration application field, leading to new possibilities for modern electronics.
Collapse
Affiliation(s)
- Chunsheng Chen
- Department of Electronic Engineering and Materials Science and Technology Research CenterThe Chinese University of Hong KongHong Kong SARChina
| | - Yaoqiang Zhou
- Department of Electronic Engineering and Materials Science and Technology Research CenterThe Chinese University of Hong KongHong Kong SARChina
| | - Lei Tong
- Department of Electronic Engineering and Materials Science and Technology Research CenterThe Chinese University of Hong KongHong Kong SARChina
| | - Yue Pang
- Department of Electronic Engineering and Materials Science and Technology Research CenterThe Chinese University of Hong KongHong Kong SARChina
| | - Jianbin Xu
- Department of Electronic Engineering and Materials Science and Technology Research CenterThe Chinese University of Hong KongHong Kong SARChina
| |
Collapse
|
5
|
Xing J, Tang Y, Li J, Wu C, Gu Y, Li X, Zhang H, Zhang M, Wang X, Zhou X, Gan X, Wu D, Zeng J, Zhai T, Xu H. Intrinsic Out-Of-Plane and In-Plane Ferroelectricity in 2D AgCrS 2 with High Curie Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407655. [PMID: 39104282 DOI: 10.1002/adma.202407655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Indexed: 08/07/2024]
Abstract
2D ferroelectric materials have attracted extensive research interest due to potential applications in nonvolatile memory, nanoelectronics and optoelectronics. However, the available 2D ferroelectric materials are scarce and most of them are limited by the uncontrollable preparation. Herein, a novel 2D ferroelectric material AgCrS2 is reported that are controllably synthesized in large-scale via salt-assist chemical vapor deposition growth. By tuning the growth temperature from 800 to 900 °C, the thickness of AgCrS2 nanosheets can be precisely modulated from 2.1 to 40 nm. Structural and nonlinear optical characterizations demonstrate that AgCrS2 nanosheet crystallizes in a non-centrosymmetric structure with high crystallinity and remarkable air stability. As a result, AgCrS2 of various thicknesses display robust ferroelectric polarization in both in-plane (IP) and out-of-plane (OOP) directions with strong intercorrelation and high ferroelectric phase transition temperature (682 K). Theoretical calculations suggest that the ferroelectricity in AgCrS2 originates from the displacement of Ag atoms in AgS4 tetrahedrons, which changes the dipole moment alignment. Moreover, ferroelectric switching is demonstrated in both lateral and vertical AgCrS2 devices, which exhibit exotic nonvolatile memory behavior with distinct high and low resistance states. This study expands the scope of 2D ferroelectric materials and facilitates the ferroelectric-based nonvolatile memory applications.
Collapse
Affiliation(s)
- Jiabao Xing
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yue Tang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Jiaxin Li
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Changwei Wu
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Yiru Gu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Xiaobo Li
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Hu Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Mingwen Zhang
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Xiao Wang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Xing Zhou
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xuetao Gan
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Di Wu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Jinghui Zeng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hua Xu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
6
|
Wang J, Li X, Ma X, Chen L, Liu JM, Duan CG, Íñiguez-González J, Wu D, Yang Y. Ultrafast Switching of Sliding Polarization and Dynamical Magnetic Field in van der Waals Bilayers Induced by Light. PHYSICAL REVIEW LETTERS 2024; 133:126801. [PMID: 39373442 DOI: 10.1103/physrevlett.133.126801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/03/2024] [Accepted: 08/14/2024] [Indexed: 10/08/2024]
Abstract
Sliding ferroelectricity is a unique type of polarity recently observed in van der Waals bilayers with a suitable stacking. However, electric-field control of sliding ferroelectricity is hard and could induce large coercive electric fields and serious leakage currents that corrode the ferroelectricity and electronic properties, which are essential for modern two-dimensional electronics and optoelectronics. Here, we proposed laser-pulse deterministic control of sliding polarization in bilayer hexagonal boron nitride by first principles and molecular dynamics simulation with machine-learned force fields. The laser pulses excite shear modes that exhibit certain directional movements of lateral sliding between bilayers. The vibration of excited modes under laser pulses is predicted to overcome the energy barrier and achieve the switching of sliding polarization. Furthermore, it is found that three possible sliding transitions-between AB (BA) and BA (AB) stacking-can lead to the occurrence of dynamical magnetic fields along three different directions. Remarkably, the magnetic fields are generated by the simple linear motion of nonmagnetic species, without any need for more exotic (circular, spiral) pathways. Such predictions of deterministic control of sliding polarization and multistates of dynamical magnetic field thus expand the potential applications of sliding ferroelectricity in memory and electronic devices.
Collapse
Affiliation(s)
- Jian Wang
- Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Xu Li
- Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Xingyue Ma
- Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | | | - Jun-Ming Liu
- Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | | | | | - Di Wu
- Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yurong Yang
- Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| |
Collapse
|
7
|
Sha T, Zhang X, Zhou R, Du G, Xiong Y, Pan Q, Yao J, Feng Z, Gao X, You Y. Organic-Inorganic Hybrid Perovskite Ferroelectric Nanosheets Synthesized by a Room-Temperature Antisolvent Method. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400636. [PMID: 38778554 PMCID: PMC11304249 DOI: 10.1002/advs.202400636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Over the past years, the application potential of ferroelectric nanomaterials with unique physical properties for modern electronics is highlighted to a large extent. However, it is relatively challenging to fabricate inorganic ferroelectric nanomaterials, which is a process depending on a vacuum atmosphere at high temperatures. As significant complements to inorganic ferroelectric nanomaterials, the nanomaterials of molecular ferroelectrics are rarely reported. Here a low-cost room-temperature antisolvent method is used to synthesize free-standing 2D organic-inorganic hybrid perovskite (OIHP) ferroelectric nanosheets (NSs), that is, (CHA)2PbBr4 NSs (CHA = cyclohexylammonium), with an average lateral size of 357.59 nm and a thickness ranging from 10 to 70 nm. This method shows high repeatability and produces NSs with excellent crystallinity. Moreover, ferroelectric domains in single NSs can be clearly visualized and manipulated using piezoresponse force microscopy (PFM). The domain switching and PFM-switching spectroscopy indicate the robust in-plane ferroelectricity of the NSs. This work not only introduces a feasible, low-cost, and scalable method for preparing molecular ferroelectric NSs but also promotes the research on molecular ferroelectric nanomaterials.
Collapse
Affiliation(s)
- Tai‐Ting Sha
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189P. R. China
| | - Xing‐Chen Zhang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials and Institute for Advanced MaterialsSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006P. R. China
| | - Ru‐Jie Zhou
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189P. R. China
| | - Guo‐Wei Du
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189P. R. China
| | - Yu‐An Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189P. R. China
| | - Qiang Pan
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189P. R. China
| | - Jie Yao
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189P. R. China
| | - Zi‐Jie Feng
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189P. R. China
| | - Xing‐Sen Gao
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials and Institute for Advanced MaterialsSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006P. R. China
| | - Yu‐Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189P. R. China
| |
Collapse
|
8
|
Zheng H, Ghosh A, Swamynadhan MJ, Zhang Q, Wong WPD, Wu Z, Zhang R, Chen J, Cimpoesu F, Ghosh S, Campbell BJ, Wang K, Stroppa A, Mahendiran R, Loh KP. Chiral multiferroicity in two-dimensional hybrid organic-inorganic perovskites. Nat Commun 2024; 15:5556. [PMID: 38956033 PMCID: PMC11220029 DOI: 10.1038/s41467-024-49708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Chiral multiferroics offer remarkable capabilities for controlling quantum devices at multiple levels. However, these materials are rare due to the competing requirements of long-range orders and strict symmetry constraints. In this study, we present experimental evidence that the coexistence of ferroelectric, magnetic orders, and crystallographic chirality is achievable in hybrid organic-inorganic perovskites [(R/S)-β-methylphenethylamine]2CuCl4. By employing Landau symmetry mode analysis, we investigate the interplay between chirality and ferroic orders and propose a novel mechanism for chirality transfer in hybrid systems. This mechanism involves the coupling of non-chiral distortions, characterized by defining a pseudo-scalar quantity, ξ = p ⋅ r ( p represents the ferroelectric displacement vector and r denotes the ferro-rotational vector), which distinguishes between (R)- and (S)-chirality based on its sign. Moreover, the reversal of this descriptor's sign can be associated with coordinated transitions in ferroelectric distortions, Jahn-Teller antiferro-distortions, and Dzyaloshinskii-Moriya vectors, indicating the mediating role of crystallographic chirality in magnetoelectric correlations.
