1
|
Bhardwaj S, Alli SJ, Barman N, Thapa R, Dey RS. Ternary Heteroatom-Doped Carbon As a High-Performance Metal-Free Catalyst for Electrochemical Ammonia Synthesis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26661-26670. [PMID: 40289487 DOI: 10.1021/acsami.5c02039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The electrochemical nitrogen reduction reaction (NRR) has garnered much attention, but the major challenge remains with efficient electrocatalysts. Metal-free carbonaceous materials, doped with heteroatoms and structural defects, present a promising alternative to metal-based catalysts. This study introduces a novel strategic stepwise synthesis strategy of defective nitrogen-doped carbon material, further doped with secondary heteroatoms boron and fluorine (FBDG). These secondary atoms in combination create additional active sites for nitrogen adsorption and activation and suppress the hydrogen evolution reaction (HER). The synergistic effect of three heteroatoms and induced defects in the catalyst enhances electron-donor behavior, improving π bonding within the carbon framework and facilitating the electron transfer processes during NRR, resulting in a significantly high Faradaic efficiency of 38.1% in the case of metal-free electrocatalysts. The theoretical calculation reveals that FBDG possesses a sufficient charge density to reduce nitrogen at a low overpotential following an alternating free energy pathway. The reaction intermediates are thereby identified by in situ ATR-FTIR studies. For the rapid screening of ammonia, we used a rotating ring disk system (RRDE) and did a kinetic study. The high efficiency, stability, and cost-effectiveness of FBDG position it as a strong contender for sustainable ammonia production and pave the way for future advancements in NRR.
Collapse
Affiliation(s)
- Sakshi Bhardwaj
- Institute of Nano Science and Technology, Sector-81, Knowledge City, S.A.S. Nagar, Mohali-140306, Punjab, India
| | | | - Narad Barman
- Department of Physics, SRM University, Amaravati 522240, Andhra Pradesh, India
| | - Ranjit Thapa
- Department of Physics, SRM University, Amaravati 522240, Andhra Pradesh, India
- Centre for Computational and Integrative Sciences, SRM University, Amaravati 522 240, Andhra Pradesh, India
| | - Ramendra Sundar Dey
- Institute of Nano Science and Technology, Sector-81, Knowledge City, S.A.S. Nagar, Mohali-140306, Punjab, India
| |
Collapse
|
2
|
Oni BA. A Review on Electrochemical Water Splitting Electrocatalysts for Green H 2 Production: Unveiling the Fundamentals and Recent Advances. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10742-10767. [PMID: 40277414 DOI: 10.1021/acs.langmuir.5c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Green H2 production via electrochemical water splitting has emerged as a pivotal solution for achieving a sustainable energy future. This Review delves into the fundamentals of water splitting, focusing on the O2 evolution reaction (OER) and H2 evolution reaction (HER), and focuses on the critical role of electrocatalysts in these processes. Precious metals such as paltinum and iridium remain the benchmarks for catalytic performance; however, their scarcity and high cost necessitate the development of alternative materials. Recent advances in Earth-abundant catalysts, including transition-metal oxides, carbides, nitrides, and sulfides, have shown promise in balancing activity, durability, and affordability. The integration of nanostructuring techniques and computational modeling has enabled the design of catalysts with enhanced active site exposure and electronic properties. Furthermore, the Review highlights challenges such as material degradation, high overpotentials, and gas crossover, along with potential solutions like protective coatings, bifunctional catalysts, and advanced electrolyzer designs. Future prospects emphasize the role of artificial intelligence, hybrid systems, and sustainable manufacturing in accelerating progress. This comprehensive review underscores the significance of bridging fundamental research with technological innovations to scale up green hydrogen production, addressing energy demands while mitigating environmental impacts.
Collapse
Affiliation(s)
- Babalola Aisosa Oni
- Department of Energy Engineering, University of North Dakota, College of Engineering and Mines, Grand Forks, 58203, North Dakota
| |
Collapse
|
3
|
Huang Y, Li T, Huang R, Xu K, Chen Z, Huang C, Yang W, Song Y, Chen Z, Xia R, Ocakoglu K, Admassie S, Iwuoha E, Zhong L, Peng X. Constructing Pentagonal Topological Defects in Carbon Aerogels for Flexible Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2502067. [PMID: 40091360 DOI: 10.1002/smll.202502067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Indexed: 03/19/2025]
Abstract
In the context of energy conversion, the design and synthesis of high-performance metal-free carbon electrocatalysts for the oxygen reduction reaction (ORR) is crucial. Herein, a one-step nitrogen doping/extraction strategy is proposed to fabricate 3D nitrogen-doped carbon aerogels (NCA-Cl) with rich pentagonal carbon topological defects. The NCA-Cl electrocatalyst exhibits superb ORR activity, displaying a half-wave potential of 0.89 V vs RHE and 0.74 V vs RHE under alkaline (0.1 m KOH) and acidic (0.1 m HClO4) media, respectively, thanks to the balanced *OOH intermediate adsorption and desorption induced by the pentagonal carbon topological defects and nitrogen dopants. The aqueous zinc-air battery (ZAB) equipped with the NCA-Cl cathode delivers a peak power density of 206.6 mW cm-2, a specific capacity of 810.6 mAh g-1, and a durability of 400 h, and the flexible ZAB also performed convincingly. This work provides an effective strategy for the formation of topological carbon defects for the enhancement of the electrocatalytic activity of carbon-based catalysts.
Collapse
Affiliation(s)
- Yongfa Huang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Tingzhen Li
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Runxin Huang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Kaimeng Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China
| | - Zehong Chen
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Chao Huang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Wu Yang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Youzhi Song
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhongxin Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Ruidong Xia
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Kasim Ocakoglu
- Department of Engineering Fundamental Sciences, Faculty of Engineering, Tarsus University, Tarsus, 33400, Turkey
| | - Shimelis Admassie
- Department of Chemistry, Addis Ababa University, Addis Ababa, PO BOX 1176, Ethiopia
| | - Emmanuel Iwuoha
- SensorLab (UWC Sensor Laboratories), Department of Chemistry, University of the Western Cape, Bellville, Cape Town, 7535, South Africa
| | - Linxin Zhong
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xinwen Peng
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
4
|
Smith LA, Burrow JN, Eichler JE, Tang F, Lauro SN, Zhan X, Warner JH, Mullins CB. A Deep Dive Into the Study of Nitrogen-Doped Carbons as Electrocatalysts for the Oxygen Reduction Reaction via Design of Experiments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410010. [PMID: 39995363 DOI: 10.1002/smll.202410010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/31/2025] [Indexed: 02/26/2025]
Abstract
A design of experiments (DoE) approach is applied to the study of nitrogen (N)-doped carbons prepared via a molten salt templating method using the eutectic salt lithium chloride/potassium chloride (LiCl/KCl) and the precursors sucrose and melamine (N precursor). This approach is used to deconvolute effects from surface composition and porosity on the electrocatalytic performance of N-doped carbons as oxygen reduction reaction (ORR) electrocatalysts. Additionally, DoE is implemented to reveal the synthesis-structure-function relationship for the prepared materials over an entire design space. From this work, it is evident that the N precursor content has the greatest impact on the tunability of material properties (e.g., N-content, pyridinic N content, surface area, pore size distribution, etc.) followed by pyrolysis temperature and salt mass. Additionally, without adequate porosity (surface area ≥ 500 m2 g-1, micropore volume > 0.15 cc g-1, etc.) and electrochemically active surface area, activity and selectivity for the ORR via N-functionalization is significantly reduced. Optimization of the studied design space indicates that an N precursor content of 35 wt.%-38 wt.%, pyrolysis temperature ≤ 900 °C, and a salt mass < 15 g would garner the necessary N-content (∼7-8 at%) and porosity to achieve the most active and selective N-doped carbon ORR electrocatalysts.
Collapse
Affiliation(s)
- Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - James N Burrow
- John J. McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - J Ehren Eichler
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Franklin Tang
- John J. McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Samantha N Lauro
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Xun Zhan
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jamie H Warner
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
- John J. McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Texas Materials Institute, Center for Electrochemistry and H2@UT, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
5
|
Szroeder P, Banaszak-Piechowska A, Sahalianov I. Tailoring Electrocatalytic Properties of sp 2-Bonded Carbon Nanoforms Through Doping. Molecules 2025; 30:1265. [PMID: 40142041 PMCID: PMC11944806 DOI: 10.3390/molecules30061265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
The symmetry of the valence and conduction bands in graphene and carbon nanotubes allows for easy modification of the electronic structure, which is correlated with their electrocatalytic activity. Modifying the electronic structure of the sp2-bonded nanocarbons by substituting carbon atoms with electron donors/acceptors and through covalent functionalization can facilitate heterogeneous electron transfer (HET), which is beneficial for designing carbon-based, high-performance electrocatalysts. Based on the Gerischer-Marcus model, we discuss how we can match the density of π-electron states (DOS) of a nanocarbon electrode to the redox potential of redox species using electron and hole doping. Along with the results, this article provides guidance on how to match the properties of nanocarbons to specific electroactive analytes, oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), and oxygen evolution reaction (OER).
