1
|
Best R, Stier D, Kuhrts L, Zlotnikov I. Classical View on Nonclassical Crystal Growth in a Biological Setting. J Am Chem Soc 2025; 147:1-9. [PMID: 39680593 PMCID: PMC11726565 DOI: 10.1021/jacs.4c11940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
Crystallization by amorphous particle attachment, a nonclassical crystal growth mode, is prevalent in minerals formed by living tissues. It allows the organism to intervene at every step of crystal growth, i.e., particle formation, stabilization, accretion, and crystallization, and thus to orchestrate biomineral morphogenesis and crystallographic texturing; all toward achieving a required functionality for the organism. Therefore, significant effort is aimed at achieving similar control and crystal growth tunability through bioinspired and biomimetic synthetic means. This Perspective examines the driving forces and the kinetics of crystallization by amorphous particle attachment in a biological setting, and through an analogy to classical molecule-by-molecule crystallization, it establishes distinct crystal growth mechanisms. It underlines the role of physics and chemistry of materials in the "Growth and Form" of biogenic minerals.
Collapse
Affiliation(s)
- Richard
Johannes Best
- B CUBE - Center for Molecular
Bioengineering, Technische Universität
Dresden, 01307 Dresden, Germany
| | - Deborah Stier
- B CUBE - Center for Molecular
Bioengineering, Technische Universität
Dresden, 01307 Dresden, Germany
| | - Lucas Kuhrts
- B CUBE - Center for Molecular
Bioengineering, Technische Universität
Dresden, 01307 Dresden, Germany
| | - Igor Zlotnikov
- B CUBE - Center for Molecular
Bioengineering, Technische Universität
Dresden, 01307 Dresden, Germany
| |
Collapse
|
2
|
Grünewald TA, Liebi M, Birkedal H. Crossing length scales: X-ray approaches to studying the structure of biological materials. IUCRJ 2024; 11:708-722. [PMID: 39194257 PMCID: PMC11364038 DOI: 10.1107/s2052252524007838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Biological materials have outstanding properties. With ease, challenging mechanical, optical or electrical properties are realised from comparatively `humble' building blocks. The key strategy to realise these properties is through extensive hierarchical structuring of the material from the millimetre to the nanometre scale in 3D. Though hierarchical structuring in biological materials has long been recognized, the 3D characterization of such structures remains a challenge. To understand the behaviour of materials, multimodal and multi-scale characterization approaches are needed. In this review, we outline current X-ray analysis approaches using the structures of bone and shells as examples. We show how recent advances have aided our understanding of hierarchical structures and their functions, and how these could be exploited for future research directions. We also discuss current roadblocks including radiation damage, data quantity and sample preparation, as well as strategies to address them.
Collapse
Affiliation(s)
| | - Marianne Liebi
- Photon Science DivisionPaul Scherrer InstituteVilligenPSI5232Switzerland
- Institute of MaterialsÉcole Polytechnique Fédérale de Lausanne1015 LausanneSwitzerland
| | - Henrik Birkedal
- Department of Chemistry & iNANOAarhus UniversityGustav Wieds Vej 14Aarhus8000Denmark
| |
Collapse
|
3
|
Grenier C, Griesshaber E, Schmahl W, Berning B, Checa AG. Skeletal microstructures of cheilostome bryozoans (phylum Bryozoa, class Gymnolaemata): crystallography and secretion patterns. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:405-424. [PMID: 39219676 PMCID: PMC11358562 DOI: 10.1007/s42995-024-00233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/30/2024] [Indexed: 09/04/2024]
Abstract
Gymnolaemata bryozoans produce CaCO3 skeletons of either calcite, aragonite, or both. Despite extensive research, their crystallography and biomineralization patterns remain unclear. We present a detailed study of the microstructures, mineralogy, and crystallography of eight extant cheilostome species using scanning electron microscopy, electron backscatter diffraction, atomic force microscopy, and micro-computed tomography. We distinguished five basic microstructures, three calcitic (tabular, irregularly platy, and granular), and two aragonitic (granular-platy and fibrous). The calcitic microstructures consist of crystal aggregates that transition from tabular or irregularly platy to granular assemblies. Fibrous aragonite consists of fibers arranged into spherulites. In all cases, the crystallographic textures are axial, and stronger in aragonite than in calcite, with the c-axis as the fiber axis. We reconstruct the biomineralization sequence in the different species by considering the distribution and morphology of the growth fronts of crystals and the location of the secretory epithelium. In bimineralic species, calcite formation always predates aragonite formation. In interior compound walls, growth proceeds from the cuticle toward the zooecium interior. We conclude that, with the exception of tabular calcite, biomineralization is remote and occurs within a relatively wide extrapallial space, which is consistent with the inorganic-like appearance of the microstructures. This biomineralization mode is rare among invertebrates. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00233-1.
