1
|
Zhang Y, Yang Y, Yin Z, Huang L, Wang J. Nanozyme-based wearable biosensors for application in healthcare. iScience 2025; 28:111763. [PMID: 39906563 PMCID: PMC11791255 DOI: 10.1016/j.isci.2025.111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Recent years have witnessed tremendous advances in wearable sensors, which play an essential role in personalized healthcare for their ability for real-time sensing and detection of human health information. Nanozymes, capable of mimicking the functions of natural enzymes and addressing their limitations, possess unique advantages such as structural stability, low cost, and ease of mass production, making them particularly beneficial for constructing recognition units in wearable biosensors. In this review, we aim to delineate the latest advancements in nanozymes for the development of wearable biosensors, focusing on key developments in nanozyme immobilization strategies, detection technologies, and biomedical applications. The review also highlights the current challenges and future perspectives. Ultimately, it aims to provide insights for future research endeavors in this rapidly evolving area.
Collapse
Affiliation(s)
- Yingcong Zhang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yiran Yang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhixin Yin
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Lin Huang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
2
|
Ban S, Yi H, Park J, Huang Y, Yu KJ, Yeo WH. Advances in Photonic Materials and Integrated Devices for Smart and Digital Healthcare: Bridging the Gap Between Materials and Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416899. [PMID: 39905874 DOI: 10.1002/adma.202416899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/06/2024] [Indexed: 02/06/2025]
Abstract
Recent advances in developing photonic technologies using various materials offer enhanced biosensing, therapeutic intervention, and non-invasive imaging in healthcare. Here, this article summarizes significant technological advancements in materials, photonic devices, and bio-interfaced systems, which demonstrate successful applications for impacting human healthcare via improved therapies, advanced diagnostics, and on-skin health monitoring. The details of required materials, necessary properties, and device configurations are described for next-generation healthcare systems, followed by an explanation of the working principles of light-based therapeutics and diagnostics. Next, this paper shares the recent examples of integrated photonic systems focusing on translation and immediate applications for clinical studies. In addition, the limitations of existing materials and devices and future directions for smart photonic systems are discussed. Collectively, this review article summarizes the recent focus and trends of technological advancements in developing new nanomaterials, light delivery methods, system designs, mechanical structures, material functionalization, and integrated photonic systems to advance human healthcare and digital healthcare.
Collapse
Affiliation(s)
- Seunghyeb Ban
- George W. Woodruff School of Mechanical Engineering, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hoon Yi
- George W. Woodruff School of Mechanical Engineering, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jaejin Park
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Yunuo Huang
- School of Industrial Design, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ki Jun Yu
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, South Korea
- The Biotech Center, Pohang University of Science and Technology (POSTECH), Gyeongbuk, 37673, South Korea
- Department of Electrical and Electronic Engineering, YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University, Seoul, 03722, South Korea
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
3
|
Sheffield Z, Paul P, Krishnakumar S, Pan D. Current Strategies and Future Directions of Wearable Biosensors for Measuring Stress Biochemical Markers for Neuropsychiatric Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411339. [PMID: 39688117 PMCID: PMC11791988 DOI: 10.1002/advs.202411339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Most wearable biosensors aimed at capturing psychological state target stress biomarkers in the form of physical symptoms that can correlate with dysfunction in the central nervous system (CNS). However, such markers lack the specificity needed for diagnostic or preventative applications. Wearable biochemical sensors (WBSs) have the potential to fill this gap, however, the technology is still in its infancy. Most WBSs proposed thus far target cortisol. Although cortisol detection is demonstrated as a viable method for approximating the extent and severity of psychological stress, the hormone also lacks specificity. Multiplex WBSs that simultaneously target cortisol alongside other viable stress-related biochemical markers (SBMs) can prove to be indispensable for understanding how psychological stress contributes to the pathophysiology of neuropsychiatric illnesses (NPIs) and, thus, lead to the discovery of new biomarkers and more objective clinical tools. However, none target more than one SBM implicated in NPIs. Till this review, cortisol's connection to dysfunctions in the CNS, to other SBMs, and their implication in various NPIs has not been discussed in the context of developing WBS technology. As such, this review is meant to inform the biosensing and neuropsychiatric communities of viable future directions and possible challenges for WBS technology for neuropsychiatric applications.
Collapse
Affiliation(s)
- Zach Sheffield
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityState CollegePA16802USA
- Department of Nuclear EngineeringThe Pennsylvania State UniversityState CollegePA16802USA
- The Center for Advanced Sensing TechnologyUniversity of Maryland – Baltimore CountyBaltimoreMD21250USA
- Chemical, Biochemicaland Environmental Engineering DepartmentUniversity of Maryland – Baltimore CountyBaltimoreMD21250USA
| | - Priyanka Paul
- Department of PediatricsUniversity of Maryland Baltimore School of MedicineBaltimoreMD21201USA
| | - Shraddha Krishnakumar
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityState CollegePA16802USA
| | - Dipanjan Pan
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityState CollegePA16802USA
- Department of Nuclear EngineeringThe Pennsylvania State UniversityState CollegePA16802USA
| |
Collapse
|
4
|
Mei X, Zhou L, Zhu L, Wang B. Composite Nanofiber Membrane-Based Microfluidic Fluorescence Sensors for Sweat Analysis. Anal Chem 2025; 97:492-498. [PMID: 39726214 DOI: 10.1021/acs.analchem.4c04616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Microfluidic chips play a crucial role in wearable sensors for sweat collection. However, previously reported wearable microfluidic chips, such as those based on poly(dimethylsiloxane) (PDMS) and paper, encounter sweat accumulation at the skin-sensor interface in practical applications, which consequently affects both sensing stability and wearing comfort. Herein, we propose a composite nanofiber membrane (CNMF)-based microfluidic chip for in situ sweat collection. The CNMF with directional water transport capability was integrated with patterned PDMS to prepare microfluidic chips. On one hand, sweat can be automatically transported to the analysis area along the designed pathway. On the other hand, sweat transfers from the hydrophobic membrane close to the skin to the hydrophilic membrane, effectively avoiding sweat accumulation and facilitating a comfortable skin microenvironment. Subsequently, we constructed a CNMF-based microfluidic fluorescence sensor for the analysis of multiple targets in human sweat. A portable 3D-printed device was employed for the visual signal output. Results indicated that the microfluidic sensor exhibits excellent reliability for collecting and analyzing sweat. This work provides new insights into the construction of wearable microfluidic chips with enhanced wearing comfort.
Collapse
Affiliation(s)
- Xuecui Mei
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Institute of Fundamental and Frontiers Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lei Zhou
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Liang Zhu
- School of Tea and Food Science Technology, Anhui Agricultural University, Heifei 230036, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Bin Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Institute of Fundamental and Frontiers Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
5
|
Gao N, Xu G, Chang G, Wu Y. From Lab to Life: Self-Powered Sweat Sensors and Their Future in Personal Health Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409178. [PMID: 39467262 DOI: 10.1002/advs.202409178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/27/2024] [Indexed: 10/30/2024]
Abstract
The rapid development of wearable sweat sensors has demonstrated their potential for continuous, non-invasive disease diagnosis and health monitoring. Emerging energy harvesters capable of converting various environmental energy sources-biomechanical, thermal, biochemical, and solar-into electrical energy are revolutionizing power solutions for wearable devices. Based on self-powered technology, the integration of the energy harvesters with wearable sweat sensors can drive the device for biosensing, signal processing, and data transmission. As a result, self-powered sweat sensors are able to operate continuously without external power or charging, greatly facilitating the development of wearable electronics and personalized healthcare. This review focuses on the recent advances in self-powered sweat sensors for personalized healthcare, covering sweat sensors, energy harvesters, energy management, and applications. The review begins with the foundations of wearable sweat sensors, providing an overview of their detection methods, materials, and wearable devices. Then, the working mechanism, structure, and a characteristic of different types of energy harvesters are discussed. The features and challenges of different energy harvesters in energy supply and energy management of sweat sensors are emphasized. The review concludes with a look at the future prospects of self-powered sweat sensors, outlining the trajectory of the field and its potential to flourish.
Collapse
Affiliation(s)
- Nan Gao
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Guodong Xu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Gang Chang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, No.368 Youyi Avenue, Wuchang, Wuhan, 430062, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| |
Collapse
|
6
|
Sun X, Guo X, Gao J, Wu J, Huang F, Zhang JH, Huang F, Lu X, Shi Y, Pan L. E-Skin and Its Advanced Applications in Ubiquitous Health Monitoring. Biomedicines 2024; 12:2307. [PMID: 39457619 PMCID: PMC11505155 DOI: 10.3390/biomedicines12102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
E-skin is a bionic device with flexible and intelligent sensing ability that can mimic the touch, temperature, pressure, and other sensing functions of human skin. Because of its flexibility, breathability, biocompatibility, and other characteristics, it is widely used in health management, personalized medicine, disease prevention, and other pan-health fields. With the proposal of new sensing principles, the development of advanced functional materials, the development of microfabrication technology, and the integration of artificial intelligence and algorithms, e-skin has developed rapidly. This paper focuses on the characteristics, fundamentals, new principles, key technologies, and their specific applications in health management, exercise monitoring, emotion and heart monitoring, etc. that advanced e-skin needs to have in the healthcare field. In addition, its significance in infant and child care, elderly care, and assistive devices for the disabled is analyzed. Finally, the current challenges and future directions of the field are discussed. It is expected that this review will generate great interest and inspiration for the development and improvement of novel e-skins and advanced health monitoring systems.