Collapse
Affiliation(s)
- Haining Zheng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Arup Ghosh
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - M J Swamynadhan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Qihan Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Walter P D Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhenyue Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Rongrong Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jingsheng Chen
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Fanica Cimpoesu
- Institute of Physical Chemistry, Splaiul Independentei 202, Bucharest, 060021, Romania
| | - Saurabh Ghosh
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Branton J Campbell
- Department of Physics & Astronomy, Brigham Young University, Provo, UT, 84602, USA
| | - Kai Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering and Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing, 100044, China.
| | - Alessandro Stroppa
- CNR-SPIN, c/o Dip.to di Scienze Fisiche e Chimiche - University of L'Aquila, Via Vetoio, Coppito (AQ), 67100, Italy.
| | - Ramanathan Mahendiran
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore.
| | - Kian Ping Loh
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
9
|
Pan Q, Gu ZX, Zhou RJ, Feng ZJ, Xiong YA, Sha TT, You YM, Xiong RG. The past 10 years of molecular ferroelectrics: structures, design, and properties. Chem Soc Rev 2024; 53:5781-5861. [PMID: 38690681 DOI: 10.1039/d3cs00262d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Ferroelectricity, which has diverse important applications such as memory elements, capacitors, and sensors, was first discovered in a molecular compound, Rochelle salt, in 1920 by Valasek. Owing to their superiorities of lightweight, biocompatibility, structural tunability, mechanical flexibility, etc., the past decade has witnessed the renaissance of molecular ferroelectrics as promising complementary materials to commercial inorganic ferroelectrics. Thus, on the 100th anniversary of ferroelectricity, it is an opportune time to look into the future, specifically into how to push the boundaries of material design in molecular ferroelectric systems and finally overcome the hurdles to their commercialization. Herein, we present a comprehensive and accessible review of the appealing development of molecular ferroelectrics over the past 10 years, with an emphasis on their structural diversity, chemical design, exceptional properties, and potential applications. We believe that it will inspire intense, combined research efforts to enrich the family of high-performance molecular ferroelectrics and attract widespread interest from physicists and chemists to better understand the structure-function relationships governing improved applied functional device engineering.
Collapse
Affiliation(s)
- Qiang Pan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Zhu-Xiao Gu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, P. R. China.
| | - Ru-Jie Zhou
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Zi-Jie Feng
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Yu-An Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Tai-Ting Sha
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Ren-Gen Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| |
Collapse
|
10
|
Zhang X, Cheng M, Dai J, Yang Q, Zhang Y, Dong B, Tao X, Zou J, Jin Z, Liu F, Wu Z, Hu X, Zheng Z, Shi Z, Jiang S, Zhang L, Yang T, Zhang X, Zhou L. Scalable Synthesis of High-Quality Ultrathin Ferroelectric Magnesium Molybdenum Oxide. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308550. [PMID: 38478729 DOI: 10.1002/adma.202308550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/15/2024] [Indexed: 03/20/2024]
Abstract
The development of ultrathin, stable ferroelectric materials is crucial for advancing high-density, low-power electronic devices. Nonetheless, ultrathin ferroelectric materials are rare due to the critical size effect. Here, a novel ferroelectric material, magnesium molybdenum oxide (Mg2Mo3O8) is presented. High-quality ultrathin Mg2Mo3O8 crystals are synthesized using chemical vapor deposition (CVD). Ultrathin Mg2Mo3O8 has a wide bandgap (≈4.4 eV) and nonlinear optical response. Mg2Mo3O8 crystals of varying thicknesses exhibit out-of-plane ferroelectric properties at room temperature, with ferroelectricity retained even at a 2 nm thickness. The Mg2Mo3O8 exhibits a relatively large remanent polarization ranging from 33 to 52 µC cm- 2, which is tunable by changing its thickness. Notably, Mg2Mo3O8 possesses a high Curie temperature (>980 °C) across various thicknesses. Moreover, the as-grown Mg2Mo3O8 crystals display remarkable stability under harsh environments. This work introduces nolanites-type crystal into ultrathin ferroelectrics. The scalable synthesis of stable ultrathin ferroelectric Mg2Mo3O8 expands the scope of ferroelectric materials and may prosper applications of ferroelectrics.
Collapse
Affiliation(s)
- Xingxing Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mo Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiuxiang Dai
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qianqian Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ye Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, China and School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Baojuan Dong
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
| | - Xinwei Tao
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingyi Zou
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Zhitong Jin
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Feng Liu
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhenghan Wu
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xianyu Hu
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zemin Zheng
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiwen Shi
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shengwei Jiang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linxing Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Teng Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, China and School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Xu Zhang
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Lin Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
11
|
Li S, Wang F, Wang Y, Yang J, Wang X, Zhan X, He J, Wang Z. Van der Waals Ferroelectrics: Theories, Materials, and Device Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301472. [PMID: 37363893 DOI: 10.1002/adma.202301472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/19/2023] [Indexed: 06/28/2023]
Abstract
In recent years, an increasing number of 2D van der Waals (vdW) materials are theory-predicted or laboratory-validated to possess in-plane (IP) and/or out-of-plane (OOP) spontaneous ferroelectric polarization. Due to their dangling-bond-free surfaces, interlayer charge coupling, robust polarization, tunable energy band structures, and compatibility with silicon-based technologies, vdW ferroelectric materials exhibit great promise in ferroelectric memories, neuromorphic computing, nanogenerators, photovoltaic devices, spintronic devices, and so on. Here, the very recent advances in the field of vdW ferroelectrics (FEs) are reviewed. First, theories of ferroelectricity are briefly discussed. Then, a comprehensive summary of the non-stacking vdW ferroelectric materials is provided based on their crystal structures and the emerging sliding ferroelectrics. In addition, their potential applications in various branches/frontier fields are enumerated, with a focus on artificial intelligence. Finally, the challenges and development prospects of vdW ferroelectrics are discussed.
Collapse
Affiliation(s)
- Shuhui Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanrong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jia Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xinyuan Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xueying Zhan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jun He
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhenxing Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
12
|
Chai Y, Jiang J, Wu L, Sun Z, Fang S, Shen L, Yao K. Surface Engineering of Perovskite Single Crystals by Atomic Layer Deposited Tin Oxide for Optical Communication. J Phys Chem Lett 2024; 15:3859-3865. [PMID: 38557200 DOI: 10.1021/acs.jpclett.4c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Perovskite single crystals with excellent physical properties have broad prospects in the field of optoelectronics. However, the presence of dangling bonds, surface dislocations, and chemical impurities results in high surface defect density and sensitivity to humidity. Unfortunately, there are relatively few surface engineering strategies for single perovskite single crystals. We present a strategy utilizing atomic layer deposited SnOx to passivate surface defects in perovskite single crystals. The photodetector prepared based on the modified FAPbBr3 single crystals exhibits a low dark current of 1.89 × 10-9 A at a 5 V bias, close to 4 times lower with respect to the pristine device, a high detectivity of 2.3 × 1010 jones, and a fast response time of 27 μs. Moreover, the photodetectors feature long-term operational stability because the presence of a dense SnOx capping layer hinders the ingress of moisture and diffusion of ions. We further demonstrate the promise of our perovskite single crystal detectors for real-time subaqueous optical communication.
Collapse
Affiliation(s)
- Yalin Chai
- Institute of Photovoltaics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Jizhong Jiang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, Changchun 130012, China
| | - Long Wu
- Institute of Photovoltaics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Zaicheng Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, Changchun 130012, China
| | - Shanshan Fang
- Institute of Photovoltaics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Liang Shen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, Changchun 130012, China
| | - Kai Yao
- Institute of Photovoltaics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
13
|
Li X, Zhang S, Zhang X, Vardeny ZV, Liu F. Topological Nodal-Point Superconductivity in Two-Dimensional Ferroelectric Hybrid Perovskites. NANO LETTERS 2024; 24:2705-2711. [PMID: 38240732 DOI: 10.1021/acs.nanolett.3c04085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs) with enhanced stability, high tunability, and strong spin-orbit coupling have shown great potential in vast applications. Here, we extend the already rich functionality of 2D HOIPs to a new territory, realizing topological superconductivity and Majorana modes for fault-tolerant quantum computation. Especially, we predict that room-temperature ferroelectric BA2PbCl4 (BA for benzylammonium) exhibits topological nodal-point superconductivity (NSC) and gapless Majorana modes on selected edges and ferroelectric domain walls when proximity-coupled to an s-wave superconductor and an in-plane Zeeman field, attractive for experimental verification and application. Since NSC is protected by spatial symmetry of 2D HOIPs, we envision more exotic topological superconducting states to be found in this class of materials due to their diverse noncentrosymmetric space groups, which may open a new avenue in the fields of HOIPs and topological superconductivity.