Collapse
Affiliation(s)
- Christian Grenier
- Departamento de Estratigrafía y Paleontología, Universidad de Granada, 18071 Granada, Spain
| | - Erika Griesshaber
- Department of Earth and Environmental Sciences, Ludwig-Maximilians Universität, 80333 Munich, Germany
| | - Wolfgang Schmahl
- Department of Earth and Environmental Sciences, Ludwig-Maximilians Universität, 80333 Munich, Germany
| | - Björn Berning
- Institute for Geology, University of Hamburg, 20146 Hamburg, Germany
| | - Antonio G. Checa
- Departamento de Estratigrafía y Paleontología, Universidad de Granada, 18071 Granada, Spain
- Instituto Andaluz de Ciencias de La Tierra, CSIC-Universidad de Granada, 18100 Armilla, Spain
| |
Collapse
|
4
|
Rodríguez-Navarro AB, Domínguez-Gasca N, Athanasiadou D, Le Roy N, González-Segura A, Reznikov N, Hincke MT, McKee MD, Checa AG, Nys Y, Gautron J. Guinea fowl eggshell structural analysis at different scales reveals how organic matrix induces microstructural shifts that enhance its mechanical properties. Acta Biomater 2024; 178:244-256. [PMID: 38460930 DOI: 10.1016/j.actbio.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Guinea fowl eggshells have an unusual structural arrangement that is different from that of most birds, consisting of two distinct layers with different microstructures. This bilayered organization, and distinct microstructural characteristics, provides it with exceptional mechanical properties. The inner layer, constituting about one third of the eggshell thickness, contains columnar calcite crystal units arranged vertically as in most bird shells. However, the thicker outer layer has a more complex microstructural arrangement formed by a switch to smaller calcite domains with diffuse/interlocking boundaries, partly resembling the interfaces seen in mollusk shell nacre. The switching process that leads to this remarkable second-layer microstructure is unknown. Our results indicate that the microstructural switching is triggered by changes in the inter- and intracrystalline organic matrix. During production of the outer microcrystalline layer in the later stages of eggshell formation, the interactions of organic matter with mineral induce an accumulation of defects that increase crystal mosaicity, instill anisotropic lattice distortions in the calcite structure, interrupt epitaxial growth, reduce crystallite size, and induce nucleation events which increase crystal misorientation. These structural changes, together with the transition between the layers and each layer having different microstructures, enhance the overall mechanical strength of the Guinea fowl eggshell. Additionally, our findings provide new insights into how biogenic calcite growth may be regulated to impart unique functional properties. STATEMENT OF SIGNIFICANCE: Avian eggshells are mineralized to protect the embryo and to provide calcium for embryonic chick skeletal development. Their thickness, structure and mechanical properties have evolved to resist external forces throughout brooding, yet ultimately allow them to crack open during chick hatching. One particular eggshell, that of the Guinea fowl, has structural features very different from other galliform birds - it is bilayered, with an inner columnar mineral structure (like in most birds), but it also has an outer layer with a complex microstructure which contributes to its superior mechanical properties. This work provides novel and new fundamental information about the processes and mechanisms that control and change crystal growth during the switch to microcrystalline domains when the second outer layer forms.
Collapse
Affiliation(s)
- A B Rodríguez-Navarro
- Departmento de Mineralogía y Petrología, Universidad de Granada, Granada 18071, Spain.
| | - N Domínguez-Gasca
- Departmento de Mineralogía y Petrología, Universidad de Granada, Granada 18071, Spain
| | - D Athanasiadou
- Faculty of Dental Medicine and Oral Health Sciences, and Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - N Le Roy
- INRAE, UMR BOA, Université de Tours, Nouzilly F-37380, France
| | - A González-Segura
- Centro de Instrumentación Científica, Universidad de Granada, Granada 18071, Spain
| | - N Reznikov
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - M T Hincke
- Departments of Innovation in Medical Education, and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - M D McKee
- Faculty of Dental Medicine and Oral Health Sciences, and Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - A G Checa
- Departmento de Estratigrafía y Paleontología, Universidad de Granada, and Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, 18071 Armilla, Granada 18100, Spain
| | - Y Nys
- INRAE, UMR BOA, Université de Tours, Nouzilly F-37380, France
| | - J Gautron
- INRAE, UMR BOA, Université de Tours, Nouzilly F-37380, France
| |
Collapse
|
5
|
Gránásy L, Rátkai L, Zlotnikov I, Pusztai T. Physical Phenomena Governing Mineral Morphogenesis in Molluscan Nacre. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304183. [PMID: 37759411 DOI: 10.1002/smll.202304183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/09/2023] [Indexed: 09/29/2023]
Abstract
Mollusks, as well as many other living organisms, have the ability to shape mineral crystals into unconventional morphologies and to assemble them into complex functional mineral-organic structures, an observation that inspired tremendous research efforts in scientific and technological domains. Despite these, a biochemical toolkit that accounts for the formation of the vast variety of the observed mineral morphologies cannot be identified yet. Herein, phase-field modeling of molluscan nacre formation, an intensively studied biomineralization process, is used to identify key physical parameters that govern mineral morphogenesis. Manipulating such parameters, various nacre properties ranging from the morphology of a single mineral building block to that of the entire nacreous assembly are reproduced. The results support the hypothesis that the control over mineral morphogenesis in mineralized tissues happens via regulating the physico-chemical environment, in which biomineralization occurs: the organic content manipulates the geometric and thermodynamic boundary conditions, which in turn, determine the process of growth and the form of the biomineral phase. The approach developed here has the potential of providing explicit guidelines for the morphogenetic control of synthetically formed composite materials.