Collapse
Affiliation(s)
- Xidi Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Xin Guo
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Jiansong Gao
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Jing Wu
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Fengchang Huang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Jia-Han Zhang
- School of Electronic Information Engineering, Inner Mongolia University, Hohhot 010021, China;
| | - Fuhua Huang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China;
| | - Xiao Lu
- The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210093, China;
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| |
Collapse
|
7
|
Zhang Y, Zheng XT, Zhang X, Pan J, Thean AVY. Hybrid Integration of Wearable Devices for Physiological Monitoring. Chem Rev 2024; 124:10386-10434. [PMID: 39189683 DOI: 10.1021/acs.chemrev.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Wearable devices can provide timely, user-friendly, non- or minimally invasive, and continuous monitoring of human health. Recently, multidisciplinary scientific communities have made significant progress regarding fully integrated wearable devices such as sweat wearable sensors, saliva sensors, and wound sensors. However, the translation of these wearables into markets has been slow due to several reasons associated with the poor system-level performance of integrated wearables. The wearability consideration for wearable devices compromises many properties of the wearables. Besides, the limited power capacity of wearables hinders continuous monitoring for extended duration. Furthermore, peak-power operations for intensive computations can quickly create thermal issues in the compact form factor that interfere with wearability and sensor operations. Moreover, wearable devices are constantly subjected to environmental, mechanical, chemical, and electrical interferences and variables that can invalidate the collected data. This generates the need for sophisticated data analytics to contextually identify, include, and exclude data points per multisensor fusion to enable accurate data interpretation. This review synthesizes the challenges surrounding the wearable device integration from three aspects in terms of hardware, energy, and data, focuses on a discussion about hybrid integration of wearable devices, and seeks to provide comprehensive guidance for designing fully functional and stable wearable devices.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
8
|
Cho S, Shaban SM, Song R, Zhang H, Yang D, Kim MJ, Xiong Y, Li X, Madsen K, Wapnick S, Zhang S, Chen Z, Kim J, Guinto G, Li M, Lee M, Nuxoll RF, Shajari S, Wang J, Son S, Shin J, Aranyosi AJ, Wright DE, Kim TI, Ghaffari R, Huang Y, Kim DH, Rogers JA. A skin-interfaced microfluidic platform supports dynamic sweat biochemical analysis during human exercise. Sci Transl Med 2024; 16:eado5366. [PMID: 39231240 DOI: 10.1126/scitranslmed.ado5366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/14/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024]
Abstract
Blood lactate concentration is an established circulating biomarker for measuring muscle acidity and can be evaluated for monitoring endurance, training routines, or athletic performance. Sweat is an alternative biofluid that may serve similar purposes and offers the advantage of noninvasive collection and continuous monitoring. The relationship between blood lactate and dynamic sweat biochemistry for wearable engineering applications in physiological fitness remains poorly defined. Here, we developed a microfluidic wearable band with an integrated colorimetric timer and biochemical assays that temporally captures sweat and measures pH and lactate concentration. A colorimetric silver nanoplasmonic assay was used to measure the concentration of lactate, and dye-conjugated SiO2 nanoparticle-agarose composite materials supported dynamic pH analysis. We evaluated these sweat biomarkers in relation to blood lactate in human participant studies during cycling exercise of varying intensity. Iontophoresis-generated sweat pH from regions of actively working muscles decreased with increasing heart rate during exercise and was negatively correlated with blood lactate concentration. In contrast, sweat pH from nonworking muscles did not correlate with blood lactate concentration. Changes in sweat pH and blood lactate were observed in participants who did not regularly exercise but not in individuals who regularly exercised, suggesting a relationship to physical fitness and supporting further development for noninvasive, biochemical fitness evaluations.
Collapse
Affiliation(s)
- Soongwon Cho
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Samy M Shaban
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Petrochemical Department, Egyptian Petroleum Research Institute, Cairo, 11727, Egypt
| | - Ruihao Song
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Haohui Zhang
- Departments of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Dasom Yang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Precision Biology Research Center (PBRC), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Min-Jae Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yirui Xiong
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Departments of Material Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Xiuyuan Li
- Departments of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Kenneth Madsen
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sarena Wapnick
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Shifan Zhang
- Department of Statistics, School of Computer, Data and Information Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ziyu Chen
- Departments of Material Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jiwon Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gianna Guinto
- College of Science and Health, DePaul University, Chicago, IL 60614, USA
| | - Michelle Li
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Minkyu Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611, USA
| | - Ravi F Nuxoll
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Departments of Material Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Shaghayegh Shajari
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Jin Wang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Departments of Material Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Seongeun Son
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jihoon Shin
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Alexander J Aranyosi
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Epicore Biosystems, Cambridge, MA 02139, USA
| | | | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Roozbeh Ghaffari
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Epicore Biosystems, Cambridge, MA 02139, USA
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Departments of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
- Departments of Material Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Departments of Material Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Neurological Surgery, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
9
|
Askar CB, Cmager N, Altay R, Araci IE. Human Activity Recording Based on Skin-Strain-Actuated Microfluidic Pumping in Asymmetrically Designed Micro-Channels. SENSORS (BASEL, SWITZERLAND) 2024; 24:4207. [PMID: 39000986 PMCID: PMC11244335 DOI: 10.3390/s24134207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
The capability to record data in passive, image-based wearable sensors can simplify data readouts and eliminate the requirement for the integration of electronic components on the skin. Here, we developed a skin-strain-actuated microfluidic pump (SAMP) that utilizes asymmetric aspect ratio channels for the recording of human activity in the fluidic domain. An analytical model describing the SAMP's operation mechanism as a wearable microfluidic device was established. Fabrication of the SAMP was achieved using soft lithography from polydimethylsiloxane (PDMS). Benchtop experimental results and theoretical predictions were shown to be in good agreement. The SAMP was mounted on human skin and experiments conducted on volunteer subjects demonstrated the SAMP's capability to record human activity for hundreds of cycles in the fluidic domain through the observation of a stable liquid meniscus. Proof-of-concept experiments further revealed that the SAMP could quantify a single wrist activity repetition or distinguish between three different shoulder activities.
Collapse
Affiliation(s)
| | - Nick Cmager
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA
| | - Rana Altay
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA
| | - I Emre Araci
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA
| |
Collapse
|
10
|
Anton-Păduraru DT, Azoicăi AN, Trofin F, Mîndru DE, Murgu AM, Bocec AS, Iliescu Halițchi CO, Ciongradi CI, Sȃrbu I, Iliescu ML. Diagnosing Cystic Fibrosis in the 21st Century-A Complex and Challenging Task. Diagnostics (Basel) 2024; 14:763. [PMID: 38611676 PMCID: PMC11012009 DOI: 10.3390/diagnostics14070763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Cystic fibrosis (CF) is a chronic and potentially life-threatening condition, wherein timely diagnosis assumes paramount significance for the prompt initiation of therapeutic interventions, thereby ameliorating pulmonary function, addressing nutritional deficits, averting complications, mitigating morbidity, and ultimately enhancing the quality of life and extending longevity. This review aims to amalgamate existing knowledge to provide a comprehensive appraisal of contemporary diagnostic modalities pertinent to CF in the 21st century. Deliberations encompass discrete delineations of each diagnostic modality and the elucidation of potential diagnostic quandaries encountered in select instances, as well as the delineation of genotype-phenotype correlations germane to genetic counseling endeavors. The synthesis underscores that, notwithstanding the availability and strides in diagnostic methodologies, including genetic assays, the sweat test (ST) retains its position as the preeminent diagnostic standard for CF, serving as a robust surrogate for CFTR functionality. Prospective clinical investigations in the realm of CF should be orchestrated with the objective of discerning novel diagnostic modalities endowed with heightened specificity and sensitivity.
Collapse
Affiliation(s)
- Dana-Teodora Anton-Păduraru
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaṣi, Romania; (D.-T.A.-P.); (A.N.A.); (D.E.M.); (A.M.M.); (A.S.B.); (C.O.I.H.)
- “Sf.Maria” Children Emergency Hospital, 700309 Iaṣi, Romania; (C.I.C.); (I.S.)
| | - Alice Nicoleta Azoicăi
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaṣi, Romania; (D.-T.A.-P.); (A.N.A.); (D.E.M.); (A.M.M.); (A.S.B.); (C.O.I.H.)
- “Sf.Maria” Children Emergency Hospital, 700309 Iaṣi, Romania; (C.I.C.); (I.S.)
| | - Felicia Trofin
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaṣi, Romania
| | - Dana Elena Mîndru
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaṣi, Romania; (D.-T.A.-P.); (A.N.A.); (D.E.M.); (A.M.M.); (A.S.B.); (C.O.I.H.)
- “Sf.Maria” Children Emergency Hospital, 700309 Iaṣi, Romania; (C.I.C.); (I.S.)
| | - Alina Mariela Murgu
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaṣi, Romania; (D.-T.A.-P.); (A.N.A.); (D.E.M.); (A.M.M.); (A.S.B.); (C.O.I.H.)
- “Sf.Maria” Children Emergency Hospital, 700309 Iaṣi, Romania; (C.I.C.); (I.S.)
| | - Ana Simona Bocec
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaṣi, Romania; (D.-T.A.-P.); (A.N.A.); (D.E.M.); (A.M.M.); (A.S.B.); (C.O.I.H.)
| | - Codruța Olimpiada Iliescu Halițchi
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaṣi, Romania; (D.-T.A.-P.); (A.N.A.); (D.E.M.); (A.M.M.); (A.S.B.); (C.O.I.H.)
| | - Carmen Iulia Ciongradi
- “Sf.Maria” Children Emergency Hospital, 700309 Iaṣi, Romania; (C.I.C.); (I.S.)
- 2nd Department of Surgery, Pediatric Surgery and Orthopedics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaṣi, Romania
| | - Ioan Sȃrbu
- “Sf.Maria” Children Emergency Hospital, 700309 Iaṣi, Romania; (C.I.C.); (I.S.)
- 2nd Department of Surgery, Pediatric Surgery and Orthopedics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaṣi, Romania
| | - Maria Liliana Iliescu
- Department of Preventive Medicine and Interdisciplinarity—Public Health and Health Management, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaṣi, Romania;
| |
Collapse
|
11
|
Saha T, Mukherjee S, Dickey MD, Velev OD. Harvesting and manipulating sweat and interstitial fluid in microfluidic devices. LAB ON A CHIP 2024; 24:1244-1265. [PMID: 38197332 DOI: 10.1039/d3lc00874f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Microfluidic devices began to be used to facilitate sweat and interstitial fluid (ISF) sensing in the mid-2010s. Since then, numerous prototypes involving microfluidics have been developed in different form factors for sensing biomarkers found in these fluids under in vitro, ex vivo, and in vivo (on-body) settings. These devices transport and manipulate biofluids using microfluidic channels composed of silicone, polymer, paper, or fiber. Fluid flow transport and sample management can be achieved by controlling the flow rate, surface morphology of the channel, and rate of fluid evaporation. Although many devices have been developed for estimating sweat rate, electrolyte, and metabolite levels, only a handful have been able to proceed beyond laboratory testing and reach the stage of clinical trials and commercialization. To further this technology, this review reports on the utilization of microfluidics towards sweat and ISF management and transport. The review is distinguished from other recent reviews by focusing on microfluidic principles of sweat and ISF generation, transport, extraction, and management. Challenges and prospects are highlighted, with a discussion on how to transition such prototypes towards personalized healthcare monitoring systems.