Collapse
Affiliation(s)
- Paweł Szroeder
- Faculty of Physics, Kazimierz Wielki University, Powstańców Wielkopolskich 2, 85-090 Bydgoszcz, Poland;
| | | | - Ihor Sahalianov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden;
| |
Collapse
|
6
|
Chen X, Feng P, Zheng Y, Li H, Zhang Y, Shen Y, Yan Y, Liu M, Ye L. Emerging Nitrogen and Sulfur Co-doped Carbon Materials for Electrochemical Energy Storage and Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412191. [PMID: 39955747 DOI: 10.1002/smll.202412191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/24/2025] [Indexed: 02/17/2025]
Abstract
The growing global energy demands, coupled with the imperative for sustainable environmental challenges, have sparked significant interest in electrochemical energy storage and conversion (EESC) technologies. Metal-free heteroatom-doped carbon materials, especially those codoped with nitrogen (N) and sulfur (S), have gained prominence due to their exceptional conductivity, large specific surface area, remarkable chemical stability, and enhanced electrochemical performance. The strategic incorporation of N and S atoms into the carbon framework plays a pivotal role in modulating electron distribution and creating catalytically active sites, thereby significantly enhancing the EESC performance. This review examines the key synthetic strategies for fabricating N, S codoped carbon materials (NSDCMs) and provides a comprehensive overview of recent advancements in NSDCMs for EESC applications. These encompass various electrochemical energy storage systems such as supercapacitors, alkali-ion batteries, and lithium-sulfur batteries. Energy conversion processes, including hydrogen evolution, oxygen reduction/evolution, and carbon dioxide reduction are also covered. Finally, future research directions for NSDCMs are discussed in the EESC field, aiming to highlight their promising potential and multifunctional capabilities in driving further advancements in electrochemical energy systems.
Collapse
Affiliation(s)
- Xia Chen
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
| | - Ping Feng
- Institute for Technical and Environmental Chemistry, Friedrich-Schiller-Universität Jena, 07743, Jena, Germany
| | - Yong Zheng
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hui Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
| | - Youfang Zhang
- Hubei Key Laboratory of Polymer Materials, Ministry of Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Yi Shen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Yan Yan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Mingkai Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Liqun Ye
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
7
|
Lei H, Yang X, Chen Z, Rawach D, Du L, Liang Z, Li D, Zhang G, Tavares AC, Sun S. Multiscale Understanding of Anion Exchange Membrane Fuel Cells: Mechanisms, Electrocatalysts, Polymers, and Cell Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410106. [PMID: 39797443 PMCID: PMC11854883 DOI: 10.1002/adma.202410106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/10/2024] [Indexed: 01/13/2025]
Abstract
Anion exchange membrane fuel cells (AEMFCs) are among the most promising sustainable electrochemical technologies to help solve energy challenges. Compared to proton exchange membrane fuel cells (PEMFCs), AEMFCs offer a broader choice of catalyst materials and a less corrosive operating environment for the bipolar plates and the membrane. This can lead to potentially lower costs and longer operational life than PEMFCs. These significant advantages have made AEMFCs highly competitive in the future fuel cell market, particularly after advancements in developing non-platinum-group-metal anode electrocatalysts, anion exchange membranes and ionomers, and in understanding the relationships between cell operating conditions and mass transport in AEMFCs. This review aims to compile recent literature to provide a comprehensive understanding of AEMFCs in three key areas: i) the mechanisms of the hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR) in alkaline media; ii) recent advancements in the synthesis routes and structure-property relationships of cutting-edge HOR and ORR electrocatalysts, as well as anion exchange membranes and ionomers; and iii) fuel cell operating conditions, including water management and impact of CO2. Finally, based on these aspects, the future development and perspectives of AEMFCs are proposed.
Collapse
Affiliation(s)
- Huiyu Lei
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Xiaohua Yang
- Department of Electrical EngineeringÉcole de Technologie Supérieure (ÉTS)MontréalQuébecH3C 1K3Canada
| | - Zhangsen Chen
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Diane Rawach
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Lei Du
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Zhenxing Liang
- Key Laboratory on Fuel Cell Technology of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510641P. R. China
| | - Dong‐Sheng Li
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichang443002P. R. China
| | - Gaixia Zhang
- Department of Electrical EngineeringÉcole de Technologie Supérieure (ÉTS)MontréalQuébecH3C 1K3Canada
| | - Ana C. Tavares
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Shuhui Sun
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| |
Collapse
|
8
|
Cheng S, Wang B, Chen H, Zhao Z, Xing Y, Xia Y, Long X. Modulating Oxygen Reduction Activity in Chalcogenophene-Incorporated Organic Electrocatalysts through Main-Group Element Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410982. [PMID: 39711308 DOI: 10.1002/smll.202410982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Indexed: 12/24/2024]
Abstract
Organic small molecules (OSMs) with well-defined structures are crucial integral components of cathode catalysts for fuel cells. Despite the acknowledged potential of heteroatom doping to enhance the catalytic performance of metal-free carbon-based catalysts, there exists a notable gap in conducting molecular structure and catalytic activity, particularly under the premise of maintaining a constant molecular skeleton and with a clear molecular structure. Herein, the charge distribution is modulated by introducing different chalcogens into the same molecular skeleton through main-group engineering. Among these OSMs, the Se-containing small molecule OSM-Se combined with carbonized calcium alginate exhibits a notable quasi-four-electron-transfer oxygen reduction reaction pathway, displaying a superior half-wave potential (E1/2) of 0.73 V, accompanied by outstanding electrochemical stability. Density functional theory calculations demonstrate that Se-containing small molecules can enhance the capabilities of catalysts in adsorbing and dissociating oxygen molecules, and contribute to reducing the reaction barrier of the oxygen reduction reaction. This study presents a straightforward yet highly effective approach for metal-free carbon-based OSM electrocatalysts.
Collapse
Affiliation(s)
- Shuqi Cheng
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Binbin Wang
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Hongni Chen
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Zijie Zhao
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yali Xing
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yanzhi Xia
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaojing Long
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
9
|
Kumari S, Thakur M, Chauhan C, Kumari M. Synthesis, characterization, biological activity and computation-based efficacy of cobalt(II) complexes of biphenyl-2-ol against SARS-CoV-2 virus. J Biomol Struct Dyn 2025; 43:483-497. [PMID: 37990487 DOI: 10.1080/07391102.2023.2283144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Cobalt(II) complexes of biphenyl-2-ol of composition, CoCl2-n(OC6H4C6H5-2)n(H2O)4 (where n = 1 or 2), were prepared by reacting cobaltous(II) chloride with equi- and bimolar ratios of sodium salt of biphenyl-2-ol. The structural characterization of the synthesized complexes was accomplished by NMR, FTIR, thermogravimetry (TGA), high resolution mass spectroscopy (HRMS), electronic spectroscopic techniques coupled with density functional theory (DFT). The stability of the complexes in different pH media of solvent was studied. Chemical reactivity parameters of the newly synthesized complexes, computed using DFT, indicated greater reactivity of complex 2 over complex 1 and free ligand as indicated by its low HOMO-LUMO energy gap corresponding to 1.71 eV. Molecular docking (MD) studies were carried out in order to study the binding affinities between amino acid residues of DNA duplex (PDB ID: 1BNA) and SARS-CoV-2 (PDB ID: 7T9K) with newly synthesized complexes. Complex 2 has shown promising antivirus behaviour with an inhibition constant value of 0.0423 µmol-1 with amino acid residues of SARS-CoV-2 virus. Toxicity of the complexes was predicted using ProTox-II online server. Antibacterial studies have indicated the complexes to exhibit greater efficacy than the free ligand, while the antioxidant activities have suggested them to display enhanced antioxidant behaviour as compared to reference compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shalima Kumari
- Department of Chemistry, Himachal Pradesh University, Shimla, India
| | - Maridula Thakur
- Department of Chemistry, Himachal Pradesh University, Shimla, India
| | - Chetan Chauhan
- Department of Chemistry, Himachal Pradesh University, Shimla, India
| | - Meena Kumari
- Department of Chemistry, Himachal Pradesh University, Shimla, India
| |
Collapse
|
10
|
Taiswa A, Maglinao RL, Andriolo JM, Kumar S, Skinner JL. Electrospun Pt-TiO 2 nanofibers Doped with HPA for Catalytic Hydrodeoxygenation. Sci Rep 2024; 14:24706. [PMID: 39433847 PMCID: PMC11493970 DOI: 10.1038/s41598-024-77103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024] Open
Abstract
Electrospinning is utilized to fabricate catalytic nanofiber scaffold for biocrude upgrading in hydrodeoxygenation (HDO) following computational studies suggesting the need for nano-catalysts for efficient HDO conversion and selectivity. Here, Pt-TiO2 nanofibers are fabricated through electrospinning, followed by wet impregnation with a heteropoly acid (HPA), tungstosilicic acid. Intensive heat treatments were incorporated during and after processes to obtain a HPA doped Pt-TiO2 nano-catalyst. Catalytic HDO was performed in a batch reactor with phenol as the raw biocrude dissolved in hexadecane. The HPA doped Pt-TiO2 catalyst demonstrated promising HDO performance of 37.2% conversion and a 78.9% selectivity to oxygen free benzene and the remainder 21.1% as diphenyl ester as a result of esterification by acidic components of the catalyst. Additionally, BET surface area characterization show a low surface area 16.9 m2 g-1 significantly lower than existing commercial catalysts and a mesoporous nature suitable for selectivity. The presence of HPA on the anatase nanofiber compensated for low platinum nanoparticles crystallinity on the nanofibers. This work might create needed alternatives for preparing HDO catalysts for efficient aromatics production.
Collapse
Affiliation(s)
- Amos Taiswa
- Montana Tech Nanotechnology Laboratory, Montana Technological University, Butte, MT, 59701, USA.