Collapse
Affiliation(s)
- László Gránásy
- Laboratory of Advanced Structural Studies, Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P. O. Box 49, Budapest, H-1525, Hungary
- Brunel Centre of Advanced Solidification Technology, Brunel University, Uxbridge, Middlesex, UB8 3PH, UK
| | - László Rátkai
- Laboratory of Advanced Structural Studies, Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P. O. Box 49, Budapest, H-1525, Hungary
| | - Igor Zlotnikov
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Tamás Pusztai
- Laboratory of Advanced Structural Studies, Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P. O. Box 49, Budapest, H-1525, Hungary
| |
Collapse
|
6
|
Chandra Rajan K, Li Y, Dang X, Lim YK, Suzuki M, Lee SW, Vengatesen T. Directional fabrication and dissolution of larval and juvenile oyster shells under ocean acidification. Proc Biol Sci 2023; 290:20221216. [PMID: 36651043 PMCID: PMC9979777 DOI: 10.1098/rspb.2022.1216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Biomineralization is one of the key biochemical processes in calcifying bivalve species such as oysters that is affected by ocean acidification (OA). Larval life stages of oysters are made of aragonite crystals whereas the adults are made of calcite and/or aragonite. Though both calcite and aragonite are crystal polymorphs of calcium carbonate, they have different mechanical properties and hence it is important to study the micro and nano structure of different life stages of oyster shells under OA to understand the mechanisms by which OA affects biomineralization ontogeny. Here, we have studied the larval and juvenile life stages of an economically and ecologically important estuarine oyster species, Crassostrea hongkongensis, under OA with focus over shell fabrication under OA (pHNBS 7.4). We also look at the effect of parental exposure to OA on larvae and juvenile microstructure. The micro and nanostructure characterization reveals directional fabrication of oyster shells, with more organized structure as biomineralization progresses. Under OA, both the larval and juvenile stages show directional dissolution, i.e. the earlier formed shell layers undergo dissolution at first, owing to longer exposure time. Despite dissolution, the micro and nanostructure of the shell remains unaffected under OA, irrespective of parental exposure history.
Collapse
Affiliation(s)
- Kanmani Chandra Rajan
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Yang Li
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Xin Dang
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Yong Kian Lim
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
- Centre for Aquaculture and Veterinary Science & School of Applied Science, Temasek Polytechnic, Singapore, Singapore
| | - Michio Suzuki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Seung Woo Lee
- Korea Institute of Geoscience and Mineral Resources, Daejeon, Republic of South Korea
| | - Thiyagarajan Vengatesen
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
| |
Collapse
|
7
|
Schoeppler V, Cook PK, Detlefs C, Demichelis R, Zlotnikov I. Untangling the Mechanisms of Lattice Distortions in Biogenic Crystals across Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200690. [PMID: 35460121 DOI: 10.1002/adma.202200690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Biomineralized structures are complex functional hierarchical assemblies composed of biomineral building blocks joined together by an organic phase. The formation of individual mineral units is governed by the cellular tissue component that orchestrates the process of biomineral nucleation, growth, and morphogenesis. These processes are imprinted in the structural, compositional, and crystallographic properties of the emerging biominerals on all scales. Measurement of these properties can provide crucial information on the mechanisms that are employed by the organism to form these complex 3D architectures and to unravel principles of their functionality. Nevertheless, so far, this has only been possible at the macroscopic scale, by averaging the properties of the entire composite assembly, or at the mesoscale, by looking at extremely small parts of the entire picture. In this study, the newly developed synchrotron-based dark-field X-ray microscopy method is employed to study the link between 3D crystallographic properties of relatively large calcitic prisms in the shell of the mollusc Pinna nobilis and their local lattice properties with extremely high angular resolution down to 0.001°. Mechanistic links between variations in local lattice parameters and spacing, crystal orientation, chemical composition, and the deposition process of the entire mineral unit are unraveled.
Collapse
Affiliation(s)
- Vanessa Schoeppler
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01069, Dresden, Germany
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Phil K Cook
- ESRF - The European Synchrotron, Grenoble, 38000, France
| | | | - Raffaella Demichelis
- Curtin Institute for Computation, The Institute for Geoscience Research (TIGeR), School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, 6845, Australia
| | - Igor Zlotnikov
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01069, Dresden, Germany
| |
Collapse
|
8
|
Jia Z, Deng Z, Li L. Biomineralized Materials as Model Systems for Structural Composites: 3D Architecture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106259. [PMID: 35085421 DOI: 10.1002/adma.202106259] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Biomineralized materials are sophisticated material systems with hierarchical 3D material architectures, which are broadly used as model systems for fundamental mechanical, materials science, and biomimetic studies. The current knowledge of the structure of biological materials is mainly based on 2D imaging, which often impedes comprehensive and accurate understanding of the materials' intricate 3D microstructure and consequently their mechanics, functions, and bioinspired designs. The development of 3D techniques such as tomography, additive manufacturing, and 4D testing has opened pathways to study biological materials fully in 3D. This review discusses how applying 3D techniques can provide new insights into biomineralized materials that are either well known or possess complex microstructures that are challenging to understand in the 2D framework. The diverse structures of biomineralized materials are characterized based on four universal structural motifs. Nacre is selected as an example to demonstrate how the progression of knowledge from 2D to 3D can bring substantial improvements to understanding the growth mechanism, biomechanics, and bioinspired designs. State-of-the-art multiscale 3D tomographic techniques are discussed with a focus on their integration with 3D geometric quantification, 4D in situ experiments, and multiscale modeling. Outlook is given on the emerging approaches to investigate the synthesis-structure-function-biomimetics relationship.
