1
|
Liu S, Qin K, Yang J, Hu T, Luo H, Wu J, Cui Z, Li T, Ding F, Wang X, Li Y, Zhai T. Direct orientational epitaxy of wafer-scale 2D van der Waals heterostructures of metal dichalcogenides. Natl Sci Rev 2025; 12:nwaf119. [PMID: 40309346 PMCID: PMC12042757 DOI: 10.1093/nsr/nwaf119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
Two-dimensional (2D) van der Waals (vdW) heterostructures have emerged as a groundbreaking candidate for future integrated circuits due to their tunable band structures, atomically sharp interfaces and seamless compatibility with complementary metal-oxide-semiconductor technologies. Despite their promise, existing synthesis methods, such as mechanical transfer and vapor-phase conversion, struggle to achieve the high-quality, scalable production for practical applications. In response to these longstanding challenges, our study unveils for the first time the direct epitaxial growth of wafer-scale 2D vdW heterostructures (MoS[Formula: see text]/SnS[Formula: see text]) with exceptional quality and uniformity. This achievement is made possible through fundamentally enhancing the adsorption interactions between intermediates and the underlying material. The heterostructures display pristine, defect-free interfaces, consistent crystal orientation and wafer-level thickness uniformity. The Raman peak shifts of MoS[Formula: see text] and SnS[Formula: see text] are constrained to below 0.5 cm[Formula: see text] across the entire wafer, with intensity deviations maintained within an impressive 2%, and thickness uniformity surpassing 99.5%. Owing to their exceptional crystallinity and interface quality, the heterostructures demonstrate extraordinary electron and hole transfer capabilities, showcasing a prominent rectification effect and an astounding responsivity of [Formula: see text] A/W, averaged from 30 devices. Our study signifies a pivotal advancement for the integration of 2D materials into semiconductor technologies, paving the way for next-generation integrated circuits.
Collapse
Affiliation(s)
- Shenghong Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ke Qin
- School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
| | | | - Tao Hu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Nanostructure Research Center, Wuhan University of Technology, Wuhan 430070, China
| | - Jingsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Nanostructure Research Center, Wuhan University of Technology, Wuhan 430070, China
| | - Zhen Cui
- School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Taotao Li
- School of Integrated Circuits, Nanjing University, Nanjing 210008, China
| | - Feng Ding
- Suzhou Laboratory, Suzhou 215123, China
| | - Xinran Wang
- School of Integrated Circuits, Nanjing University, Nanjing 210008, China
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518063, China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518063, China
| |
Collapse
|
2
|
Hu Y, Gao Z, Luo Z, An L. Next-Generation Image Sensors Based on Low-Dimensional Semiconductor Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501123. [PMID: 40237125 DOI: 10.1002/adma.202501123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/19/2025] [Indexed: 04/18/2025]
Abstract
With the rapid advancement of technology of big data and artificial intelligence (AI), the exponential increase in visual information leads to heightened demands for the quality and analysis of imaging results, rendering traditional silicon-based image sensors inadequate. This review serves as a comprehensive overview of next-generation image sensors based on low-dimensional semiconductor materials encompassing 0D, 1D, 2D materials, and their hybrids. It offers an in-depth introduction to the distinctive properties exhibited by these materials and delves into the device structures tailored specifically for image sensor applications. The classification of novel image sensors based on low-dimensional materials, in particular for transition metal dichalcogenides (TMDs), covering the preparation methods and corresponding imaging characteristics, is explored. Furthermore, this review highlights the diverse applications of low-dimensional materials in next-generation image sensors, encompassing advanced imaging sensors, biomimetic vision sensors, and non-von Neumann imaging systems. Lastly, the challenges and opportunities encountered in the development of next-generation image sensors utilizing low-dimensional semiconductor materials, paving the way for further advancements in this rapidly evolving field, are proposed.
Collapse
Affiliation(s)
- Yunxia Hu
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 100872, P. R. China
| | - Zhaoli Gao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
| | - Liang An
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 100872, P. R. China
| |
Collapse
|
3
|
Esposito F, Bosi M, Attolini G, Rossi F, Fornari R, Fabbri F, Seravalli L. Influence of the Carrier Gas Flow in the CVD Synthesis of 2-Dimensional MoS 2 Based on the Spin-Coating of Liquid Molybdenum Precursors. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1749. [PMID: 39513829 PMCID: PMC11547744 DOI: 10.3390/nano14211749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Atomically thin molybdenum disulfide (MoS2) is a two-dimensional semiconductor with versatile applications. The recent adoption of liquid molybdenum precursors in chemical vapor deposition has contributed significantly to the reproducible wafer-scale synthesis of MoS2 monolayer and few-layer films. In this work, we study the effects of the carrier gas flow rate on the properties of two-dimensional molybdenum disulfide grown by liquid-precursor-intermediate chemical vapor deposition on SiO2/Si substrates. We characterized the samples using Optical Microscopy, Scanning Electron Microscopy, Raman spectroscopy, and Photoluminescence spectroscopy. We analyzed samples grown with different nitrogen carrier flows, ranging from 150 to 300 sccm, and discussed the effect of carrier gas flows on their properties. We found a correlation between MoS2 flake lateral size, shape, and number of layers, and we present a qualitative growth model based on changes in sulfur provision caused by different carrier flows. We show how the use of liquid precursors can allow for the synthesis of homogeneous, single-layer flakes up to 100 µm in lateral size by optimizing the gas flow rate. These results are essential for gaining a deeper understanding of the growth process of MoS2.
Collapse
Affiliation(s)
- Fiorenza Esposito
- Institute of Materials for Electronics and Magnetism—National Research Council (IMEM-CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy; (F.E.); (M.B.); (G.A.); (F.R.); (R.F.)
- Department of Chemical Science, Life, and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Matteo Bosi
- Institute of Materials for Electronics and Magnetism—National Research Council (IMEM-CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy; (F.E.); (M.B.); (G.A.); (F.R.); (R.F.)
| | - Giovanni Attolini
- Institute of Materials for Electronics and Magnetism—National Research Council (IMEM-CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy; (F.E.); (M.B.); (G.A.); (F.R.); (R.F.)
| | - Francesca Rossi
- Institute of Materials for Electronics and Magnetism—National Research Council (IMEM-CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy; (F.E.); (M.B.); (G.A.); (F.R.); (R.F.)
| | - Roberto Fornari
- Institute of Materials for Electronics and Magnetism—National Research Council (IMEM-CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy; (F.E.); (M.B.); (G.A.); (F.R.); (R.F.)
- Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy
| | - Filippo Fabbri
- NEST, Istituto Nanoscienze—CNR, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Luca Seravalli
- Institute of Materials for Electronics and Magnetism—National Research Council (IMEM-CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy; (F.E.); (M.B.); (G.A.); (F.R.); (R.F.)
| |
Collapse
|
4
|
Gayen A, An GH, Rahman IN, Choi M, Mustaghfiroh Q, Gaikwad PV, Kang ESH, Kim KH, Liu C, Kim K, Bang J, Lee HS, Kim DH. Polarized Raman spectroscopy study of CVD-grown Cr 2S 3 flakes: unambiguous identification of phonon modes. NANOSCALE 2024; 16:17452-17462. [PMID: 39219470 DOI: 10.1039/d4nr01654h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We report a systematic Raman spectroscopy investigation of chemical vapor deposited 2D nonlayered Cr2S3, with both linearly and circularly polarized light over a wide temperature range (5-300 K). Temperature-dependent Raman spectra exhibit a good linear relationship between the peak positions of the phonon modes and temperature. Angle-resolved polarized Raman spectra reveal the polarization-dependent optical response of in-plane and out-of-plane phonon modes. Helicity-dependent Raman investigations complete definite assignment of all the phonon modes observed in the Raman spectra of 2D nonlayered Cr2S3 by the optical selection rule based on a Raman tensor. Our work realizes clear phonon mode identification over a wide temperature range for the emerging material 2D Cr2S3, an important representative of nonlayered 2D system with unique properties for optoelectronic and spintronic applications.
Collapse
Affiliation(s)
- Anabil Gayen
- Department of Physics, Chungbuk National University, Cheongju 28644, Korea.
- Research Institute for Nanoscale Science and Technology, Chungbuk National University, Cheongju 28644, Korea
| | - Gwang Hwi An
- Department of Physics, Chungbuk National University, Cheongju 28644, Korea.
| | - Ikhwan Nur Rahman
- Department of Physics, Chungbuk National University, Cheongju 28644, Korea.
| | - Min Choi
- Department of Physics, Chungbuk National University, Cheongju 28644, Korea.
| | | | - Prashant Vijay Gaikwad
- Department of Physics, Chungbuk National University, Cheongju 28644, Korea.
- Research Institute for Nanoscale Science and Technology, Chungbuk National University, Cheongju 28644, Korea
| | - Evan S H Kang
- Department of Physics, Chungbuk National University, Cheongju 28644, Korea.
| | - Kyoung-Ho Kim
- Department of Physics, Chungbuk National University, Cheongju 28644, Korea.
- Research Institute for Nanoscale Science and Technology, Chungbuk National University, Cheongju 28644, Korea
| | - Chuyang Liu
- School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Kyungwan Kim
- Department of Physics, Chungbuk National University, Cheongju 28644, Korea.
- Research Institute for Nanoscale Science and Technology, Chungbuk National University, Cheongju 28644, Korea
| | - Junhyeok Bang
- Department of Physics, Chungbuk National University, Cheongju 28644, Korea.
- Research Institute for Nanoscale Science and Technology, Chungbuk National University, Cheongju 28644, Korea
| | - Hyun Seok Lee
- Department of Physics, Chungbuk National University, Cheongju 28644, Korea.
- Research Institute for Nanoscale Science and Technology, Chungbuk National University, Cheongju 28644, Korea
| | - Dong-Hyun Kim
- Department of Physics, Chungbuk National University, Cheongju 28644, Korea.
- Research Institute for Nanoscale Science and Technology, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
5
|
Li WH, Li N, Wang XL, Wang W, Zhang H, Xu Q. Solution-Processable Route for Large-Area Uniform 2D Semiconductor Nanofilms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311361. [PMID: 38381007 DOI: 10.1002/smll.202311361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Indexed: 02/22/2024]
Abstract
The semiconductor thin film engineering technique plays a key role in the development of advanced electronics. Printing uniform nanofilms on freeform surfaces with high efficiency and low cost is significant for actual industrialization in electronics. Herein, a high-throughput colloidal printing (HTCP) strategy is reported for fabricating large-area and uniform semiconductor nanofilms on freeform surfaces. High-throughput and uniform printing rely on the balance of atomization and evaporation, as well as the introduced thermal Marangoni flows of colloidal dispersion, that suppresses outward capillary flows. Colloidal printing with in situ heating enables the fast fabrication of large-area semiconductor nanofilms on freeform surfaces, such as SiO2/Si, Al2O3, quartz glass, poly(ethylene terephthalate) (PET), Al foil, plastic tube, and Ni foam, expanding their technological applications where substrates are essential. The printed SnS2 nanofilms are integrated into thin-film semiconductor gas sensors with one of the fastest responses (8 s) while maintaining the highest sensitivity (Rg/Ra = 21) (toward 10 ppm NO2), as well as an ultralow limit of detection (LOD) of 46 ppt. The ability to print uniform semiconductor nanofilms on freeform surfaces with high-throughput promises the development of next-generation electronics with low cost and high efficiency.