Collapse
Affiliation(s)
- Xiaoyin Li
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shunhong Zhang
- International Center for Quantum Design of Functional Materials (ICQD), University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xiaoming Zhang
- College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China
| | - Zeev Valy Vardeny
- Department of Physics & Astronomy, University of Utah, Salt Lake City, Utah 84112, United States
| | - Feng Liu
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
14
|
Yan Q, Weng Y, Wang S, Zhou Z, Hu Y, Li Q, Xue J, Feng Z, Luo Z, Feng R, You L, Fang L. Ambient Degradation Anisotropy and Mechanism of van der Waals Ferroelectric NbOI 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9051-9059. [PMID: 38348475 DOI: 10.1021/acsami.3c18018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The spontaneous centrosymmetry-breaking and robust room-temperature ferroelectricity in niobium oxide dihalides spurs a flurry of explorations into its promising second-order nonlinear optical properties, and promises potential applications in nonvolatile electro-optical and optoelectronic devices. However, the ambient stability of the niobium oxide dihalides remains questionable, which overshadows their future development. In this work, the chemical degradation of NbOI2 is comprehensively investigated using combined chemical and optical microscopies in conjunction with spectroscopies. We unveil the highly anisotropic degradation kinetics of NbOI2 driven by the hydrolysis process of the unstable dangling iodine bonds dominantly on the (010) facet and progressing along the c axis. Knowing its degradation mechanism, the NbOI2 flake can then be stabilized by the hexagonal boron nitride encapsulation, which isolates the air moisture. These findings provide direct insights into the ambient instability of NbOI2, and they deliver possible solutions to circumvent this issue, which are essential for its practical integration in photonic and electronic devices.
Collapse
Affiliation(s)
- Qingyu Yan
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Yuyan Weng
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Shun Wang
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Zhou Zhou
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Yiqi Hu
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Qiankun Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Jinshuo Xue
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Zhijian Feng
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Zhongshen Luo
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Runcang Feng
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Lu You
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Liang Fang
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| |
Collapse
|
15
|
Man P, Huang L, Zhao J, Ly TH. Ferroic Phases in Two-Dimensional Materials. Chem Rev 2023; 123:10990-11046. [PMID: 37672768 DOI: 10.1021/acs.chemrev.3c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Two-dimensional (2D) ferroics, namely ferroelectric, ferromagnetic, and ferroelastic materials, are attracting rising interest due to their fascinating physical properties and promising functional applications. A variety of 2D ferroic phases, as well as 2D multiferroics and the novel 2D ferrovalleytronics/ferrotoroidics, have been recently predicted by theory, even down to the single atomic layers. Meanwhile, some of them have already been experimentally verified. In addition to the intrinsic 2D ferroics, appropriate stacking, doping, and defects can also artificially regulate the ferroic phases of 2D materials. Correspondingly, ferroic ordering in 2D materials exhibits enormous potential for future high density memory devices, energy conversion devices, and sensing devices, among other applications. In this paper, the recent research progresses on 2D ferroic phases are comprehensively reviewed, with emphasis on chemistry and structural origin of the ferroic properties. In addition, the promising applications of the 2D ferroics for information storage, optoelectronics, and sensing are also briefly discussed. Finally, we envisioned a few possible pathways for the future 2D ferroics research and development. This comprehensive overview on the 2D ferroic phases can provide an atlas for this field and facilitate further exploration of the intriguing new materials and physical phenomena, which will generate tremendous impact on future functional materials and devices.
Collapse
Affiliation(s)
- Ping Man
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Lingli Huang
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Thuc Hue Ly
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
| |
Collapse
|
16
|
Zhou S, Liao L, Chen L, Feng B, He X, Bai X, Song C, Wu K. Ferroelectricity in Epitaxial Perovskite Oxide Bi 2WO 6 Films with One-Unit-Cell Thickness. NANO LETTERS 2023; 23:7838-7844. [PMID: 37590032 DOI: 10.1021/acs.nanolett.3c01426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Retaining ferroelectricity in ultrathin films or nanostructures is crucial for miniaturizing ferroelectric devices, but it is a challenging task due to intrinsic depolarization and size effects. In this study, we have shown that it is possible to stably maintain in-plane polarization in an extremely thin, one-unit-cell thick epitaxial Bi2WO6 film. The use of a perfectly lattice-matched NdGaO3 (110) substrate for the Bi2WO6 film minimizes strain and enhances stability. We attribute the residual polarization in this ultrathin film to the crystal stability of the Bi-O octahedral framework against structural distortions. Our findings suggest that ferroelectricity can surpass the critical thickness limit through proper strain engineering, and the Bi2WO6/NdGaO3 (110) system presents a potential platform for designing low-energy consumption, nonvolatile ferroelectric memories.
Collapse
Affiliation(s)
- Song Zhou
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Liao
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lan Chen
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baojie Feng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyue He
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Xuedong Bai
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuangye Song
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Kehui Wu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Yao CJ, Xun W, Yu M, Hao X, Zhong JL, Gu H, Wu YZ. Tailoring angle dependent ferroelectricity in nanoribbons of group-IV monochalcogenides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:495301. [PMID: 37652037 DOI: 10.1088/1361-648x/acf5ba] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/31/2023] [Indexed: 09/02/2023]
Abstract
Ferroelectricity is significant in low dimensional structures due to the potential applications in multifunctional nanodevices. In this work, the tailoring angle dependent ferroelectricity is systematically investigated for the nanoribbons and nanowires of puckered group-IV monochalcogenides MX (M =Ge,Sn; X =S,Se). Based on first-principles calculations, it is found that the ferroelectricity of nanoribbon and nanowire strongly depends on the tailoring angle. Firstly, the critical width for the bare nanoribbon of group-IV monochalcogenide is obtained and discussed. As the nanowires are concerned, the ferroelectricity will disappear when the tailoring angle becomes small. At last, H-passivation on the edge and the strain engineering are employed to improve the ferroelectricity of nanoribbon, and it is obtained that H-passivation is beneficial to the enhancement of polarization for nanoribbons tailored near the armchair direction, while the polarization of nanoribbons tailored along the diagonal direction will decrease when the edges are passivated with H atoms, and the tensile strain along the length direction always favors the improvement of ferroelectricity of the considered nanoribbons. Therefore, tailoring angle has great influence on the ferroelectricity of nanoribbons and nanowires, which may be used as an effective way to tune the ferroelectricity and further the electronic structures of nanostructures in the field of nanoelectronics.
Collapse
Affiliation(s)
- Cheng-Jun Yao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, and School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Wei Xun
- Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huaian 223003, People's Republic of China
| | - Miao Yu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, and School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Xiang Hao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, and School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Jia-Lin Zhong
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
- Semiconductor Sensor and Microelectronic System TEKISM United Laboratory, Suzhou 215009, People's Republic of China
| | - Han Gu
- School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, People's Republic of China
| | - Yin-Zhong Wu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, and School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| |
Collapse
|
18
|
Han S, Li L, Ji C, Liu X, Wang GE, Xu G, Sun Z, Luo J. Visible-Photoactive Perovskite Ferroelectric-Driven Self-Powered Gas Detection. J Am Chem Soc 2023. [PMID: 37263965 DOI: 10.1021/jacs.3c03719] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Chemiresistive sensing has been regarded as the key monitoring technique, while classic oxide gas detection devices always need an external power supply. In contrast, the bulk photovoltage of photoferroelectric materials could provide a controllable power source, holding a bright future in self-powered gas sensing. Herein, we present a new photoferroelectric ([n-pentylaminium]2[ethylammonium]2Pb3I10, 1), which possesses large spontaneous polarization (∼4.8 μC/cm2) and prominent visible-photoactive behaviors. Emphatically, driven by the bulk photovoltaic effect, 1 enables excellent self-powered sensing responses for NO2 at room temperature, including extremely fast response/recovery speeds (0.15/0.16 min) and high sensitivity (0.03 ppm-1). Such figures of merit are superior to those of typical inorganic systems (e.g., ZnO) using an external power supply. Theoretical calculations and in situ diffuse reflectance infrared Fourier transform spectroscopy measurements confirm the great selectivity of 1 for NO2. As far as we know, this is the first realization of ferroelectricity-driven self-powered gas detection. Our work sheds light on the self-powered sensing systems and provides a promising way to broaden the functionalities of photoferroelectrics.