Collapse
Affiliation(s)
- Zian Jia
- Department of Mechanical Engineering, Virginia Polytechnic Institute of Technology and State University, Blacksburg, VA, 24061, USA
| | - Zhifei Deng
- Department of Mechanical Engineering, Virginia Polytechnic Institute of Technology and State University, Blacksburg, VA, 24061, USA
| | - Ling Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute of Technology and State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
9
|
High-Mg calcite nanoparticles within a low-Mg calcite matrix: A widespread phenomenon in biomineralization. Proc Natl Acad Sci U S A 2022; 119:e2120177119. [PMID: 35412906 PMCID: PMC9169743 DOI: 10.1073/pnas.2120177119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Biominerals are extraordinarily intricate and possess superior mechanical properties compared with their synthetic counterparts. In this study, we show that the presence of high-Mg calcite nanoparticles within a low-Mg calcite matrix is a widespread phenomenon among marine organisms whose skeletons are composed of high-Mg calcite. It seems most likely that formation of such a complex structure is possible because of the phase separation that occurs as a result of spinodal decomposition of an amorphous Mg–calcium carbonate precursor and is followed by crystallization. We demonstrate that the basis of such phase separation stems from chemical composition rather than from biological similarities. The presence of high-Mg calcite nanoparticles increases the skeletons’ toughness and hardness. During the process of biomineralization, organisms utilize various biostrategies to enhance the mechanical durability of their skeletons. In this work, we establish that the presence of high-Mg nanoparticles embedded within lower-Mg calcite matrices is a widespread strategy utilized by various organisms from different kingdoms and phyla to improve the mechanical properties of their high-Mg calcite skeletons. We show that such phase separation and the formation of high-Mg nanoparticles are most probably achieved through spinodal decomposition of an amorphous Mg-calcite precursor. Such decomposition is independent of the biological characteristics of the studied organisms belonging to different phyla and even kingdoms but rather, originates from their similar chemical composition and a specific Mg content within their skeletons, which generally ranges from 14 to 48 mol % of Mg. We show evidence of high-Mg calcite nanoparticles in the cases of six biologically different organisms all demonstrating more than 14 mol % Mg-calcite and consider it likely that this phenomenon is immeasurably more prevalent in nature. We also establish the absence of these high-Mg nanoparticles in organisms whose Mg content is lower than 14 mol %, providing further evidence that whether or not spinodal decomposition of an amorphous Mg-calcite precursor takes place is determined by the amount of Mg it contains. The valuable knowledge gained from this biostrategy significantly impacts the understanding of how biominerals, although composed of intrinsically brittle materials, can effectively resist fracture. Moreover, our theoretical calculations clearly suggest that formation of Mg-rich nanoprecipitates greatly enhances the hardness of the biomineralized tissue as well.
Collapse
|
10
|
Gránásy L, Rátkai L, Tóth GI, Gilbert PUPA, Zlotnikov I, Pusztai T. Phase-Field Modeling of Biomineralization in Mollusks and Corals: Microstructure vs Formation Mechanism. JACS AU 2021; 1:1014-1033. [PMID: 34337606 PMCID: PMC8317440 DOI: 10.1021/jacsau.1c00026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 05/10/2023]
Abstract
While biological crystallization processes have been studied on the microscale extensively, there is a general lack of models addressing the mesoscale aspects of such phenomena. In this work, we investigate whether the phase-field theory developed in materials' science for describing complex polycrystalline structures on the mesoscale can be meaningfully adapted to model crystallization in biological systems. We demonstrate the abilities of the phase-field technique by modeling a range of microstructures observed in mollusk shells and coral skeletons, including granular, prismatic, sheet/columnar nacre, and sprinkled spherulitic structures. We also compare two possible micromechanisms of calcification: the classical route, via ion-by-ion addition from a fluid state, and a nonclassical route, crystallization of an amorphous precursor deposited at the solidification front. We show that with an appropriate choice of the model parameters, microstructures similar to those found in biomineralized systems can be obtained along both routes, though the time-scale of the nonclassical route appears to be more realistic. The resemblance of the simulated and natural biominerals suggests that, underneath the immense biological complexity observed in living organisms, the underlying design principles for biological structures may be understood with simple math and simulated by phase-field theory.
Collapse
Affiliation(s)
- László Gránásy
- Laboratory
of Advanced Structural Studies, Institute for Solid State Physics
and Optics, Wigner Research Centre for Physics, P.O. Box 49, H−1525 Budapest, Hungary
- Brunel
Centre of Advanced Solidification Technology, Brunel University, Uxbridge, Middlesex UB8 3PH, U.K.
| | - László Rátkai
- Laboratory
of Advanced Structural Studies, Institute for Solid State Physics
and Optics, Wigner Research Centre for Physics, P.O. Box 49, H−1525 Budapest, Hungary
| | - Gyula I. Tóth
- Department
of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, U.K.