Collapse
Affiliation(s)
- Wen-Hua Li
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Department of Materials Science and Engineering, and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Department of Materials Science and Engineering, and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Xiao-Li Wang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Department of Materials Science and Engineering, and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Wenjuan Wang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Department of Materials Science and Engineering, and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Haobing Zhang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Department of Materials Science and Engineering, and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Department of Materials Science and Engineering, and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
6
|
Mirzaei A, Alizadeh M, Ansari HR, Moayedi M, Kordrostami Z, Safaeian H, Lee MH, Kim TU, Kim JY, Kim HW, Kim SS. Resistive gas sensors for the detection of NH 3gas based on 2D WS 2, WSe 2, MoS 2, and MoSe 2: a review. NANOTECHNOLOGY 2024; 35:332002. [PMID: 38744265 DOI: 10.1088/1361-6528/ad4b22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Transition metal dichalcogenides (TMDs) with a two-dimensional (2D) structure and semiconducting features are highly favorable for the production of NH3gas sensors. Among the TMD family, WS2, WSe2, MoS2, and MoSe2exhibit high conductivity and a high surface area, along with high availability, reasons for which they are favored in gas-sensing studies. In this review, we have discussed the structure, synthesis, and NH3sensing characteristics of pristine, decorated, doped, and composite-based WS2, WSe2, MoS2, and MoSe2gas sensors. Both experimental and theoretical studies are considered. Furthermore, both room temperature and higher temperature gas sensors are discussed. We also emphasized the gas-sensing mechanism. Thus, this review provides a reference for researchers working in the field of 2D TMD gas sensors.
Collapse
Affiliation(s)
- Ali Mirzaei
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Morteza Alizadeh
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Hamid Reza Ansari
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Mehdi Moayedi
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Zoheir Kordrostami
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Haniyeh Safaeian
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Myoung Hoon Lee
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Tae-Un Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jin-Young Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyoun Woo Kim
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
7
|
Zhang X, Dai J, Jin Z, Tao X, Zhong Y, Zheng Z, Hu X, Zhou L. Ion adsorption promotes Frank-van der Merwe growth of 2D transition metal tellurides. iScience 2024; 27:109378. [PMID: 38523797 PMCID: PMC10959663 DOI: 10.1016/j.isci.2024.109378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Reliable synthesis methods for high-quality, large-sized, and uniform two-dimensional (2D) transition-metal dichalcogenides (TMDs) are crucial for their device applications. However, versatile approaches to growing high-quality, large-sized, and uniform 2D transition-metal tellurides are rare. Here, we demonstrate an ion adsorption strategy that facilitates the Frank-van der Merwe growth of 2D transition-metal tellurides. By employing this method, we grow MoTe2 and WTe2 with enhanced lateral size, reduced thickness, and improved uniformity. Comprehensive characterizations confirm the high quality of as-grown MoTe2. Moreover, various characterizations verify the adsorption of K+ and Cl- ions on the top surface of MoTe2. X-ray photoelectron spectroscopy (XPS) analysis reveals that the MoTe2 is stoichiometric without K+ and Cl- ions and exhibits no discernable oxidation after washing. This top surface control strategy provides a new controlling knob to optimize the growth of 2D transition-metal tellurides and holds the potential for generalized to other 2D materials.
Collapse
Affiliation(s)
- Xingxing Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiuxiang Dai
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhitong Jin
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinwei Tao
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunlei Zhong
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zemin Zheng
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianyu Hu
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
An Q, Xiong W, Hu F, Yu Y, Lv P, Hu S, Gan X, He X, Zhao J, Yuan S. Direct growth of single-chiral-angle tungsten disulfide nanotubes using gold nanoparticle catalysts. NATURE MATERIALS 2024; 23:347-355. [PMID: 37443381 DOI: 10.1038/s41563-023-01590-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/25/2023] [Indexed: 07/15/2023]
Abstract
Transition metal dichalcogenide (TMD) nanotubes offer a unique platform to explore the properties of TMD materials at the one-dimensional limit. Despite considerable efforts thus far, the direct growth of TMD nanotubes with controllable chirality remains challenging. Here we demonstrate the direct and facile growth of high-quality WS2 and WSe2 nanotubes on Si substrates using catalytic chemical vapour deposition with Au nanoparticles. The Au nanoparticles provide unique accommodation sites for the nucleation of WS2 or WSe2 shells on their surfaces and seed the subsequent growth of nanotubes. We find that the growth mode of nanotubes is sensitive to the temperature. With careful temperature control, we realize ~79% WS2 nanotubes with single chiral angles, with a preference of 30° (~37%) and 0° (~12%). Moreover, we demonstrate how the geometric, electronic and optical properties of the synthesized WS2 nanotubes can be modulated by the chirality. We anticipate that this approach using Au nanoparticles as catalysts will facilitate the growth of TMD nanotubes with controllable chirality and promote the study of their interesting properties and applications.
Collapse
Affiliation(s)
- Qinwei An
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Optical Information Technology and School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, China.
| | - Wenqi Xiong
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, China
- Wuhan Institute of Quantum Technology, Wuhan, China
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yikang Yu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Pengfei Lv
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, China
| | - Siqi Hu
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Optical Information Technology and School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, China
| | - Xuetao Gan
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Optical Information Technology and School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, China
| | - Xiaobo He
- Institute of Physics, Henan Academy of Sciences, Zhengzhou, China
| | - Jianlin Zhao
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Optical Information Technology and School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, China
| | - Shengjun Yuan
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, China.
- Wuhan Institute of Quantum Technology, Wuhan, China.
| |
Collapse
|
9
|
Kandybka I, Groven B, Medina Silva H, Sergeant S, Nalin Mehta A, Koylan S, Shi Y, Banerjee S, Morin P, Delabie A. Chemical Vapor Deposition of a Single-Crystalline MoS 2 Monolayer through Anisotropic 2D Crystal Growth on Stepped Sapphire Surface. ACS NANO 2024; 18:3173-3186. [PMID: 38235963 DOI: 10.1021/acsnano.3c09364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Recently, a step-flow growth mode has been proposed to break the inherent molybdenum disulfide (MoS2) crystal domain bimodality and yield a single-crystalline MoS2 monolayer on commonly employed sapphire substrates. This work reveals an alternative growth mechanism during the metal-organic chemical vapor deposition (MOCVD) of a single-crystalline MoS2 monolayer through anisotropic 2D crystal growth. During early growth stages, the epitaxial symmetry and commensurability of sapphire terraces rather than the sapphire step inclination ultimately govern the MoS2 crystal orientation. Strikingly, as the MoS2 crystals continue to grow laterally, the sapphire steps transform the MoS2 crystal geometry into diamond-shaped domains presumably by anisotropic diffusion of ad-species and facet development. Even though these MoS2 domains nucleate on sapphire with predominantly bimodal 0 and 60° azimuthal rotation, the individual domains reach lateral dimensions of up to 200 nm before merging seamlessly into a single-crystalline MoS2 monolayer upon coalescence. Plan-view transmission electron microscopy reveals the single-crystalline nature across 50 μm by 50 μm inspection areas. As a result, the median carrier mobility of MoS2 monolayers peaks at 25 cm2 V-1 s-1 with the highest value reaching 28 cm2 V-1 s-1. This work details synthesis-structure correlations and the possibilities to tune the structure and material properties through substrate topography toward various applications in nanoelectronics, catalysis, and nanotechnology. Moreover, shape modulation through anisotropic growth phenomena on stepped surfaces can provide opportunities for nanopatterning for a wide range of materials.
Collapse
Affiliation(s)
- Iryna Kandybka
- imec, Kapeldreef 75, Leuven 3001, Belgium
- Department of Chemistry KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | | | | | | | | | - Serkan Koylan
- imec, Kapeldreef 75, Leuven 3001, Belgium
- Quantum Solid State Physics KU Leuven, Celestijnenlaan 200D, Leuven 3001, Belgium
| | | | | | | | - Annelies Delabie
- imec, Kapeldreef 75, Leuven 3001, Belgium
- Department of Chemistry KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| |
Collapse
|
10
|
Dai B, Su Y, Guo Y, Wu C, Xie Y. Recent Strategies for the Synthesis of Phase-Pure Ultrathin 1T/1T' Transition Metal Dichalcogenide Nanosheets. Chem Rev 2024; 124:420-454. [PMID: 38146851 DOI: 10.1021/acs.chemrev.3c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The past few decades have witnessed a notable increase in transition metal dichalcogenide (TMD) related research not only because of the large family of TMD candidates but also because of the various polytypes that arise from the monolayer configuration and layer stacking order. The peculiar physicochemical properties of TMD nanosheets enable an enormous range of applications from fundamental science to industrial technologies based on the preparation of high-quality TMDs. For polymorphic TMDs, the 1T/1T' phase is particularly intriguing because of the enriched density of states, and thus facilitates fruitful chemistry. Herein, we comprehensively discuss the most recent strategies for direct synthesis of phase-pure 1T/1T' TMD nanosheets such as mechanical exfoliation, chemical vapor deposition, wet chemical synthesis, atomic layer deposition, and more. We also review frequently adopted methods for phase engineering in TMD nanosheets ranging from chemical doping and alloying, to charge injection, and irradiation with optical or charged particle beams. Prior to the synthesis methods, we discuss the configuration of TMDs as well as the characterization tools mostly used in experiments. Finally, we discuss the current challenges and opportunities as well as emphasize the promising fields for the future development.
Collapse
Affiliation(s)
- Baohu Dai
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yueqi Su
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yuqiao Guo
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Changzheng Wu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yi Xie
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Li S, Ouyang D, Zhang N, Zhang Y, Murthy A, Li Y, Liu S, Zhai T. Substrate Engineering for Chemical Vapor Deposition Growth of Large-Scale 2D Transition Metal Dichalcogenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211855. [PMID: 37095721 DOI: 10.1002/adma.202211855] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The large-scale production of 2D transition metal dichalcogenides (TMDs) is essential to realize their industrial applications. Chemical vapor deposition (CVD) has been considered as a promising method for the controlled growth of high-quality and large-scale 2D TMDs. During a CVD process, the substrate plays a crucial role in anchoring the source materials, promoting the nucleation and stimulating the epitaxial growth. It thus significantly affects the thickness, microstructure, and crystal quality of the products, which are particularly important for obtaining 2D TMDs with expected morphology and size. Here, an insightful review is provided by focusing on the recent development associated with the substrate engineering strategies for CVD preparation of large-scale 2D TMDs. First, the interaction between 2D TMDs and substrates, a key factor for the growth of high-quality materials, is systematically discussed by combining the latest theoretical calculations. Based on this, the effect of various substrate engineering approaches on the growth of large-area 2D TMDs is summarized in detail. Finally, the opportunities and challenges of substrate engineering for the future development of 2D TMDs are discussed. This review might provide deep insight into the controllable growth of high-quality 2D TMDs toward their industrial-scale practical applications.