Collapse
Affiliation(s)
- Tamoghna Saha
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Sneha Mukherjee
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
12
|
Yang H, Ding H, Wei W, Li X, Duan X, Zhuang C, Liu W, Chen S, Wang X. Skin-interfaced microfluidic sweat collection devices for personalized hydration management through thermal feedback. LAB ON A CHIP 2024; 24:356-366. [PMID: 38108440 DOI: 10.1039/d3lc00791j] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Non-electronic wearables that utilize skin-interfaced microfluidic technology have revolutionized the collection and analysis of human sweat, providing valuable biochemical information and indicating body hydration status. However, existing microfluidic devices often require constant monitoring of data during sweat assessment, thereby impeding the user experience and potentially missing anomalous physiological events, such as excessive sweating. Moreover, the complex manufacturing process hampers the scalability and large-scale production of such devices. Herein, we present a self-feedback microfluidic device with a unique dehydration reminder through a cost-effective "CAD-to-3D device" approach. It incorporates two independent systems for sweat collection and thermal feedback, including serpentine microchannels, reservoirs, petal-like bursting valves and heating chambers. The device operates by sequentially collecting sweat in the channels and reservoirs, and then activating thermal stimulators in the heating chambers through breaking the valves, initiating a chemical exothermic reaction. Human trials validate that the devices effectively alert users to potential dehydration by inducing skin thermal sensations triggered by sweat sampling. The proposed device offers facile scalability and customizable fabrication, and holds promise for managing hydration strategies in real-world scenarios, benefiting individuals engaged in sporting activities or exposed to high-temperature settings.
Collapse
Affiliation(s)
- Hanlin Yang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Hongyan Ding
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Wenkui Wei
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Xiaofeng Li
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Xiaojun Duan
- Respiratory medicine department, Hunan Children's Hospital, Changsha, Hunan 410007, China
| | - Changgen Zhuang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Weiyi Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Shangda Chen
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Xiufeng Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China.
| |
Collapse
|
13
|
Saha T, Del Caño R, De la Paz E, Sandhu SS, Wang J. Access and Management of Sweat for Non-Invasive Biomarker Monitoring: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206064. [PMID: 36433842 DOI: 10.1002/smll.202206064] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Sweat is an important biofluid presents in the body since it regulates the internal body temperature, and it is relatively easy to access on the skin unlike other biofluids and contains several biomarkers that are also present in the blood. Although sweat sensing devices have recently displayed tremendous progress, most of the emerging devices primarily focus on the sensor development, integration with electronics, wearability, and data from in vitro studies and short-term on-body trials during exercise. To further the advances in sweat sensing technology, this review aims to present a comprehensive report on the approaches to access and manage sweat from the skin toward improved sweat collection and sensing. It is begun by delineating the sweat secretion mechanism through the skin, and the historical perspective of sweat, followed by a detailed discussion on the mechanisms governing sweat generation and management on the skin. It is concluded by presenting the advanced applications of sweat sensing, supported by a discussion of robust, extended-operation epidermal wearable devices aiming to strengthen personalized healthcare monitoring systems.
Collapse
Affiliation(s)
- Tamoghna Saha
- Department of Nanoengineering, University of California San Diego La Jolla, California, CA, 92093, USA
| | - Rafael Del Caño
- Department of Nanoengineering, University of California San Diego La Jolla, California, CA, 92093, USA
- Department of Physical Chemistry and Applied Thermodynamics, University of Cordoba, Cordoba, E-14014, Spain
| | - Ernesto De la Paz
- Department of Nanoengineering, University of California San Diego La Jolla, California, CA, 92093, USA
| | - Samar S Sandhu
- Department of Nanoengineering, University of California San Diego La Jolla, California, CA, 92093, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego La Jolla, California, CA, 92093, USA
| |
Collapse
|
14
|
Lyzwinski L, Elgendi M, Shokurov AV, Cuthbert TJ, Ahmadizadeh C, Menon C. Opportunities and challenges for sweat-based monitoring of metabolic syndrome via wearable technologies. COMMUNICATIONS ENGINEERING 2023; 2:48. [PMCID: PMC10955995 DOI: 10.1038/s44172-023-00097-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/30/2023] [Indexed: 10/05/2024]
Abstract
Metabolic syndrome is a prevalent condition in adults over the age of 65 and is a risk factor for developing cardiovascular disease and type II diabetes. Thus, methods to track the condition, prevent complications and assess symptoms and risk factors are needed. Here we discuss sweat-based wearable technologies as a potential monitoring tool for patients with metabolic syndrome. We describe several key symptoms that can be evaluated that could employ sweat patches to assess inflammatory markers, glucose, sodium, and cortisol. We then discuss the challenges with material property, sensor integration, and sensor placement and provide feasible solutions to optimize them. Together with a list of recommendations, we propose a pathway toward successfully developing and implementing reliable sweat-based technologies to monitor metabolic syndrome. Metabolic syndrome is a risk factor for developing cardiovascular disease and type II diabetes. Lyzwinski, Elgendi and colleagues discuss the potential role of sweat-based wearable technologies for monitoring metabolic syndrome along with engineering challenges towards implementation and optimization
Collapse
Affiliation(s)
- Lynnette Lyzwinski
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC Canada
| | - Mohamed Elgendi
- Biomedical and Mobile Health Technology Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Alexander V. Shokurov
- Biomedical and Mobile Health Technology Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Tyler J. Cuthbert
- Biomedical and Mobile Health Technology Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Chakaveh Ahmadizadeh
- Biomedical and Mobile Health Technology Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Carlo Menon
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC Canada
- Biomedical and Mobile Health Technology Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Wu CH, Ma HJH, Baessler P, Balanay RK, Ray TR. Skin-interfaced microfluidic systems with spatially engineered 3D fluidics for sweat capture and analysis. SCIENCE ADVANCES 2023; 9:eadg4272. [PMID: 37134158 PMCID: PMC10881187 DOI: 10.1126/sciadv.adg4272] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/22/2023] [Indexed: 05/05/2023]
Abstract
Skin-interfaced wearable systems with integrated microfluidic structures and sensing capabilities offer powerful platforms for monitoring the signals arising from natural physiological processes. This paper introduces a set of strategies, processing approaches, and microfluidic designs that harness recent advances in additive manufacturing [three-dimensional (3D) printing] to establish a unique class of epidermal microfluidic ("epifluidic") devices. A 3D printed epifluidic platform, called a "sweatainer," demonstrates the potential of a true 3D design space for microfluidics through the fabrication of fluidic components with previously inaccessible complex architectures. These concepts support integration of colorimetric assays to facilitate in situ biomarker analysis operating in a mode analogous to traditional epifluidic systems. The sweatainer system enables a new mode of sweat collection, termed multidraw, which facilitates the collection of multiple, independent sweat samples for either on-body or external analysis. Field studies of the sweatainer system demonstrate the practical potential of these concepts.
Collapse
Affiliation(s)
- Chung-Han Wu
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| | - Howin Jian Hing Ma
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| | - Paul Baessler
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| | - Roxanne Kate Balanay
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| | - Tyler R. Ray
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaiʻi at Mānoa, Honolulu, HI 96813, USA
| |
Collapse
|
16
|
He Y, Wei L, Xu W, Wu H, Liu A. Laser-Cutted Epidermal Microfluidic Patch with Capillary Bursting Valves for Chronological Capture, Storage, and Colorimetric Sensing of Sweat. BIOSENSORS 2023; 13:372. [PMID: 36979585 PMCID: PMC10046219 DOI: 10.3390/bios13030372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Flexible wearable microfluidic devices show great feasibility and potential development in the collection and analysis of sweat due to their convenience and non-invasive characteristics in health-level feedback and disease prediction. However, the traditional production process of microfluidic patches relies on resource-intensive laboratory and high-cost facilities. In this paper, a low-cost laser-cutting technology is proposed to fabricate epidermal microfluidic patches for the collection, storage and colorimetric analysis of sweat. Two different types of capillary bursting valves are designed and integrated into microchannel layers to produce two-stage bursting pressure for the reliable routing of sweat into microreservoirs in sequential fashion, avoiding the mixing of old and new sweat. Additionally, an enzyme-based reagent is embedded into the microreservoirs to quantify the glucose level in sweat by using colorimetric methods, demonstrating a high detection sensitivity at the glucose concentration from 0.1 mM to 1 mM in sweat and an excellent anti-interference performance that prevents interference from substances probably existent in sweat. In vitro and on-body experiments demonstrate the validity of the low-cost, laser-cut epidermal microfluidic patch for the chronological analysis of sweat glucose concentration and its potential application in the monitoring of human physiological information.
Collapse
Affiliation(s)
- Yuxin He
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lei Wei
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
- School of Physics and Electronics Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Wenjie Xu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Huaping Wu
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Aiping Liu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
17
|
Khumngern S, Jeerapan I. Advances in wearable electrochemical antibody-based sensors for cortisol sensing. Anal Bioanal Chem 2023:10.1007/s00216-023-04577-y. [PMID: 36781449 DOI: 10.1007/s00216-023-04577-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
Cortisol is a crucial hormone involving many physiological processes. Hence, cortisol detection is essential. This review highlights the key progress made on wearable electrochemical sensors using antibodies. It covers the design, principle, and electroanalytical methodology for detecting cortisol noninvasively. This article also analyzes and collects the analytical performances of electrochemical cortisol sensors. The development of these sensors continues to face challenges such as biofouling, sample management, sensitivity, flexibility, stability, and recognition layer performance. It is also necessary to develop a sensitive electrode and material. This article also presents potential strategies for designing antibody electrodes and provides examples of sensing systems. Additionally, it discusses the challenges in translating research into practical applications.
Collapse
Affiliation(s)
- Suntisak Khumngern
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.,Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Itthipon Jeerapan
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand. .,Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand. .,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.
| |
Collapse
|
18
|
Dong Y, Liu TL, Chen S, Nithianandam P, Matar K, Li J. A "Two-Part" Resonance Circuit Based Detachable Sweat Patch for Noninvasive Biochemical and Biophysical Sensing. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2210136. [PMID: 37521161 PMCID: PMC10373531 DOI: 10.1002/adfm.202210136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 08/01/2023]
Abstract
Wearable electronics play important roles in noninvasive, continuous, and personalized monitoring of multiple biosignals generated by the body. To unleash their full potential for next-generation human centered bio-integrated electronics, the wireless sensing capability is a desirable feature. However, state-of-the-art wireless sensing technologies exploit rigid and bulky electronic modules for power supply, signal generation, and data transmission. This study reports a battery-free device technology based on a "two-part" resonance circuit model with modularized, physically separated, and detachable functional units for magnetic coupling and biosensing. The resulting platform combines advantages of electronics and microfluidics with low cost, minimized form factors, and improved performance stability. Demonstration of a detachable sweat patch capable of simultaneous recording of cortisol concentration, pH value, and temperature highlights the potential of the "two-part" circuit for advanced, transformative biosensing. The resulting wireless sensors provide a new engineering solution to monitoring biosignals through intimate and seamless integration with skin surfaces.