| | - Pupa U. P. A. Gilbert
- Departments
of Physics, Chemistry, Geoscience, Materials Science, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Lawrence
Berkeley National Laboratory, Chemical Sciences Division, Berkeley, California 94720, United States
| | - Igor Zlotnikov
- B
CUBE−Center
for Molecular Bioengineering, Technische
Universität Dresden, 01307 Dresden, Germany
| | - Tamás Pusztai
- Laboratory
of Advanced Structural Studies, Institute for Solid State Physics
and Optics, Wigner Research Centre for Physics, P.O. Box 49, H−1525 Budapest, Hungary
| |
Collapse
|
11
|
Ehrlich H, Bailey E, Wysokowski M, Jesionowski T. Forced Biomineralization: A Review. Biomimetics (Basel) 2021; 6:46. [PMID: 34287234 PMCID: PMC8293141 DOI: 10.3390/biomimetics6030046] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/29/2021] [Accepted: 07/02/2021] [Indexed: 12/31/2022] Open
Abstract
Biologically induced and controlled mineralization of metals promotes the development of protective structures to shield cells from thermal, chemical, and ultraviolet stresses. Metal biomineralization is widely considered to have been relevant for the survival of life in the environmental conditions of ancient terrestrial oceans. Similar behavior is seen among extremophilic biomineralizers today, which have evolved to inhabit a variety of industrial aqueous environments with elevated metal concentrations. As an example of extreme biomineralization, we introduce the category of "forced biomineralization", which we use to refer to the biologically mediated sequestration of dissolved metals and metalloids into minerals. We discuss forced mineralization as it is known to be carried out by a variety of organisms, including polyextremophiles in a range of psychrophilic, thermophilic, anaerobic, alkaliphilic, acidophilic, and halophilic conditions, as well as in environments with very high or toxic metal ion concentrations. While much additional work lies ahead to characterize the various pathways by which these biominerals form, forced biomineralization has been shown to provide insights for the progression of extreme biomimetics, allowing for promising new forays into creating the next generation of composites using organic-templating approaches under biologically extreme laboratory conditions relevant to a wide range of industrial conditions.
Collapse
Affiliation(s)
- Hermann Ehrlich
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
- Centre for Climate Change Research, Toronto, ON M4P 1J4, Canada
- ICUBE-University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Elizabeth Bailey
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA;
| | - Marcin Wysokowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland
| |
Collapse
|
12
|
Can sustainable, monodisperse, spherical silica be produced from biomolecules? A review. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01869-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Sun CY, Gránásy L, Stifler CA, Zaquin T, Chopdekar RV, Tamura N, Weaver JC, Zhang JAY, Goffredo S, Falini G, Marcus MA, Pusztai T, Schoeppler V, Mass T, Gilbert PUPA. Crystal nucleation and growth of spherulites demonstrated by coral skeletons and phase-field simulations. Acta Biomater 2021; 120:277-292. [PMID: 32590171 PMCID: PMC7116570 DOI: 10.1016/j.actbio.2020.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 01/07/2023]
Abstract
Spherulites are radial distributions of acicular crystals, common in biogenic, geologic, and synthetic systems, yet exactly how spherulitic crystals nucleate and grow is still poorly understood. To investigate these processes in more detail, we chose scleractinian corals as a model system, because they are well known to form their skeletons from aragonite (CaCO3) spherulites, and because a comparative study of crystal structures across coral species has not been performed previously. We observed that all 12 diverse coral species analyzed here exhibit plumose spherulites in their skeletons, with well-defined centers of calcification (CoCs), and crystalline fibers radiating from them. In 7 of the 12 species, we observed a skeletal structural motif not observed previously: randomly oriented, equant crystals, which we termed "sprinkles". In Acropora pharaonis, these sprinkles are localized at the CoCs, while in 6 other species, sprinkles are either layered at the growth front (GF) of the spherulites, or randomly distributed. At the nano- and micro-scale, coral skeletons fill space as much as single crystals of aragonite. Based on these observations, we tentatively propose a spherulite formation mechanism in which growth front nucleation (GFN) of randomly oriented sprinkles, competition for space, and coarsening produce spherulites, rather than the previously assumed slightly misoriented nucleations termed "non-crystallographic branching". Phase-field simulations support this mechanism, and, using a minimal set of thermodynamic parameters, are able to reproduce all of the microstructural variation observed experimentally in all of the investigated coral skeletons. Beyond coral skeletons, other spherulitic systems, from aspirin to semicrystalline polymers and chocolate, may also form according to the mechanism for spherulite formation proposed here. STATEMENT OF SIGNIFICANCE: Understanding the fundamental mechanisms of spherulite nucleation and growth has broad ranging applications in the fields of metallurgy, polymers, food science, and pharmaceutical production. Using the skeletons of reef-building corals as a model system for investigating these processes, we propose a new spherulite growth mechanism that can not only explain the micro-structural diversity observed in distantly related coral species, but may point to a universal growth mechanism in a wide range of biologically and technologically relevant spherulitic materials systems.