Collapse
Affiliation(s)
- Shaohua Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Decai Ouyang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Na Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yi Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Akshay Murthy
- Superconducting Quantum Materials and Systems Division, Fermi National Accelerator Laboratory (FNAL), Batavia, IL, 60510, USA
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, P. R. China
| | - Shiyuan Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
12
|
Song S, Yoon A, Jang S, Lynch J, Yang J, Han J, Choe M, Jin YH, Chen CY, Cheon Y, Kwak J, Jeong C, Cheong H, Jariwala D, Lee Z, Kwon SY. Fabrication of p-type 2D single-crystalline transistor arrays with Fermi-level-tuned van der Waals semimetal electrodes. Nat Commun 2023; 14:4747. [PMID: 37550303 PMCID: PMC10406929 DOI: 10.1038/s41467-023-40448-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
High-performance p-type two-dimensional (2D) transistors are fundamental for 2D nanoelectronics. However, the lack of a reliable method for creating high-quality, large-scale p-type 2D semiconductors and a suitable metallization process represents important challenges that need to be addressed for future developments of the field. Here, we report the fabrication of scalable p-type 2D single-crystalline 2H-MoTe2 transistor arrays with Fermi-level-tuned 1T'-phase semimetal contact electrodes. By transforming polycrystalline 1T'-MoTe2 to 2H polymorph via abnormal grain growth, we fabricated 4-inch 2H-MoTe2 wafers with ultra-large single-crystalline domains and spatially-controlled single-crystalline arrays at a low temperature (~500 °C). Furthermore, we demonstrate on-chip transistors by lithographic patterning and layer-by-layer integration of 1T' semimetals and 2H semiconductors. Work function modulation of 1T'-MoTe2 electrodes was achieved by depositing 3D metal (Au) pads, resulting in minimal contact resistance (~0.7 kΩ·μm) and near-zero Schottky barrier height (~14 meV) of the junction interface, and leading to high on-state current (~7.8 μA/μm) and on/off current ratio (~105) in the 2H-MoTe2 transistors.
Collapse
Affiliation(s)
- Seunguk Song
- Department of Materials Science and Engineering & Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, US
| | - Aram Yoon
- Department of Materials Science and Engineering & Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Sora Jang
- Department of Materials Science and Engineering & Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jason Lynch
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, US
| | - Jihoon Yang
- Department of Materials Science and Engineering & Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Juwon Han
- Department of Materials Science and Engineering & Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Myeonggi Choe
- Department of Materials Science and Engineering & Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Young Ho Jin
- Department of Materials Science and Engineering & Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Cindy Yueli Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, US
| | - Yeryun Cheon
- Department of Physics, Sogang University, Seoul, 04107, Republic of Korea
| | - Jinsung Kwak
- Department of Materials Science and Engineering & Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Physics, Changwon National University, Changwon, 51140, Republic of Korea
| | - Changwook Jeong
- Department of Materials Science and Engineering & Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyeonsik Cheong
- Department of Physics, Sogang University, Seoul, 04107, Republic of Korea
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, US
| | - Zonghoon Lee
- Department of Materials Science and Engineering & Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
| | - Soon-Yong Kwon
- Department of Materials Science and Engineering & Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
13
|
Guo X, Yang H, Mo X, Bai R, Wang Y, Han Q, Han S, Sun Q, Zhang DW, Hu S, Ji L. Modulated wafer-scale WS 2 films based on atomic-layer-deposition for various device applications. RSC Adv 2023; 13:14841-14848. [PMID: 37197184 PMCID: PMC10184003 DOI: 10.1039/d3ra00933e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023] Open
Abstract
Tungsten disulfide (WS2) is promising for potential applications in transistors and gas sensors due to its high mobility and high adsorption of gas molecules onto edge sites. This work comprehensively studied the deposition temperature, growth mechanism, annealing conditions, and Nb doping of WS2 to prepare high-quality wafer-scale N- and P-type WS2 films by atomic layer deposition (ALD). It shows that the deposition and annealing temperature greatly influence the electronic properties and crystallinity of WS2, and insufficient annealing will seriously reduce the switch ratio and on-state current of the field effect transistors (FETs). Besides, the morphologies and carrier types of WS2 films can be controlled by adjusting the processes of ALD. The obtained WS2 films and the films with vertical structures were used to fabricate FETs and gas sensors, respectively. Among them, the Ion/Ioff ratio of N- and P-type WS2 FETs is 105 and 102, respectively, and the response of N- and P-type gas sensors is 14% and 42% under 50 ppm NH3 at room temperature, respectively. We have successfully demonstrated a controllable ALD process to modify the morphology and doping behavior of WS2 films with various device functionalities based on acquisitive characteristics.
Collapse
Affiliation(s)
- Xiangyu Guo
- School of Microelectronics, Fudan University Shanghai 200433 China
| | - Hanjie Yang
- School of Microelectronics, Fudan University Shanghai 200433 China
| | - Xichao Mo
- School of Physical Science and Technology, Lanzhou University Lanzhou 730000 China
| | - Rongxu Bai
- School of Microelectronics, Fudan University Shanghai 200433 China
| | - Yanrong Wang
- School of Physical Science and Technology, Lanzhou University Lanzhou 730000 China
| | - Qi Han
- School of Microelectronics, Fudan University Shanghai 200433 China
| | - Sheng Han
- School of Microelectronics, Fudan University Shanghai 200433 China
| | - Qingqing Sun
- School of Microelectronics, Fudan University Shanghai 200433 China
| | - David W Zhang
- School of Microelectronics, Fudan University Shanghai 200433 China
| | - Shen Hu
- School of Microelectronics, Fudan University Shanghai 200433 China
- Jiashan Fudan Institute Jiashan 314100 China
| | - Li Ji
- School of Microelectronics, Fudan University Shanghai 200433 China
- Hubei Yangtz Memory Laboratories Wuhan 430205 China
| |
Collapse
|
14
|
Giri A, Park G, Jeong U. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chem Rev 2023; 123:3329-3442. [PMID: 36719999 PMCID: PMC10103142 DOI: 10.1021/acs.chemrev.2c00455] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The unique electronic and catalytic properties emerging from low symmetry anisotropic (1D and 2D) metal chalcogenides (MCs) have generated tremendous interest for use in next generation electronics, optoelectronics, electrochemical energy storage devices, and chemical sensing devices. Despite many proof-of-concept demonstrations so far, the full potential of anisotropic chalcogenides has yet to be investigated. This article provides a comprehensive overview of the recent progress made in the synthesis, mechanistic understanding, property modulation strategies, and applications of the anisotropic chalcogenides. It begins with an introduction to the basic crystal structures, and then the unique physical and chemical properties of 1D and 2D MCs. Controlled synthetic routes for anisotropic MC crystals are summarized with example advances in the solution-phase synthesis, vapor-phase synthesis, and exfoliation. Several important approaches to modulate dimensions, phases, compositions, defects, and heterostructures of anisotropic MCs are discussed. Recent significant advances in applications are highlighted for electronics, optoelectronic devices, catalysts, batteries, supercapacitors, sensing platforms, and thermoelectric devices. The article ends with prospects for future opportunities and challenges to be addressed in the academic research and practical engineering of anisotropic MCs.
Collapse
Affiliation(s)
- Anupam Giri
- Department
of Chemistry, Faculty of Science, University
of Allahabad, Prayagraj, UP-211002, India
| | - Gyeongbae Park
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
- Functional
Materials and Components R&D Group, Korea Institute of Industrial Technology, Gwahakdanji-ro 137-41, Sacheon-myeon, Gangneung, Gangwon-do25440, Republic of Korea
| | - Unyong Jeong
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
| |
Collapse
|
15
|
Wang Q, Wang S, Li J, Gan Y, Jin M, Shi R, Amini A, Wang N, Cheng C. Modified Spatially Confined Strategy Enabled Mild Growth Kinetics for Facile Growth Management of Atomically-Thin Tungsten Disulfides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205638. [PMID: 36446619 PMCID: PMC9875684 DOI: 10.1002/advs.202205638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Chemical vapor deposition (CVD) has been widely used to produce high quality 2D transitional metal dichalcogenides (2D TMDCs). However, violent evaporation and large diffusivity discrepancy of metal and chalcogen precursors at elevated temperatures often result in poor regulation on X:M molar ratio (M = Mo, W etc.; X = S, Se, and Te), and thus it is rather challenging to achieve the desired products of 2D TMDCs. Here, a modified spatially confined strategy (MSCS) is utilized to suppress the rising S vapor concentration between two aspectant substrates, upon which the lateral/vertical growth of 2D WS2 can be selectively regulated via proper S:W zones correspond to greatly broadened time/growth windows. An S:W-time (SW-T) growth diagram was thus proposed as a mapping guide for the general understanding of CVD growth of 2D WS2 and the design of growth routes for the desired 2D WS2 . Consequently, a comprehensive growth management of atomically thin WS2 is achieved, including the versatile controls of domain size, layer number, and lateral/vertical heterostructures (MoS2 -WS2 ). The lateral heterostructures show an enhanced hydrogen evolution reaction performance. This study advances the substantial understanding to the growth kinetics and provides an effective MSCS protocol for growth design and management of 2D TMDCs.
Collapse
Affiliation(s)
- Qun Wang
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Shi Wang
- Department of Physics and Center for Quantum MaterialsHong Kong University of Science and TechnologyHong KongP. R. China
| | - Jingyi Li
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Yichen Gan
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Mengtian Jin
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Run Shi
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Abbas Amini
- Center for Infrastructure EngineeringWestern Sydney UniversityKingswoodNew South Wales2751Australia
| | - Ning Wang
- Department of Physics and Center for Quantum MaterialsHong Kong University of Science and TechnologyHong KongP. R. China
| | - Chun Cheng
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric PowerSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
16
|
Hu Y, Yang H, Huang J, Zhang X, Tan B, Shang H, Zhang S, Feng W, Zhu J, Zhang J, Shuai Y, Jia D, Zhou Y, Hu P. Flexible Optical Synapses Based on In 2Se 3/MoS 2 Heterojunctions for Artificial Vision Systems in the Near-Infrared Range. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55839-55849. [PMID: 36511344 DOI: 10.1021/acsami.2c19097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Near-infrared (NIR) synaptic devices integrate NIR optical sensitivity and synaptic plasticity, emulating the basic biomimetic function of the human visual system and showing great potential in NIR artificial vision systems. However, the lack of semiconductor materials with appropriate band gaps for NIR photodetection and effective strategies for fabricating devices with synaptic behaviors limit the further development of NIR synaptic devices. Here, a two-terminal NIR synaptic device consisting of the In2Se3/MoS2 heterojunction has been constructed, and it exhibits fundamental synaptic functions. The reduced band gap and potential barrier of In2Se3/MoS2 heterojunctions are essential for NIR synaptic plasticity. In addition, the NIR synaptic properties of In2Se3/MoS2 heterojunctions under strain have been studied systematically. The ΔEPSC of the In2Se3/MoS2 synaptic device can be improved from 38.4% under no strain to 49.0% under a 0.54% strain with a 1060 nm illumination for 1 s at 100 mV. Furthermore, the artificial NIR vision system consisting of a 10 × 10 In2Se3/MoS2 device array has been fabricated, exhibiting image sensing, learning, and storage functions under NIR illumination. This research provides new ideas for the design of flexible NIR synaptic devices based on 2D materials and presents many opportunities in artificial intelligence and NIR vision systems.
