1
|
Mao J, Wu B, Hao R. Imaging the 4D Chemical Heterogeneity of Single V 2O 5 Particles During Charging/Discharging Processes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501425. [PMID: 40207797 DOI: 10.1002/adma.202501425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Microparticle cathode materials are widely used in secondary batteries. However, obtaining dynamic chemical heterogeneities of these microparticles is challenging, hindering in-depth mechanistic investigation of the underlying processes. For example, although vanadium pentoxide shows promise as an electrode material for zinc ion batteries, its poor performance's root cause is elusive. Herein, a fluorescence/scattering dual-mode spinning disk confocal microscopy-based approach is developed to visualize the 4D chemical heterogeneity of single V2O5 particles during cycling. Dual-mode in situ imaging identifies valence state changes of vanadium ions with high spatiotemporal resolution. A unique difference is observed between the scattering intensities of a particle's bottom electric contact points and the rest parts during the discharging process. In contrast, fluorescence intensity variation suggests high consistency across the particles. Correlative Raman, UV-Vis spectroscopy, and electrochemical impedance spectroscopy analyses suggest the precipitation of V3+ species at the bottom interface of the V2O5 electrode, leading to increased electron transfer resistance and compromised overall performance. A coordination strategy between ethylene diamine tetraacetic acid and V3+ is proposed for inhibiting V3+ precipitation, and its effectiveness is further verified by imaging and electrochemical impedance spectroscopy analyses. Insights from the imaging approach presented herein will enable the rational design of high-performance batteries.
Collapse
Affiliation(s)
- Jiaxin Mao
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, Shenzhen Key Laboratory of Functional Proteomics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Binhong Wu
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, Shenzhen Key Laboratory of Functional Proteomics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Hao
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, Shenzhen Key Laboratory of Functional Proteomics, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
2
|
Dai Y, Xie Z, Zhang Y, Du X, Li Z, Xie J, Sun Z, Zhou J. Mapping Surface and Subsurface Atomic Structures of Au@Pd Core-Shell Nanoparticles in Three Dimensions. ACS NANO 2025; 19:9006-9016. [PMID: 39979788 DOI: 10.1021/acsnano.4c17462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Three-dimensional (3D) atomic arrangements in the surface and subsurface parts of nanomaterials are crucial for understanding their structure-functionality correlations. However, unveiling the required structure at such a resolution remains a challenge due to the lack of effective imaging and reconstruction techniques. Here, we determine the 3D atomic surface and subsurface structures of Au@Pd core-shell nanoparticles and study their correlations with electronic and surface chemical properties using atomic-resolution electron tomography (AET). We find that the intermixing of Au and Pd is the key factor that influences the surface and subsurface structure and quantitatively reveals its negative correlations with bond disorder and tensile strain. By applying spectroscopic and electrochemical measurements, we confirm that different surface structures modify the electronic and chemical properties at different Au/Pd ratios. These results not only shed light on the complex surface and subsurface structures of realistic nanomaterials but also deepen our understanding of structure-functionality correlations in nanostructures at the single-atom level.
Collapse
Affiliation(s)
- Yiheng Dai
- Beijing National Laboratory for Molecular Sciences, Center for Integrated Spectroscopy, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhiheng Xie
- Beijing National Laboratory for Molecular Sciences, Center for Integrated Spectroscopy, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yao Zhang
- Beijing National Laboratory for Molecular Sciences, Center for Integrated Spectroscopy, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xuanxuan Du
- Beijing National Laboratory for Molecular Sciences, Center for Integrated Spectroscopy, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zezhou Li
- Beijing National Laboratory for Molecular Sciences, Center for Integrated Spectroscopy, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jisheng Xie
- Beijing National Laboratory for Molecular Sciences, Center for Integrated Spectroscopy, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhen Sun
- Beijing National Laboratory for Molecular Sciences, Center for Integrated Spectroscopy, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jihan Zhou
- Beijing National Laboratory for Molecular Sciences, Center for Integrated Spectroscopy, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Zuo W, Liu R, Cai J, Hu Y, Almazrouei M, Liu X, Cui T, Jia X, Apodaca E, Alami J, Chen Z, Li T, Xu W, Xiao X, Parkinson D, Yang Y, Xu GL, Amine K. Nondestructive Analysis of Commercial Batteries. Chem Rev 2025; 125:369-444. [PMID: 39688494 DOI: 10.1021/acs.chemrev.4c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Electrochemical batteries play a crucial role for powering portable electronics, electric vehicles, large-scale electric grids, and future electric aircraft. However, key performance metrics such as energy density, charging speed, lifespan, and safety raise significant consumer concerns. Enhancing battery performance hinges on a deep understanding of their operational and degradation mechanisms, from material composition and electrode structure to large-scale pack integration, necessitating advanced characterization methods. These methods not only enable improved battery performance but also facilitate early detection of substandard or potentially hazardous batteries before they cause serious incidents. This review comprehensively examines the operational principles, applications, challenges, and prospects of cutting-edge characterization techniques for commercial batteries, with a specific focus on in situ and operando methodologies. Furthermore, it explores how these powerful tools have elucidated the operational and degradation mechanisms of commercial batteries. By bridging the gap between advanced characterization techniques and commercial battery technologies, this review aims to guide the design of more sophisticated experiments and models for studying battery degradation and enhancement.