Collapse
Affiliation(s)
- Chang-Yu Sun
- Department of Physics, University of Wisconsin, Madison, WI 53706, USA; Materials Science Program, University of Wisconsin, Madison, WI 53706, USA
| | - László Gránásy
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, PO Box 49, 1525 Budapest, Hungary
| | - Cayla A Stifler
- Department of Physics, University of Wisconsin, Madison, WI 53706, USA
| | - Tal Zaquin
- University of Haifa, Marine Biology Department, Mt. Carmel, Haifa 31905, Israel
| | - Rajesh V Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nobumichi Tamura
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Jun A Y Zhang
- Department of Physics, University of Wisconsin, Madison, WI 53706, USA
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, I-40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032 Fano, Pesaro Urbino, Italy
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032 Fano, Pesaro Urbino, Italy
| | - Matthew A Marcus
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tamás Pusztai
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, PO Box 49, 1525 Budapest, Hungary
| | - Vanessa Schoeppler
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Tali Mass
- University of Haifa, Marine Biology Department, Mt. Carmel, Haifa 31905, Israel
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin, Madison, WI 53706, USA; Departments of Chemistry, Geoscience, Materials Science, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
14
|
Cano M, Giner-Casares JJ. Biomineralization at fluid interfaces. Adv Colloid Interface Sci 2020; 286:102313. [PMID: 33181402 DOI: 10.1016/j.cis.2020.102313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022]
Abstract
Biomineralization is of paramount importance for life on Earth. The delicate balance of physicochemical interactions at the interface between organic and inorganic matter during all stages of biomineralization resembles an extremely high complexity. The coordination of this sophisticated biological machinery and physicochemical scenarios is certainly a wonderful show of nature. Understanding of the biomineralization processes is still far from complete. The recent advances in biomineralization research from the Colloid and Interface Science perspective are reviewed herein. The synergy between this two fields of research is demonstrated. The unique opportunities offered by purposefully designed fluid interfaces, mainly Langmuir monolayers are presented. Biomedical applications of biomineral-based nanostructures are discussed, showing their improved biocompatibility and on-demand delivery features. A brief guide to the array of state-of-the-art experimental techniques for unraveling the mechanisms of biomineralization using fluid interfaces is included. In summary, the fruitful and exciting crossroad between Colloid and Interface Science with Biomineralization is exhibited.
Collapse
|
15
|
Crippa G, Griesshaber E, Checa AG, Harper EM, Simonet Roda M, Schmahl WW. Orientation patterns of aragonitic crossed-lamellar, fibrous prismatic and myostracal microstructures of modern Glycymeris shells. J Struct Biol 2020; 212:107653. [DOI: 10.1016/j.jsb.2020.107653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 11/30/2022]
|
16
|
Cuif JP, Belhadj O, Borensztajn S, Gèze M, Trigos-Santos S, Prado P, Dauphin Y. Prism substructures in the shell of Pinna nobilis (Linnaeus, 1758), Mollusca - Evidence for a three-dimensional pulsed-growth model. Heliyon 2020; 6:e04513. [PMID: 32715146 PMCID: PMC7378700 DOI: 10.1016/j.heliyon.2020.e04513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/17/2020] [Accepted: 07/15/2020] [Indexed: 11/24/2022] Open
Abstract
In the shells of the Pelecypods belonging to the Pinnidae family, the calcareous prismatic units of the outer layer are long-standing references for biomineralization studies. To elucidate how the mechanism of prism formation enables both shell elongation and thickness increase, a top-down structural analysis of these classical "simple prisms" has been carried out, taking advantage of shell sampling on actively mineralizing animals. Particular attention was paid to the morphological and structural patterns of the calcareous units sequentially produced at the margins of the growth lamellae. This pre-prismatic part of the shell allows for studying the mineralizing stages not taken into account in prism reconstructions based on samples taken from older areas of the shell. Examination of the microstructural sequence shows that within the actively mineralizing area of the shell, a step-by-step structuring process is continuously running, providing a renewed view of prism formation as it makes obvious the progressive occurrence of their specific patterns. Given the critically endangered status of the species, a better knowledge of the mineralization process associated to shell growth may become handy for future studies aimed at understanding the health status of individuals based on their shell records.
Collapse
Affiliation(s)
- Jean-Pierre Cuif
- UMR 7207 CR2P, Muséum National d’Histoire Naturelle, 8 Rue Buffon, 75005 Paris, France
| | - Oulfa Belhadj
- CRC Ministère de la Culture et de la Communication, Muséum National d’Histoire Naturelle USR 3224, Sorbonne Université, CNRS CP21, Paris, France
| | - Stephan Borensztajn
- UMR 7154 Institut de Physique du Globe de Paris, 1 Rue Jussieu, 75005 Paris, France
| | - Marc Gèze
- CeMIM, Muséum National d’Histoire Naturelle de Paris, 43 Rue Cuvier, 75005 Paris, France
| | - Sergio Trigos-Santos
- Institut océanographique Paul Ricard, Ile des Embiez, 83140, Six-Fours les Plages, France
| | | | - Yannicke Dauphin
- UMR 7205 ISYEB, Muséum National d’Histoire Naturelle, 45 Rue Buffon, 75005 Paris, France
| |
Collapse
|
17
|
Baum D, Weaver JC, Zlotnikov I, Knötel D, Tomholt L, Dean MN. High-Throughput Segmentation of Tiled Biological Structures using Random-Walk Distance Transforms. Integr Comp Biol 2020; 59:1700-1712. [PMID: 31282926 PMCID: PMC6907396 DOI: 10.1093/icb/icz117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Various 3D imaging techniques are routinely used to examine biological materials, the results of which are usually a stack of grayscale images. In order to quantify structural aspects of the biological materials, however, they must first be extracted from the dataset in a process called segmentation. If the individual structures to be extracted are in contact or very close to each other, distance-based segmentation methods utilizing the Euclidean distance transform are commonly employed. Major disadvantages of the Euclidean distance transform, however, are its susceptibility to noise (very common in biological data), which often leads to incorrect segmentations (i.e., poor separation of objects of interest), and its limitation of being only effective for roundish objects. In the present work, we propose an alternative distance transform method, the random-walk distance transform, and demonstrate its effectiveness in high-throughput segmentation of three microCT datasets of biological tilings (i.e., structures composed of a large number of similar repeating units). In contrast to the Euclidean distance transform, the random-walk approach represents the global, rather than the local, geometric character of the objects to be segmented and, thus, is less susceptible to noise. In addition, it is directly applicable to structures with anisotropic shape characteristics. Using three case studies—tessellated cartilage from a stingray, the dermal endoskeleton of a starfish, and the prismatic layer of a bivalve mollusc shell—we provide a typical workflow for the segmentation of tiled structures, describe core image processing concepts that are underused in biological research, and show that for each study system, large amounts of biologically-relevant data can be rapidly segmented, visualized, and analyzed.