Collapse
Affiliation(s)
- Shiguo Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
- Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lina Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chengmin Ji
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xitao Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guan-E Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhihua Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
19
|
Wang C, You L, Cobden D, Wang J. Towards two-dimensional van der Waals ferroelectrics. NATURE MATERIALS 2023; 22:542-552. [PMID: 36690757 DOI: 10.1038/s41563-022-01422-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/27/2022] [Indexed: 05/05/2023]
Abstract
The discovery of ferroelectricity in two-dimensional (2D) van der Waals (vdW) materials has brought important functionalities to the 2D materials family, and may trigger a revolution in next-generation nanoelectronics and spintronics. In this Perspective, we briefly review recent progress in the field of 2D vdW ferroelectrics, focusing on the mechanisms that drive spontaneous polarization in 2D systems, unique properties brought about by the reduced lattice dimensionality and promising applications of 2D vdW ferroelectrics. We finish with an outlook for challenges that need to be addressed and our view on possible future research directions.
Collapse
Affiliation(s)
- Chuanshou Wang
- Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Lu You
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, China.
| | - David Cobden
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Junling Wang
- Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen, China.
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
20
|
Ji J, Yu G, Xu C, Xiang HJ. General Theory for Bilayer Stacking Ferroelectricity. PHYSICAL REVIEW LETTERS 2023; 130:146801. [PMID: 37084445 DOI: 10.1103/physrevlett.130.146801] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/15/2023] [Accepted: 02/15/2023] [Indexed: 05/03/2023]
Abstract
Two-dimensional (2D) ferroelectrics, which are rare in nature, enable high-density nonvolatile memory with low energy consumption. Here, we propose a theory of bilayer stacking ferroelectricity (BSF), in which two stacked layers of the same 2D material, with different rotation and translation, exhibit ferroelectricity. By performing systematic group theory analysis, we find all the possible BSF in all 80 layer groups (LGs) and discover the rules about the creation and annihilation of symmetries in the bilayer. Our general theory can not only explain all the previous findings (including sliding ferroelectricity), but also provide a new perspective. Interestingly, the direction of the electric polarization of the bilayer could be totally different from that of the single layer. In particular, the bilayer could become ferroelectric after properly stacking two centrosymmetric nonpolar monolayers. By means of first-principles simulations, we predict that the ferroelectricity and thus multiferroicity can be introduced to the prototypical 2D ferromagnetic centrosymmetric material CrI_{3} by stacking. Furthermore, we find that the out-of-plane electric polarization in bilayer CrI_{3} is interlocked with the in-plane electric polarization, suggesting that the out-of-plane polarization can be manipulated in a deterministic way through the application of an in-plane electric field. The present BSF theory lays a solid foundation for designing a large number of bilayer ferroelectrics and thus colorful platforms for fundamental studies and applications.
Collapse
Affiliation(s)
- Junyi Ji
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Guoliang Yu
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Changsong Xu
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - H J Xiang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| |
Collapse
|
21
|
Han S, Ma Y, Hua L, Tang L, Wang B, Sun Z, Luo J. Soft Multiaxial Molecular Ferroelectric Thin Films with Self-Powered Broadband Photodetection. J Am Chem Soc 2022; 144:20315-20322. [DOI: 10.1021/jacs.2c07892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shiguo Han
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
| | - Yu Ma
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
| | - Lina Hua
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
| | - Liwei Tang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
| | - Beibei Wang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
| | - Zhihua Sun
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
22
|
Sun Y, Xu S, Xu Z, Tian J, Bai M, Qi Z, Niu Y, Aung HH, Xiong X, Han J, Lu C, Yin J, Wang S, Chen Q, Tenne R, Zak A, Guo Y. Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system. Nat Commun 2022; 13:5391. [PMID: 36104456 PMCID: PMC9474805 DOI: 10.1038/s41467-022-33118-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/01/2022] [Indexed: 01/18/2023] Open
Abstract
Intelligent materials with adaptive response to external stimulation lay foundation to integrate functional systems at the material level. Here, with experimental observation and numerical simulation, we report a delicate nano-electro-mechanical-opto-system naturally embedded in individual multiwall tungsten disulfide nanotubes, which generates a distinct form of in-plane van der Waals sliding ferroelectricity from the unique combination of superlubricity and piezoelectricity. The sliding ferroelectricity enables programmable photovoltaic effect using the multiwall tungsten disulfide nanotube as photovoltaic random-access memory. A complete "four-in-one" artificial vision system that synchronously achieves full functions of detecting, processing, memorizing, and powering is integrated into the nanotube devices. Both labeled supervised learning and unlabeled reinforcement learning algorithms are executable in the artificial vision system to achieve self-driven image recognition. This work provides a distinct strategy to create ferroelectricity in van der Waals materials, and demonstrates how intelligent materials can push electronic system integration at the material level.
Collapse
Affiliation(s)
- Yan Sun
- Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Shuting Xu
- Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Zheqi Xu
- Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Jiamin Tian
- Department of Electronics, Peking University, Haidian, Beijing, 100871, China
| | - Mengmeng Bai
- Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Zhiying Qi
- Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Yue Niu
- Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Hein Htet Aung
- Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Xiaolu Xiong
- Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Junfeng Han
- Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Cuicui Lu
- Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Jianbo Yin
- Beijing Graphene Institute, Beijing, 100095, China
| | - Sheng Wang
- Department of Electronics, Peking University, Haidian, Beijing, 100871, China
| | - Qing Chen
- Department of Electronics, Peking University, Haidian, Beijing, 100871, China
| | - Reshef Tenne
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 760001, Israel
| | - Alla Zak
- Faculty of Sciences, Holon Institute of Technology, 52 Golomb St., Holon, 5810201, Israel.
| | - Yao Guo
- Beijing Institute of Technology, Haidian, Beijing, 100081, China.
| |
Collapse
|
23
|
Yang Y, Ji J, Feng J, Chen S, Bellaiche L, Xiang H. Two-Dimensional Organic-Inorganic Room-Temperature Multiferroics. J Am Chem Soc 2022; 144:14907-14914. [PMID: 35926166 DOI: 10.1021/jacs.2c06347] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organic-inorganic multiferroics are promising for the next generation of electronic devices. To date, dozens of organic-inorganic multiferroics have been reported; however, most of them show a magnetic Curie temperature much lower than room temperature, which drastically hampers their application. Here, by performing first-principles calculations and building effective model Hamiltonians, we reveal a molecular orbital-mediated magnetic coupling mechanism in two-dimensional Cr(pyz)2 (pyz = pyrazine) and the role that the valence state of the molecule plays in determining the magnetic coupling type between metal ions. Based on these, we demonstrate that a two-dimensional organic-inorganic room-temperature multiferroic, Cr(h-fpyz)2 (h-fpyz = half-fluoropyrazine), can be rationally designed by introducing ferroelectricity in Cr(pyz)2 while keeping the valence state of the molecule unchanged. Our work not only reveals the origin of magnetic coupling in 2D organic-inorganic systems but also provides a way to design room-temperature multiferroic materials rationally.
Collapse
Affiliation(s)
- Yali Yang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, and Department of Physics, Fudan University, Shanghai 200433, China.,Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Junyi Ji
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, and Department of Physics, Fudan University, Shanghai 200433, China.,Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Junsheng Feng
- School of Physics and Materials Engineering, Hefei Normal University, Hefei 230601, China
| | - Shiyou Chen
- Shanghai Qi Zhi Institute, Shanghai 200030, China.,State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Laurent Bellaiche
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Hongjun Xiang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, and Department of Physics, Fudan University, Shanghai 200433, China.,Shanghai Qi Zhi Institute, Shanghai 200030, China.,Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| |
Collapse
|
24
|
Xiong YA, Gu ZX, Song XJ, Yao J, Pan Q, Feng ZJ, Du GW, Ji HR, Sha TT, Xiong RG, You YM. Rational Design of Molecular Ferroelectrics with Negatively Charged Domain Walls. J Am Chem Soc 2022; 144:13806-13814. [PMID: 35816081 DOI: 10.1021/jacs.2c04872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ferroelectric domains and domain walls are unique characteristics of ferroelectric materials. Among them, charged domain walls (CDWs) are a special kind of peculiar microstructure that highly improve conductivity, piezoelectricity, and photovoltaic efficiency. Thus, CDWs are believed to be the key to ferroelectrics' future application in fields of energy, sensing, information storage, and so forth. Studies on CDWs are one of the most attractive directions in conventional inorganic ferroelectric ceramics. However, in newly emerged molecular ferroelectrics, which have advantages such as lightweight, easy preparation, simple film fabrication, mechanical flexibility, and biocompatibility, CDWs are rarely observed due to the lack of free charges. In inorganic ferroelectrics, doping is a traditional method to induce free charges, but for molecular ferroelectrics fabricated by solution processes, doping usually causes phase separation or phase transition, which destabilizes or removes ferroelectricity. To realize stable CDWs in molecular systems, we designed and synthesized an n-type molecular ferroelectric, 1-adamantanammonium hydroiodate. In this compound, negative charges are induced by defects in the I- vacancy, and CDWs can be achieved. Nanometer-scale CDWs that are stable at temperatures as high as 373 K can be "written" precisely by an electrically biased metal tip. More importantly, this is the first time that the charge diffusion of CDWs at variable temperatures has been investigated in molecular ferroelectrics. This work provides a new design strategy for n-type molecular ferroelectrics and may shed light on their future applications in flexible electronics, microsensors, and so forth.