Collapse
Affiliation(s)
- Wenhua Zuo
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Rui Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jiyu Cai
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yonggang Hu
- State Key Lab for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Manar Almazrouei
- Department of Mechanical and Aerospace Engineering, United Arab Emirates University, Al Ain, Abu Dhabi 15551, United Arab Emirates
| | - Xiangsi Liu
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang China
| | - Tony Cui
- Henry M. Gunn High School, 780 Arastradero Road, Palo Alto, California 94306, United States
| | - Xin Jia
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Emory Apodaca
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jakob Alami
- Birchwood High School, Parsonage Lane, Bishop's Stortford, CM23 5BD Hertfordshire, United Kingdom
| | - Zonghai Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Tianyi Li
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Wenqian Xu
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xianghui Xiao
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Dilworth Parkinson
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yong Yang
- State Key Lab for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gui-Liang Xu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, The University of Chicago, 5801 South Ellis Ave., Chicago, Illinois 60637, United States
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, The University of Chicago, 5801 South Ellis Ave., Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Olshin PK, Park WW, Kim YJ, Choi YJ, Mamonova DV, Kolesnikov IE, Afanaseva EV, Kwon OH. Boltzmann-Distribution-Driven Cathodoluminescence Thermometry in In Situ Transmission Electron Microscopy. ACS NANO 2024; 18:33441-33451. [PMID: 39604087 DOI: 10.1021/acsnano.4c10126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Nanothermometry in in situ transmission electron microscopy (TEM) is useful for comprehending the functioning mechanisms of the heterogeneous matter through real-time observations. Herein, we introduce a Boltzmann-distribution-driven cathodoluminescence (CL) nanothermometry for in situ local temperature probing in TEM. The population distribution across the close-lying Stark sublevels of dysprosium ions in an yttrium vanadate matrix follows the Boltzmann distribution, enabling the use of the CL-intensity ratio as a thermometry over a wide temperature range of 103-435 K with a relative sensitivity exceeding 3% K-1 and precision of ±2%. Superior to other CL-based thermometries, the present approach is independent of electron-beam parameters and dopant concentration, extending the robustness and applicability of CL-based nanothermometry in electron microscopy. We further demonstrate the real-time mapping of the temperature distribution across a TEM grid under laser irradiation.
Collapse
Affiliation(s)
- Pavel K Olshin
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Won-Woo Park
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ye-Jin Kim
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ye-Jin Choi
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Daria V Mamonova
- Department of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Ilya E Kolesnikov
- Center for Optical and Laser Materials Research, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Elena V Afanaseva
- Department of Chemistry, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Oh-Hoon Kwon
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
5
|
Han J, Sun J, Chen S, Zhang S, Qi L, Husile A, Guan J. Structure-Activity Relationships in Oxygen Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408139. [PMID: 39344559 DOI: 10.1002/adma.202408139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Oxygen electrocatalysis, as the pivotal circle of many green energy technologies, sets off a worldwide research boom in full swing, while its large kinetic obstacles require remarkable catalysts to break through. Here, based on summarizing reaction mechanisms and in situ characterizations, the structure-activity relationships of oxygen electrocatalysts are emphatically overviewed, including the influence of geometric morphology and chemical structures on the electrocatalytic performances. Subsequently, experimental/theoretical research is combined with device applications to comprehensively summarize the cutting-edge oxygen electrocatalysts according to various material categories. Finally, future challenges are forecasted from the perspective of catalyst development and device applications, favoring researchers to promote the industrialization of oxygen electrocatalysis at an early date.