- Department of Mechanical Engineering, Montana Technological University, Butte, MT, 59701, USA.
| | - Randy L Maglinao
- Advanced Fuels Center, Montana State University Northern, Havre, MT, 59501, USA
| | - Jessica M Andriolo
- Montana Tech Nanotechnology Laboratory, Montana Technological University, Butte, MT, 59701, USA
- Department of Mechanical Engineering, Montana Technological University, Butte, MT, 59701, USA
| | - Sandeep Kumar
- Department of Civil & Environmental Engineering, Old Dominion University, Norfolk, VA, 23529, USA
| | - Jack L Skinner
- Montana Tech Nanotechnology Laboratory, Montana Technological University, Butte, MT, 59701, USA
- Department of Mechanical Engineering, Montana Technological University, Butte, MT, 59701, USA
| |
Collapse
|
11
|
Wang X, Sun B, Dai Q, Zhu L, Gu Z, Dai L. Metal-Free Carbon Co-Catalysts for Up-Conversion Photo-Induced Catalytic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408560. [PMID: 39139000 DOI: 10.1002/adma.202408560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Near-infrared (NIR)-responsive metal-free carbon co-catalysts that convert glucose into H2O2 to generate reactive oxygen species (ROS) are developed from phosphorus-doped carbon nitride (P-C3N4) and graphene quantum dots (GQD) composites, for enhanced photocatalytic cancer therapy by light exposure in the targeted tumor microenvironment. Upon irradiation, the NIR light is converted by GQD with up-conversion function into visible light to excite P-C3N4 for photocatalytic conversion of glucose into H2O2, which subsequently decomposes into ROS. ROS thus generated exhibits an excellent anticancer efficacy for efficient cancer therapy with minimal side effects, as evidenced by both in vitro and in vivo studies. This study demonstrates, for the first time, a cancer therapeutic of GQD/P-C3N4 composite that utilizes a two-step cascade effect using initially NIR-triggered GQD nanoparticles to activate P-C3N4 to photocatalytically generate ROS for effective and targeted cancer therapy.
Collapse
Affiliation(s)
- Xichu Wang
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Bing Sun
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Quanbin Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Lin Zhu
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Zi Gu
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
12
|
Su M, Zhang Y, Liu G, Jiang H, Lin Y, Ding Y, Wu Q, Wei W, Wang X, Wu T, Tao K, Chen C, Xie E, Zhang Z. Optimizing Surface State Electrons of Topological Semi-Metal by Atomic Doping for Enhanced Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403710. [PMID: 38884192 DOI: 10.1002/smll.202403710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Indexed: 06/18/2024]
Abstract
Topological materials carrying topological surface states (TSSs) have extraordinary carrier mobility and robustness, which provide a new platform for searching for efficient hydrogen evolution reaction (HER) electrocatalysts. However, the majority of these TSSs originate from the sp band of topological quantum catalysts rather than the d band. Here, based on the density functional theory calculation, it is reported a topological semimetal Pd3Sn carrying TSSs mainly derived from d orbital and proposed that optimizing surface state electrons of Pd3Sn by introduction heteroatoms (Ni) can promote hybridization between hydrogen atoms and electrons, thereby reducing the Gibbs free energy (ΔGH) of adsorbed hydrogen and improving its HER performance. Moreover, this is well verified by electrocatalytic experiment results, the Ni-doped Pd3Sn (Ni0.1Pd2.9Sn) show much lower overpotential (-29 mV vs RHE) and Tafel slope (17 mV dec-1) than Pd3Sn (-39 mV vs RHE, 25 mV dec-1) at a current density of 10 mA cm-2. Significantly, the Ni0.1Pd2.9Sn nanoparticles exhibit excellent stability for HER. The electrocatalytic activity of Ni0.1Pd2.9Sn nanoparticles is superior to that of commercial Pt. This work provides an accurate guide for manipulating surface state electrons to improve the HER performance of catalysts.
Collapse
Affiliation(s)
- Meixia Su
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
- School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yuhao Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
- School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Guo Liu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
- School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Haiqing Jiang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
- School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yuan Lin
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
- School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yan Ding
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
- School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qingfeng Wu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
- School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wei Wei
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
- School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xinge Wang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
- School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tianyu Wu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
- School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kun Tao
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
- School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Changcheng Chen
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
- School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Erqing Xie
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
- School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhenxing Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
- School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
13
|
Li W, Liu Y, Azam A, Liu Y, Yang J, Wang D, Sorrell CC, Zhao C, Li S. Unlocking Efficiency: Minimizing Energy Loss in Electrocatalysts for Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404658. [PMID: 38923073 DOI: 10.1002/adma.202404658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Catalysts play a crucial role in water electrolysis by reducing the energy barriers for hydrogen and oxygen evolution reactions (HER and OER). Research aims to enhance the intrinsic activities of potential catalysts through material selection, microstructure design, and various engineering techniques. However, the energy consumption of catalysts has often been overlooked due to the intricate interplay among catalyst microstructure, dimensionality, catalyst-electrolyte-gas dynamics, surface chemistry, electron transport within electrodes, and electron transfer among electrode components. Efficient catalyst development for high-current-density applications is essential to meet the increasing demand for green hydrogen. This involves transforming catalysts with high intrinsic activities into electrodes capable of sustaining high current densities. This review focuses on current improvement strategies of mass exchange, charge transfer, and reducing electrode resistance to decrease energy consumption. It aims to bridge the gap between laboratory-developed, highly efficient catalysts and industrial applications regarding catalyst structural design, surface chemistry, and catalyst-electrode interplay, outlining the development roadmap of hierarchically structured electrode-based water electrolysis for minimizing energy loss in electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Wenxian Li
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yang Liu
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ashraful Azam
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yichen Liu
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jack Yang
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Danyang Wang
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Charles Christopher Sorrell
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chuan Zhao
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sean Li
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
14
|
Wang X, Han C, Han Y, Huang R, Sun H, Guo P, Liu X, Huang M, Chen Y, Wu H, Zhang J, Yan X, Mao Z, Du A, Jia Y, Wang L. Highly Curved Defect Sites: How Curvature Effect Influences Metal-Free Defective Carbon Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401447. [PMID: 38693087 DOI: 10.1002/smll.202401447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/07/2024] [Indexed: 05/03/2024]
Abstract
Topological defects are widely recognized as effective active sites toward a variety of electrochemical reactions. However, the role of defect curvature is still not fully understood. Herein, carbon nanomaterials with rich topological defect sites of tunable curvature is reported. The curved defective surface is realized by controlling the high-temperature pyrolytic shrinkage process of precursors. Theoretical calculations demonstrate bending the defect sites can change the local electronic structure, promote the charge transfer to key intermediates, and lower the energy barrier for oxygen reduction reaction (ORR). Experimental results convince structural superiority of highly-curved defective sites, with a high kinetic current density of 22.5 mA cm-2 at 0.8 V versus RHE for high-curvature defective carbon (HCDC), ≈18 times that of low-curvature defective carbon (LCDC). Further raising the defect densities in HCDC leads to the dual-regulated products (HCHDC), which exhibit exceptionally outstanding ORR activity in both alkaline and acidic media (half-wave potentials: 0.88 and 0.74 V), outperforming most of the reported metal-free carbon catalysts. This work uncovers the curvature-activity relationship in carbon defect for ORR and provides new guidance to design advanced catalysts via curvature-engineering.
Collapse
Affiliation(s)
- Xin Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Chao Han
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yun Han
- School of Environment and Science, Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, Brisbane, QLD, 4111, Australia
| | - Run Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hai Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Panjie Guo
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xuan Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Mengting Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ying Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Helong Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jinyan Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xuecheng Yan
- School of Environment and Science, Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, Brisbane, QLD, 4111, Australia
| | - Zhelin Mao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Aijun Du
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Yi Jia
- Moganshan Institute ZJUT, Kangqian, Deqing, 313200, P. R. China
- Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology (ZJUT), 18 Wangchao Road, Gongshu District, Hangzhou, 310014, China
| | - Lei Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
15
|
Kundu J, Kwon T, Lee K, Choi S. Exploration of metal-free 2D electrocatalysts toward the oxygen electroreduction. EXPLORATION (BEIJING, CHINA) 2024; 4:20220174. [PMID: 39175883 PMCID: PMC11335471 DOI: 10.1002/exp.20220174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/21/2023] [Indexed: 08/24/2024]
Abstract
The advancement of economical and readily available electrocatalysts for the oxygen reduction reaction (ORR) holds paramount importance in the advancement of fuel cells and metal-air batteries. Recently, 2D non-metallic materials have obtained substantial attention as viable alternatives for ORR catalysts due to their manifold advantages, encompassing low cost, ample availability, substantial surface-to-volume ratio, high conductivity, exceptional durability, and competitive activity. The augmented ORR performances observed in metal-free 2D materials typically arise from heteroatom doping, defects, or the formation of heterostructures. Here, the authors delve into the realm of electrocatalysts for the ORR, pivoting around metal-free 2D materials. Initially, the merits of metal-free 2D materials are explored and the reaction mechanism of the ORR is dissected. Subsequently, a comprehensive survey of diverse metal-free 2D materials is presented, tracing their evolutionary journey from fundamental concepts to pragmatic applications in the context of ORR. Substantial importance is given on the exploration of various strategies for enhancing metal-free 2D materials and assessing their impact on inherent material performance, including electronic properties. Finally, the challenges and future prospects that lie ahead for metal-free 2D materials are underscored, as they aspire to serve as efficient ORR electrocatalysts.