Collapse
Affiliation(s)
- Yu-An Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Zhu-Xiao Gu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xian-Jiang Song
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Jie Yao
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Qiang Pan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Zi-Jie Feng
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Guo-Wei Du
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Hao-Ran Ji
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Tai-Ting Sha
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Ren-Gen Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China.,Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
25
|
Xu X, Zhong T, Zuo N, Li Z, Li D, Pi L, Chen P, Wu M, Zhai T, Zhou X. High- TC Two-Dimensional Ferroelectric CuCrS 2 Grown via Chemical Vapor Deposition. ACS NANO 2022; 16:8141-8149. [PMID: 35441509 DOI: 10.1021/acsnano.2c01470] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) ferroelectrics have attracted intensive attention. However, the 2D ferroelectrics remain rare, and especially few of them represent high ferroelectric transition temperature (TC), which is important for the usability of ferroelectrics. Herein, CuCrS2 nanoflakes are synthesized by salt-assisted chemical vapor deposition and exhibit switchable ferroelectric polarization even when the thickness is downscaled to 6 nm. On the contrary, a CuCrS2 nanoflake shows a TC as high as ∼700 K, which can be attributed to the robust tetrahedral bonding configurations of Cu cations. Such robustness can be further clarified by a theoretically predicted high order-disorder transition barrier and structure evolution from 600 to 800 K. Additionally, the interlocked out-of-plane (OOP) and in-plane (IP) ferroelectric domains are observed and two kinds of devices based on OOP and IP polarizations are demonstrated.
Collapse
Affiliation(s)
- Xiang Xu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Tingting Zhong
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Nian Zuo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zexin Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Dongyan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Lejing Pi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Ping Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Menghao Wu
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xing Zhou
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
26
|
Cheema SS, Shanker N, Hsu SL, Rho Y, Hsu CH, Stoica VA, Zhang Z, Freeland JW, Shafer P, Grigoropoulos CP, Ciston J, Salahuddin S. Emergent ferroelectricity in subnanometer binary oxide films on silicon. Science 2022; 376:648-652. [PMID: 35536900 DOI: 10.1126/science.abm8642] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The critical size limit of voltage-switchable electric dipoles has extensive implications for energy-efficient electronics, underlying the importance of ferroelectric order stabilized at reduced dimensionality. We report on the thickness-dependent antiferroelectric-to-ferroelectric phase transition in zirconium dioxide (ZrO2) thin films on silicon. The emergent ferroelectricity and hysteretic polarization switching in ultrathin ZrO2, conventionally a paraelectric material, notably persists down to a film thickness of 5 angstroms, the fluorite-structure unit-cell size. This approach to exploit three-dimensional centrosymmetric materials deposited down to the two-dimensional thickness limit, particularly within this model fluorite-structure system that possesses unconventional ferroelectric size effects, offers substantial promise for electronics, demonstrated by proof-of-principle atomic-scale nonvolatile ferroelectric memory on silicon. Additionally, it is also indicative of hidden electronic phenomena that are achievable across a wide class of simple binary materials.
Collapse
Affiliation(s)
- Suraj S Cheema
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Nirmaan Shanker
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Shang-Lin Hsu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Yoonsoo Rho
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Cheng-Hsiang Hsu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Vladimir A Stoica
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Zhan Zhang
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - John W Freeland
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Padraic Shafer
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Costas P Grigoropoulos
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Jim Ciston
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sayeef Salahuddin
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
27
|
Pan Z, Wu L, Jiang J, Shen L, Yao K. Searching for High-Quality Halide Perovskite Single Crystals toward X-ray Detection. J Phys Chem Lett 2022; 13:2851-2861. [PMID: 35324216 DOI: 10.1021/acs.jpclett.2c00450] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal halide perovskite materials, which combine outstanding physical properties, large absorption coefficient, tailored composition, and low-cost solution-processing, have aroused wide attention for use in various optoelectronic devices. Recently, perovskite single crystals have been rapidly outpacing traditional semiconductor materials in the field of radiation detection. As a prerequisite, achieving high-quality single crystals under controllable solution-phase growth must be tackled to fulfill their full potential as a new paradigm in this stagnated field. This Perspective summarizes the advances in X-ray detectors based on lead halide perovskite single crystals, presenting a comprehensive picture of the relationship among composition engineering, synthesis, and device properties. Additionally, we share our thoughts on several outstanding challenges of perovskite single crystals as promising X-ray detectors and propose possible approaches to the unresolved issues. We anticipate that this Perspective can open up new opportunities to improve their optoelectronic properties, which confers fascinating photonics applications with above and beyond state-of-the-art performance.
Collapse
Affiliation(s)
- Zhengwei Pan
- Institute of Photovoltaics/Department of Materials Science and Engineering, Nanchang University, Nanchang 330031, China
| | - Long Wu
- Institute of Photovoltaics/Department of Materials Science and Engineering, Nanchang University, Nanchang 330031, China
| | - Jizhong Jiang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Liang Shen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Kai Yao
- Institute of Photovoltaics/Department of Materials Science and Engineering, Nanchang University, Nanchang 330031, China
| |
Collapse
|
28
|
Pham PV, Bodepudi SC, Shehzad K, Liu Y, Xu Y, Yu B, Duan X. 2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges. Chem Rev 2022; 122:6514-6613. [PMID: 35133801 DOI: 10.1021/acs.chemrev.1c00735] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A grand family of two-dimensional (2D) materials and their heterostructures have been discovered through the extensive experimental and theoretical efforts of chemists, material scientists, physicists, and technologists. These pioneering works contribute to realizing the fundamental platforms to explore and analyze new physical/chemical properties and technological phenomena at the micro-nano-pico scales. Engineering 2D van der Waals (vdW) materials and their heterostructures via chemical and physical methods with a suitable choice of stacking order, thickness, and interlayer interactions enable exotic carrier dynamics, showing potential in high-frequency electronics, broadband optoelectronics, low-power neuromorphic computing, and ubiquitous electronics. This comprehensive review addresses recent advances in terms of representative 2D materials, the general fabrication methods, and characterization techniques and the vital role of the physical parameters affecting the quality of 2D heterostructures. The main emphasis is on 2D heterostructures and 3D-bulk (3D) hybrid systems exhibiting intrinsic quantum mechanical responses in the optical, valley, and topological states. Finally, we discuss the universality of 2D heterostructures with representative applications and trends for future electronics and optoelectronics (FEO) under the challenges and opportunities from physical, nanotechnological, and material synthesis perspectives.