Collapse
Affiliation(s)
- Yan Dong
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Tzu-Li Liu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Shulin Chen
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Prasad Nithianandam
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Keyan Matar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jinghua Li
- Department of Materials Science and Engineering, Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
19
|
Abstract
Skin metabolites show huge potential for use in clinical diagnostics. However, skin sampling and analysis workflows are tedious and time-consuming. Here, we demonstrate a vending-machine-style skin excretion sensing platform based on hydrogel-assisted sampling of skin metabolites. In this sensing platform, a sampling probe with hydrogel is held by a robotic arm. The robotic arm manoeuvres the probe to press it onto the forearm of a human subject. Due to the highly hydrophilic nature of the hydrogel, water-soluble metabolites─released by skin─are collected into the hydrogel, leaving behind the nonpolar metabolites. The probe is then inserted into a custom-made open port sampling interface coupled to an electrospray ion source of a high-resolution quadrupole-time-of-flight mass spectrometer. Metabolites in the hydrogel are immediately extracted by a solvent liquid junction in the interface and analyzed using the mass spectrometer. The ion current of the target analyte is displayed on a customized graphical user interface, which can also be used to control the key components of the analytical platform. The automated sampling and analysis workflow starts after the user inserts coins or presents an insurance card, presses a button, and extends an arm on the sampling area. The platform relies on low-cost mechanical and electronic modules (a robotic arm, a single-board computer, and two microcontroller boards). The limits of detection for standard analytes─arginine, citrulline, and histidine─embedded in agarose gel beds were 148, 205, and 199 nM, respectively. Various low-molecular-weight metabolites from human skin have been identified with the high-resolution mass spectrometer.
Collapse
Affiliation(s)
- Kai-Chiang Yu
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu300044, Taiwan
| | - Chun-Yao Hsu
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu300044, Taiwan
| | - Gurpur Rakesh D Prabhu
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu300044, Taiwan
| | - Hsien-Yi Chiu
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, 25 Jingguo Road, Hsinchu300, Taiwan.,Department of Dermatology, National Taiwan University Hospital Hsin-Chu Branch, 25 Jingguo Road, Hsinchu300, Taiwan.,Department of Dermatology, National Taiwan University Hospital, 7 Chung Shan S. Road, Taipei100, Taiwan.,Department of Dermatology, College of Medicine, National Taiwan University, 1 Jen Ai Road, Taipei100, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu300044, Taiwan.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu300044, Taiwan
| |
Collapse
|
20
|
Wu Y, Xiao D, Liu P, Liao Q, Ruan Q, Huang C, Liu L, Li D, Zhang X, Li W, Tang K, Wu Z, Wang G, Wang H, Chu PK. Nanostructured Conductive Polypyrrole for Antibacterial Components in Flexible Wearable Devices. RESEARCH (WASHINGTON, D.C.) 2023; 6:0074. [PMID: 36930769 PMCID: PMC10013960 DOI: 10.34133/research.0074] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
The power generated by flexible wearable devices (FWDs) is normally insufficient to eradicate bacteria, and many conventional antibacterial strategies are also not suitable for flexible and wearable applications because of the strict mechanical and electrical requirements. Here, polypyrrole (PPy), a conductive polymer with a high mass density, is used to form a nanostructured surface on FWDs for antibacterial purposes. The conductive films with PPy nanorods (PNRs) are found to sterilize 98.2 ± 1.6% of Staphylococcus aureus and 99.6 ± 0.2% of Escherichia coli upon mild electrification (1 V). Bacteria killing stems from membrane stress produced by the PNRs and membrane depolarization caused by electrical neutralization. Additionally, the PNR films exhibit excellent biosafety and electrical stability. The results represent pioneering work in fabricating antibacterial components for FWDs by comprehensively taking into consideration the required conductivity, mechanical properties, and biosafety.
Collapse
Affiliation(s)
- Yuzheng Wu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Dezhi Xiao
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Pei Liu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Qing Liao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qingdong Ruan
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chao Huang
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Liangliang Liu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Dan Li
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xiaolin Zhang
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Wei Li
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kaiwei Tang
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Guomin Wang
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.,Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
21
|
Tian Y, Xu G, Cai K, Zhao X, Zhang B, Wang L, Wang T. Emerging biotransduction strategies on soft interfaces for biosensing. NANOSCALE 2022; 15:80-91. [PMID: 36512329 DOI: 10.1039/d2nr05444b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As a lab-on-soft biochip providing accurate and timely biomarker information, wearable biosensors can satisfy the increasing demand for intelligent e-health services, active disease diagnosis/therapy, and huge bioinformation data. As biomolecules generally could not directly produce detectable signals, biotransducers that specifically convert biomolecules to electrical or optical signals are involved, which determines the pivotal sensing performance including 3S (sensitivity, selectivity, and stability), reversibility, etc. The soft interface poses new requirements for biotransducers, especially equipment-free, facile operation, mechanical tolerance, and high sensing performance. In this review, we discussed the emerging electrochemical and optical biotransduction strategies on wearables from the aspects of the transduction mechanism, amplification strategies, biomaterial selection, and device fabrication procedures. Challenges and perspectives regarding future biotransducers for monitoring trace amounts of biomolecules with high fidelity, sensitivity, and multifunctionality are also discussed. It is expected that through fusion with functional electronics, wearable biosensors can provide possibilities to further decentralize the healthcare system and even build biomolecule-based intelligent cyber-physical systems and new modalities of cyborgs.
Collapse
Affiliation(s)
- Yuanyuan Tian
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Guoliang Xu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Kaiyu Cai
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Xiao Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Bo Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Ting Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
22
|
Mishra N, Garland NT, Hewett KA, Shamsi M, Dickey MD, Bandodkar AJ. A Soft Wearable Microfluidic Patch with Finger-Actuated Pumps and Valves for On-Demand, Longitudinal, and Multianalyte Sweat Sensing. ACS Sens 2022; 7:3169-3180. [PMID: 36250738 DOI: 10.1021/acssensors.2c01669] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Easy sample collection, physiological relevance, and ability to noninvasively and longitudinally monitor the human body are some of the key attributes of wearable sweat sensors. Examples typically include reversible sensors or an array of single-use sensors embedded in specialized microfluidics for temporal analysis of sweat. However, evolving this field to a level that truly represents "lab-on-skin" technology will require the incorporation of advanced functionalities that give the user the freedom to (1) choose the precise time for performing sample analysis and (2) select sensors from an array embedded within the device for performing condition-specific sample analysis. Here, we introduce new concepts in wearable microfluidic platforms that offer such capabilities. The described technology involves a series of finger-actuated pumps, valves, and sensors incorporated within soft, wearable microfluidics. The incoming sweat collects in the inlet chamber and can be analyzed by the user at the time of their choosing. On-demand sweat analyte assessment is achieved by pulling a thin tab to activate a pump which opens a valve and allows the pooled sweat to enter a chamber embedded with sensors for the desired analytes. The article describes a thorough characterization of the platform that demonstrates the robustness of the pumping, valving, and sensing aspects of the device under conditions mimicking real-life scenarios. A two-day-long human pilot study validates the system and illustrates the device's ability to offer on-demand, longitudinal, and multianalyte sensing. Our work represents the first example of a wearable system with such on-demand sensing capabilities and opens exciting avenues in sweat sensing for acquiring new insights into human physiology.
Collapse
Affiliation(s)
- Navya Mishra
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States.,Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Nate T Garland
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States.,Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Krystyn A Hewett
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, North Carolina 27606, United States.,Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Mohammad Shamsi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States.,Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
23
|
Sailapu SK, Menon C. Engineering Self-Powered Electrochemical Sensors Using Analyzed Liquid Sample as the Sole Energy Source. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203690. [PMID: 35981885 PMCID: PMC9561779 DOI: 10.1002/advs.202203690] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Many healthcare and environmental monitoring devices use electrochemical techniques to detect and quantify analytes. With sensors progressively becoming smaller-particularly in point-of-care (POC) devices and wearable platforms-it creates the opportunity to operate them using less energy than their predecessors. In fact, they may require so little power that can be extracted from the analyzed fluids themselves, for example, blood or sweat in case of physiological sensors and sources like river water in the case of environmental monitoring. Self-powered electrochemical sensors (SPES) can generate a response by utilizing the available chemical species in the analyzed liquid sample. Though SPESs generate relatively low power, capable devices can be engineered by combining suitable reactions, miniaturized cell designs, and effective sensing approaches for deciphering analyte information. This review details various such sensing and engineering approaches adopted in different categories of SPES systems that solely use the power available in liquid sample for their operation. Specifically, the categories discussed in this review cover enzyme-based systems, battery-based systems, and ion-selective electrode-based systems. The review details the benefits and drawbacks with these approaches, as well as prospects of and challenges to accomplishing them.
Collapse
Affiliation(s)
- Sunil Kumar Sailapu
- Biomedical and Mobile Health Technology (BMHT) labDepartment of Health Sciences and TechnologyETH ZürichZürich8008Switzerland
| | - Carlo Menon
- Biomedical and Mobile Health Technology (BMHT) labDepartment of Health Sciences and TechnologyETH ZürichZürich8008Switzerland
| |
Collapse
|
24
|
Liu H, Wang Y, Shi Z, Tan D, Yang X, Xiong L, Li G, Lei Y, Xue L. Fast Self-Assembly of Photonic Crystal Hydrogel for Wearable Strain and Temperature Sensor. SMALL METHODS 2022; 6:e2200461. [PMID: 35521951 DOI: 10.1002/smtd.202200461] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Structural colors from photonic crystals (PCs) have attracted emerging attention in the research area of wearable sensors. Conventional self-assembly of PC takes days to weeks. Here, a fast self-assembly method of PC with horizontal precipitation of silica nanoparticles (NPs) in a polydimethylsiloxane fence, which can be completed within 1-4 h depending on the fence parameters, is introduced. The resultant PC exhibits tunable structural colors in the entire visible spectrum. With infiltration of composite hydrogels containing acrylic acid, acrylamide, chitosan, and carbon nanotubes (CNTs) into the gaps of NPs to form an inverse opal PC, a structural color hydrogel that can quickly respond to different stimuli, including strain and temperature, is obtained. Moreover, with the addition of CNTs, the composite PC hydrogel can also output an electronic signal together with optical color changes. Based on these extraordinary responsive behaviors, the PC hydrogel sensor for quantitative feedback to external stimuli of stretching, bending, pressing, and thermal stimuli, with brilliant color change and electronic signal outputs simultaneously, is demonstrated. This fast-assembled PC hydrogel with excellent responsive properties has great potential for applications in wearable devices, mechanical sensors, temperature sensors, and colorimetric displays.