Collapse
Affiliation(s)
- Joyjit Kundu
- Department of Chemistry and Green‐Nano Materials Research CenterKyungpook National UniversityDaeguRepublic of Korea
| | - Taehyun Kwon
- Department of Chemistry and Research Institute of Basic SciencesIncheon National UniversityIncheonRepublic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoulRepublic of Korea
| | - Sang‐Il Choi
- Department of Chemistry and Green‐Nano Materials Research CenterKyungpook National UniversityDaeguRepublic of Korea
| |
Collapse
|
16
|
Liu X, Wei S, Cao S, Zhang Y, Xue W, Wang Y, Liu G, Li J. Lattice Strain with Stabilized Oxygen Vacancies Boosts Ceria for Robust Alkaline Hydrogen Evolution Outperforming Benchmark Pt. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405970. [PMID: 38866382 DOI: 10.1002/adma.202405970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Earth-abundant metal oxides are usually considered as stable but catalytically inert toward hydrogen evolution reaction (HER) due to their unfavorable hydrogen intermediate adsorption performance. Herein, a heavy rare earth (Y) and transition metal (Co) dual-doping induced lattice strain and oxygen vacancy stabilization strategy is proposed to boost CeO2 toward robust alkaline HER. The induced lattice compression and increased oxygen vacancy (Ov) concentration in CeO2 synergistically improve the water dissociation on Ov sites and sequential hydrogen adsorption at activated Ov-neighboring sites, leading to significantly enhanced HER kinetics. Meanwhile, Y doping offers stabilization effect on Ov by its stronger Y─O bonding over Ce─O, which endows the catalyst with excellent stability. The Y,Co-CeO2 electrocatalyst exhibits an ultra-low HER overpotential (27 mV at 10 mA cm-2) and Tafel slope (48 mV dec-1), outperforming the benchmark Pt electrocatalyst. Moreover, the anion exchange membrane water electrolyzer incorporated with Y,Co-CeO2 achieves excellent stability of 500 h under 600 mA cm-2. This synergistic lattice strain and oxygen vacancy stabilization strategy sheds new light on the rational development of efficient and stable oxide-based HER electrocatalysts.
Collapse
Affiliation(s)
- Xiaojing Liu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Shuaichong Wei
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Shuyi Cao
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Yongguang Zhang
- Power Battery & System Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wei Xue
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Yanji Wang
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Guihua Liu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Jingde Li
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
17
|
Jeong DI, Lee UY, Kim H, Bang HS, Choi HW, Kim J, Choi HG, Oh HS, Kang BK, Yoon DH. Promoted Overall Water Splitting Catalytic Activity and Durability of Ni 3Fe Alloy by Designing N-Doped Carbon Encapsulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307830. [PMID: 38263814 DOI: 10.1002/smll.202307830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/05/2024] [Indexed: 01/25/2024]
Abstract
Combining an electrochemically stable material onto the surface of a catalyst can improve the durability of a transition metal catalyst, and enable the catalyst to operate stably at high current density. Herein, the contribution of the N-doped carbon shell (NCS) to the electrochemical properties is evaluated by comparing the characteristics of the Ni3Fe@NCS catalyst with the N-doped carbon shell, and the Ni3Fe catalyst. The synthesized Ni3Fe@NCS catalyst has a distinct overpotential difference from the Ni3Fe catalyst (ηOER = 468.8 mV, ηHER = 462.2 mV) at (200 and -200) mA cm-2 in 1 m KOH. In stability test at (10 and -10) mA cm-2, the Ni3Fe@NCS catalyst showed a stability of (95.47 and 99.6)%, while the Ni3Fe catalyst showed a stability of (72.4 and 95.9)%, respectively. In addition, the in situ X-ray Absorption Near Edge Spectroscopy (XANES) results show that redox reaction appeared in the Ni3Fe catalyst by applying voltages of (1.7 and -0.48) V. The decomposition of nickel and iron due to the redox reaction is detected as a high ppm concentration in the Ni3Fe catalyst through Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) analysis. This work presents the strategy and design of a next-generation electrochemical catalyst to improve the electrocatalytic properties and stability.
Collapse
Affiliation(s)
- Dong In Jeong
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Ui Young Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Hyunchul Kim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Materials Science and Engineering, Korea University, Anamdong-5-Ga, Seoul, 02841, Republic of Korea
| | - Hyeon-Seok Bang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hyung Wook Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jiwon Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Hyuck Gu Choi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Hyung-Suk Oh
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Bong Kyun Kang
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22, Soonchunhyang-ro, Asan City, Chungnam, 31538, Republic of Korea
- Advanced Energy Research Center, Soonchunhyang University, 22, Soonchunhyang-ro, Asan City, Chungnam, 31538, Republic of Korea
| | - Dae Ho Yoon
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
18
|
Sadhukhan A, Karmakar A, Koner K, Karak S, Sharma RK, Roy A, Sen P, Dey KK, Mahalingam V, Pathak B, Kundu S, Banerjee R. Functionality Modulation Toward Thianthrene-based Metal-Free Electrocatalysts for Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310938. [PMID: 38245860 DOI: 10.1002/adma.202310938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/08/2024] [Indexed: 01/22/2024]
Abstract
The development of metal-free bifunctional electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) is significant but rarely demonstrated. Porous organic polymers (POPs) with well-defined electroactive functionalities show superior performance in hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Precise control of the active sites' local environment requires careful modulation of linkers through the judicious selection of building units. Here, a systematic strategy is introduced for modulating functionality to design and synthesize a series of thianthrene-based bifunctional sp2 C═C bonded POPs with hollow spherical morphologies exhibiting superior electrocatalytic activity. This precise structural tuning allowed to gain insight into the effects of heteroatom incorporation, hydrophilicity, and variations in linker length on electrocatalytic activity. The most efficient bifunctional electrocatalyst THT-PyDAN achieves a current density of 10 mA cm─2 at an overpotential (η10) of ≈65 mV (in 0.5 m H2SO4) and ≈283 mV (in 1 m KOH) for HER and OER, respectively. THT-PyDAN exhibits superior activity to all previously reported metal-free bifunctional electrocatalysts in the literature. Furthermore, these investigations demonstrate that THT-PyDAN maintains its performance even after 36 h of chronoamperometry and 1000 CV cycling. Post-catalytic characterization using FT-IR, XPS, and microscopic imaging techniques underscores the long-term durability of THT-PyDAN.
Collapse
Affiliation(s)
- Arnab Sadhukhan
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research Ghaziabad 201002 India, Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
| | - Kalipada Koner
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Shayan Karak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Rahul Kumar Sharma
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Avishek Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Prince Sen
- Department of Physics, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, 470003, India
| | - Krishna Kishor Dey
- Department of Physics, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, 470003, India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research Ghaziabad 201002 India, Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| |
Collapse
|
19
|
Lv XH, Huang H, Cui LT, Zhou ZY, Wu W, Wang YC, Sun SG. Hydrogen Spillover Accelerates Electrocatalytic Semi-hydrogenation of Acetylene in Membrane Electrode Assembly Reactor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8668-8678. [PMID: 38344994 DOI: 10.1021/acsami.3c15925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Electrocatalytic acetylene semi-hydrogenation (EASH) offers a promising and environmentally friendly pathway for the production of C2H4, a widely used petrochemical feedstock. While the economic feasibility of this route has been demonstrated in three-electrode systems, its viability in practical device remains unverified. In this study, we designed a highly efficient electrocatalyst based on a PdCu alloy system utilizing the hydrogen spillover mechanism. The catalyst achieved an operational current density of 600 mA cm-2 in a zero-gap membrane electrode assembly (MEA) reactor, with the C2H4 selectivity exceeding 85%. This data confirms the economic feasibility of EASH in real-world applications. Furthermore, through in situ Raman spectroscopy and theoretical calculations, we elucidated the catalytic mechanism involving interfacial hydrogen spillover. Our findings underscore the economic viability and potential of EASH as a greener and scalable approach for C2H4 production, thus advancing the field of electrocatalysis in sustainable chemical synthesis.
Collapse
Affiliation(s)
- Xue-Hui Lv
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Huan Huang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Ting Cui
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Zhi-You Zhou
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, P. R. China
| | - Wenkun Wu
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yu-Cheng Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, P. R. China
| | - Shi-Gang Sun
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
20
|
Zhao Y, Raj J, Xu X, Jiang J, Wu J, Fan M. Carbon Catalysts Empowering Sustainable Chemical Synthesis via Electrochemical CO 2 Conversion and Two-Electron Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2311163. [PMID: 38308114 DOI: 10.1002/smll.202311163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/01/2024] [Indexed: 02/04/2024]
Abstract
Carbon materials hold significant promise in electrocatalysis, particularly in electrochemical CO2 reduction reaction (eCO2 RR) and two-electron oxygen reduction reaction (2e- ORR). The pivotal factor in achieving exceptional overall catalytic performance in carbon catalysts is the strategic design of specific active sites and nanostructures. This work presents a comprehensive overview of recent developments in carbon electrocatalysts for eCO2 RR and 2e- ORR. The creation of active sites through single/dual heteroatom doping, functional group decoration, topological defect, and micro-nano structuring, along with their synergistic effects, is thoroughly examined. Elaboration on the catalytic mechanisms and structure-activity relationships of these active sites is provided. In addition to directly serving as electrocatalysts, this review explores the role of carbon matrix as a support in finely adjusting the reactivity of single-atom molecular catalysts. Finally, the work addresses the challenges and prospects associated with designing and fabricating carbon electrocatalysts, providing valuable insights into the future trajectory of this dynamic field.
Collapse
Affiliation(s)
- Yuying Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Key Lab of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, 210042, China
| | - Jithu Raj
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Xiang Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianchun Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Key Lab of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, 210042, China
| | - Jingjie Wu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Mengmeng Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Key Lab of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, 210042, China
| |
Collapse
|
21
|
Giri S, Yadav SK, Misra D. A first-principles study of electro-catalytic reduction of CO 2 on transition metal-doped stanene. Phys Chem Chem Phys 2024; 26:4579-4588. [PMID: 38247575 DOI: 10.1039/d3cp04841a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Employing first-principles calculations based on density functional theory, this work examines the activity of 3d transition metal-doped stanene for electro-catalytic CO2 reduction through the first two electron transfer steps to CO. Our results related to CO2 activation, the first and a crucial step of the reduction process revealed that, among the entire 3d transition metal row studied, only Ti- and Fe-doped stanene can bind and significantly activate the CO2 molecule, while the rest of the TM single atoms are inert in activating the molecule. The activation of the CO2 molecule on Ti- and Fe-doped stanene has been observed in the presence of water as well. In addition, the formation of OCHO has been observed to be energetically preferred over COOH formation as a reaction intermediate, indicating the preference for the formate path of the reduction reaction. Furthermore, despite the strong adsorption of H2O on the catalyst surface, the presence of water seems to enhance CO2 adsorption on the catalysts, contrary to what has been observed recently in graphene-based catalysts. Finally, our difference charge density and the Bader charge calculations reveal that the ability of Ti- and Fe-doped stanene in activating the CO2 molecule and their potential catalytic activity for CO2 reduction is to be attributed to the charge transfer between the catalyst and the molecule, providing new insights into the rational design of 2D catalysts beyond graphene.