Collapse
Affiliation(s)
- Phuong V Pham
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Srikrishna Chanakya Bodepudi
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Khurram Shehzad
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Yuan Liu
- School of Physics and Electronics, Hunan University, Hunan 410082, China
| | - Yang Xu
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Bin Yu
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, California 90095-1569, United States
| |
Collapse
|
29
|
Tahir R, Zahra SA, Naeem U, Akinwande D, Rizwan S. First observation on emergence of strong room-temperature ferroelectricity and multiferroicity in 2D-Ti 3C 2T x free-standing MXene film. RSC Adv 2022; 12:24571-24578. [PMID: 36128398 PMCID: PMC9426648 DOI: 10.1039/d2ra04428e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
Two-dimensional (2D) multiferroics are key candidate materials towards advancement of smart technology. Here, we employed a simple synthesis approach to address the long-awaited dream of developing ferroelectric and multiferroic 2D materials, especially in the new class of materials called MXenes. The etched Ti3C2Tx MXene was first synthesized after HF-treatment followed by a delamination process for successful synthesis of free-standing Ti3C2Tx film. The free-standing film was then exposed to air at room-temperature and heated at different temperatures to form a TiO2 layer derived from the Ti3C2Tx MXene itself. The ferroelectric measurement showed a clear polarization hysteresis loop at room-temperature. Also, due to the reported ferromagnetic behavior of Ti3C2Tx MXene, our composite could show multiferroic properties at room-temperature. The magnetoelectric coupling test was also performed that showed a clear, switchable spontaneous polarization under applied magnetic field. TiO2 is reported to be an incipient ferroelectric that assumes a ferroelectric phase in composite form. The structural and morphological analysis confirmed successful synthesis of free-standing film and the Raman spectroscopy revealed the formation of different phases of TiO2 and the observed ferroelectricity could be due to structural deformation as a result of the formation of this new phase. The measured value of remanent polarization is 0.5 μC cm−2. This is the first report on the existence of a ferroelectric phase and multiferroic coupling in 2D free-standing MXene film at room-temperature which opens-up the possibility of 2D material-based electric and magnetic data storage applications at room-temperature. Two-dimensional (2D) multiferroics are key candidate materials towards advancement of smart technology.![]()
Collapse
Affiliation(s)
- Rabia Tahir
- Physics Characterization and Simulations Lab (PCSL), Department of Physics, School of Natural Sciences, National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan
| | - Syedah Afsheen Zahra
- Physics Characterization and Simulations Lab (PCSL), Department of Physics, School of Natural Sciences, National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan
| | - Usman Naeem
- Physics Characterization and Simulations Lab (PCSL), Department of Physics, School of Natural Sciences, National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan
| | - Deji Akinwande
- Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78758, USA
| | - Syed Rizwan
- Physics Characterization and Simulations Lab (PCSL), Department of Physics, School of Natural Sciences, National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan
| |
Collapse
|
30
|
Sherrell PC, Fronzi M, Shepelin NA, Corletto A, Winkler DA, Ford M, Shapter JG, Ellis AV. A bright future for engineering piezoelectric 2D crystals. Chem Soc Rev 2021; 51:650-671. [PMID: 34931635 DOI: 10.1039/d1cs00844g] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The piezoelectric effect, mechanical-to-electrical and electrical-to-mechanical energy conversion, is highly beneficial for functional and responsive electronic devices. To fully exploit this property, miniaturization of piezoelectric materials is the subject of intense research. Indeed, select atomically thin 2D materials strongly exhibit the piezoelectric effect. The family of 2D crystals consists of over 7000 chemically distinct members that can be further manipulated in terms of strain, functionalization, elemental substitution (i.e. Janus 2D crystals), and defect engineering to induce a piezoelectric response. Additionally, most 2D crystals can stack with other similar or dissimilar 2D crystals to form a much greater number of complex 2D heterostructures whose properties are quite different to those of the individual constituents. The unprecedented flexibility in tailoring 2D crystal properties, coupled with their minimal thickness, make these emerging highly attractive for advanced piezoelectric applications that include pressure sensing, piezocatalysis, piezotronics, and energy harvesting. This review summarizes literature on piezoelectricity, particularly out-of-plane piezoelectricity, in the vast family of 2D materials as well as their heterostructures. It also describes methods to induce, enhance, and control the piezoelectric properties. The volume of data and role of machine learning in predicting piezoelectricity is discussed in detail, and a prospective outlook on the 2D piezoelectric field is provided.
Collapse
Affiliation(s)
- Peter C Sherrell
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Marco Fronzi
- School of Mathematical and Physical Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia.,Shibaura Institute of Technology, SIT Research Laboratories, 3-7-5, Toyosu, Koto-ku, Tokyo, 135-8548, Japan.
| | - Nick A Shepelin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia. .,Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Alexander Corletto
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia. .,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - David A Winkler
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,School of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Victoria 3086, Australia.,School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Mike Ford
- School of Mathematical and Physical Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Joseph G Shapter
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
31
|
Zhang F, Wang Z, Liu L, Nie A, Gong Y, Zhu W, Tao C. Atomic-Scale Visualization of Polar Domain Boundaries in Ferroelectric In 2Se 3 at the Monolayer Limit. J Phys Chem Lett 2021; 12:11902-11909. [PMID: 34878795 DOI: 10.1021/acs.jpclett.1c03251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Domain boundaries in ferroelectric materials exhibit rich and diverse physical properties distinct from their parent materials and have been proposed for broad applications in nanoelectronics and quantum information technology. Due to their complexity and diversity, the internal atomic and electronic structure of domain boundaries that governs the electronic properties remains far from being elucidated. By using scanning tunneling microscopy and spectroscopy (STM/S) combined with density functional theory (DFT) calculations, we directly visualize the atomic structure of polar domain boundaries in two-dimensional (2D) ferroelectric β'-In2Se3 down to the monolayer limit. We observe a double-barrier energy potential with a width of about 3 nm across the 60° tail-to-tail domain boundaries in monolayer β'-In2Se3. The results will deepen our understanding of domain boundaries in 2D ferroelectric materials and stimulate innovative applications of these materials.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Zhe Wang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lixuan Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinghuangdao 066004, China
| | - Anmin Nie
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinghuangdao 066004, China
| | - Yongji Gong
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Wenguang Zhu
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chenggang Tao
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
32
|
Peng Q, Li D, Huang P, Ren Y, Li Z, Pi L, Chen P, Wu M, Zhang X, Zhou X, Zhai T. Room-Temperature Ferroelectricity in 2D Metal-Tellurium-Oxyhalide Cd 7Te 7Cl 8O 17 via Selenium-Induced Selective-Bonding Growth. ACS NANO 2021; 15:16525-16532. [PMID: 34559511 DOI: 10.1021/acsnano.1c06099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) ferroelectric materials have attracted increasing interest due to meeting the requirements of integration, miniaturization, and multifunction of devices. However, the exploration of intrinsic 2D ferroelectric materials is still in the early stage, for which the related reports are still limited, especially fewer ones prepared by chemical vapor deposition (CVD). Here, the ultrathin metal-tellurium-oxyhalide Cd7Te7Cl8O17 (CTCO) flakes as thin as 3.8 nm are realized via the selenium-induced selective-bonding CVD method. The growth mechanism has been confirmed by experiments and theoretical calculations, which can be ascribed to the induction of selective bonding of a hydrogen atom in H2O molecules by the introduction of selenium, leading to the generation of strong oxidants. Excitingly, switchable out-of-plane ferroelectric polarization was observed in CTCO flakes down to 6 nm at room temperature, which may be caused by mobile Cl vacancies. This work has implications for the synthesis and applications of 2D ferroelectric materials.
Collapse
Affiliation(s)
- Qiaojun Peng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Dongyan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Pu Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Yangyang Ren
- School of Physics, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Zexin Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Lejing Pi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Ping Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Menghao Wu
- School of Physics, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xiuwen Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Xing Zhou
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
33
|
|
34
|
Ding R, Lyu Y, Wu Z, Guo F, Io WF, Pang SY, Zhao Y, Mao J, Wong MC, Hao J. Effective Piezo-Phototronic Enhancement of Flexible Photodetectors Based on 2D Hybrid Perovskite Ferroelectric Single-Crystalline Thin-Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101263. [PMID: 34176170 DOI: 10.1002/adma.202101263] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/23/2021] [Indexed: 06/13/2023]
Abstract
2D hybrid perovskites are very attractive for optoelectronic applications because of their numerous exceptional properties. The emerging 2D perovskite ferroelectrics, in which are the coupling of spontaneous polarization and piezoelectric effects, as well as photoexcitation and semiconductor behaviors, have great appeal in the field of piezo-phototronics that enable to effectively improve the performance of optoelectronic devices via modulating the electro-optical processes. However, current studies on 2D perovskite ferroelectrics focus on bulk ceramics that cannot endure irregular mechanical deformation and limit their application in flexible optoelectronics and piezo-phototronics. Herein, we synthesize ferroelectric EA4 Pb3 Br10 single-crystalline thin-films (SCFs) for integration into flexible photodetectors. The in-plane multiaxial ferroelectricity is evident within the EA4 Pb3 Br10 SCFs through systematic characterizations. Flexible photodetectors based on EA4 Pb3 Br10 SCFs are achieved with an impressive photodetection performance. More importantly, optoelectronic EA4 Pb3 Br10 SCFs incorporated with in-plane ferroelectric polarization and effective piezoelectric coefficient show great promise for the observation of piezo-phototronic effect, which is capable of greatly enhancing the photodetector performance. Under external strains, the responsivity of the flexible photodetectors can be modulated by piezo-phototronic effect with a remarkable enhancement up to 284%. Our findings shed light on the piezo-phototronic devices and offer a promising avenue to broaden functionalities of hybrid perovskite ferroelectrics.