Collapse
Affiliation(s)
- Daniel Baum
- Department of Visual Data Analysis, Zuse Institute Berlin, Berlin, Germany
| | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Igor Zlotnikov
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - David Knötel
- Department of Visual Data Analysis, Zuse Institute Berlin, Berlin, Germany
| | - Lara Tomholt
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.,Harvard Graduate School of Design, Harvard University, Cambridge, MA, USA
| | - Mason N Dean
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Potsdam, Germany
| |
Collapse
|
18
|
Lemanis R, Stier D, Zlotnikov I, Zaslansky P, Fuchs D. The role of mural mechanics on cephalopod palaeoecology. J R Soc Interface 2020; 17:20200009. [PMID: 32183639 DOI: 10.1098/rsif.2020.0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cephalopods transformed the molluscan shell into a buoyancy device that must be strong enough to resist external water pressure. Historically, unique features of the shell have been interpreted on the basis that the strength of the shell presents a hard limit on maximum habitat depth. One such feature is the mural flap, which is a semi-prismatic layer deposited on the inner surface of some coleoid septa that has been suggested to strengthen the shell and permit colonization of deeper waters. We test this hypothesis by constructing finite-element models that show how mural modifications affect the response of the shell to hydrostatic pressure. The mural flaps are found to have no notable structural function. Another mural modification discovered here is the adapical ridge flap that initially seemed to have a potential function in shifting peak stress away from the attachment site of the septum; however, the irregular distribution of this feature casts any functional interpretation in doubt. Ecological separation of belemnites and decabrachians is likely not mediated by the presence/absence of mural flaps. This work illustrates a potential caveat that not all unique septal features formed in response to increasing hydrostatic pressure and deeper habitats.
Collapse
Affiliation(s)
- Robert Lemanis
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Deborah Stier
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Igor Zlotnikov
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Paul Zaslansky
- Department for Restorative and Preventive Dentistry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dirk Fuchs
- Bayerische Staatssammlung für Paläntologie und Geologie, Munich, Germany
| |
Collapse
|
19
|
Hou X, Yu H, Hou Z, Li J, Chen Y, Luo L, Chen X, Li W, Yang H, Zeng W. Structural and mechanical evolution of Tridacna gigas during permineralization. J Mech Behav Biomed Mater 2020; 103:103609. [PMID: 32090936 DOI: 10.1016/j.jmbbm.2019.103609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
Abstract
Mollusk shells have highly complex hierarchical structures and unique mechanical properties, which have been widely studied, especially in fresh shells. However, few studies have revealed differences in the structure-property correlations of shells during the permineralization process, which occurs after organism death. To better understand the effect of permineralization on the microstructure and mechanical properties of shells, this study investigated and compared the compositions, microstructures, and mechanical properties of Tridacna gigas and permineralized J-Tridacna gigas. The results showed that permineralized J-Tridacna gigas possessed coarsened aragonite minerals, less anisotropy and organic matter, and higher hardness and strength than Tridacna gigas. The toughening mechanisms of Tridacna gigas, including crack deflection, aragonite platelet pull-out, and mineral bridges, were discovered during Vickers hardness tests. Moreover, the permineralization mechanism comprised three main steps: organic matter dissolution, aragonite plate compaction, and recrystallization. This work further elaborates the permineralization mechanism, which can help increase the crystal size and improve the strength and hardness of materials. Moreover, this study provides valuable insights into the design of bioinspired advanced materials with outstanding hardness and strength.