Collapse
Affiliation(s)
- Haiyang Liu
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Yan Wang
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Zhekun Shi
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Di Tan
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Xichen Yang
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Lingheng Xiong
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Gang Li
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Yifeng Lei
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Longjian Xue
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
25
|
Zhang H, Qiu Y, Yu S, Ding C, Hu J, Qi H, Tian Y, Zhang Z, Liu A, Wu H. Wearable microfluidic patch with integrated capillary valves and pumps for sweat management and multiple biomarker analysis. BIOMICROFLUIDICS 2022; 16:044104. [PMID: 35915777 PMCID: PMC9338840 DOI: 10.1063/5.0092084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Wearable sweat sensors are essential for providing insight into human physiological health. The currently developed microfluidic sweat sensors have demonstrated the function of collecting and storing sweat. However, they detect more average concentrations of substances based on time periods, which leads to the fact that in situ real-time measurement for multiple biomarkers remains a grand challenge. Here, we propose a wearable epidermal microfluidic patch with integrated microfluidic pumps and micro-valves for accelerated and continuous collection of the sweat, where the micro-pumps ensure the complete separation of old and new sweat for real-time detection of real concentration of biomarkers in sweat. The biomarker concentration at different time periods is detected by introducing a burst valve, which is used to assist in the analysis of the real-time detection. A quantitative relationship between the minimum burst pressure difference required for sequential collection and the size of the microchannel structure is established to overcome the effects of additional resistance at the gas-liquid interface. Additionally, the sensing modules, including sodium ion, chlorine ion, glucose, and pH level in sweat, are integrated into the patch to realize in situ, real-time detection of multiple biomarkers in the human sweat, decoding the correlation between changes in substance concentrations and physiological conditions. This work provides a unique and simplifying strategy for developing wearable sweat sensors for potential applications in health monitoring and disease diagnostics.
Collapse
Affiliation(s)
| | | | | | - Chen Ding
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, People’s Republic of China
| | | | | | | | | | - Aiping Liu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, People’s Republic of China
| | - Huaping Wu
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
26
|
Sim D, Brothers MC, Slocik JM, Islam AE, Maruyama B, Grigsby CC, Naik RR, Kim SS. Biomarkers and Detection Platforms for Human Health and Performance Monitoring: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104426. [PMID: 35023321 PMCID: PMC8895156 DOI: 10.1002/advs.202104426] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Indexed: 05/04/2023]
Abstract
Human health and performance monitoring (HHPM) is imperative to provide information necessary for protecting, sustaining, evaluating, and improving personnel in various occupational sectors, such as industry, academy, sports, recreation, and military. While various commercially wearable sensors are on the market with their capability of "quantitative assessments" on human health, physical, and psychological states, their sensing is mostly based on physical traits, and thus lacks precision in HHPM. Minimally or noninvasive biomarkers detectable from the human body, such as body fluid (e.g., sweat, tear, urine, and interstitial fluid), exhaled breath, and skin surface, can provide abundant additional information to the HHPM. Detecting these biomarkers with novel or existing sensor technologies is emerging as critical human monitoring research. This review provides a broad perspective on the state of the art biosensor technologies for HHPM, including the list of biomarkers and their physiochemical/physical characteristics, fundamental sensing principles, and high-performance sensing transducers. Further, this paper expands to the additional scope on the key technical challenges in applying the current HHPM system to the real field.
Collapse
Affiliation(s)
- Daniel Sim
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
- Research Associateship Program (RAP)the National Academies of Sciences, Engineering and MedicineWashingtonDC20001USA
- Integrative Health & Performance Sciences DivisionUES Inc.DaytonOH45432USA
| | - Michael C. Brothers
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
- Integrative Health & Performance Sciences DivisionUES Inc.DaytonOH45432USA
| | - Joseph M. Slocik
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson Air Force BaseOH 45433USA
| | - Ahmad E. Islam
- Air Force Research LaboratorySensors DirectorateWright‐Patterson Air Force BaseOH 45433USA
| | - Benji Maruyama
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson Air Force BaseOH 45433USA
| | - Claude C. Grigsby
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
| | - Rajesh R. Naik
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
| | - Steve S. Kim
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
| |
Collapse
|
27
|
ZHOU J, MEN D, ZHANG XE. Progress in wearable sweat sensors and their applications. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2021.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Jeerapan I, Moonla C, Thavarungkul P, Kanatharana P. Lab on a body for biomedical electrochemical sensing applications: The next generation of microfluidic devices. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:249-279. [PMID: 35094777 DOI: 10.1016/bs.pmbts.2021.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This chapter highlights applications of microfluidic devices toward on-body biosensors. The emerging application of microfluidics to on-body bioanalysis is a new strategy to establish systems for the continuous, real-time, and on-site determination of informative markers present in biofluids, such as sweat, interstitial fluid, blood, saliva, and tear. Electrochemical sensors are attractive to integrate with such microfluidics due to the possibility to be miniaturized. Moreover, on-body microfluidics coupled with bioelectronics enable smart integration with modern information and communication technology. This chapter discusses requirements and several challenges when developing on-body microfluidics such as difficulties in manipulating small sample volumes while maintaining mechanical flexibility, power-consumption efficiency, and simplicity of total automated systems. We describe key components, e.g., microchannels, microvalves, and electrochemical detectors, used in microfluidics. We also introduce representatives of advanced lab-on-a-body microfluidics combined with electrochemical sensors for biomedical applications. The chapter ends with a discussion of the potential trends of research in this field and opportunities. On-body microfluidics as modern total analysis devices will continue to bring several fascinating opportunities to the field of biomedical and translational research applications.
Collapse
Affiliation(s)
- Itthipon Jeerapan
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| | - Chochanon Moonla
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Panote Thavarungkul
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Proespichaya Kanatharana
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
29
|
Bolat G, De la Paz E, Azeredo NF, Kartolo M, Kim J, de Loyola E Silva AN, Rueda R, Brown C, Angnes L, Wang J, Sempionatto JR. Wearable soft electrochemical microfluidic device integrated with iontophoresis for sweat biosensing. Anal Bioanal Chem 2022; 414:5411-5421. [PMID: 35015101 DOI: 10.1007/s00216-021-03865-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022]
Abstract
A soft and flexible wearable sweat epidermal microfluidic device capable of simultaneously stimulating, collecting, and electrochemically analyzing sweat is demonstrated. The device represents the first system integrating an iontophoretic pilocarpine delivery system around the inlet channels of epidermal polydimethylsiloxane (PDMS) microfluidic device for sweat collection and analysis. The freshly generated sweat is naturally pumped into the fluidic inlet without the need of exercising. Soft skin-mounted systems, incorporating non-invasive, on-demand sweat sampling/analysis interfaces for tracking target biomarkers, are in urgent need. Existing skin conformal microfluidic-based sensors for continuous monitoring of target sweat biomarkers rely on assays during intense physical exercising. This work demonstrates the first example of combining sweat stimulation, through transdermal pilocarpine delivery, with sample collection through a microfluidic channel for real-time electrochemical monitoring of sweat glucose, in a fully integrated soft and flexible multiplexed device which eliminates the need of exercising. The on-body operational performance and layout of the device were optimized considering the fluid dynamics and evaluated for detecting sweat glucose in several volunteers. Furthermore, the microfluidic monitoring device was integrated with a real-time wireless data transmission system using a flexible electronic board PCB conformal with the body. The new microfluidic platform paves the way to real-time non-invasive monitoring of biomarkers in stimulated sweat samples for diverse healthcare and wellness applications.
Collapse
Affiliation(s)
- Gulcin Bolat
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ernesto De la Paz
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nathalia F Azeredo
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Michael Kartolo
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jayoung Kim
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Ricardo Rueda
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Christopher Brown
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Lúcio Angnes
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Joseph Wang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Juliane R Sempionatto
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
30
|
Hu X, Yang F, Zhao H, Guo M, Wang Y. Design and Evaluation of Three-Dimensional Zigzag Chaotic Micromixers for Biochemical Applications. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xingjian Hu
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Fan Yang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Haiyan Zhao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Mingzhao Guo
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yujun Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Stuart T, Kasper KA, Iwerunmor IC, McGuire DT, Peralta R, Hanna J, Johnson M, Farley M, LaMantia T, Udorvich P, Gutruf P. Biosymbiotic, personalized, and digitally manufactured wireless devices for indefinite collection of high-fidelity biosignals. SCIENCE ADVANCES 2021; 7:eabj3269. [PMID: 34623919 PMCID: PMC8500520 DOI: 10.1126/sciadv.abj3269] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/16/2021] [Indexed: 05/12/2023]
Abstract
Digital medicine, the ability to stream continuous information from the body to gain insight into health status, manage disease, and predict onset health problems, is only gradually developing. Key technological hurdles that slow the proliferation of this approach are means by which clinical grade biosignals are continuously obtained without frequent user interaction. To overcome these hurdles, solutions in power supply and interface strategies that maintain high-fidelity readouts chronically are critical. This work introduces a previously unexplored class of devices that overcomes the limitations using digital manufacturing to tailor geometry, mechanics, electromagnetics, electronics, and fluidics to create unique personalized devices optimized to the wearer. These elastomeric, three-dimensional printed, and laser-structured constructs, called biosymbiotic devices, enable adhesive-free interfaces and the inclusion of high-performance, far-field energy harvesting to facilitate continuous wireless and battery-free operation of multimodal and multidevice, high-fidelity biosensing in an at-home setting without user interaction.
Collapse
Affiliation(s)
- Tucker Stuart
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Kevin Albert Kasper
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | | | - Dylan Thomas McGuire
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Roberto Peralta
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Jessica Hanna
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Megan Johnson
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Max Farley
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Thomas LaMantia
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Paul Udorvich
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Philipp Gutruf
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
- Neroscience GIDP, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
32
|
Ghaffari R, Yang DS, Kim J, Mansour A, Wright JA, Model JB, Wright DE, Rogers JA, Ray TR. State of Sweat: Emerging Wearable Systems for Real-Time, Noninvasive Sweat Sensing and Analytics. ACS Sens 2021; 6:2787-2801. [PMID: 34351759 DOI: 10.1021/acssensors.1c01133] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skin-interfaced wearable systems with integrated colorimetric assays, microfluidic channels, and electrochemical sensors offer powerful capabilities for noninvasive, real-time sweat analysis. This Perspective details recent progress in the development and translation of novel wearable sensors for personalized assessment of sweat dynamics and biomarkers, with precise sampling and real-time analysis. Sensor accuracy, system ruggedness, and large-scale deployment in remote environments represent key opportunity areas, enabling broad deployment in the context of field studies, clinical trials, and recent commercialization. On-body measurements in these contexts show good agreement compared to conventional laboratory-based sweat analysis approaches. These device demonstrations highlight the utility of biochemical sensing platforms for personalized assessment of performance, wellness, and health across a broad range of applications.