Collapse
Affiliation(s)
- Yunxia Hu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin150080, China
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin150080, China
| | - Hongying Yang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin150080, China
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin150080, China
| | - Jingtao Huang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin150080, China
| | - Xin Zhang
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin150080, China
| | - Biying Tan
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin150080, China
| | - Huiming Shang
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin150080, China
| | - Shichao Zhang
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin150080, China
| | - Wei Feng
- Department of Chemistry and Chemical Engineering, College of Science, Northeast Forestry University, Harbin150040, China
| | - Jingchuan Zhu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin150080, China
| | - Jia Zhang
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin150080, China
| | - Yong Shuai
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, China
| | - Dechang Jia
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin150080, China
| | - Yu Zhou
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin150080, China
| | - PingAn Hu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin150080, China
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin150080, China
| |
Collapse
|
17
|
Song S, Oh I, Jang S, Yoon A, Han J, Lee Z, Yoo JW, Kwon SY. Air-stable van der Waals PtTe 2 conductors with high current-carrying capacity and strong spin-orbit interaction. iScience 2022; 25:105346. [PMID: 36345340 PMCID: PMC9636052 DOI: 10.1016/j.isci.2022.105346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
High-performance van der Waals (vdW) integrated electronics and spintronics require reliable current-carrying capacity. However, it is challenging to achieve high current density and air-stable performance using vdW metals owing to the fast electrical breakdown triggered by defects or oxidation. Here, we report that spin-orbit interacted synthetic PtTe2 layers exhibit significant electrical reliability and robustness in ambient air. The 4-nm-thick PtTe2 synthesized at a low temperature (∼400°C) shows intrinsic metallic transport behavior and a weak antilocalization effect attributed to the strong spin-orbit scattering. Remarkably, PtTe2 sustains a high current density approaching ≈31.5 MA cm−2, which is the highest value among electrical interconnect candidates under oxygen exposure. Electrical failure is caused by the Joule heating of PtTe2 rather than defect-induced electromigration, which was achievable by the native TeOx passivation. The high-quality growth of PtTe2 and the investigation of its transport behaviors lay out essential foundations for the development of emerging vdW spin-orbitronics. The synthesized PtTe2 had a self-passivated surface under exposure to air Magnetoconductance study proved the realization of a 2D confined quantum system PtTe2 sustained a remarkably high current density (∼31.5 MA cm−2) under air atmosphere The native TeOx passivation retarded the defect-induced electromigration of PtTe2
Collapse
Affiliation(s)
- Seunguk Song
- Departmet of Materials Science and Engineering & Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Inseon Oh
- Departmet of Materials Science and Engineering & Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sora Jang
- Departmet of Materials Science and Engineering & Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Aram Yoon
- Departmet of Materials Science and Engineering & Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Juwon Han
- Departmet of Materials Science and Engineering & Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Zonghoon Lee
- Departmet of Materials Science and Engineering & Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Jung-Woo Yoo
- Departmet of Materials Science and Engineering & Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Soon-Yong Kwon
- Departmet of Materials Science and Engineering & Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
18
|
Li Y, Weng S, Niu R, Zhen W, Xu F, Zhu W, Zhang C. Poly(vinyl alcohol)-Assisted Exfoliation of van der Waals Materials. ACS OMEGA 2022; 7:38774-38781. [PMID: 36340140 PMCID: PMC9631881 DOI: 10.1021/acsomega.2c04409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
We report a highly efficient and easily transferable poly(vinyl alcohol) (PVA)-assisted exfoliation method, which allows one to obtain van der Waals materials on large scales, e.g., centimeter-scale graphite flakes and hundred-micrometer-scale several layers of ZnIn2S4 and BN. The present exfoliation scheme is nondestructive, and the materials prepared by PVA-assisted exfoliation can be directly fabricated into devices. This exfoliation approach could be helpful in overcoming the preparation bottleneck for large-scale applications of two-dimensional (2D) materials.
Collapse
Affiliation(s)
- Yaodong Li
- High
Magnetic Field Laboratory of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei230031, China
- University
of Science and Technology of China, Hefei230026, China
| | - Shirui Weng
- High
Magnetic Field Laboratory of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei230031, China
| | - Rui Niu
- High
Magnetic Field Laboratory of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei230031, China
| | - Weili Zhen
- High
Magnetic Field Laboratory of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei230031, China
| | - Feng Xu
- High
Magnetic Field Laboratory of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei230031, China
| | - Wenka Zhu
- High
Magnetic Field Laboratory of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei230031, China
| | - Changjin Zhang
- High
Magnetic Field Laboratory of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei230031, China
- Institutes
of Physical Science and Information Technology, Anhui University, Hefei230601, China
| |
Collapse
|
19
|
Sim Y, Chae Y, Kwon SY. Recent advances in metallic transition metal dichalcogenides as electrocatalysts for hydrogen evolution reaction. iScience 2022; 25:105098. [PMID: 36157572 PMCID: PMC9490594 DOI: 10.1016/j.isci.2022.105098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Layered metallic transition metal dichalcogenides (MTMDs) exhibit distinctive electrical and catalytic properties to drive basal plane activity, and, therefore, they have emerged as promising alternative electrocatalysts for sustainable hydrogen evolution reactions (HERs). A key challenge for realizing MTMDs-based electrocatalysts is the controllable and scalable synthesis of high-quality MTMDs and the development of engineering strategies that allow tuning their electronic structures. However, the lack of a method for the direct synthesis of MTMDs retaining the structural stability limits optimizing the structural design for the next generation of robust electrocatalysts. In this review, we highlight recent advances in the synthesis of MTMDs comprising groups VB and VIB and various routes for structural engineering to enhance the HER catalytic performance. Furthermore, we provide insight into the potential future directions and the development of MTMDs with high durability as electrocatalysts to generate green hydrogen through water-splitting technology.
Collapse
Affiliation(s)
- Yeoseon Sim
- Department of Materials Science and Engineering & Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Yujin Chae
- Department of Materials Science and Engineering & Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Soon-Yong Kwon
- Department of Materials Science and Engineering & Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
20
|
Macha M, Ji HG, Tripathi M, Zhao Y, Thakur M, Zhang J, Kis A, Radenovic A. Wafer-scale MoS 2 with water-vapor assisted showerhead MOCVD. NANOSCALE ADVANCES 2022; 4:4391-4401. [PMID: 36321146 PMCID: PMC9552924 DOI: 10.1039/d2na00409g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Among numerous thin film synthesis methods, metalorganic chemical vapor deposition performed in a showerhead reactor is the most promising one for broad use in scalable and commercially adaptable two-dimensional material synthesis processes. Adapting the most efficient monolayer growth methodologies from tube-furnace systems to vertical-showerhead geometries allows us to overcome the intrinsic process limitations and improve the overall monolayer yield quality. Here, we demonstrate large-area, monolayer molybdenum disulphide growth by combining gas-phase precursor supply with unique tube-furnace approaches of utilizing sodium molybdate pre-seeding solution spincoated on a substrate along with water vapor added during the growth step. The engineered process yields a high-quality, 4-inch scale monolayer film on sapphire wafers. The monolayer growth coverage, average crystal size and defect density were evaluated using Raman and photoluminescence spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and scanning transmission electron microscopy imaging. Our findings provide a direct step forward toward developing a reproducible and large-scale MoS2 synthesis with commercial showerhead reactors.
Collapse
Affiliation(s)
- Michal Macha
- Laboratory of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne 1015 Switzerland
| | - Hyun Goo Ji
- Laboratory of Nanoscale Electronics and Structures, Electrical Engineering Institute and Institute of Materials Science, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne 1015 Switzerland
| | - Mukesh Tripathi
- Laboratory of Nanoscale Electronics and Structures, Electrical Engineering Institute and Institute of Materials Science, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne 1015 Switzerland
| | - Yanfei Zhao
- Laboratory of Nanoscale Electronics and Structures, Electrical Engineering Institute and Institute of Materials Science, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne 1015 Switzerland
| | - Mukeshchand Thakur
- Laboratory of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne 1015 Switzerland
| | - Jing Zhang
- Laboratory of Nanoscale Electronics and Structures, Electrical Engineering Institute and Institute of Materials Science, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne 1015 Switzerland
| | - Andras Kis
- Laboratory of Nanoscale Electronics and Structures, Electrical Engineering Institute and Institute of Materials Science, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne 1015 Switzerland
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne 1015 Switzerland
| |
Collapse
|
21
|
Ma T, Chen H, Yananose K, Zhou X, Wang L, Li R, Zhu Z, Wu Z, Xu QH, Yu J, Qiu CW, Stroppa A, Loh KP. Growth of bilayer MoTe2 single crystals with strong non-linear Hall effect. Nat Commun 2022; 13:5465. [PMID: 36115861 PMCID: PMC9482631 DOI: 10.1038/s41467-022-33201-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
The reduced symmetry in strong spin-orbit coupling materials such as transition metal ditellurides (TMDTs) gives rise to non-trivial topology, unique spin texture, and large charge-to-spin conversion efficiencies. Bilayer TMDTs are non-centrosymmetric and have unique topological properties compared to monolayer or trilayer, but a controllable way to prepare bilayer MoTe2 crystal has not been achieved to date. Herein, we achieve the layer-by-layer growth of large-area bilayer and trilayer 1T′ MoTe2 single crystals and centimetre-scale films by a two-stage chemical vapor deposition process. The as-grown bilayer MoTe2 shows out-of-plane ferroelectric polarization, whereas the monolayer and trilayer crystals are non-polar. In addition, we observed large in-plane nonlinear Hall (NLH) effect for the bilayer and trilayer Td phase MoTe2 under time reversal-symmetric conditions, while these vanish for thicker layers. For a fixed input current, bilayer Td MoTe2 produces the largest second harmonic output voltage among the thicker crystals tested. Our work therefore highlights the importance of thickness-dependent Berry curvature effects in TMDTs that are underscored by the ability to grow thickness-precise layers. 2D transition metal ditellurides exhibit nontrivial topological phases, but the controlled bottom-up synthesis of these materials is still challenging. Here, the authors report the layer-by-layer growth of large-area bilayer and trilayer 1T’ MoTe2 films, showing thickness-dependent ferroelectricity and nonlinear Hall effect.
Collapse
|
22
|
Recent Progress in Fabrication and Physical Properties of 2D TMDC-Based Multilayered Vertical Heterostructures. ELECTRONICS 2022. [DOI: 10.3390/electronics11152401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two-dimensional (2D) vertical heterojunctions (HSs), which are usually fabricated by vertically stacking two layers of transition metal dichalcogenide (TMDC), have been intensively researched during the past years. However, it is still an enormous challenge to achieve controllable preparation of the TMDC trilayer or multilayered van der Waals (vdWs) HSs, which have important effects on physical properties and device performance. In this review, we will introduce fundamental features and various fabrication methods of diverse TMDC-based multilayered vdWs HSs. This review focuses on four fabrication methods of TMDC-based multilayered vdWs HSs, such as exfoliation, chemical vapor deposition (CVD), metal-organic chemical vapor deposition (MOCVD), and pulsed laser deposition (PLD). The latest progress in vdWs HS-related novel physical phenomena are summarized, including interlayer excitons, long photocarrier lifetimes, upconversion photoluminescence, and improved photoelectrochemical catalysis. At last, current challenges and prospects in this research field are provided.
Collapse
|
23
|
Mahendiran D, Murugan P. The role of defects presenting in graphitic SiC sheets and their consequences in the exfoliation of layers - a first principles approach. Phys Chem Chem Phys 2022; 24:4262-4269. [PMID: 35107106 DOI: 10.1039/d1cp04881c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, there has been a growing interest in exploring new 2D nanostructures, due to their unique electronic and optical properties. An atomically thin SiC sheet, which has a honeycomb structure similar to BN, as well as being a direct band gap semiconductor, is one such candidate. Despite several theoretical reports predicting the structural and dynamical stability of 2D SiC nanostructures, few experimental reports have been reported so far. In the present work, we demonstrated by employing first principles density functional theory calculations that the role of self defects on the exfoliation of SiC layers can be understood by studying monolayer, bilayer and trilayer 2D SiC systems. From our work, it can be seen that the dangled C atom on the removal of a Si atom in the SiC layer prefers to interact with an adjacent layer, owing to the compensation of the charges, whereas, a dangled Si atom (in the carbon vacancy case) in the SiC layer compensates its additional charge within the layer by forming a Si-Si bond. We concluded that the exfoliation process of SiC is significantly affected by Si vacancies, rather than the presence of carbon vacancies. This work also provides an intuitive idea to synthesise 2D SiC nanostructures as it has interesting structural and electronic properties.