Collapse
Affiliation(s)
- Xue Hou
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Life Sciences & Pharmacy, Hainan University, Haikou, 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science & Engineering, Hainan University, Haikou, 570228, China
| | - Hui Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Life Sciences & Pharmacy, Hainan University, Haikou, 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science & Engineering, Hainan University, Haikou, 570228, China
| | - Zhenhao Hou
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science & Engineering, Hainan University, Haikou, 570228, China
| | - Jianbao Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science & Engineering, Hainan University, Haikou, 570228, China.
| | - Yongjun Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science & Engineering, Hainan University, Haikou, 570228, China.
| | - Lijie Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science & Engineering, Hainan University, Haikou, 570228, China
| | - Xianzhi Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Life Sciences & Pharmacy, Hainan University, Haikou, 570228, China
| | - Wei Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Life Sciences & Pharmacy, Hainan University, Haikou, 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science & Engineering, Hainan University, Haikou, 570228, China
| | - Huan Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Life Sciences & Pharmacy, Hainan University, Haikou, 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science & Engineering, Hainan University, Haikou, 570228, China
| | - Wei Zeng
- Center for Applied Biomechanics, University of Virginia, Charlottesville, VA, 22911, USA
| |
Collapse
|
20
|
Comparison of embryonic and adult shells of Sepia officinalis (Cephalopoda, Mollusca). ZOOMORPHOLOGY 2020. [DOI: 10.1007/s00435-020-00477-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Beliaev M, Zöllner D, Pacureanu A, Zaslansky P, Bertinetti L, Zlotnikov I. Quantification of sheet nacre morphogenesis using X-ray nanotomography and deep learning. J Struct Biol 2020; 209:107432. [PMID: 31816415 DOI: 10.1016/j.jsb.2019.107432] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/12/2019] [Accepted: 12/03/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Maksim Beliaev
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Germany
| | - Dana Zöllner
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Germany
| | | | - Paul Zaslansky
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin, Germany
| | - Luca Bertinetti
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Germany
| | - Igor Zlotnikov
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Germany.
| |
Collapse
|
22
|
Crystal growth kinetics as an architectural constraint on the evolution of molluscan shells. Proc Natl Acad Sci U S A 2019; 116:20388-20397. [PMID: 31551265 PMCID: PMC6789867 DOI: 10.1073/pnas.1907229116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Using notions from classic materials science, we expand our understanding of the macroscopic morphospace of possible molluscan shell shapes to the level of possible ultrastructures that comprise them. This provides us with a unique opportunity to explore this morphospace using well-developed analytical, theoretical, and numerical tools and to test the effects of a discrete number of parameters on shell biomineralization. The physical model presented here sheds a new light on the evolutionary aspect of molluscan shell ultrastructural fabrication and suggests that the repeated “discovery” of some mineral morphologies partially reflects a series of architectural constraints provided by biomineral growth kinetics. Molluscan shells are a classic model system to study formation–structure–function relationships in biological materials and the process of biomineralized tissue morphogenesis. Typically, each shell consists of a number of highly mineralized ultrastructures, each characterized by a specific 3D mineral–organic architecture. Surprisingly, in some cases, despite the lack of a mutual biochemical toolkit for biomineralization or evidence of homology, shells from different independently evolved species contain similar ultrastructural motifs. In the present study, using a recently developed physical framework, which is based on an analogy to the process of directional solidification and simulated by phase-field modeling, we compare the process of ultrastructural morphogenesis of shells from 3 major molluscan classes: A bivalve Unio pictorum, a cephalopod Nautilus pompilius, and a gastropod Haliotis asinina. We demonstrate that the fabrication of these tissues is guided by the organisms by regulating the chemical and physical boundary conditions that control the growth kinetics of the mineral phase. This biomineralization concept is postulated to act as an architectural constraint on the evolution of molluscan shells by defining a morphospace of possible shell ultrastructures that is bounded by the thermodynamics and kinetics of crystal growth.
Collapse
|
23
|
Checa AG, Yáñez-Ávila ME, González-Segura A, Varela-Feria F, Griesshaber E, Schmahl WW. Bending and branching of calcite laths in the foliated microstructure of pectinoidean bivalves occurs at coherent crystal lattice orientation. J Struct Biol 2019; 205:7-17. [PMID: 30576768 DOI: 10.1016/j.jsb.2018.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 11/19/2022]
Abstract
Foliated calcite is widely employed by some important pteriomorph bivalve groups as a construction material. It is made from calcite laths, which are inclined at a low angle to the internal shell surface, although their arrangement is different among the different groups. They are strictly ordered into folia in the anomiids, fully independent in scallops, and display an intermediate arrangement in oysters. Pectinids have particularly narrow laths characterized by their ability to change their growth direction by bending or winding, as well as to bifurcate and polyfurcate. Electron backscatter analysis indicates that the c-axes of laths are at a high, though variable, angle to the growth direction, and that the laths grow preferentially along the projection of an intermediate axis between two a-axes, although they can grow in any intermediate direction. Their main surfaces are not particular crystallographic faces. Analyses done directly on the lath surfaces demonstrate that, during the bending/branching events, all crystallographic axes remain invariant. The growth flexibility of pectinid laths makes them an excellent space-filling material, well suited to level off small irregularities of the shell growth surface. We hypothesize that the exceptional ability of laths to change their direction may be promoted by the mode of growth of biogenic calcite, from a precursor liquid phase induced by organic molecules.
Collapse
Affiliation(s)
- Antonio G Checa
- Departamento de Estratigrafía y Paleontología, Universidad de Granada, 18071 Granada, Spain; Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, 18100 Armilla, Spain.
| | - María E Yáñez-Ávila
- Departamento de Estratigrafía y Paleontología, Universidad de Granada, 18071 Granada, Spain
| | | | - Francisco Varela-Feria
- Centro de Investigación, Tecnología e Innovación, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Erika Griesshaber
- Department für Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität München, 80333 München, Germany
| | - Wolfgang W Schmahl
- Department für Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität München, 80333 München, Germany
| |
Collapse
|