Collapse
Affiliation(s)
- Roozbeh Ghaffari
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60202, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60202, United States
- Epicore Biosystems, Inc., Cambridge, Massachusetts 02139, United States
| | - Da Som Yang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60202, United States
| | - Joohee Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60202, United States
| | - Amer Mansour
- Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637, United States
| | - John A. Wright
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60202, United States
- Epicore Biosystems, Inc., Cambridge, Massachusetts 02139, United States
| | - Jeffrey B. Model
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60202, United States
- Epicore Biosystems, Inc., Cambridge, Massachusetts 02139, United States
| | - Donald E. Wright
- Epicore Biosystems, Inc., Cambridge, Massachusetts 02139, United States
| | - John A. Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60202, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60202, United States
- Epicore Biosystems, Inc., Cambridge, Massachusetts 02139, United States
- Departments of Materials Science and Engineering, Mechanical Engineering, Electrical and Computer Engineering, and Chemistry, Northwestern University, Evanston, Illinois 60202, United States
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Tyler R. Ray
- Department of Mechanical Engineering, University of Hawai’i at Ma̅noa, Honolulu, Hawaii 96822, United States
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai’i at Ma̅noa, Honolulu, Hawaii 96813, United States
| |
Collapse
|
33
|
Jang J, Ji S, Grandhi GK, Cho HB, Im WB, Park J. Multimodal Digital X-ray Scanners with Synchronous Mapping of Tactile Pressure Distributions using Perovskites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008539. [PMID: 34145641 PMCID: PMC11468999 DOI: 10.1002/adma.202008539] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Visual and tactile information are the key intuitive perceptions in sensory systems, and the synchronized detection of these two sensory modalities can enhance accuracy of object recognition by providing complementary information between them. Herein, multimodal integration of flexible, high-resolution X-ray detectors with a synchronous mapping of tactile pressure distributions for visualizing internal structures and morphologies of an object simultaneously is reported. As a visual-inspection method, perovskite materials that convert X-rays into charge carriers directly are synthesized. By incorporating pressure-sensitive air-dielectric transistors in the perovskite components, X-ray detectors with dual modalities (i.e., vision and touch) are attained as an active-matrix platform for digital visuotactile examinations. Also, in vivo X-ray imaging and pressure sensing are demonstrated using a live rat. This multiplexed platform has high spatial resolution and good flexibility, thereby providing highly accurate inspection and diagnoses even for the distorted images of nonplanar objects.
Collapse
Affiliation(s)
- Jiuk Jang
- Nano Science Technology InstituteDepartment of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Sangyoon Ji
- Nano Science Technology InstituteDepartment of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | | | - Han Bin Cho
- Division of Materials Science and EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Won Bin Im
- Division of Materials Science and EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Jang‐Ung Park
- Nano Science Technology InstituteDepartment of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
34
|
Jo S, Sung D, Kim S, Koo J. A review of wearable biosensors for sweat analysis. Biomed Eng Lett 2021; 11:117-129. [PMID: 34150348 DOI: 10.1007/s13534-021-00191-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 11/26/2022] Open
Abstract
Recent advances in the skin-interfaced wearable sweat sensors allow a personalized daily diagnosis and prognosis of the diseases in a form of a non-invasive, portable, and continuous monitoring system. Especially, the soft microfluidic system provides robust quantitative analysis platforms that integrate sweat sampling, storing, and various sensing capabilities. This review systematically introduces the sweat collecting mechanism using soft microfluidic valves, including calculation of sweat storage and loss. In terms of sweat analysis, colorimetric (e.g. enzymatic, chemical, or their mixed reactions), electrochemical (e.g. voltammetric, potentiometric, amperometric, or conductometric), and multiplex measurements of sweat contents facilitate diagnosis of diseases via analysis of combined multiple data, such as vital signals (e.g. ECG, EMG, EEG, etc.) and information from the skin (e.g. temperature, GSR, etc.). The integration of wireless communication with the microfluidic systems enables point-of-care health monitoring for disease and specific physiological status.
Collapse
Affiliation(s)
- Seongbin Jo
- School of Biomedical Engineering, Korea University, Seoul, 02841 Republic of Korea
| | - Daeun Sung
- School of Biomedical Engineering, Korea University, Seoul, 02841 Republic of Korea
| | - Sungbong Kim
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois At Urbana-Champaign, Urbana, IL 61801 USA
| | - Jahyun Koo
- School of Biomedical Engineering, Korea University, Seoul, 02841 Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
35
|
Yokus BMA, Daniele MA. Integrated non-invasive biochemical and biophysical sensing systems for health and performance monitoring: A systems perspective. Biosens Bioelectron 2021; 184:113249. [PMID: 33895689 DOI: 10.1016/j.bios.2021.113249] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
Advances in materials, bio-recognition elements, transducers, and microfabrication techniques, as well as progress in electronics, signal processing, and wireless communication have generated a new class of skin-interfaced wearable health monitoring systems for applications in personalized medicine and digital health. In comparison to conventional medical devices, these wearable systems are at the cusp of initiating a new era of longitudinal and noninvasive sensing for the prevention, detection, diagnosis, and treatment of diseases at the molecular level. Herein, we provide a review of recent developments in wearable biochemical and biophysical systems. We survey the sweat sampling and collection methods for biochemical systems, followed by an assessment of biochemical and biophysical sensors deployed in current wearable systems with an emphasis on their hardware specifications. Specifically, we address how sweat collection and sample handling platforms may be a rate limiting technology to realizing the clinical translation of wearable health monitoring systems; moreover, we highlight the importance of achieving both longitudinal sensing and assessment of intrapersonal variation in sweat-blood correlations to have the greatest clinical impact. Lastly, we assess a snapshot of integrated wireless wearable systems with multimodal sensing capabilities, and we conclude with our perspective on the state-of-the-art and the required developments to achieve the next-generation of integrated wearable health and performance monitoring systems.
Collapse
Affiliation(s)
- By Murat A Yokus
- Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Dr., Raleigh, NC, 27695, USA
| | - Michael A Daniele
- Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Dr., Raleigh, NC, 27695, USA; Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Dr., Raleigh, NC, 27695, USA.
| |
Collapse
|
36
|
Stuart T, Cai L, Burton A, Gutruf P. Wireless and battery-free platforms for collection of biosignals. Biosens Bioelectron 2021; 178:113007. [PMID: 33556807 PMCID: PMC8112193 DOI: 10.1016/j.bios.2021.113007] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/02/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Recent progress in biosensors have quantitively expanded current capabilities in exploratory research tools, diagnostics and therapeutics. This rapid pace in sensor development has been accentuated by vast improvements in data analysis methods in the form of machine learning and artificial intelligence that, together, promise fantastic opportunities in chronic sensing of biosignals to enable preventative screening, automated diagnosis, and tools for personalized treatment strategies. At the same time, the importance of widely accessible personal monitoring has become evident by recent events such as the COVID-19 pandemic. Progress in fully integrated and chronic sensing solutions is therefore increasingly important. Chronic operation, however, is not truly possible with tethered approaches or bulky, battery-powered systems that require frequent user interaction. A solution for this integration challenge is offered by wireless and battery-free platforms that enable continuous collection of biosignals. This review summarizes current approaches to realize such device architectures and discusses their building blocks. Specifically, power supplies, wireless communication methods and compatible sensing modalities in the context of most prevalent implementations in target organ systems. Additionally, we highlight examples of current embodiments that quantitively expand sensing capabilities because of their use of wireless and battery-free architectures.
Collapse
Affiliation(s)
- Tucker Stuart
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Le Cai
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Alex Burton
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Philipp Gutruf
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA; Department of Electrical Engineering, University of Arizona, Tucson, AZ, 85721, USA; Bio5 Institute, University of Arizona, Tucson, AZ, 85721, USA; Neuroscience GIDP, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
37
|
Ghaffari R, Rogers JA, Ray TR. Recent progress, challenges, and opportunities for wearable biochemical sensors for sweat analysis. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 332:129447. [PMID: 33542590 PMCID: PMC7853653 DOI: 10.1016/j.snb.2021.129447] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sweat is a promising, yet relatively unexplored biofluid containing biochemical information that offers broad insights into the underlying dynamic metabolic activity of the human body. The rich composition of electrolytes, metabolites, hormones, proteins, nucleic acids, micronutrients, and exogenous agents found in sweat dynamically vary in response to the state of health, stress, and diet. Emerging classes of skin-interfaced wearable sensors offer powerful capabilities for the real-time, continuous analysis of sweat produced by the eccrine glands in a manner suitable for use in athletics, consumer wellness, military, and healthcare industries. This perspective examines the rapid and continuous progress of wearable sweat sensors through the most advanced embodiments that address the fundamental challenges currently restricting widespread deployment. It concludes with a discussion of efforts to expand the overall utility of wearable sweat sensors and opportunities for commercialization, in which advances in biochemical sensor technologies will be critically important.
Collapse
Affiliation(s)
- Roozbeh Ghaffari
- -Querrey Simpson Institute for Bioelectronics and Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- -Epicore Biosystems, Inc., Cambridge, MA, USA
| | - John A. Rogers
- -Querrey Simpson Institute for Bioelectronics and Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- -Epicore Biosystems, Inc., Cambridge, MA, USA
- -Departments of Materials Science and Engineering, Mechanical Engineering, Electrical and Computer Engineering, Chemistry, Northwestern University, Evanston, IL, USA
- -Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tyler R. Ray
- -Department of Mechanical Engineering, University of Hawai‘i at Mānoa, Honolulu, HI
| |
Collapse
|
38
|
Ray TR, Ivanovic M, Curtis PM, Franklin D, Guventurk K, Jeang WJ, Chafetz J, Gaertner H, Young G, Rebollo S, Model JB, Lee SP, Ciraldo J, Reeder JT, Hourlier-Fargette A, Bandodkar AJ, Choi J, Aranyosi AJ, Ghaffari R, McColley SA, Haymond S, Rogers JA. Soft, skin-interfaced sweat stickers for cystic fibrosis diagnosis and management. Sci Transl Med 2021; 13:eabd8109. [PMID: 33790027 PMCID: PMC8351625 DOI: 10.1126/scitranslmed.abd8109] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/02/2021] [Indexed: 12/14/2022]
Abstract
The concentration of chloride in sweat remains the most robust biomarker for confirmatory diagnosis of cystic fibrosis (CF), a common life-shortening genetic disorder. Early diagnosis via quantitative assessment of sweat chloride allows prompt initiation of care and is critically important to extend life expectancy and improve quality of life. The collection and analysis of sweat using conventional wrist-strapped devices and iontophoresis can be cumbersome, particularly for infants with fragile skin, who often have insufficient sweat production. Here, we introduce a soft, epidermal microfluidic device ("sweat sticker") designed for the simple and rapid collection and analysis of sweat. Intimate, conformal coupling with the skin supports nearly perfect efficiency in sweat collection without leakage. Real-time image analysis of chloride reagents allows for quantitative assessment of chloride concentrations using a smartphone camera, without requiring extraction of sweat or external analysis. Clinical validation studies involving patients with CF and healthy subjects, across a spectrum of age groups, support clinical equivalence compared to existing device platforms in terms of accuracy and demonstrate meaningful reductions in rates of leakage. The wearable microfluidic technologies and smartphone-based analytics reported here establish the foundation for diagnosis of CF outside of clinical settings.