Collapse
Affiliation(s)
- Sudatta Giri
- Materials Modelling and Simulation Laboratory, Department of Physics, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Chennai, 600127, India.
| | - Satyesh K Yadav
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, 600036, India
| | - Debolina Misra
- Materials Modelling and Simulation Laboratory, Department of Physics, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Chennai, 600127, India.
| |
Collapse
|
22
|
Zou J, Chang Q, Guo C, Yan M. Vanadium nitride decorated carbon cloth anode promotes aniline degradation and electricity generation of MFCs by efficiently enriching electroactive bacteria and promoting extracellular electron transfer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:119048. [PMID: 37742561 DOI: 10.1016/j.jenvman.2023.119048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/29/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
To increase the colonization of electroactive bacteria and accelerate the rate of extracellular electron transfer, a simple coated anode of microbial fuel cell was designed. Here, we took advantage of vanadium nitride (VN) particles to modify the carbon cloth (VN@CC). Compared with bare carbon cloth, the designed VN@CC bioanodes exhibited a larger electrochemically active area, better biocompatibility, and smaller charge transfer impedance. The MFC with VN@CC bioanodes achieved the maximum power density of 3.89 W m-2 and chemical oxygen demand removal rate of 84% when 1000 mg L-1 aniline was degraded, which were about 1.88 and 2.8 times that of CC. The morphology of biofilm and 16s rRNA gene sequence analysis proved that the VN@CC bioanodes facilitated the enrichment of electroactive bacteria (99.02%) and increased the ratio of fast electron transfer in the extracellular electron transfer, thus enhancing the MFC performance of aniline degradation and power output. This work disclosed that it was feasible to increase the overall performance of MFC by enhancing the EET efficiency and presented valuable insights for future work.
Collapse
Affiliation(s)
- Jixiang Zou
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China.
| | - Qinghuan Chang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China.
| | - Chongshen Guo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China.
| | - Mei Yan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China.
| |
Collapse
|
23
|
Zheng J, Li J, Fu Q, Zhang L, Zhu X, Liao Q. Boosting Carbon Dioxide Reduction in a Photocatalytic Fuel Cell with a Bubbling Fluidized Cathode: Dual Function of Titanium Carbide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16182-16190. [PMID: 37906836 DOI: 10.1021/acs.langmuir.3c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Photoelectrochemical reduction of carbon dioxide (CO2) is a promising avenue to realize resourceful utilization of carbon dioxide and mitigate the energy shortage. Herein, a photocatalytic fuel cell with a bubbling fluidized cathode (PFC-BFC) is proposed to increase the performance of the photocatalytic CO2 reduction reaction (CO2RR). Titanium carbide (Ti3C2) is first used as a fluidized cathode catalyst with the dual features of superior capacitance and high CO2RR catalytic activity. Compared with the conventional PFC system, the as-proposed PFC-BFC system exhibits a higher gas production performance. Particularly, the generation rate and Faraday efficiency for CH4 production reach to 37.2 μmol g-1 h-1 and 72%, which are 10.9 and 6.5 times higher than that of the conventional PFC system, respectively. The bubbling fluidized cathode allows a rapid electron transfer between catalysts and the current collector and an efficient diffusion of catalysts in the whole solution, thus remarkably increasing the effective reaction area of the CO2RR. In addition, the fluidized reaction mechanism of charging/discharging-coupled CO2RR is investigated. Significantly, a magnified PFC-BFC system is designed and exhibits a similar gas generation rate compared to that of the small-scale system, indicating a good potential of scaling up in the industry applications. These results demonstrated that the proposed PFC-BFC system can maximize the utilization of catalyst active sites and enhance the reaction kinetics, providing an alternative design for the application of CO2RR.
Collapse
Affiliation(s)
- Jili Zheng
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Jun Li
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Qian Fu
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Liang Zhang
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Xun Zhu
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Qiang Liao
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| |
Collapse
|
24
|
Zeng T, Meng X, Sun S, Ling M, Zhang C, Yuan W, Cao D, Niu M, Zhang LY, Li CM. Tensile-Strained Holey Pd Metallene toward Efficient and Stable Electrocatalysis. SMALL METHODS 2023; 7:e2300791. [PMID: 37555503 DOI: 10.1002/smtd.202300791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/01/2023] [Indexed: 08/10/2023]
Abstract
Noble metal-based metallenes are attracting intensive attention in energy catalysis, but it is still very challenging to precisely control the surface structures of metallenes for higher catalytic properties on account of their intrinsic thermodynamic instability. Herein, the synthesis of tensile-strained holey Pd metallene by oxidative etching is reported using hydrogen peroxide, which exhibits highly enhanced catalytic activity and stability in comparison with normal Pd metallene toward both oxygen reduction reaction and formic acid oxidation. The pre-prepared Pd metallene functions as a catalyst to decompose hydrogen peroxide, and the Pd atoms in amorphous regions of Pd metallene are preferentially removed by the introduced hydrogen peroxide during the etching process. The greatly enhanced ORR activity is mainly determined by the strong electrostatic repulsion between intermediate O* and the dopant O, which balances the adsorption strength of O* on Pd sites, ultimately endowing a weakened adsorption energy of O* on TH-Pd metallene. This work creates a facile and economical strategy to precisely shape metallene-based nanoarchitectures with broad applications for energy systems and sensing devices.
Collapse
Affiliation(s)
- Tiantian Zeng
- Institute of Materials for Energy and Environment, Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaomin Meng
- Institute of Materials for Energy and Environment, Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Shiwei Sun
- Institute of Materials for Energy and Environment, Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Miao Ling
- Institute of Materials for Energy and Environment, Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Chuanhui Zhang
- Institute of Materials for Energy and Environment, Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Weiyong Yuan
- Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, 400715, P. R. China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, P. R. China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Mang Niu
- Institute of Materials for Energy and Environment, Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Lian Ying Zhang
- Institute of Materials for Energy and Environment, Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
- Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, 400715, P. R. China
| | - Chang Ming Li
- Institute for Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215011, P. R. China
| |
Collapse
|
25
|
Yu Y, Wang T, Zhang Y, You J, Hu F, Zhang H. Recent Progress of Transition Metal Compounds as Electrocatalysts for Electrocatalytic Water Splitting. CHEM REC 2023; 23:e202300109. [PMID: 37489551 DOI: 10.1002/tcr.202300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Indexed: 07/26/2023]
Abstract
Hydrogen has enormous commercial potential as a secondary energy source because of its high calorific value, clean combustion byproducts, and multiple production methods. Electrocatalytic water splitting is a viable alternative to the conventional methane steam reforming technique, as it operates under mild conditions, produces high-quality hydrogen, and has a sustainable production process that requires less energy. Electrocatalysts composed of precious metals like Pt, Au, Ru, and Ag are commonly used in the investigation of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Nevertheless, their limited availability and expensive cost restrict practical use. In contrast, electrocatalysts that do not contain precious metals are readily available, cost-effective, environmentally friendly, and possess electrocatalytic performance equal to that of noble metals. However, considerable research effort must be devoted to create cost-effective and high-performing catalysts. This article provides a comprehensive examination of the reaction mechanism involved in electrocatalytic water splitting in both acidic and basic environments. Additionally, recent breakthroughs in catalysts for both the hydrogen evolution and oxygen evolution reactions are also discussed. The structure-activity relationship of the catalyst was deep-going discussed, together with the prospects of current obstacles and potential for electrocatalytic water splitting, aiming at provide valuable perspectives for the advancement of economical and efficient electrocatalysts on an industrial scale.
Collapse
Affiliation(s)
- Yongren Yu
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, Liaoning, China
| | - Tiantian Wang
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, Liaoning, China
| | - Yue Zhang
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, Liaoning, China
| | - Junhua You
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, Liaoning, China
| | - Fang Hu
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, Liaoning, China
| | - Hangzhou Zhang
- Department of Orthopedics, Joint Surgery and Sports Medicine, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
26
|
Zhang W, Huang R, Yan X, Tian C, Xiao Y, Lin Z, Dai L, Guo Z, Chai L. Carbon Electrode Materials for Advanced Potassium-Ion Storage. Angew Chem Int Ed Engl 2023; 62:e202308891. [PMID: 37455282 DOI: 10.1002/anie.202308891] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
Tremendous progress has been made in the field of electrochemical energy storage devices that rely on potassium-ions as charge carriers due to their abundant resources and excellent ion transport properties. Nevertheless, future practical developments not only count on advanced electrode materials with superior electrochemical performance, but also on competitive costs of electrodes for scalable production. In the past few decades, advanced carbon materials have attracted great interest due to their low cost, high selectivity, and structural suitability and have been widely investigated as functional materials for potassium-ion storage. This article provides an up-to-date overview of this rapidly developing field, focusing on recent advanced and mechanistic understanding of carbon-based electrode materials for potassium-ion batteries. In addition, we also discuss recent achievements of dual-ion batteries and conversion-type K-X (X=O2 , CO2 , S, Se, I2 ) batteries towards potential practical applications as high-voltage and high-power devices, and summarize carbon-based materials as the host for K-metal protection and possible directions for the development of potassium energy-related devices as well. Based on this, we bridge the gaps between various carbon-based functional materials structure and the related potassium-ion storage performance, especially provide guidance on carbon material design principles for next-generation potassium-ion storage devices.