Collapse
Affiliation(s)
- D Mahendiran
- Electrochemical Power Sources Division (ECPS), CSIR Central Electrochemical Research Institute, Karaikudi, 630003, Tamil Nadu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Ghaziabad District, Uttar Pradesh, India.
| | - P Murugan
- Electrochemical Power Sources Division (ECPS), CSIR Central Electrochemical Research Institute, Karaikudi, 630003, Tamil Nadu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Ghaziabad District, Uttar Pradesh, India.
| |
Collapse
|
24
|
Wang Y, Yin J, Zhu J. Two‐Dimensional
Cathode Materials for Aqueous Rechargeable
Zinc‐Ion
Batteries
†. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yurou Wang
- School of Materials Science and Engineering, Nankai University Tianjin 300350 China
| | - Jun Yin
- School of Materials Science and Engineering, Nankai University Tianjin 300350 China
| | - Jian Zhu
- School of Materials Science and Engineering, Nankai University Tianjin 300350 China
| |
Collapse
|
25
|
Hwang Y, Shin N. Colloidal Synthesis of MoSe 2/WSe 2 Heterostructure Nanoflowers via Two-Step Growth. MATERIALS 2021; 14:ma14237294. [PMID: 34885449 PMCID: PMC8658357 DOI: 10.3390/ma14237294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/04/2022]
Abstract
The ability to control the active edge sites of transition metal dichalcogenides (TMDs) is crucial for modulating their chemical activity for various electrochemical applications, including hydrogen evolution reactions. In this study, we demonstrate a colloidal synthetic method to prepare core-shell-like heterostructures composed of MoSe2 and WSe2 via a two-step sequential growth. By overgrowing WSe2 on the surface of preexisting MoSe2 nanosheet edges, MoSe2-core/WSe2-shell heterostructures were successfully obtained. Systematic comparisons of the secondary growth time and sequential order of growth suggest that the low synthetic temperature conditions allow the stable overgrowth of shells rich in WSe2 on top of the core of MoSe2 with low Gibbs formation energy. The electrochemical analysis confirms that the catalytic activity correlates to the core-shell composition variation. Our results propose a new strategy to control the edge site activity of TMD materials prepared by colloidal synthesis, which is applicable to diverse electrochemical applications.
Collapse
Affiliation(s)
- Yunjeong Hwang
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Korea;
- Program in Smart Digital Engineering, Inha University, Incheon 22212, Korea
- Materials Center for Energy Convergence, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Sungsan-gu, Changwon 51508, Korea
| | - Naechul Shin
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Korea;
- Program in Smart Digital Engineering, Inha University, Incheon 22212, Korea
- Department of Chemical Engineering, Inha University, Incheon 22212, Korea
- Correspondence:
| |
Collapse
|
26
|
Abstract
Salt-assisted chemical vapor deposition (SA-CVD), which uses halide salts (e.g., NaCl, KBr, etc.) and molten salts (e.g., Na2MoO4, Na2WO4, etc.) as precursors, is one of the most popular methods favored for the fabrication of two-dimensional (2D) materials such as atomically thin metal chalcogenides, graphene, and h-BN. In this review, the distinct functions of halogens (F, Cl, Br, I) and alkali metals (Li, Na, K) in SA-CVD are first clarified. Based on the current development in SA-CVD growth and its related reaction modes, the existing methods are categorized into the Salt 1.0 (halide salts-based) and Salt 2.0 (molten salts-based) techniques. The achievements, advantages, and limitations of each technique are discussed in detail. Finally, new perspectives are proposed for the application of SA-CVD in the synthesis of 2D transition metal dichalcogenides for advanced electronics.
Collapse
Affiliation(s)
- Shisheng Li
- International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| |
Collapse
|
27
|
Zhang K, Ding C, Pan B, Wu Z, Marga A, Zhang L, Zeng H, Huang S. Visualizing Van der Waals Epitaxial Growth of 2D Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105079. [PMID: 34541723 DOI: 10.1002/adma.202105079] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Understanding the growth mechanisms of 2D van der Waals (vdW) heterostructures is of great importance in exploring their functionalities and device applications. A custom-built system integrating physical vapor deposition and optical microscopy/Raman spectroscopy is employed to study the dynamic growth processes of 2D vdW heterostructures in situ. This allows the identification of a new growth mode with a distinctly different growth rate and morphology from those of the conventional linear growth mode. A model that explains the difference in morphologies and quantifies the growth rates of the two modes by taking the role of surface diffusion into account is proposed. A range of material combinations including CdI2 /WS2 , CdI2 /MoS2 , CdI2 /WSe2 , PbI2 /WS2 , PbI2 /MoS2 , PbI2 /WSe2 , and Bi2 Se3 /WS2 is systematically investigated. These findings may be generalized to the synthesis of many other 2D heterostructures with controlled morphologies and physical properties, benefiting future device applications.
Collapse
Affiliation(s)
- Kenan Zhang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Changchun Ding
- Key Laboratory of High-Performance Scientific Computation, School of Science, Xihua University, Chengdu, 610039, China
| | - Baojun Pan
- Key Laboratory of Carbon Materials of Zhejiang Province, Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Zhen Wu
- Key Laboratory of High-Performance Scientific Computation, School of Science, Xihua University, Chengdu, 610039, China
| | - Austin Marga
- Department of Physics, University of Buffalo, Buffalo, NY, 14260, USA
| | - Lijie Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Hao Zeng
- Department of Physics, University of Buffalo, Buffalo, NY, 14260, USA
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
28
|
Zhong F, Ye J, He T, Zhang L, Wang Z, Li Q, Han B, Wang P, Wu P, Yu Y, Guo J, Zhang Z, Peng M, Xu T, Ge X, Wang Y, Wang H, Zubair M, Zhou X, Gao P, Fan Z, Hu W. Substitutionally Doped MoSe 2 for High-Performance Electronics and Optoelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102855. [PMID: 34647416 DOI: 10.1002/smll.202102855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/11/2021] [Indexed: 06/13/2023]
Abstract
2D materials, of which the carrier type and concentration are easily tuned, show tremendous superiority in electronic and optoelectronic applications. However, the achievements are still quite far away from practical applications. Much more effort should be made to further improve their performance. Here, p-type MoSe2 is successfully achieved via substitutional doping of Ta atoms, which is confirmed experimentally and theoretically, and outstanding homojunction photodetectors and inverters are fabricated. MoSe2 p-n homojunction device with a low reverse current (300 pA) exhibits a high rectification ratio (104 ). The analysis of dark current reveals the domination of the Shockley-Read-Hall (SRH) and band-to-band tunneling (BTB) current. The homojunction photodetector exhibits a large open-circuit voltage (0.68 V) and short-circuit currents (1 µA), which is suitable for micro-solar cells. Furthermore, it possesses outstanding responsivity (0.28 A W-1 ), large external quantum efficiency (42%), and a high signal-to-noise ratio (≈107 ). Benefiting from the continuous energy band of homojunction, the response speed reaches up to 20 µs. Besides, the Ta-doped MoSe2 inverter exhibits a high voltage gain (34) and low power consumption (127 nW). This work lays a foundation for the practical application of 2D material devices.
Collapse
Affiliation(s)
- Fang Zhong
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiafu Ye
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting He
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Lili Zhang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Bo Han
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Peng Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peisong Wu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiye Yu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Jiaxiang Guo
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Zhenhan Zhang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Meng Peng
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Tengfei Xu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Xun Ge
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Yang Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Hailu Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Muhammad Zubair
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Xiaohao Zhou
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Peng Gao
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Centre of Quantum Matter, Beijing, 100871, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
29
|
Kim Y, Woo WJ, Kim D, Lee S, Chung SM, Park J, Kim H. Atomic-Layer-Deposition-Based 2D Transition Metal Chalcogenides: Synthesis, Modulation, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005907. [PMID: 33749055 DOI: 10.1002/adma.202005907] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Transition metal chalcogenides (TMCs) are a large family of 2D materials with different properties, and are promising candidates for a wide range of applications such as nanoelectronics, sensors, energy conversion, and energy storage. In the research of new materials, the development and investigation of industry-compatible synthesis techniques is of key importance. In this respect, it is important to study 2D TMC materials synthesized by the atomic layer deposition (ALD) technique, which is widely applied in industries. In addition to the synthesis of 2D TMCs, ALD is used to modulate the characteristic of 2D TMCs such as their carrier density and morphology. So far, the improvement of thin film uniformity without oxidation and the synthesis of low-dimensional nanomaterials on 2D TMCs have been the research focus. Herein, the synthesis and modulation of 2D TMCs by ALD is described, and the characteristics of ALD-based TMCs used in nanoelectronics, sensors, and energy applications are discussed.
Collapse
Affiliation(s)
- Youngjun Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Whang Je Woo
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Sangyoon Lee
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Seung-Min Chung
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Jusang Park
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Hyungjun Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
30
|
Cardoso Ofredi Maia F, Maciel IO, Vasconcelos Pazzini Massote D, Archanjo BS, Legnani C, Quirino WG, Carozo Gois de Oliveira V, Fragneaud B. Defect activated optical Raman modes in single layer MoSe 2. NANOTECHNOLOGY 2021; 32:465302. [PMID: 34311447 DOI: 10.1088/1361-6528/ac17c6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
In the last decade, transition metal dichalcogenides (TMDs) have been intensively synthesized/studied thus linking their morphological aspect to their physical properties, and consequently leading to the understanding of the possible benefits of defects in such materials. Nevertheless, for future applications, quantifying and identifying defects in TMDs is still a milestone to reach in order to better employ these materials in optoelectronic devices. Raman Spectroscopy has been successfully employed in graphene to quantify punctual or line defects. In this paper, we bombarded monolayer MoSe2with He ions and found out the existence of three defect activated Raman bands around 250-300 cm-1. Density functional theory calculations were employed to obtain the electronic and phonon dispersion bands, making it possible to infer that these bands arise from inter-valley Raman double resonance processes. Interestingly, the same punctual defect model, that allows one to predict the defect concentration at which graphene starts to become amorphous, also works for TMDs. Hence, this work opens the door to the macroscopic quantification of defects in TMDs, which is essential for technological applications.
Collapse
Affiliation(s)
| | - Indhira Oliveira Maciel
- Physics Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | | | - Braulio Soares Archanjo
- Materials Metrology Division, National Institute of Metrology, Quality, and Technology (INMETRO), Duque de Caxias, Rio de Janeiro, Brazil
| | - Cristiano Legnani
- Physics Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Welber Gianini Quirino
- Physics Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | | | - Benjamin Fragneaud
- Physics Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
31
|
Reifsnyder Hickey D, Nayir N, Chubarov M, Choudhury TH, Bachu S, Miao L, Wang Y, Qian C, Crespi VH, Redwing JM, van Duin ACT, Alem N. Illuminating Invisible Grain Boundaries in Coalesced Single-Orientation WS 2 Monolayer Films. NANO LETTERS 2021; 21:6487-6495. [PMID: 34314181 DOI: 10.1021/acs.nanolett.1c01517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Engineering atomic-scale defects is crucial for realizing wafer-scale, single-crystalline transition metal dichalcogenide monolayers for electronic devices. However, connecting atomic-scale defects to larger morphologies poses a significant challenge. Using electron microscopy and ReaxFF reactive force field-based molecular dynamics simulations, we provide insights into WS2 crystal growth mechanisms, providing a direct link between synthetic conditions and microstructure. Dark-field TEM imaging of coalesced monolayer WS2 films illuminates defect arrays that atomic-resolution STEM imaging identifies as translational grain boundaries. Electron diffraction and high-resolution imaging reveal that the films have nearly a single orientation with imperfectly stitched domains that tilt out-of-plane when released from the substrate. Imaging and ReaxFF simulations uncover two types of translational mismatch, and we discuss their origin related to relatively fast growth rates. Statistical analysis of >1300 facets demonstrates that microstructural features are constructed from nanometer-scale building blocks, describing the system across sub-Ångstrom to multimicrometer length scales.