Collapse
Affiliation(s)
- Ran Ding
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Yongxin Lyu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| | - Zehan Wu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| | - Feng Guo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Weng Fu Io
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Sin-Yi Pang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Yuqian Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Jianfeng Mao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Man-Chung Wong
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
35
|
Wu M. Two-Dimensional van der Waals Ferroelectrics: Scientific and Technological Opportunities. ACS NANO 2021; 15:9229-9237. [PMID: 34010553 DOI: 10.1021/acsnano.0c08483] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent breakthroughs in two-dimensional (2D) van der Waals ferroelectrics have been impressive, with a series of 2D ferroelectrics having been realized experimentally. The discovery of ferroelectric order in atom-thick layers not only is important for exploring the interplay between dimensionality and ferroelectric order but may also enable ultra-high-density memory, which has attracted significant interest. However, understanding of 2D ferroelectrics goes beyond simply their atomic-scale thickness. In this Perspective, I suggest possible innovations that may resolve a number of conventional issues and greatly transform the roles of ferroelectrics in nanoelectronics. The major obstacles in the commercialization of nanoelectronic devices based on current ferroelectrics involve their insulating and interfacial issues, which hinder their combination with semiconductors in nanocircuits and reduce their efficiency in data reading/writing. In comparison, the excellent semiconductor performance of many 2D ferroelectrics may enable computing-in-memory architectures or efficient ferroelectric photovoltaics. In addition, their clean van der Waals interfaces can greatly facilitate their integration into silicon chips, as well as the popularization of nondestructive data reading and indefatigable data writing. Two-dimensional ferroelectrics also give rise to new physics such as interlayer sliding ferroelectricity, Moiré ferroelectricity, switchable metallic ferroelectricity, and unconventional robust multiferroic couplings, which may provide high-speed energy-saving data writing and efficient data-reading strategies. The emerging 2D ferroelectric candidates for optimization will help resolve some current issues (e.g., weak vertical polarizations), and further exploitation of the aforementioned advantages may open a new era of nanoferroelectricity.
Collapse
Affiliation(s)
- Menghao Wu
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
36
|
Xue F, He X, Wang Z, Retamal JRD, Chai Z, Jing L, Zhang C, Fang H, Chai Y, Jiang T, Zhang W, Alshareef HN, Ji Z, Li LJ, He JH, Zhang X. Giant Ferroelectric Resistance Switching Controlled by a Modulatory Terminal for Low-Power Neuromorphic In-Memory Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008709. [PMID: 33860581 DOI: 10.1002/adma.202008709] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Ferroelectrics have been demonstrated as excellent building blocks for high-performance nonvolatile memories, including memristors, which play critical roles in the hardware implementation of artificial synapses and in-memory computing. Here, it is reported that the emerging van der Waals ferroelectric α-In2 Se3 can be used to successfully implement heterosynaptic plasticity (a fundamental but rarely emulated synaptic form) and achieve a resistance-switching ratio of heterosynaptic memristors above 103 , which is two orders of magnitude larger than that in other similar devices. The polarization change of ferroelectric α-In2 Se3 channel is responsible for the resistance switching at various paired terminals. The third terminal of α-In2 Se3 memristors exhibits nonvolatile control over channel current at a picoampere level, endowing the devices with picojoule read-energy consumption to emulate the associative heterosynaptic learning. The simulation proves that both supervised and unsupervised learning manners can be implemented in α-In2 Se3 neutral networks with high image recognition accuracy. Moreover, these heterosynaptic devices can naturally realize Boolean logic without an additional circuit component. The results suggest that van der Waals ferroelectrics hold great potential for applications in complex, energy-efficient, brain-inspired computing systems and logic-in-memory computers.
Collapse
Affiliation(s)
- Fei Xue
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Xin He
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Zhenyu Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - José Ramón Durán Retamal
- Computer, Electrical, and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Zheng Chai
- Department of Electronics and Electrical Engineering, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Lingling Jing
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenhui Zhang
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Hui Fang
- Computer Science Department, Loughborough University, Loughborough, LE11 3TU, UK
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Tao Jiang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Weidong Zhang
- Department of Electronics and Electrical Engineering, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Husam N Alshareef
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Zhigang Ji
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lain-Jong Li
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Department of Materials Science and Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Jr-Hau He
- Computer, Electrical, and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xixiang Zhang
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
37
|
Yang Y, Lou F, Xiang H. Cooperative Nature of Ferroelectricity in Two-Dimensional Hybrid Organic-Inorganic Perovskites. NANO LETTERS 2021; 21:3170-3176. [PMID: 33754732 DOI: 10.1021/acs.nanolett.1c00395] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) ferroelectric (FE) hybrid organic-inorganic perovskites (HOIPs) are promising for potential applications as miniaturized flexible ferroelectric/piezoelectric devices. Recently, several 2D HOIPs [e.g., Ruddlensden-Popper type HOIP BA2PbCl4 (BA = C6H5CH2NH3+)] were reported to possess room-temperature ferroelectricity. However, the underlying microscopic mechanisms for ferroelectricity in 2D HOIPs remain elusive. Here, by performing first-principles calculations and symmetry mode analysis, we demonstrate that there exists a cooperative coupling between A-site organic molecules and B-site inorganic Pb2+ ions that is essential to the ferroelectricity in 2D BA2PbCl4. The nonpolar ground state of the closely related compounds BA2PbBr4 and BA2PbI4 can also be explained in terms of the weakened cooperative coupling. We further predict that 2D BA2PbF4 displays in-plane ferroelectricity with a higher Curie temperature and larger electric polarization. Our work not only reveals the unusual FE mechanism in 2D HOIPs but also provides a solid theoretical basis for the rational design of 2D multifunctional materials.
Collapse
Affiliation(s)
- Yali Yang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
- Shanghai Qizhi Institution, Shanghai 200232, People's Republic of China
| | - Feng Lou
- Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
- Shanghai Qizhi Institution, Shanghai 200232, People's Republic of China
| | - Hongjun Xiang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
- Shanghai Qizhi Institution, Shanghai 200232, People's Republic of China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, People's Republic of China
| |
Collapse
|
38
|
Qi L, Ruan S, Zeng YJ. Review on Recent Developments in 2D Ferroelectrics: Theories and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005098. [PMID: 33577141 DOI: 10.1002/adma.202005098] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/28/2020] [Indexed: 06/12/2023]
Abstract
Although only a few 2D materials have been predicted to possess ferroelectricity, 2D ferroelectrics are expected to play a dominant role in the upcoming nano era as important functional materials. The ferroelectric properties of 2D ferroelectrics are significantly different than those of traditional bulk ferroelectrics owing to their intrinsic size and surface effects. To date, 2D ferroelectrics have been reported to exhibit diverse properties ranging from bulk photovoltaic and piezoelectric/pyroelectric effects to the spontaneous valley and spin polarization. These properties are either dependent on ferroelectric polarization or coupled with it for easy electric control, thus making 2D ferroelectrics applicable to multifunctional nanodevices. At present, cumulative efforts are being made to explore 2D ferroelectrics in theories, experiments, and applications. Herein, such theories and methods are briefly introduced. Subsequently, intrinsic and extrinsic origins of 2D ferroelectricity are separately summarized. In addition, invented or laboratory-validated 2D ferroelectric-based applications are listed. Finally, the existing challenges and prospects of 2D ferroelectrics are discussed.
Collapse
Affiliation(s)
- Lu Qi
- Key laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shuangchen Ruan
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Yu-Jia Zeng
- Key laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
39
|
Zhao Z, Xu K, Ryu H, Zhu W. Strong Temperature Effect on the Ferroelectric Properties of CuInP 2S 6 and Its Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51820-51826. [PMID: 33152243 DOI: 10.1021/acsami.0c13799] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Van der Waals (vdW) ferroelectric insulator CuInP2S6 (CIPS) has attracted intense research interest due to its unique ferroelectric and piezoelectric properties. In this paper, we systematically investigate the temperature and frequency dependence of the ferroelectric properties of CIPS. We find that there is a large imprint in the CIPS capacitor, which can be attributed to the fixed dipoles induced by defects. At high temperatures and low frequencies, the amplitude and direction of the imprint become tunable by the preset pulse, as the copper ions are more mobile and these dipoles become switchable. When the polarization in CIPS changes direction, the graphene/CIPS/graphene ferroelectric diode exhibits switchable resistance since the Fermi level in graphene is modulated by the polarization in CIPS. For CIPS/MoTe2 dual-gate transistor, a temperature-dependent nonvolatile memory window is observed, which can be attributed to the interplay between ferroelectric polarization and interface traps. This research provides experimental groundwork for vdW ferroelectric materials, expands the understanding of ferroelectricity in CIPS, and opens up exciting opportunities for novel electronic devices based on vdW ferroelectric materials.