Collapse
Affiliation(s)
- Wenchao Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha, 410083, China
| | - Rui Huang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha, 410083, China
| | - Xu Yan
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha, 410083, China
| | - Chen Tian
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha, 410083, China
| | - Ying Xiao
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha, 410083, China
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW-2052, Australia
| | - Zaiping Guo
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA-5005, Australia
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha, 410083, China
| |
Collapse
|
27
|
Jia S, Tan X, Wu L, Zhao Z, Song X, Feng J, Zhang L, Ma X, Zhang Z, Sun X, Han B. Lignin-derived carbon nanosheets boost electrochemical reductive amination of pyruvate to alanine. iScience 2023; 26:107776. [PMID: 37720096 PMCID: PMC10502407 DOI: 10.1016/j.isci.2023.107776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023] Open
Abstract
Efficient and sustainable amino acid synthesis is essential for industrial applications. Electrocatalytic reductive amination has emerged as a promising method, but challenges such as undesired side reactions and low efficiency persist. Herein, we demonstrated a lignin-derived catalyst for alanine synthesis. Carbon nanosheets (CNSs) were synthesized from lignin via a template-assisted method and doped with nitrogen and sulfur to boost reductive amination and suppress side reactions. The resulting N,S-co-doped carbon nanosheets (NS-CNSs) exhibited outstanding electrochemical performance. It achieved a maximum alanine Faradaic efficiency of 79.5%, and a yield exceeding 1,199 μmol h-1 cm-2 on NS-CNS, with a selectivity above 99.9%. NS-CNS showed excellent durability during long-term electrolysis. Kinetic studies including control experiments and theoretical calculations provided further insights into the reaction pathway. Moreover, NS-CNS catalysts demonstrated potential in upgrading real-world polylactic acid plastic waste, yielding value-added alanine with a selectivity over 75%.
Collapse
Affiliation(s)
- Shunhan Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingxing Tan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Limin Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziwei Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinning Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Feng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Libing Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhanrong Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
28
|
Chen Y, Jiang T, Tian C, Zhan Y, Adabifiroozjaei E, Kempf A, Molina-Luna L, Hofmann JP, Riedel R, Yu Z. Molybdenum Phosphide Quantum Dots Encapsulated by P/N-Doped Carbon for Hydrogen Evolution Reaction in Acid and Alkaline Electrolytes. CHEMSUSCHEM 2023; 16:e202300479. [PMID: 37452791 DOI: 10.1002/cssc.202300479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
A facile and eco-friendly strategy is presented for synthesizing novel nanocomposites, with MoP quantum dots (QDs) as cores and graphitic carbon as shells, these nanoparticles are dispersed in a nitrogen and phosphorus-doped porous carbon and carbon nanotubes (CNTs) substrates (MoP@NPC/CNT). The synthesis involves self-assembling reactions to form single-source precursors (SSPs), followed by pyrolysis at 900 °C in an inert atmosphere to obtain MoP@NPC/CNT-900. The presence of carbon layers on the MoP QDs effectively prevents particle aggregation, enhancing the utilization of active MoP species. The optimized sample, MoP@NPC/CNT-900, exhibits remarkable electrocatalytic activity and durability for the hydrogen evolution reaction (HER). It demonstrates a low overpotential of 155 mV at 10 mA cm-2 , a small Tafel slope of 76 mV dec-1 , and sustained performance over 20 hours in 0.5 M H2 SO4 . Furthermore, the catalyst shows excellent activity in 1 M KOH, with a relatively low overpotential of 131 mV and long-term durability under constant current input. The exceptional HER activity can be attributed to several factors: the superior performance of MoP QDs, the large surface area and good conductivity of the carbon substrates, and the synergistic effect between MoP and carbon species.
Collapse
Affiliation(s)
- Yongchao Chen
- Department of Materials and Earth Sciences, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Tianshu Jiang
- Department of Materials and Earth Sciences, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Chuanmu Tian
- Department of Materials and Earth Sciences, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Ying Zhan
- Department of Materials and Earth Sciences, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Esmaeil Adabifiroozjaei
- Department of Materials and Earth Sciences, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Alexander Kempf
- Department of Materials and Earth Sciences, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Leopoldo Molina-Luna
- Department of Materials and Earth Sciences, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Jan P Hofmann
- Department of Materials and Earth Sciences, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Ralf Riedel
- Department of Materials and Earth Sciences, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Zhaoju Yu
- College of Materials, Key Laboratory of High Performance Ceramic Fibers (Xiamen University), Ministry of Education, Xiamen, 361005, P. R. China
- College of Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
29
|
Tang W, Mai J, Liu L, Yu N, Fu L, Chen Y, Liu Y, Wu Y, van Ree T. Recent advances of bifunctional catalysts for zinc air batteries with stability considerations: from selecting materials to reconstruction. NANOSCALE ADVANCES 2023; 5:4368-4401. [PMID: 37638171 PMCID: PMC10448312 DOI: 10.1039/d3na00074e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023]
Abstract
With the growing depletion of traditional fossil energy resources and ongoing enhanced awareness of environmental protection, research on electrochemical energy storage techniques like zinc-air batteries is receiving close attention. A significant amount of work on bifunctional catalysts is devoted to improving OER and ORR reaction performance to pave the way for the commercialization of new batteries. Although most traditional energy storage systems perform very well, their durability in practical applications is receiving less attention, with issues such as carbon corrosion, reconstruction during the OER process, and degradation, which can seriously impact long-term use. To be able to design bifunctional materials in a bottom-up approach, a summary of different kinds of carbon materials and transition metal-based materials will be of assistance in selecting a suitable and highly active catalyst from the extensive existing non-precious materials database. Also, the modulation of current carbon materials, aimed at increasing defects and vacancies in carbon and electron distribution in metal-N-C is introduced to attain improved ORR performance of porous materials with fast mass and air transfer. Finally, the reconstruction of catalysts is introduced. The review concludes with comprehensive recommendations for obtaining high-performance and highly-durable catalysts.
Collapse
Affiliation(s)
- Wanqi Tang
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
- College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Jiarong Mai
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lili Liu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Nengfei Yu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lijun Fu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yuhui Chen
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yankai Liu
- Hunan Bolt Power New Energy Co., Ltd Dianjiangjun Industrial Park, Louxing District Loudi 417000 Hunan China
| | - Yuping Wu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
- Hunan Bolt Power New Energy Co., Ltd Dianjiangjun Industrial Park, Louxing District Loudi 417000 Hunan China
- School of Energy and Environment, Southeast University Nanjing 210096 China
| | - Teunis van Ree
- Department of Chemistry, University of Venda Thohoyandou 0950 South Africa
| |
Collapse
|
30
|
Zhai Q, Xia Z, Dai L. Unifying the origin of catalytic activities for carbon-based metal-free electrocatalysts. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
31
|
Jawhari AH, Hasan N. Nanocomposite Electrocatalysts for Hydrogen Evolution Reactions (HERs) for Sustainable and Efficient Hydrogen Energy-Future Prospects. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3760. [PMID: 37241385 PMCID: PMC10220912 DOI: 10.3390/ma16103760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Hydrogen is considered a good clean and renewable energy substitute for fossil fuels. The major obstacle facing hydrogen energy is its efficacy in meeting its commercial-scale demand. One of the most promising pathways for efficient hydrogen production is through water-splitting electrolysis. This requires the development of active, stable, and low-cost catalysts or electrocatalysts to achieve optimized electrocatalytic hydrogen production from water splitting. The objective of this review is to survey the activity, stability, and efficiency of various electrocatalysts involved in water splitting. The status quo of noble-metal- and non-noble-metal-based nano-electrocatalysts has been specifically discussed. Various composites and nanocomposite electrocatalysts that have significantly impacted electrocatalytic HERs have been discussed. New strategies and insights in exploring nanocomposite-based electrocatalysts and utilizing other new age nanomaterial options that will profoundly enhance the electrocatalytic activity and stability of HERs have been highlighted. Recommendations on future directions and deliberations for extrapolating information have been projected.
Collapse
Affiliation(s)
| | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia;
| |
Collapse
|
32
|
Fu S, Li M, Asperti S, de Jong W, Kortlever R. Unravelling the Effect of Activators used in The Synthesis of Biomass-Derived Carbon Electrocatalysts on the Electrocatalytic Performance for CO 2 Reduction. CHEMSUSCHEM 2023; 16:e202202188. [PMID: 36718877 DOI: 10.1002/cssc.202202188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 05/06/2023]
Abstract
N-doped carbon materials can be efficient and cost-effective catalysts for the electrochemical CO2 reduction reaction (CO2 RR). Activators are often used in the synthesis process to increase the specific surface area and porosity of these carbon materials. However, owing to the diversity of activators and the differences in physicochemical properties that these activators induce, the influence of activators used for the synthesis of N-doped carbon catalysts on their electrochemical performance is unclear. In this study, a series of bagasse-derived N-doped carbon catalysts is prepared with the assistance of different activators to understand the correlation between activators, physicochemical properties, and electrocatalytic performance for the CO2 RR. The properties of N-doped carbon catalysts, such as N-doping content, microstructure, and degree of graphitization, are found to be highly dependent on the type of activator applied in the synthesis procedure. Moreover, the overall CO2 RR performance of the synthesized electrocatalysts is not determined only by the N-doping level and the configuration of the N-dopant, but rather by the overall surface chemistry, where the porosity and the degree of graphitization are jointly responsible for significant differences in CO2 RR performance.