Collapse
Affiliation(s)
- Danielle Reifsnyder Hickey
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nadire Nayir
- 2D Crystal Consortium-Materials Innovation Platform (2DCC-MIP), Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, Karamanoglu Mehmet University, Karaman 70000, Turkey
| | - Mikhail Chubarov
- 2D Crystal Consortium-Materials Innovation Platform (2DCC-MIP), Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tanushree H Choudhury
- 2D Crystal Consortium-Materials Innovation Platform (2DCC-MIP), Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Saiphaneendra Bachu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Leixin Miao
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yuanxi Wang
- 2D Crystal Consortium-Materials Innovation Platform (2DCC-MIP), Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chenhao Qian
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Vincent H Crespi
- 2D Crystal Consortium-Materials Innovation Platform (2DCC-MIP), Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joan M Redwing
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2D Crystal Consortium-Materials Innovation Platform (2DCC-MIP), Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adri C T van Duin
- 2D Crystal Consortium-Materials Innovation Platform (2DCC-MIP), Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nasim Alem
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
32
|
Wang Q, Shi R, Zhao Y, Huang R, Wang Z, Amini A, Cheng C. Recent progress on kinetic control of chemical vapor deposition growth of high-quality wafer-scale transition metal dichalcogenides. NANOSCALE ADVANCES 2021; 3:3430-3440. [PMID: 36133721 PMCID: PMC9417528 DOI: 10.1039/d1na00171j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/04/2021] [Indexed: 06/14/2023]
Abstract
2D transition metal dichalcogenides (TMDs) have attracted significant attention due to their unique physical properties. Chemical vapor deposition (CVD) is generally a promising method to prepare ideal TMD films with high uniformity, large domain size, good single-crystallinity, etc., at wafer-scale for commercial uses. However, the CVD-grown TMD samples often suffer from poor quality due to the improper control of reaction kinetics and lack of understanding about the phenomenon. In this review, we focus on several key challenges in the controllable CVD fabrication of high-quality wafer-scale TMD films and highlight the importance of the control of precursor concentration, nucleation density, and oriented growth. The remaining difficulties in the field and prospective directions of the related topics are further summarized.
Collapse
Affiliation(s)
- Qun Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Run Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen 518055 People's Republic of China
- Department of Physics and Center for Quantum Materials, Hong Kong University of Science and Technology Hong Kong People's Republic of China
| | - Yaxuan Zhao
- Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Runqing Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Zixu Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Abbas Amini
- Center for Infrastructure Engineering, Western Sydney University Kingswood NSW 2751 Australia
| | - Chun Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| |
Collapse
|
33
|
He J, Paradisanos I, Liu T, Cadore AR, Liu J, Churaev M, Wang RN, Raja AS, Javerzac-Galy C, Roelli P, Fazio DD, Rosa BLT, Tongay S, Soavi G, Ferrari AC, Kippenberg TJ. Low-Loss Integrated Nanophotonic Circuits with Layered Semiconductor Materials. NANO LETTERS 2021; 21:2709-2718. [PMID: 33754742 DOI: 10.1021/acs.nanolett.0c04149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Monolayer transition-metal dichalcogenides with direct bandgaps are emerging candidates for optoelectronic devices, such as photodetectors, light-emitting diodes, and electro-optic modulators. Here we report a low-loss integrated platform incorporating molybdenum ditelluride monolayers with silicon nitride photonic microresonators. We achieve microresonator quality factors >3 × 106 in the telecommunication O- to E-bands. This paves the way for low-loss, hybrid photonic integrated circuits with layered semiconductors, not requiring heterogeneous wafer bonding.
Collapse
Affiliation(s)
- Jijun He
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | - Tianyi Liu
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Alisson R Cadore
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, U.K
| | - Junqiu Liu
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mikhail Churaev
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Rui Ning Wang
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Arslan S Raja
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Clément Javerzac-Galy
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Philippe Roelli
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Domenico De Fazio
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, U.K
| | - Barbara L T Rosa
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, U.K
| | - Sefaattin Tongay
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Giancarlo Soavi
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, U.K
- Institute for Solid State Physics, Friedrich-Schiller University Jena, 07743 Jena, Germany
| | - Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, U.K
| | - Tobias J Kippenberg
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
34
|
Jiménez-Ramírez LE, Muñoz-Sandoval E, López-Urías F. Tailoring the structure of MoS 2 using ball-milled MoO 3 powders: hexagonal, triangular, and fullerene-like shapes. NANOTECHNOLOGY 2021; 32:155605. [PMID: 33321480 DOI: 10.1088/1361-6528/abd3c8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Single and few-layered MoS2 materials have attracted attention due to their outstanding physicochemical properties with potential applications in optoelectronics, catalysis, and energy storage. In the past, these materials have been produced using the chemical vapor deposition (CVD) method using MoO3 films and powders as Mo precursors. In this work, we demonstrate that the size and morphology of few-layered MoS2 nanostructures can be controlled, modifying the Mo precursor mechanically. We synthesized few-layered MoS2 materials using MoO3 powders previously exposed to a high-energy ball milling treatment by the salt-assisted CVD method. The MoO3 powders milled for 30, 120, and 300 min were used to synthesize sample MoS2-30, MoS2-120, and MoS2-300, respectively. We found morphologies mainly of hexagons (MoS2-30), triangles (MoS2-120), and fullerenes (MoS2-300). The MoS2 nanostructures and MoO3 powders were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, x-ray diffraction, and thermogravimetric analysis. It was found that MoO3 milled powders exhibit oxygen loss and decrease in crystallite size as milling time increases. Oxygen deficiency in the Mo precursor prevents the growth of large MoS2 crystals and a large number of milled MoO3-x + NaCl promote greater nucleation sites for the formation of MoS2, achieving a high density of nanoflakes in the 2H and 3R phases, with diameter sizes in the range of ∼30-600 nm with 1-12 layers. Photoluminescence characterization at room temperature revealed a direct bandgap and exciting trends for the different MoS2 samples. We envisage that our work provides a route for modifying the structure and optical properties for future device design via precursor engineering.
Collapse
Affiliation(s)
- Luis E Jiménez-Ramírez
- División de Materiales Avanzados, IPICYT, Camino a la Presa San José 2055, Col Lomas 4a sección, San Luis Potosí S.L.P., 78216, Mexico
| | - Emilio Muñoz-Sandoval
- División de Materiales Avanzados, IPICYT, Camino a la Presa San José 2055, Col Lomas 4a sección, San Luis Potosí S.L.P., 78216, Mexico
| | - Florentino López-Urías
- División de Materiales Avanzados, IPICYT, Camino a la Presa San José 2055, Col Lomas 4a sección, San Luis Potosí S.L.P., 78216, Mexico
| |
Collapse
|
35
|
Kim DH, Ramesh R, Nandi DK, Bae JS, Kim SH. Atomic layer deposition of tungsten sulfide using a new metal-organic precursor and H 2S: thin film catalyst for water splitting. NANOTECHNOLOGY 2021; 32:075405. [PMID: 33108773 DOI: 10.1088/1361-6528/abc50b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transition metal dichalcogenides (TMDs) are extensively researched in the past few years due to their two-dimensional layered structure similar to graphite. This group of materials offers tunable optoelectronic properties depending on the number of layers and therefore have a wide range of applications. Tungsten disulfide (WS2) is one of such TMDs that has been studied relatively less compared to MoS2. Herein, WS x thin films are grown on several types of substrates by atomic layer deposition (ALD) using a new metal-organic precursor [tris(hexyne) tungsten monocarbonyl, W(CO)(CH3CH2C≡CCH2CH3)3] and H2S molecules at a relatively low temperature of 300 °C. The typical self-limiting film growth by varying both, precursor and reactant, is obtained with a relatively high growth per cycle value of ∼0.13 nm. Perfect growth linearity with negligible incubation period is also evident in this ALD process. While the as-grown films are amorphous with considerable S-deficiency, they can be crystallized as h-WS2 film by post-annealing in the H2S atmosphere above 700 °C as observed from x-ray diffractometry analysis. Several other analyses like Raman and x-ray photoelectron spectroscopy, transmission electron microscopy, UV-vis. spectroscopy are performed to find out the physical, optical, and microstructural properties of as-grown and annealed films. The post-annealing in H2S helps to promote the S content in the film significantly as confirmed by the Rutherford backscattering spectrometry. Extremely thin (∼4.5 nm), as-grown WS x films with excellent conformality (∼100% step coverage) are achieved on the dual trench substrate (minimum width: 15 nm, aspect ratio: 6.3). Finally, the thin films of WS x (as-grown and 600/700 °C annealed) on W/Si and carbon cloth substrate are investigated for electrochemical hydrogen evolution reaction (HER). The as-grown WS x shows poor performance towards HER and is attributed to the S-deficiency, amorphous character, and oxygen contamination of the WS x film. Annealing the WS x film at 700 °C results in the formation of a crystalline layered WS2 phase, which significantly improves the HER performance of the electrode. The study reveals the importance of sulfur content and crystallinity on the HER performance of W-based sulfides.
Collapse
Affiliation(s)
- Deok-Hyun Kim
- School of Materials Science and Engineering, Yeungnam University, 214-1, Dae-dong, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea
| | - Rahul Ramesh
- School of Materials Science and Engineering, Yeungnam University, 214-1, Dae-dong, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea
| | - Dip K Nandi
- School of Materials Science and Engineering, Yeungnam University, 214-1, Dae-dong, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea
| | - Jong-Seong Bae
- Busan Center, Korea Basic Science Institute, 1275 Jisadong, Gangseogu, Busan 618-230, Republic of Korea
| | - Soo-Hyun Kim
- School of Materials Science and Engineering, Yeungnam University, 214-1, Dae-dong, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea
- Institute of Materials Technology, Yeungnam University, 214-1, Dae-dong, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea
| |
Collapse
|
36
|
Seok SH, Choo S, Kwak J, Ju H, Han JH, Kang WS, Lee J, Kim SY, Lee DH, Lee J, Wang J, Song S, Jo W, Jung BM, Chae HG, Son JS, Kwon SY. Synthesis of high quality 2D carbide MXene flakes using a highly purified MAX precursor for ink applications. NANOSCALE ADVANCES 2021; 3:517-527. [PMID: 36131735 PMCID: PMC9417611 DOI: 10.1039/d0na00398k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/20/2020] [Indexed: 05/28/2023]
Abstract
The practical application of 2D MXenes in electronic and energy fields has been hindered by the severe variation in the quality of MXene products depending on the parent MAX phases, manufacturing techniques, and preparation parameters. In particular, their synthesis has been impeded by the lack of studies reporting the synthesis of high-quality parent MAX phases. In addition, controllable and uniform deposition of 2D MXenes on various large-scale substrates is urgently required to use them practically. Herein, a method of pelletizing raw materials could synthesize a stoichiometric Ti3AlC2 MAX phase with high yield and processability, and fewer impurities. The Ti3AlC2 could be exfoliated into 1-2-atom-thick 2D Ti3C2T x flakes, and their applicability was confirmed by the deposition and additional alignment of the 2D flakes with tunable thickness and electrical properties. Moreover, a practical MXene ink was fabricated with rheological characterization. MXene ink exhibited much better thickness uniformity while retaining excellent electrical performances (e.g., sheet resistance, electromagnetic interference shielding ability) as those of a film produced by vacuum filtration. The direct functional integration of MXenes on various substrates is expected to initiate new and unexpected MXene-based applications.