Collapse
Affiliation(s)
- Tyler R Ray
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60202, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60202, USA
| | - Maja Ivanovic
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Paul M Curtis
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60202, USA
| | - Daniel Franklin
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60202, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60202, USA
| | - Kerem Guventurk
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60202, USA
| | - William J Jeang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60202, USA
| | - Joseph Chafetz
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60202, USA
| | - Hannah Gaertner
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60202, USA
| | - Grace Young
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60202, USA
| | - Steve Rebollo
- Pritzker School of Molecular Engineering and Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - Jeffrey B Model
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60202, USA
- Epicore Biosystems Inc., Cambridge, MA 02139, USA
| | - Stephen P Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60202, USA
- Epicore Biosystems Inc., Cambridge, MA 02139, USA
| | - John Ciraldo
- Micro/Nano Fabrication Facility (NUFAB) Northwestern University, Evanston, IL 60202, USA
| | - Jonathan T Reeder
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60202, USA
| | - Aurélie Hourlier-Fargette
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60202, USA
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, F-67000, Strasbourg 67034, France
| | - Amay J Bandodkar
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60202, USA
| | - Jungil Choi
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60202, USA
- School of Mechanical Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Alexander J Aranyosi
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60202, USA
- Epicore Biosystems Inc., Cambridge, MA 02139, USA
| | - Roozbeh Ghaffari
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60202, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60202, USA
- Epicore Biosystems Inc., Cambridge, MA 02139, USA
| | - Susanna A McColley
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Division of Pulmonary and Sleep Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Shannon Haymond
- Department of Pathology, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60202, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60202, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60202, USA
- Epicore Biosystems Inc., Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Department of Electrical and Computer Engineering, Department of Chemistry, Northwestern University, Evanston, IL 60202, USA
- Department of Neurological Surgery Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
39
|
Abstract
Circadian dysfunction or dysregulation is associated with many chronic morbidities. Current state-of-art technologies do not provide an accurate estimation of the extent of disease affliction. Recent advances call for using wearables for improving management and diagnosis of circadian related disorders. Sweat contains an abundance of relevant biomarkers like cortisol, DHEA, and so forth, which could be leveraged toward tracking the user's chronobiology. In this article, we provide a review of the key developments in the field of wearable sensors for circadian technologies. We highlight the value of using sweat along with portable electronics toward developing state-of-the-art platforms for efficient diagnosis and management of chronic conditions. Finally, we discuss challenges and opportunities for using wearable sweat sensors for circadian diagnosis and disease management.
Collapse
Affiliation(s)
- Sayali Upasham
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | | | - Paul Rice
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
40
|
Vinoth R, Nakagawa T, Mathiyarasu J, Mohan AMV. Fully Printed Wearable Microfluidic Devices for High-Throughput Sweat Sampling and Multiplexed Electrochemical Analysis. ACS Sens 2021; 6:1174-1186. [PMID: 33517662 DOI: 10.1021/acssensors.0c02446] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Although the recent advancement in wearable biosensors provides continuous, noninvasive assessment of physiologically relevant chemical markers from human sweat, several bottlenecks still exist for its practical use. There were challenges in developing a multiplexed biosensing system with rapid microfluidic sampling and transport properties, as well as its integration with a portable potentiostat for improved interference-free data collection. Here, we introduce a clean-room free fabrication of wearable microfluidic sensors, using a screen-printed carbon master, for the electrochemical monitoring of sweat biomarkers during exercise activities. The sweat sampling is enhanced by introducing low-dimensional sensing compartments and lowering the hydrophilicity of channel layers via facile silane functionalization. The fluidic channel captures sweat at the inlet and directs the real-time sweat through the active sensing electrodes (within 40 s) for subsequent decoding and selective analyses. For proof of concept, simultaneous amperometric lactate and potentiometric ion sensing (Na+, K+, and pH) are carried out by a miniature circuit board capable of cross-talk-free signal collection and wireless signal transduction characteristics. All of the sensors demonstrated appreciable sensitivity, selectivity, stability, carryover efficiency, and repeatability. The floating potentiometric circuits eliminate the signal interference from the adjacent amperometric transducers. The fully integrated pumpless microfluidic device is mounted on the epidermis and employed for multiplexed real-time decoding of sweat during stationary biking. The regional variations in sweat composition are analyzed by human trials at the underarm and upperback locations. The presented method offers a large-scale fabrication of inexpensive high-throughput wearable sensors for personalized point-of-care and athletic applications.
Collapse
Affiliation(s)
- Rajendran Vinoth
- Electrodics and Electrocatalysis Division, CSIR—Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR)—CSIR, Ghaziabad 201002, Uttar Pradesh, India
| | - Tatsuo Nakagawa
- Research & Development Group, Hitachi, Ltd., 1-280 Higashi-koigakubo, Kokubunji-shi, Tokyo1858601, Japan
| | - Jayaraman Mathiyarasu
- Electrodics and Electrocatalysis Division, CSIR—Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR)—CSIR, Ghaziabad 201002, Uttar Pradesh, India
| | - A. M. Vinu Mohan
- Electrodics and Electrocatalysis Division, CSIR—Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR)—CSIR, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
41
|
Ye S, Feng S, Huang L, Bian S. Recent Progress in Wearable Biosensors: From Healthcare Monitoring to Sports Analytics. BIOSENSORS 2020; 10:E205. [PMID: 33333888 PMCID: PMC7765261 DOI: 10.3390/bios10120205] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023]
Abstract
Recent advances in lab-on-a-chip technology establish solid foundations for wearable biosensors. These newly emerging wearable biosensors are capable of non-invasive, continuous monitoring by miniaturization of electronics and integration with microfluidics. The advent of flexible electronics, biochemical sensors, soft microfluidics, and pain-free microneedles have created new generations of wearable biosensors that explore brand-new avenues to interface with the human epidermis for monitoring physiological status. However, these devices are relatively underexplored for sports monitoring and analytics, which may be largely facilitated by the recent emergence of wearable biosensors characterized by real-time, non-invasive, and non-irritating sensing capacities. Here, we present a systematic review of wearable biosensing technologies with a focus on materials and fabrication strategies, sampling modalities, sensing modalities, as well as key analytes and wearable biosensing platforms for healthcare and sports monitoring with an emphasis on sweat and interstitial fluid biosensing. This review concludes with a summary of unresolved challenges and opportunities for future researchers interested in these technologies. With an in-depth understanding of the state-of-the-art wearable biosensing technologies, wearable biosensors for sports analytics would have a significant impact on the rapidly growing field-microfluidics for biosensing.
Collapse
Affiliation(s)
- Shun Ye
- Microfluidics Research & Innovation Laboratory, School of Sport Science, Beijing Sport University, Beijing 100084, China;
- Biomedical Engineering Department, College of Engineering, Pennsylvania State University, University Park, PA 16802, USA
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Liang Huang
- School of Instrument Science and Opto–Electronics Engineering, Hefei University of Technology, Hefei 230009, China;
| | - Shengtai Bian
- Microfluidics Research & Innovation Laboratory, School of Sport Science, Beijing Sport University, Beijing 100084, China;
| |
Collapse
|
42
|
Baker LB, Model JB, Barnes KA, Anderson ML, Lee SP, Lee KA, Brown SD, Reimel AJ, Roberts TJ, Nuccio RP, Bonsignore JL, Ungaro CT, Carter JM, Li W, Seib MS, Reeder JT, Aranyosi AJ, Rogers JA, Ghaffari R. Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications. SCIENCE ADVANCES 2020; 6:6/50/eabe3929. [PMID: 33310859 PMCID: PMC7732194 DOI: 10.1126/sciadv.abe3929] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/22/2020] [Indexed: 05/18/2023]
Abstract
Advanced capabilities in noninvasive, in situ monitoring of sweating rate and sweat electrolyte losses could enable real-time personalized fluid-electrolyte intake recommendations. Established sweat analysis techniques using absorbent patches require post-collection harvesting and benchtop analysis of sweat and are thus impractical for ambulatory use. Here, we introduce a skin-interfaced wearable microfluidic device and smartphone image processing platform that enable analysis of regional sweating rate and sweat chloride concentration ([Cl-]). Systematic studies (n = 312 athletes) establish significant correlations for regional sweating rate and sweat [Cl-] in a controlled environment and during competitive sports under varying environmental conditions. The regional sweating rate and sweat [Cl-] results serve as inputs to algorithms implemented on a smartphone software application that predicts whole-body sweating rate and sweat [Cl-]. This low-cost wearable sensing approach could improve the accessibility of physiological insights available to sports scientists, practitioners, and athletes to inform hydration strategies in real-world ambulatory settings.
Collapse
Affiliation(s)
- Lindsay B Baker
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Barrington, IL 60010, USA.
| | - Jeffrey B Model
- Epicore Biosystems Inc, Cambridge, MA 02139, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Kelly A Barnes
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Barrington, IL 60010, USA
| | - Melissa L Anderson
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Bradenton, FL 34210, USA
| | - Stephen P Lee
- Epicore Biosystems Inc, Cambridge, MA 02139, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Khalil A Lee
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Bradenton, FL 34210, USA
| | - Shyretha D Brown
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Barrington, IL 60010, USA
| | - Adam J Reimel
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Barrington, IL 60010, USA
| | - Timothy J Roberts
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Bradenton, FL 34210, USA
| | - Ryan P Nuccio
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Barrington, IL 60010, USA
| | - Justina L Bonsignore
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Bradenton, FL 34210, USA
| | - Corey T Ungaro
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Barrington, IL 60010, USA
| | - James M Carter
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Leicester, UK
| | - Weihua Li
- Epicore Biosystems Inc, Cambridge, MA 02139, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | | | - Jonathan T Reeder
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Knight Campus for Accelerating Scientific Impact, 6231 University of Oregon, Eugene, OR 97403, USA
| | - Alexander J Aranyosi
- Epicore Biosystems Inc, Cambridge, MA 02139, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - John A Rogers
- Epicore Biosystems Inc, Cambridge, MA 02139, USA.