Collapse
Affiliation(s)
- Shilong Fu
- Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| | - Ming Li
- Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
- Chemical Engineering Department, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2628 HZ, Delft, The Netherlands
| | - Simone Asperti
- Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| | - Wiebren de Jong
- Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| | - Ruud Kortlever
- Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| |
Collapse
|
33
|
Xu C, Dong Y, Shen Y, Zhao H, Li L, Shao G, Lei Y. Fundamental Understanding of Nonaqueous and Hybrid Na-CO 2 Batteries: Challenges and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206445. [PMID: 36609796 DOI: 10.1002/smll.202206445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Alkali metal-CO2 batteries, which combine CO2 recycling with energy conversion and storage, are a promising way to address the energy crisis and global warming. Unfortunately, the limited cycle life, poor reversibility, and low energy efficiency of these batteries have hindered their commercialization. Li-CO2 battery systems have been intensively researched in these aspects over the past few years, however, the exploration of Na-CO2 batteries is still in its infancy. To improve the development of Na-CO2 batteries, one must have a full picture of the chemistry and electrochemistry controlling the operation of Na-CO2 batteries and a full understanding of the correlation between cell configurations and functionality therein. Here, recent advances in CO2 chemical and electrochemical mechanisms on nonaqueous Na-CO2 batteries and hybrid Na-CO2 batteries (including O2 -involved Na-O2 /CO2 batteries) are reviewed in-depth and comprehensively. Following this, the primary issues and challenges in various battery components are identified, and the design strategies for the interfacial structure of Na anodes, electrolyte properties, and cathode materials are explored, along with the correlations between cell configurations, functional materials, and comprehensive performances are established. Finally, the prospects and directions for rationally constructing Na-CO2 battery materials are foreseen.
Collapse
Affiliation(s)
- Changfan Xu
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Yulian Dong
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Yonglong Shen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Huaping Zhao
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Liqiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Guosheng Shao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yong Lei
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| |
Collapse
|
34
|
Rasheed T, Anwar MT. Metal organic frameworks as self-sacrificing modalities for potential environmental catalysis and energy applications: Challenges and perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Liu N, Liang Z, Yang F, Wang X, Zhong J, Gui X, Yang G, Zeng Z, Yu D. Flexible Solid-State Metal-Air Batteries: The Booming of Portable Energy Supplies. CHEMSUSCHEM 2023; 16:e202202192. [PMID: 36567256 DOI: 10.1002/cssc.202202192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The rapid development of portable and wearable electronics has given rise to new challenges and provoked research in flexible, lightweight, and affordable energy storage devices. Flexible solid-state metal-air batteries (FSSMABs) are considered promising candidates, owing to their large energy density, mechanical flexibility, and durability. However, the practical applications of FSSMABs require further improvement to meet the demands of long-term stability, high power density, and large operating voltage. This Review presents a detailed discussion of innovative electrocatalysts for the air cathode, followed by a sequential overview of high-performance solid-state electrolytes and metal anodes, and a summary of the current challenges and future perspectives of FSSMABs to promote practical application and large-scale commercialization in the near future.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhanhao Liang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Fan Yang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 528478, P. R. China
| | - Xiaotong Wang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Junjie Zhong
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhiping Zeng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
36
|
Sabir AS, Pervaiz E, Khosa R, Sohail U. An inclusive review and perspective on Cu-based materials for electrochemical water splitting. RSC Adv 2023; 13:4963-4993. [PMID: 36793292 PMCID: PMC9924225 DOI: 10.1039/d2ra07901a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
In recent years, there has been a resurgence of interest in developing green and renewable alternate energy sources as a solution to the energy and environmental problems produced by conventional fossil fuel use. As a very effective energy transporter, hydrogen (H2) is a possible candidate for the future energy supply. Hydrogen production by water splitting is a promising new energy option. Strong, efficient, and abundant catalysts are required for increasing the efficiency of the water splitting process. Cu-based materials as an electrocatalyst have shown promising results for application in the Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER) in water splitting. In this review, our aim is to cover the latest developments in the synthesis, characterisation, and electrochemical behaviour of Cu-based materials as a HER, and OER electrocatalyst, highlighting the impact that these advances have had on the field. It is intended that this review article will serve as a roadmap for developing novel, cost-effective electrocatalysts for electrochemical water splitting based on nanostructured materials with particular emphasis on Cu-based materials for electrocatalytic water splitting.
Collapse
Affiliation(s)
- Abdul Shakoor Sabir
- Heterogeneous Catalysis Lab, Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan
| | - Erum Pervaiz
- Heterogeneous Catalysis Lab, Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan
| | - Rafiq Khosa
- Heterogeneous Catalysis Lab, Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan
| | - Umair Sohail
- Heterogeneous Catalysis Lab, Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan
| |
Collapse
|
37
|
Chen M, Kou J, Ma H, Xiang Y, Ma P, Sun L, Zhan X, Zhang J, Zhang H, Wang F, Dong Z. Acceleration of the semi-hydrogenation of alkynes over an N-doped porous carbon sphere-confined ultrafine PdCu bimetallic nanoparticle catalyst. Phys Chem Chem Phys 2023; 25:4201-4210. [PMID: 36655802 DOI: 10.1039/d2cp04845k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Selective hydrogenation of alkynes to obtain alkenes is a key reaction in petrochemical and fine chemical industries. However, the development of stable and highly selective catalysts with uniformly dispersed active sites is still immensely challenging for the semi-hydrogenation of alkynes. In this study, N-doped porous carbon nanospheres (NPCNs) were synthesized by the nanoemulsion self-assembly and subsequently carbonization method. Ultrafine PdCu bimetallic nanoparticles (NPs) were uniformly dispersed and immobilized on NPCNs. The obtained PdCu/NPCNs catalyst exhibited an open framework and abundant active sites originating from ultrafine PdCu NPs. In the semi-hydrogenation of alkynes, the PdCu/NPCNs catalyst exhibited a remarkable performance and stability, outperforming most of the classical catalysts. The excellent performance was related to the introduction of a secondary metal Cu, which can regulate the electronic state of Pd active sites to further enhance the hydrogenation activity and selectivity. Hence, the facile approach reported herein may be useful for constructing highly dispersed bimetallic NP-based catalysts for selective hydrogenation of alkynes in the petrochemical industry.
Collapse
Affiliation(s)
- Minglin Chen
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina Company Limited, Lanzhou, 730060, P. R. China.
| | - Jinfang Kou
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Haowen Ma
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina Company Limited, Lanzhou, 730060, P. R. China.
| | - Yongsheng Xiang
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina Company Limited, Lanzhou, 730060, P. R. China.
| | - Ping Ma
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina Company Limited, Lanzhou, 730060, P. R. China.
| | - Limin Sun
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina Company Limited, Lanzhou, 730060, P. R. China.
| | - Xuecheng Zhan
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina Company Limited, Lanzhou, 730060, P. R. China.
| | - Junyi Zhang
- Lanzhou Petrochemical Company, PetroChina Company Limited, Lanzhou 730060, P. R. China.
| | - Huan Zhang
- Lanzhou Petrochemical Company, PetroChina Company Limited, Lanzhou 730060, P. R. China.
| | - Fushan Wang
- Lanzhou Petrochemical Company, PetroChina Company Limited, Lanzhou 730060, P. R. China.
| | - Zhengping Dong
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
| |
Collapse
|
38
|
Metal–organic framework-based electrocatalysts for acidic oxygen evolution reaction. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
39
|
Chen Y, Hu H, Jiao X, Du M, Wang B, Zhang Y. Enhanced electrochemical oxidation of oxytetracycline on oxygen vacancy-rich MnO@N-doped C anode: Transformation pathway and toxicity assessment. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Zhang C, Li H, Yang X, Tan X, Wan C, Liu X. Characterization of electrodes modified with sludge-derived biochar and its performance of electrocatalytic oxidation of azo dyes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116445. [PMID: 36352724 DOI: 10.1016/j.jenvman.2022.116445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Pyrolysis of waste sludge in sewage treatment can achieve a substantial reduction in solid waste and obtain sludge-based biochars with multiple functions. However, the electrochemical properties of sludge-derived biochar as electrode modification material and the electrocatalytic ability of biochar-modified electrodes are still unclear. In this study, sludge-based biochars were prepared at various pyrolysis temperatures (400 °C, 500 °C, 600 °C, 700 °C, and 800 °C) and then were cast on glassy carbon electrodes to fabricate composite biochar-electrodes (GC400, GC500, GC600, GC700, and GC800). The results of elemental analysis and Raman spectra showed that sludge-based biochar prepared at higher temperatures exhibited higher aromaticity and degree of defect structures. And the results of cyclic voltammetry and electrochemical impedance spectra confirmed that biochar-modified electrodes prepared at higher temperatures (>600 °C) possessed better electrocatalytic activity and electrochemical stability, and their higher oxygen evolution potential than control test could improve the electrocatalytic efficiency. In the electrocatalytic oxidation of methyl orange, the removal rate with GC800 was the highest, reaching 94.49% within 240 min, and the removal rates with other composite electrodes were 90.61% (GC700) > 86.96% (GC600) > 80.32% (GC). The free radical quenching experiment revealed that the electrocatalytic degradation of methyl orange mainly depended on the indirect oxidation of hydroxyl radicals generated by electrocatalysis, accounting for 81.3% of the removal rate. The biochar-modified electrode not only greatly improved the electrocatalytic ability of the electrode for the degradation of azo dyes, but also achieved the recycling application of products after pyrolysis of sludge waste.