Collapse
Affiliation(s)
- Shi-Hyun Seok
- Department of Materials Science and Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Seungjun Choo
- Department of Materials Science and Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Jinsung Kwak
- Department of Materials Science and Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Hyejin Ju
- Department of Materials Science and Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Ju-Hyoung Han
- Department of Materials Science and Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Woo-Seok Kang
- Department of Materials Science and Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Joonsik Lee
- Composites Research Division, Korea Institute of Materials Science (KIMS) Changwon 51508 Korea
| | - Se-Yang Kim
- Department of Materials Science and Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Do Hee Lee
- Department of Materials Science and Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Jungsoo Lee
- Department of Materials Science and Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Jaewon Wang
- Department of Materials Science and Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Seunguk Song
- Department of Materials Science and Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Wook Jo
- Department of Materials Science and Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Byung Mun Jung
- Composites Research Division, Korea Institute of Materials Science (KIMS) Changwon 51508 Korea
| | - Han Gi Chae
- Department of Materials Science and Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Jae Sung Son
- Department of Materials Science and Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Soon-Yong Kwon
- Department of Materials Science and Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| |
Collapse
|
37
|
Jiang X, Chen F, Zhao S, Su W. Recent progress in the CVD growth of 2D vertical heterostructures based on transition-metal dichalcogenides. CrystEngComm 2021. [DOI: 10.1039/d1ce01289d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This review summarizes recent advances in the controllable CVD growth of 2D TMDC vertical heterostructures under four different strategies.
Collapse
Affiliation(s)
- Xia Jiang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, P.R. China
- School of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, P.R. China
| | - Fei Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, P.R. China
| | - Shichao Zhao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, P.R. China
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, P.R. China
| |
Collapse
|
38
|
Janica I, Iglesias D, Ippolito S, Ciesielski A, Samorì P. Effect of temperature and exfoliation time on the properties of chemically exfoliated MoS 2 nanosheets. Chem Commun (Camb) 2020; 56:15573-15576. [PMID: 33244537 DOI: 10.1039/d0cc06792j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A systematic investigation of the experimental conditions for the chemical exfoliation of MoS2 using n-butyllithium as intercalating agent has been carried out to unravel the effect of reaction time and temperature for maximizing the percentage of monolayer thick-flakes and achieve a control over the content of metallic 1T vs. semiconductive 2H phases, thereby tuning the electrical properties of ultrathin MoS2 few-layer thick films.
Collapse
Affiliation(s)
- Iwona Janica
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | | | | | | | | |
Collapse
|
39
|
Nasr JR, Simonson N, Oberoi A, Horn MW, Robinson JA, Das S. Low-Power and Ultra-Thin MoS 2 Photodetectors on Glass. ACS NANO 2020; 14:15440-15449. [PMID: 33112615 DOI: 10.1021/acsnano.0c06064] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Integration of low-power consumer electronics on glass can revolutionize the automotive and transport sectors, packaging industry, smart building and interior design, healthcare, life science engineering, display technologies, and many other applications. However, direct growth of high-performance, scalable, and reliable electronic materials on glass is difficult owing to low thermal budget. Similarly, development of energy-efficient electronic and optoelectronic devices on glass requires manufacturing innovations. Here, we accomplish both by relatively low-temperature (<600 °C) metal-organic chemical vapor deposition growth of atomically thin MoS2 on multicomponent glass and fabrication of low-power phototransistors using atomic layer deposition (ALD)-grown, high-k, and ultra-thin (∼20 nm) Al2O3 as the top-gate dielectric, circumventing the challenges associated with the ALD nucleation of oxides on inert basal planes of van der Waals materials. The MoS2 photodetectors demonstrate the ability to detect low-intensity visible light at high speed and low energy expenditure of ∼100 pico Joules. Furthermore, low device-to-device performance variation across the entire 1 cm2 substrate and aggressive channel length scalability confirm the technology readiness level of ultra-thin MoS2 photodetectors on glass.
Collapse
Affiliation(s)
- Joseph R Nasr
- Deparment of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nicholas Simonson
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Aaryan Oberoi
- Deparment of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mark W Horn
- Deparment of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joshua A Robinson
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Saptarshi Das
- Deparment of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
40
|
Tai KL, Chen J, Wen Y, Park H, Zhang Q, Lu Y, Chang RJ, Tang P, Allen CS, Wu WW, Warner JH. Phase Variations and Layer Epitaxy of 2D PdSe 2 Grown on 2D Monolayers by Direct Selenization of Molecular Pd Precursors. ACS NANO 2020; 14:11677-11690. [PMID: 32809801 DOI: 10.1021/acsnano.0c04230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Two-dimensional (2D) materials and van der Waals heterostructures with atomic-scale thickness provide enormous potential for advanced science and technology. However, insufficient knowledge of compatible synthesis impedes wafer-scale production. PdSe2 and Pd2Se3 are two of the noble transition-metal chalcogenides with excellent physical properties that have recently emerged as promising materials for electronics, optoelectronics, catalyst, and sensors. This research presents a feasible approach to synthesize PdSe2 and Pd2Se3 with inherently asymmetric structure on honeycomb lattice 2D monolayer substrates of graphene and MoS2. We directly deposit a molecular transition-metal precursor complex on the surface of the 2D substrates, followed by low-temperature selenization by chemical vapor flow. Parameter control leads to tuning of the material from monolayer nanocrystals with Pd2Se3 phase, to continuous few-layer PdSe2 films. Annular dark-field scanning transmission electron microscopy (ADF-STEM) reveals the structure, phase variations, and heteroepitaxy at the atomic level. PdSe2 with unconventional interlayer stacking shifts appeared as the kinetic product, whereas the bilayer PdSe2 and monolayer Pd2Se3 are the thermodynamic product. The epitaxial alignment of interlayer rotation and translation between the PdSe2 and underlying 2D substrate was also revealed by ADF-STEM. These results offer both nanoscale and atomic-level insights into direct growth of van der Waals heterostructures, as well as an innovative method for 2D synthesis by predetermined nucleation.
Collapse
Affiliation(s)
- Kuo-Lun Tai
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (R.O.C.)
| | - Jun Chen
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Yi Wen
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Hyoju Park
- Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 East Dean Keeton Street, Austin, Texas 78712, United States
- Materials Graduate Program, Texas Materials Institute, The University of Texas at Austin, 204 East Dean Keeton Street, Austin, Texas 78712, United States
| | - Qianyang Zhang
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Yang Lu
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Ren-Jie Chang
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Peng Tang
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Christopher S Allen
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
- Electron Physical Sciences Imaging Center, Diamond Light Source Ltd., Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Wen-Wei Wu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (R.O.C.)
- Center for the Intelligent Semiconductor Nano-system Technology Research, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Jamie H Warner
- Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 East Dean Keeton Street, Austin, Texas 78712, United States
- Materials Graduate Program, Texas Materials Institute, The University of Texas at Austin, 204 East Dean Keeton Street, Austin, Texas 78712, United States
| |
Collapse
|
41
|
Hsieh YL, Su WH, Huang CC, Su CY. In Situ Cleaning and Fluorination of Black Phosphorus for Enhanced Performance of Transistors with High Stability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37375-37383. [PMID: 32700524 DOI: 10.1021/acsami.0c11129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Most two-dimensional (2D) semiconductors suffer from intrinsic instability under ambient conditions, especially 2D black phosphorus (BP). Although much effort has been made to study the passivation of 2D materials against corrosion by oxygen and water molecules, facile and effective passivation with long-term stability is still challenging; in particular, selective passivation, which is critical for integration into nanoelectronics, is still lacking. Here, we develop a novel passivation route for BP using a fluorinated self-assembled thin film of PFSA (perfluorosulfonic acid, PFSA), where the surface modifier with high hydrophobicity on BP presents extremely stable characteristics over five months under ambient conditions. Moreover, we report for the first time in situ cleaning and selective fluorination of only BP flakes on a SiO2/Si substrate by a spin-coating process followed by ultrasonication, which was attributed to the formation of P-F covalent bonds on the BP surface. Selectively fluorinated BP shows not only enhanced stability in air but also electrical properties of the BP field-effect transistor (FET), with the on-current of the BP FET increasing and presenting enhanced carrier mobility (125 cm2 V-1 s-1) and on/off ratio (104). This significant finding sheds light on fabricating vertical 2D heterostructures to realize high performance and reliability with versatile 2D materials. This work demonstrates an emerging passivation approach for long-term stability together with superior electrical properties, which paves the way for integrating 2D semiconductors into critical channel materials in FETs that are favorable for next-generation digital logic circuits.
Collapse
Affiliation(s)
- Yu-Ling Hsieh
- Department of Mechanical Engineering, National Central University, Tao-Yuan 32001, Taiwan
| | - Wen-Hsuan Su
- Department of Mechanical Engineering, National Central University, Tao-Yuan 32001, Taiwan
| | - Cheng-Chun Huang
- Graduate Institute of Energy Engineering, National Central University, Tao-Yuan 32001, Taiwan
| | - Ching-Yuan Su
- Department of Mechanical Engineering, National Central University, Tao-Yuan 32001, Taiwan
- Graduate Institute of Energy Engineering, National Central University, Tao-Yuan 32001, Taiwan
- Graduate Institute of Material Science and Engineering, National Central University, Tao-Yuan 32001, Taiwan
| |
Collapse
|
42
|
Krawczyk M, Pisarek M, Szoszkiewicz R, Jablonski A. Surface Characterization of MoS 2 Atomic Layers Mechanically Exfoliated on a Si Substrate. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3595. [PMID: 32823911 PMCID: PMC7475815 DOI: 10.3390/ma13163595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022]
Abstract
Mo disulfide overlayers with the thickness exceeding 1.77 nm were obtained on Si substrates through mechanical exfoliation. The resulting Mo disulfide flakes were then analyzed ex situ using combination of Auger electron spectroscopy (AES), elastic-peak electron spectroscopy (EPES) and scanning electron microscopy (SEM) in order to characterize their surface chemical composition, electron transport phenomena and surface morphology. Prior to EPES measurements, the Mo disulfide surface was sputter-cleaned and amorphized by 3 kV argon ions, and the resulting S/Mo atomic ratio varied in the range 1.80-1.88, as found from AES measurements. The SEM images revealed single crystalline small-area (up to 15 μm in lateral size) Mo disulfide flakes having polygonal or near-triangular shapes. Such irregular-edged flakes exhibited high crystal quality and thickness uniformity. The inelastic mean free path (IMFP), characterizing electron transport, was evaluated from the relative EPES using Au reference material for electron energies E = 0.5-2 keV. Experimental IMFPs, λ, determined for the AES-measured surface compositions were approximated by the simple function λ = kEp, where k = 0.0289 and p = 0.946 were fitted parameters. Additionally, these IMFPs were compared with IMFPs resulting from the two methods: (i) present calculations based on the formalism of the Oswald et al. model; (ii) the predictive equation of Tanuma et al. (TPP-2M) for the measured Mo0.293S0.551C0.156 surface composition (S/Mo = 1.88), and also for stoichiometric MoS2 composition. The fitted function was found to be reasonably consistent with the measured, calculated and predicted IMFPs. We concluded that the measured IMFP value at 0.5 keV was only slightly affected by residual carbon contamination at the Mo disulfide surface.