Collapse
Affiliation(s)
- Zijing Zhao
- Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kai Xu
- Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hojoon Ryu
- Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wenjuan Zhu
- Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
40
|
Chang K, Küster F, Miller BJ, Ji JR, Zhang JL, Sessi P, Barraza-Lopez S, Parkin SSP. Microscopic Manipulation of Ferroelectric Domains in SnSe Monolayers at Room Temperature. NANO LETTERS 2020; 20:6590-6597. [PMID: 32809837 PMCID: PMC7498149 DOI: 10.1021/acs.nanolett.0c02357] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Two-dimensional (2D) van der Waals ferroelectrics provide an unprecedented architectural freedom for the creation of artificial multiferroics and nonvolatile electronic devices based on vertical and coplanar heterojunctions of 2D ferroic materials. Nevertheless, controlled microscopic manipulation of ferroelectric domains is still rare in monolayer-thick 2D ferroelectrics with in-plane polarization. Here we report the discovery of robust ferroelectricity with a critical temperature close to 400 K in SnSe monolayer plates grown on graphene and the demonstration of controlled room-temperature ferroelectric domain manipulation by applying appropriate bias voltage pulses to the tip of a scanning tunneling microscope (STM). This study shows that STM is a powerful tool for detecting and manipulating the microscopic domain structures in 2D ferroelectric monolayers, which are difficult for conventional approaches such as piezoresponse force microscopy, thus facilitating the hunt for other 2D ferroelectric monolayers with in-plane polarization with important technological applications.
Collapse
Affiliation(s)
- Kai Chang
- Max Planck Institute
of Microstructure Physics, Weinberg 2, Halle 06120, Germany
- (K.C.)
| | - Felix Küster
- Max Planck Institute
of Microstructure Physics, Weinberg 2, Halle 06120, Germany
| | - Brandon J. Miller
- Department
of Physics, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jing-Rong Ji
- Max Planck Institute
of Microstructure Physics, Weinberg 2, Halle 06120, Germany
| | - Jia-Lu Zhang
- Max Planck Institute
of Microstructure Physics, Weinberg 2, Halle 06120, Germany
| | - Paolo Sessi
- Max Planck Institute
of Microstructure Physics, Weinberg 2, Halle 06120, Germany
| | - Salvador Barraza-Lopez
- Department
of Physics, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Stuart S. P. Parkin
- Max Planck Institute
of Microstructure Physics, Weinberg 2, Halle 06120, Germany
- (S.S.P.P.)
| |
Collapse
|
41
|
Deng J, Liu Y, Li M, Xu S, Lun Y, Lv P, Xia T, Gao P, Wang X, Hong J. Thickness-Dependent In-Plane Polarization and Structural Phase Transition in van der Waals Ferroelectric CuInP 2 S 6. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904529. [PMID: 31793714 DOI: 10.1002/smll.201904529] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/09/2019] [Indexed: 05/17/2023]
Abstract
van der Waals (vdW) layered materials have rather weaker interlayer bonding than the intralayer bonding, therefore the exfoliation along the stacking direction enables the achievement of monolayer or few layers vdW materials with emerging novel physical properties and functionalities. The ferroelectricity in vdW materials recently attracts renewed interest for the potential use in high-density storage devices. With the thickness becoming thinner, the competition between the surface energy, depolarization field, and interfacial chemical bonds may give rise to the modification of ferroelectricity and crystalline structure, which has limited investigations. In this work, combining the piezoresponse force microscope scanning, contact resonance imaging, the existence of the intrinsic in-plane polarization in vdW ferroelectrics CuInP2 S6 single crystals is reported, whereas below a critical thickness between 90 and 100 nm, the in-plane polarization disappears. The Young's modulus also shows an abrupt stiffness at the critical thickness. Based on the density functional theory calculations, these behaviors are ascribed to a structural phase transition from monoclinic to trigonal structure, which is further verified by transmission electron microscope technique. These findings demonstrate the foundational importance of structural phase transition for enhancing the rich functionality and broad utility of vdW ferroelectrics.
Collapse
Affiliation(s)
- Jianming Deng
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yanyu Liu
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Mingqiang Li
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Sheng Xu
- Department of Physics and Beijing Key Laboratory of Opto-Electronic Functional Materials & Micro-Nano Devices, Renmin University of China, Beijing, 100871, China
| | - Yingzhuo Lun
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Peng Lv
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Tianlong Xia
- Department of Physics and Beijing Key Laboratory of Opto-Electronic Functional Materials & Micro-Nano Devices, Renmin University of China, Beijing, 100871, China
| | - Peng Gao
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Centre of Quantum Matter, Beijing, 100871, China
| | - Xueyun Wang
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiawang Hong
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
42
|
Wang ZW, Shu DJ. Intrinsic interaction between in-plane ferroelectric polarization and surface adsorption. Phys Chem Chem Phys 2019; 21:18680-18685. [PMID: 31418001 DOI: 10.1039/c9cp03286j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemical properties of a ferroelectric surface are polarization dependent, the underlying nature of which is, however, far from being completely understood. One of the reasons is that when the polarization direction is perpendicular to the surface, the depolarization field may induce electronic or atomic reconstruction and thus change the chemistry of the ferroelectric surface in complicated ways. Instead, the in-plane polarization results in no depolarization field. Therefore, the chemical properties of a ferroelectric surface can be more intrinsically reflected by the interplay between the in-plane polarization and the surface adsorption. By using first-principles calculations, we study the effect of the strain-induced in-plane polarization on the adsorption of a series of molecules on the reduced rutile TiO2(110) surface. We reveal that it is the surface doping caused by the charge transfer between the adsorbates and the TiO2(110) surface that dominates the polarization-induced change of the adsorption energy, as a result of screening long-range Coulomb interactions. The electrostatic interaction between the polarization of the substrate and the polar molecule is of relatively less importance. We propose that charge transfer effects generally occur for ferroelectric surfaces with no localized surface states.
Collapse
Affiliation(s)
- Zhi-Wen Wang
- National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China.
| | | |
Collapse
|
43
|
Lin LF, Zhang Y, Moreo A, Dagotto E, Dong S. Frustrated Dipole Order Induces Noncollinear Proper Ferrielectricity in Two Dimensions. PHYSICAL REVIEW LETTERS 2019; 123:067601. [PMID: 31491163 DOI: 10.1103/physrevlett.123.067601] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/04/2019] [Indexed: 06/10/2023]
Abstract
Within Landau theory, magnetism and polarity are homotopic, displaying a one-to-one correspondence between most physical characteristics. However, despite widely reported noncollinear magnetism, spontaneous noncollinear electric dipole order as a ground state is rare. Here, a dioxydihalides family is predicted to display noncollinear ferrielectricity, induced by competing ferroelectric and antiferroelectric soft modes. This intrinsic of dipoles generates unique physical properties, such as Z_{2}×Z_{2} topological domains, atomic-scale dipole vortices, and negative piezoelectricity.
Collapse
Affiliation(s)
- Ling-Fang Lin
- School of Physics, Southeast University, Nanjing 211189, China
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Yang Zhang
- School of Physics, Southeast University, Nanjing 211189, China
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Adriana Moreo
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Elbio Dagotto
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Shuai Dong
- School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
44
|
Sha TT, Xiong YA, Pan Q, Chen XG, Song XJ, Yao J, Miao SR, Jing ZY, Feng ZJ, You YM, Xiong RG. Fluorinated 2D Lead Iodide Perovskite Ferroelectrics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901843. [PMID: 31169938 DOI: 10.1002/adma.201901843] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Hybrid perovskite materials are famous for their great application potential in photovoltaics and optoelectronics. Among them, lead-iodide-based perovskites receive great attention because of their good optical absorption ability and excellent electrical transport properties. Although many believe the ferroelectric photovoltaic effect (FEPV) plays a crucial role for the high conversion efficiency, the ferroelectricity in CH3 NH3 PbI3 is still under debate, and obtaining ferroelectric lead iodide perovskites is still challenging. In order to avoid the randomness and blindness in the conventional method of searching for perovskite ferroelectrics, a design strategy of fluorine modification is developed. As a demonstration, a nonpolar lead iodide perovskite is modified and a new 2D fluorinated layered hybrid perovskite material of (4,4-difluorocyclohexylammonium)2 PbI4 , 1, is obtained, which possesses clear ferroelectricity with controllable spontaneous polarization. The direct bandgap of 2.38 eV with strong photoluminescence also guarantees the direct observation of polarization-induced FEPV. More importantly, the 2D structure and fluorination are also expected to achieve both good stability and charge transport properties. 1 is not only a 2D fluorinated lead iodide perovskite with confirmed ferroelectricity, but also a great platform for studying the effect of ferroelectricity and FEPV in the context of lead halide perovskite solar cells and other optoelectronic applications.
Collapse
Affiliation(s)
- Tai-Ting Sha
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Yu-An Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Qiang Pan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Xiao-Gang Chen
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Xian-Jiang Song
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Jie Yao
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Shu-Rong Miao
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Zheng-Yin Jing
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Zi-Jie Feng
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Ren-Gen Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
45
|
|