Collapse
Affiliation(s)
- Chen Zhang
- Shanghai Municipal Engineering Design Institute Group Co Ltd, Shanghai, 200092, China
| | - Huiqi Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Xue Yang
- Shanghai Municipal Engineering Design Institute Group Co Ltd, Shanghai, 200092, China.
| | - Xuejun Tan
- Shanghai Municipal Engineering Design Institute Group Co Ltd, Shanghai, 200092, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
41
|
Kang H, Peng H, Kang Y, Hao Y, Li L, Liu F, Xin H, Wang W, Lei Z. Nitrogen-doped carbon-encapsulated SmFeOx bimetallic nanoparticles as high-performance electrocatalysts for oxygen reduction reaction. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Wei Y, Wang S, Zhang C, Liu H, Yu K, Wang L. General Synthesis of Hybrid Electrodes with Vertical Multistage Pore-arrays via Biphasic Interfacial Assembly for Favorable Electrochemical Sensing. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Pandit NK, Roy D, Mandal SC, Pathak B. Rational Designing of Bimetallic/Trimetallic Hydrogen Evolution Reaction Catalysts Using Supervised Machine Learning. J Phys Chem Lett 2022; 13:7583-7593. [PMID: 35950905 DOI: 10.1021/acs.jpclett.2c01401] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cost-efficient electrocatalysts to replace precious platinum group metals- (PGMs-) based catalysts for the hydrogen evolution reaction (HER) carry significant potential for sustainable energy solutions. Machine learning (ML) methods have provided new avenues for intelligent screening and predicting efficient heterogeneous catalysts in recent years. We coalesce density functional theory (DFT) and supervised ML methods to discover earth-abundant active heterogeneous NiCoCu-based HER catalysts. An intuitive generalized microstructure model was designed to study the adsorbate's surface coverage and generate input features for the ML process. The study utilizes optimized eXtreme Gradient Boost Regression (XGBR) models to screen NiCoCu alloy-based catalysts for HER. We show that the most active HER catalysts can be screened from an extensive set of catalysts with this approach. Therefore, our approach can provide an efficient way to discover novel heterogeneous catalysts for various electrochemical reactions.
Collapse
Affiliation(s)
- Neeraj Kumar Pandit
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Diptendu Roy
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Shyama Charan Mandal
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| |
Collapse
|
44
|
Chandrakala K, Giddaerappa, Venugopala Reddy K, Shivaprasad K. Investigational undertaking descriptors for reduced graphene oxide-phthalocyanine composite based catalyst for electrochemical oxygen evolution reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Cao Y, Li J, Li Y, Duan R, He J, Qi W. Ru Nanoparticles on Carbon Skeletons for an Efficient Hydrogen Evolution Reaction in Alkaline Electrolyte. ChemistrySelect 2022. [DOI: 10.1002/slct.202200654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Youwei Cao
- Hunan Key Laboratory of Nanophotonics and Devices School of Physics and Electronics Central South University 410083 Changsha P. R. China
| | - Jinming Li
- School of Materials Science and Engineering Central South University 410083 Changsha P. R. China
| | - Yejun Li
- Hunan Key Laboratory of Nanophotonics and Devices School of Physics and Electronics Central South University 410083 Changsha P. R. China
- School of Materials Science and Engineering Central South University 410083 Changsha P. R. China
| | - Ran Duan
- Hunan Key Laboratory of Nanophotonics and Devices School of Physics and Electronics Central South University 410083 Changsha P. R. China
- School of Materials Science and Engineering Central South University 410083 Changsha P. R. China
| | - Jun He
- Hunan Key Laboratory of Nanophotonics and Devices School of Physics and Electronics Central South University 410083 Changsha P. R. China
| | - Weihong Qi
- State Key Laboratory of Solidification Processing Center of Advanced Lubrication and Seal Materials Northwestern Polytechnical University 710072 Xi'an Shanxi P. R. China
| |
Collapse
|
46
|
Chronopoulos DD, Stangel C, Scheibe M, Čépe K, Tagmatarchis N, Otyepka M. Electrocatalytic activity for proton reduction by a covalent non-metal graphene-fullerene hybrid. Chem Commun (Camb) 2022; 58:8396-8399. [PMID: 35792707 PMCID: PMC9319450 DOI: 10.1039/d2cc02272a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022]
Abstract
A non-metal covalent hybrid of fullerene and graphene was synthesized in one step via fluorographene chemistry. Its electrocatalytic performance for the hydrogen evolution reaction and durability was ascribed to intrahybrid charge-transfer phenomena, exploiting the electron-accepting properties of C60 and the high conductivity and large surface area of graphene.
Collapse
Affiliation(s)
- Demetrios D Chronopoulos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc 779 00, Czech Republic.
| | - Christina Stangel
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.
| | - Magdalena Scheibe
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc 779 00, Czech Republic.
| | - Klára Čépe
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc 779 00, Czech Republic.
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc 779 00, Czech Republic.
- IT4Innovations, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
47
|
Pan W, Liu C, Li Y, Yang Y, Li W, Feng C, Li L. Ultrathin tellurium nanosheets for simultaneous cancer thermo-chemotherapy. Bioact Mater 2022; 13:96-104. [PMID: 35224294 PMCID: PMC8843971 DOI: 10.1016/j.bioactmat.2021.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Wen Pan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Chuang Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Yunhui Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
- Corresponding author.
| | - Yang Yang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Wenliang Li
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, 132013, China
| | - Chan Feng
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
- Corresponding author. Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China.
| | - Leijiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
- Corresponding author.
| |
Collapse
|
48
|
Wang C, Zhang Z. Direct Growth of Carbon Nitride (C
3
N
3
) Nanosheets on Copper Foam as an Efficient Catalytic Electrode for Electrochemical Hydrogen Evolution. ChemElectroChem 2022. [DOI: 10.1002/celc.202200209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Caifu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Zhonghai Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| |
Collapse
|
49
|
Hua M, Song J, Huang X, Fan H, Wu T, Meng Q, Zhang Z, Han B. Highly efficient C(CO)-C(alkyl) bond cleavage in ketones to access esters over ultrathin N-doped carbon nanosheets. Chem Sci 2022; 13:5196-5204. [PMID: 35655547 PMCID: PMC9093174 DOI: 10.1039/d2sc00579d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/11/2022] [Indexed: 12/26/2022] Open
Abstract
Selective oxidative cleavage of the C(CO)–C bond in ketones to access esters is a highly attractive strategy for upgrading ketones. However, it remains a great challenge to realize this important transformation over heterogeneous metal-free catalysts. Herein, we designed a series of porous and ultrathin N-doped carbon nanosheets (denoted as CN-X, where X represents the pyrolysis temperature) as heterogeneous metal-free catalysts. It was observed that the fabricated CN-800 could efficiently catalyze the oxidative cleavage of the C(CO)–C bond in various ketones to generate the corresponding methyl esters at 130 °C without using any additional base. Detailed investigations revealed that the higher content and electron density of the graphitic-N species contributed to the excellent performance of CN-800. Besides, the high surface area, affording active sites that are more easily accessed, could also enhance the catalytic activity. Notably, the catalysts have great potential for practical applications because of some obvious advantages, such as low cost, neutral reaction conditions, heterogeneous nature, high efficiency, and broad ketone scope. To the best of our knowledge, this is the first work on efficient synthesis of methyl esters via oxidative esterification of ketones over heterogeneous metal-free catalysts. Ultrathin and metal-free N-doped carbon nanosheets showed high activity and selectivity for oxidative esterification of ketones via C(CO)–C bond cleavage to access methyl esters.![]()
Collapse
Affiliation(s)
- Manli Hua
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China .,School of Chemistry Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Jinliang Song
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Xin Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China .,School of Chemistry Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Honglei Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Tianbin Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Qinglei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Zhanrong Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China .,School of Chemistry Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
50
|
Truskewycz A, Yin H, Halberg N, Lai DTH, Ball AS, Truong VK, Rybicka AM, Cole I. Carbon Dot Therapeutic Platforms: Administration, Distribution, Metabolism, Excretion, Toxicity, and Therapeutic Potential. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106342. [PMID: 35088534 DOI: 10.1002/smll.202106342] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Ultrasmall nanoparticles are often grouped under the broad umbrella term of "nanoparticles" when reported in the literature. However, for biomedical applications, their small sizes give them intimate interactions with biological species and endow them with unique functional physiochemical properties. Carbon quantum dots (CQDs) are an emerging class of ultrasmall nanoparticles which have demonstrated considerable biocompatibility and have been employed as potent theragnostic platforms. These particles find application for increasing drug solubility and targeting, along with facilitating the passage of drugs across impermeable membranes (i.e., blood brain barrier). Further functionality can be triggered by various environmental conditions or external stimuli (i.e., pH, temperature, near Infrared (NIR) light, ultrasound), and their intrinsic fluorescence is valuable for diagnostic applications. The focus of this review is to shed light on the therapeutic potential of CQDs and identify how they travel through the body, reach their site of action, administer therapeutic effect, and are excreted. Investigation into their toxicity and compatibility with larger nanoparticle carriers is also examined. The future of CQDs for theragnostic applications is promising due to their multifunctional attributes and documented biocompatibility. As nanomaterial platforms become more commonplace in clinical treatments, the commercialization of CQD therapeutics is anticipated.
Collapse
Affiliation(s)
- Adam Truskewycz
- School of Engineering, Advanced Manufacturing and Fabrication, RMIT University, Melbourne, Victoria, 3000, Australia
- Department of Biomedicine, University of Bergen, Bergen, 5020, Norway
| | - Hong Yin
- School of Engineering, Advanced Manufacturing and Fabrication, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Nils Halberg
- Department of Biomedicine, University of Bergen, Bergen, 5020, Norway
| | - Daniel T H Lai
- Institute of Health and Sport (IHES), Victoria University, Melbourne, Victoria, 3011, Australia
| | - Andrew S Ball
- ARC Training Centre for the Transformation of Australia Biosolids Resource, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Vi Khanh Truong
- School of Science, Engineering and Health, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Agata Marta Rybicka
- Oncovet Clinical Research, Parc Eurasante, 80 Rue du Dr Alexandre Yersin, Loos, F-59120, France
| | - Ivan Cole
- School of Engineering, Advanced Manufacturing and Fabrication, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|