Collapse
Affiliation(s)
- Mirosław Krawczyk
- Laboratory of Surface Analysis, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.P.); (A.J.)
| | - Marcin Pisarek
- Laboratory of Surface Analysis, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.P.); (A.J.)
| | - Robert Szoszkiewicz
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki Wigury 101, 02-089 Warsaw, Poland;
| | - Aleksander Jablonski
- Laboratory of Surface Analysis, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.P.); (A.J.)
| |
Collapse
|
43
|
Pan B, Zhang K, Ding C, Wu Z, Fan Q, Luo T, Zhang L, Zou C, Huang S. Universal Precise Growth of 2D Transition-Metal Dichalcogenides in Vertical Direction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35337-35344. [PMID: 32648731 DOI: 10.1021/acsami.0c08335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional transition-metal dichalcogenides (TMDs) have been one of the hottest focus of materials due to the most beneficial electronic and optoelectronic properties. Up to now, one of the big challenges is the synthesis of large-area layer-number-controlled single-crystal films. However, the poor understanding of the growth mechanism seriously hampers the progress of the scalable production of TMDs with precisely tunable thickness at an atomic scale. Here, the growth mechanisms in the vertical direction were systemically studied based on the density functional theory (DFT) calculation and an advanced chemical vapor deposition (CVD) growth. As a result, the U-type relation of the TMD layer number to the ratio of metal/chalcogenide is confirmed by the capability of ultrafine tuning of the experimental conditions in the CVD growth. In addition, high-quality uniform monolayer, bilayer, trilayer, and multilayer TMDs in a large area (8 cm2) were efficiently synthesized by applying this modified CVD. Although bilayer TMDs can be obtained at both high and low ratios of metal/chalcogenide based on the suggested mechanism, they demonstrate significantly different optical and electronic transport properties. The modified CVD strategy and the proposed mechanism should be helpful for synthesizing and large-area thickness-controlled TMDs and understanding their growth mechanism and could be used in integrated electronics and optoelectronics.
Collapse
Affiliation(s)
- Baojun Pan
- Key Laboratory of Carbon Materials of Zhejiang Province, Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Kenan Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Changchun Ding
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
| | - Zhen Wu
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
| | - Qunchao Fan
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
| | - Tingyan Luo
- Key Laboratory of Carbon Materials of Zhejiang Province, Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Lijie Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Chao Zou
- Key Laboratory of Carbon Materials of Zhejiang Province, Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Shaoming Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
44
|
Stan G, Ciobanu CV, Likith SRJ, Rani A, Zhang S, Hacker CA, Krylyuk S, Davydov AV. Doping of MoTe 2 via Surface Charge Transfer in Air. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18182-18193. [PMID: 32192325 PMCID: PMC7425619 DOI: 10.1021/acsami.0c04339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Doping is a key process by which the concentration and type of majority carriers can be tuned to achieve desired conduction properties. The common way of doping is via bulk impurities, as in the case of silicon. For van der Waals bonded semiconductors, control over bulk impurities is not as well developed, because they may either migrate between the layers or bond with the surfaces or interfaces becoming undesired scattering centers for carriers. Herein, we investigate by means of Kelvin probe force microscopy (KPFM) and density functional theory calculations (DFT) the doping of MoTe2 via surface charge transfer occurring in air. Using DFT, we show that oxygen molecules physisorb on the surface and increase its work function (compared to pristine surfaces) toward p-type behavior, which is consistent with our KPFM measurements. The surface charge transfer doping (SCTD) driven by adsorbed oxygen molecules can be easily controlled or reversed through thermal annealing of the entire sample. Furthermore, we also demonstrate local control of the doping by contact electrification. As a reversible and controllable nanoscale physisorption process, SCTD can thus open new avenues for the emerging field of 2D electronics.
Collapse
Affiliation(s)
- Gheorghe Stan
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Cristian V. Ciobanu
- Department of Mechanical Engineering and Materials Science Program, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Sri Ranga Jai Likith
- Department of Mechanical Engineering and Materials Science Program, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Asha Rani
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- School of Engineering and Applied Science, The George Washington University, Washington, D. C. 20052, USA
| | - Siyuan Zhang
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Theiss Research, Inc., La Jolla, California 92037, USA
| | - Christina A. Hacker
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Sergiy Krylyuk
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Theiss Research, Inc., La Jolla, California 92037, USA
| | - Albert V. Davydov
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
45
|
Koçak Y, Gür E. Growth Control of WS 2: From 2D Layer by Layer to 3D Vertical Standing Nanowalls. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15785-15792. [PMID: 32176470 DOI: 10.1021/acsami.9b18759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Large area 2D WS2 has been grown successfully by radio frequency magnetron sputtering (RFMS) method. First, in order to investigate the pressure dependence on the grown WS2 samples, WS2 were grown at 5 different growth pressures, 5, 10, 15, 20, and 25 mTorr. It has been observed that the surface morphology changes for the samples grown at higher growth pressures, 15, 20, and 25 mTorr. Vertically standing nanowall (NW)-like structures have been formed at these relatively high growth pressures. It has also been observed that the (002) plane is highly dominant, which means layer by layer growth parallel to the substrate, for the sample grown at 20 mTorr. X-ray photoelectron spectroscopy (XPS) measurements revealed an increasing atomic percentage of the S element to W element, S/W, ratio in thin films, as the growth pressure increases. Growth dynamics of WS2 has been investigated by time-dependent-growth WS2 samples, 5, 10, 20, 40, and 80 s under 20 mTorr pressure. It has been shown by atomic force microscopy, scanning electron microscopy, and transmission electron microscopy that a highly smooth surface has been achieved in the samples grown for the duration of 5 and 10 s. Raman mapping measurements on the sample grown at 5 s have revealed large area homogeneous growth. As the growth time gets longer, the NWs emerge on the surface at some nucleation points. Only the peak that belongs to the (002) plane has been observed for samples grown at 5 and 10 s by the X-ray diffraction (XRD) measurements. XRD measurements have revealed the appearance of turbostratic peaks of (11l) and (10l) as the thickness increases. Photoluminescence measurements have indicated near-band-edge emission centered at 630 nm for only 5 and 10 s samples.
Collapse
Affiliation(s)
- Yusuf Koçak
- Department of Physics, Faculty of Science, Ataturk University, 25250 Erzurum, Turkey
| | - Emre Gür
- Department of Physics, Faculty of Science, Ataturk University, 25250 Erzurum, Turkey
| |
Collapse
|
46
|
Mandyam SV, Zhao MQ, Das PM, Zhang Q, Price CC, Gao Z, Shenoy VB, Drndić M, Johnson ATC. Controlled Growth of Large-Area Bilayer Tungsten Diselenides with Lateral P-N Junctions. ACS NANO 2019; 13:10490-10498. [PMID: 31424199 PMCID: PMC7080308 DOI: 10.1021/acsnano.9b04453] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Bilayer two-dimensional (2D) van der Waals (vdW) materials are attracting increasing attention due to their predicted high quality electronic and optical properties. Here, we demonstrate dense, selective growth of WSe2 bilayer flakes by chemical vapor deposition with the use of a 1:10 molar mixture of sodium cholate and sodium chloride as the growth promoter to control the local diffusion of W-containing species. A large fraction of the bilayer WSe2 flakes showed a 0 (AB) and 60° (AA') twist between the two layers, whereas Moiré 15 and 30° twist angles were also observed. Well-defined monolayer-bilayer junctions were formed in the as-grown bilayer WSe2 flakes, and these interfaces exhibited p-n diode rectification and an ambipolar transport characteristic. This work provides an efficient method for the layer-controlled growth of 2D materials, in particular, 2D transition metal dichalcogenides, and promotes their applications in next-generation electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Srinivas V. Mandyam
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33 Street, Philadelphia, PA 19104, USA
| | - Meng-Qiang Zhao
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33 Street, Philadelphia, PA 19104, USA
| | - Paul Masih Das
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33 Street, Philadelphia, PA 19104, USA
| | - Qicheng Zhang
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33 Street, Philadelphia, PA 19104, USA
| | - Christopher C. Price
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut St., Philadelphia, PA 19104, USA
| | - Zhaoli Gao
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33 Street, Philadelphia, PA 19104, USA
| | - Vivek B. Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut St., Philadelphia, PA 19104, USA
| | - Marija Drndić
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33 Street, Philadelphia, PA 19104, USA
| | - Alan T. Charlie Johnson
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33 Street, Philadelphia, PA 19104, USA
| |
Collapse
|
47
|
|
48
|
Song S, Kim S, Kwak J, Jo Y, Kim JH, Lee JH, Lee J, Kim JU, Yun HD, Sim Y, Wang J, Lee DH, Seok S, Kim T, Cheong H, Lee Z, Kwon S. Electrically Robust Single-Crystalline WTe 2 Nanobelts for Nanoscale Electrical Interconnects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801370. [PMID: 30775229 PMCID: PMC6364501 DOI: 10.1002/advs.201801370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/03/2018] [Indexed: 06/09/2023]
Abstract
As the elements of integrated circuits are downsized to the nanoscale, the current Cu-based interconnects are facing limitations due to increased resistivity and decreased current-carrying capacity because of scaling. Here, the bottom-up synthesis of single-crystalline WTe2 nanobelts and low- and high-field electrical characterization of nanoscale interconnect test structures in various ambient conditions are reported. Unlike exfoliated flakes obtained by the top-down approach, the bottom-up growth mode of WTe2 nanobelts allows systemic characterization of the electrical properties of WTe2 single crystals as a function of channel dimensions. Using a 1D heat transport model and a power law, it is determined that the breakdown of WTe2 devices under vacuum and with AlO x capping layer follows an ideal pattern for Joule heating, far from edge scattering. High-field electrical measurements and self-heating modeling demonstrate that the WTe2 nanobelts have a breakdown current density approaching ≈100 MA cm-2, remarkably higher than those of conventional metals and other transition-metal chalcogenides, and sustain the highest electrical power per channel length (≈16.4 W cm-1) among the interconnect candidates. The results suggest superior robustness of WTe2 against high-bias sweep and its possible applicability in future nanoelectronics.
Collapse
Affiliation(s)
- Seunguk Song
- School of Materials Science and Engineering & Low‐Dimensional Carbon Materials CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Se‐Yang Kim
- School of Materials Science and Engineering & Low‐Dimensional Carbon Materials CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Jinsung Kwak
- School of Materials Science and Engineering & Low‐Dimensional Carbon Materials CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Yongsu Jo
- School of Materials Science and Engineering & Low‐Dimensional Carbon Materials CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Jung Hwa Kim
- School of Materials Science and Engineering & Low‐Dimensional Carbon Materials CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Jong Hwa Lee
- School of Materials Science and Engineering & Low‐Dimensional Carbon Materials CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Jae‐Ung Lee
- Department of PhysicsSogang UniversitySeoul04107Republic of Korea
| | - Jong Uk Kim
- School of Chemical EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Hyung Duk Yun
- School of Materials Science and Engineering & Low‐Dimensional Carbon Materials CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Yeoseon Sim
- School of Materials Science and Engineering & Low‐Dimensional Carbon Materials CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Jaewon Wang
- School of Materials Science and Engineering & Low‐Dimensional Carbon Materials CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Do Hee Lee
- School of Materials Science and Engineering & Low‐Dimensional Carbon Materials CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Shi‐Hyun Seok
- School of Materials Science and Engineering & Low‐Dimensional Carbon Materials CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Tae‐il Kim
- School of Chemical EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Hyeonsik Cheong
- Department of PhysicsSogang UniversitySeoul04107Republic of Korea
| | - Zonghoon Lee
- School of Materials Science and Engineering & Low‐Dimensional Carbon Materials CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Soon‐Yong Kwon
- School of Materials Science and Engineering & Low‐Dimensional Carbon Materials CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| |
Collapse
|