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Departments of Mechanical Engineering, Electrical and Computer Engineering, and Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Roozbeh Ghaffari
- Epicore Biosystems Inc, Cambridge, MA 02139, USA.
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
43
|
Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities. Proc Natl Acad Sci U S A 2020; 117:27906-27915. [PMID: 33106394 PMCID: PMC7668081 DOI: 10.1073/pnas.2012700117] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Soft microfluidic systems that capture, store, and perform biomarker analysis of microliter volumes of sweat, in situ, as it emerges from the surface of the skin, represent an emerging class of wearable technology with powerful capabilities that complement those of traditional biophysical sensing devices. Recent work establishes applications in the real-time characterization of sweat dynamics and sweat chemistry in the context of sports performance and healthcare diagnostics. This paper presents a collection of advances in biochemical sensors and microfluidic designs that support multimodal operation in the monitoring of physiological signatures directly correlated to physical and mental stresses. These wireless, battery-free, skin-interfaced devices combine lateral flow immunoassays for cortisol, fluorometric assays for glucose and ascorbic acid (vitamin C), and digital tracking of skin galvanic responses. Systematic benchtop evaluations and field studies on human subjects highlight the key features of this platform for the continuous, noninvasive monitoring of biochemical and biophysical correlates of the stress state.
Collapse
|
44
|
Moonen EJ, Haakma JR, Peri E, Pelssers E, Mischi M, den Toonder JM. Wearable sweat sensing for prolonged, semicontinuous, and nonobtrusive health monitoring. VIEW 2020. [DOI: 10.1002/viw.20200077] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Emma J.M. Moonen
- Department of Mechanical Engineering Eindhoven University of Technology Eindhoven The Netherlands
- Institute for Complex Molecular Systems (ICMS) Eindhoven University of Technology Eindhoven The Netherlands
| | - Jelte R. Haakma
- Department of Electrical Engineering, Laboratory of Biomedical Diagnostics Eindhoven University of Technology Eindhoven The Netherlands
| | - Elisabetta Peri
- Department of Electrical Engineering, Laboratory of Biomedical Diagnostics Eindhoven University of Technology Eindhoven The Netherlands
| | - Eduard Pelssers
- Department of Mechanical Engineering Eindhoven University of Technology Eindhoven The Netherlands
- Philips Research Royal Philips High Tech Campus Eindhoven The Netherlands
| | - Massimo Mischi
- Department of Electrical Engineering, Laboratory of Biomedical Diagnostics Eindhoven University of Technology Eindhoven The Netherlands
| | - Jaap M.J. den Toonder
- Department of Mechanical Engineering Eindhoven University of Technology Eindhoven The Netherlands
- Institute for Complex Molecular Systems (ICMS) Eindhoven University of Technology Eindhoven The Netherlands
| |
Collapse
|
45
|
Bhattacharjee M, Middya S, Escobedo P, Chaudhuri J, Bandyopadhyay D, Dahiya R. Microdroplet based disposable sensor patch for detection of α-amylase in human blood serum. Biosens Bioelectron 2020; 165:112333. [DOI: 10.1016/j.bios.2020.112333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022]
|
46
|
Zhang Y, Chen Y, Huang J, Liu Y, Peng J, Chen S, Song K, Ouyang X, Cheng H, Wang X. Skin-interfaced microfluidic devices with one-opening chambers and hydrophobic valves for sweat collection and analysis. LAB ON A CHIP 2020; 20:2635-2645. [PMID: 32555915 DOI: 10.1039/d0lc00400f] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Soft, skin-interfaced microfluidic platforms are capable of capturing, storing, and assessing sweat chemistry and total sweat loss, which provides essential insight into human physiological health. However, sweat loss from the outlet of the microfluidic devices often leads to deviation of the measured concentration of the biomarker or electrolyte from the actual value. Here, we introduce hydrophobic valves at the junction of the chamber and the microfluidic channel as a new chamber design to reduce sweat evaporation. Because the advancing front of the liquid in the hydrophilic microchannel is blocked by the hydrophobic valve, the fluid flows into the chambers, forms the initial meniscus, and completely fills the chambers along the initial meniscus. Fluid dynamic modeling and numerical simulations provide critical insights into the sweat sampling mechanism into the chambers. With significantly reduced evaporation and contamination, the sweat sample can be easily stored for a long time for later analysis when in situ analysis is limited. Additionally, the design with multiple chambers can allow sequential generation of sweat collection at different times for long-term analysis. The in situ real-time measurements of the sweat loss and pH value analysis from the human subject demonstrate the practical utility of the devices in collecting, storing, and analyzing the sweat generated from sweat glands on the skin.
Collapse
Affiliation(s)
- Yingxue Zhang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bollinger C, Duong TA, Genain G, Almaric N, Moga A, Richard W, Vandier S. Metrology and sensors as dermo-cosmetic technology opportunities for a change of paradigm. Skin Res Technol 2020; 27:257-265. [PMID: 32729174 DOI: 10.1111/srt.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/20/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Metrology and measures are changing the way patients and consumers behave and help find new, more effective solutions. METHODS This Review and Prospective Paper identifies applications in the field of dermatology and beauty tech. RESULTS The review of skincare as well as dermatological applications and analysis provides a comprehensive picture of the dynamics in the process of impacting the complete value chain in the field of dermo-cosmetics, as well as the opportunities offered by a strict approach around new and innovative measures, especially in the field of better patient/consumer knowledge, understanding, and personalized solution offering. It identifies the new business models or opportunities for the cosmetic industry. CONCLUSION Adapting metrology and measures to skincare is a significant opportunity to change the way things are done today.
Collapse
Affiliation(s)
| | - Tu Anh Duong
- Department of Dermatology, Hôpital Henri Mondor AP-HP, Créteil, France.,Chaire Avenir Santé Numérique Equipe 8 IMRB, INSERM, Université Paris Est Créteil, Créteil, France
| | - Gilles Genain
- WB Technologies, Paris, France.,Beauty Product Consulting - BPC, Paris, France
| | | | | | | | | |
Collapse
|
48
|
Qiao L, Benzigar MR, Subramony JA, Lovell NH, Liu G. Advances in Sweat Wearables: Sample Extraction, Real-Time Biosensing, and Flexible Platforms. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34337-34361. [PMID: 32579332 DOI: 10.1021/acsami.0c07614] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Wearable biosensors for sweat-based analysis are gaining wide attention due to their potential use in personal health monitoring. Flexible wearable devices enable sweat analysis at the molecular level, facilitating noninvasive monitoring of physiological states via real-time monitoring of chemical biomarkers. Advances in sweat extraction technology, real-time biosensors, stretchable materials, device integration, and wireless digital technologies have led to the development of wearable sweat-biosensing devices that are light, flexible, comfortable, aesthetic, affordable, and informative. Herein, we summarize recent advances of sweat wearables from the aspects of sweat extraction, fabrication of stretchable biomaterials, and design of biosensing modules to enable continuous biochemical monitoring, which are essential for a biosensing device. Key chemical components of sweat, sweat capture methodologies, and considerations of flexible substrates for integrating real-time biosensors with electronics to bring innovations in the art of wearables are elaborated. The strategies and challenges involved in improving the wearable biosensing performance and the perspectives for designing sweat-based wearable biosensing devices are discussed.
Collapse
Affiliation(s)
- Laicong Qiao
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mercy Rose Benzigar
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - J Anand Subramony
- Antibody Discovery and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
49
|
Wireless battery-free body sensor networks using near-field-enabled clothing. Nat Commun 2020; 11:444. [PMID: 31974376 PMCID: PMC6978350 DOI: 10.1038/s41467-020-14311-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/20/2019] [Indexed: 11/29/2022] Open
Abstract
Networks of sensors placed on the skin can provide continuous measurement of human physiological signals for applications in clinical diagnostics, athletics and human-machine interfaces. Wireless and battery-free sensors are particularly desirable for reliable long-term monitoring, but current approaches for achieving this mode of operation rely on near-field technologies that require close proximity (at most a few centimetres) between each sensor and a wireless readout device. Here, we report near-field-enabled clothing capable of establishing wireless power and data connectivity between multiple distant points around the body to create a network of battery-free sensors interconnected by proximity to functional textile patterns. Using computer-controlled embroidery of conductive threads, we integrate clothing with near-field-responsive patterns that are completely fabric-based and free of fragile silicon components. We demonstrate the utility of the networked system for real-time, multi-node measurement of spinal posture as well as continuous sensing of temperature and gait during exercise. Though wireless near-field communication (NFC) technologies that connect wearable sensors for health monitoring have been reported, the short range of NFC readers limits sensor functionality. Here, the authors report a wireless and battery-free body sensor network with near-field-enabled clothing.
Collapse
|
50
|
Horowitz LF, Rodriguez AD, Ray T, Folch A. Microfluidics for interrogating live intact tissues. MICROSYSTEMS & NANOENGINEERING 2020; 6:69. [PMID: 32879734 PMCID: PMC7443437 DOI: 10.1038/s41378-020-0164-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 05/08/2023]
Abstract
The intricate microarchitecture of tissues - the "tissue microenvironment" - is a strong determinant of tissue function. Microfluidics offers an invaluable tool to precisely stimulate, manipulate, and analyze the tissue microenvironment in live tissues and engineer mass transport around and into small tissue volumes. Such control is critical in clinical studies, especially where tissue samples are scarce, in analytical sensors, where testing smaller amounts of analytes results in faster, more portable sensors, and in biological experiments, where accurate control of the cellular microenvironment is needed. Microfluidics also provides inexpensive multiplexing strategies to address the pressing need to test large quantities of drugs and reagents on a single biopsy specimen, increasing testing accuracy, relevance, and speed while reducing overall diagnostic cost. Here, we review the use of microfluidics to study the physiology and pathophysiology of intact live tissues at sub-millimeter scales. We categorize uses as either in vitro studies - where a piece of an organism must be excised and introduced into the microfluidic device - or in vivo studies - where whole organisms are small enough to be introduced into microchannels or where a microfluidic device is interfaced with a live tissue surface (e.g. the skin or inside an internal organ or tumor) that forms part of an animal larger than the device. These microfluidic systems promise to deliver functional measurements obtained directly on intact tissue - such as the response of tissue to drugs or the analysis of tissue secretions - that cannot be obtained otherwise.
Collapse
Affiliation(s)
- Lisa F. Horowitz
- Department of Bioengineering, University of Washington, Seattle, WA 98195 USA
| | - Adán D. Rodriguez
- Department of Bioengineering, University of Washington, Seattle, WA 98195 USA
| | - Tyler Ray
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822 USA
| | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|