Collapse
Affiliation(s)
- Jingyi Han
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Jingru Sun
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Siyu Chen
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Siying Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Luoluo Qi
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Anaer Husile
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| |
Collapse
|
6
|
Krasheninnikov AV, Lin YC, Suenaga K. Graphene Bilayer as a Template for Manufacturing Novel Encapsulated 2D Materials. NANO LETTERS 2024; 24. [PMID: 39364880 PMCID: PMC11487710 DOI: 10.1021/acs.nanolett.4c03654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Bilayer graphene (BLG) has recently been used as a tool to stabilize encapsulated single sheets of various layered materials and tune their properties. It was also discovered that the protecting action of graphene sheets makes it possible to synthesize completely new two-dimensional materials (2DMs) inside the BLG by intercalating various atoms and molecules. In comparison to the bulk graphite, BLG allows for easier intercalation and a much larger increase in the interlayer separation of the sheets. Moreover, it enables studying the atomic structure of the intercalated 2DM by using high-resolution transmission electron microscopy. In this review, we summarize the recent progress in this area, with a special focus on new materials created inside BLG. We compare the experimental findings with the theoretical predictions, pay special attention to the discrepancies, and outline the challenges in the field. Finally, we discuss unique opportunities offered by intercalation into 2DMs beyond graphene and their heterostructures.
Collapse
Affiliation(s)
- Arkady V. Krasheninnikov
- Institute
of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf 01328 Dresden, Germany
- The
Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka 567-0047, Japan
| | - Yung-Chang Lin
- The
Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka 567-0047, Japan
- Nanomaterials
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Kazu Suenaga
- The
Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka 567-0047, Japan
- Nanomaterials
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| |
Collapse
|
7
|
Yu Y, Qiao Z, Ding C. Built-In Electric Field Boost Photocatalytic Degradation of Pollutants in Wastewater. CHEM REC 2024; 24:e202400106. [PMID: 39321420 DOI: 10.1002/tcr.202400106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Indexed: 09/27/2024]
Abstract
The photocatalysis technique shows significant potential for wastewater degradation; however, the rapid recombination of photogenerated holes and electrons severely limits its photocatalytic efficiency. This situation necessitates the development of effective strategies to tackle these challenges. One well-documented approach is built-in electric field engineering in heterojunctions or composites, which has been shown to enhance electron transfer and thereby reduce the recombination of electrons and holes. This strategy has proven highly effective in significantly improving photocatalytic activity for the degradation of pollutants in wastewater. In this context, we summarize recent advancements in built-in electric field engineering in photocatalysts, highlighting the fundamentals and modifications of this approach, as well as its positive impact on photocatalytic performance in the degradation of wastewater pollutants.
Collapse
Affiliation(s)
- Yang Yu
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, China
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013, Zhenjiang, China
| | - Zhiyong Qiao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, China
- Jiangsu Ruilante New Materials Co., Ltd., Yangzhou, 211400, China
- Institute of Mechanics and Advanced Materials, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Changming Ding
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, China
- Jiangsu Ruilante New Materials Co., Ltd., Yangzhou, 211400, China
| |
Collapse
|
8
|
Ramasundaram S, Jeevanandham S, Vijay N, Divya S, Jerome P, Oh TH. Unraveling the Dynamic Properties of New-Age Energy Materials Chemistry Using Advanced In Situ Transmission Electron Microscopy. Molecules 2024; 29:4411. [PMID: 39339406 PMCID: PMC11433656 DOI: 10.3390/molecules29184411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The field of energy storage and conversion materials has witnessed transformative advancements owing to the integration of advanced in situ characterization techniques. Among them, numerous real-time characterization techniques, especially in situ transmission electron microscopy (TEM)/scanning TEM (STEM) have tremendously increased the atomic-level understanding of the minute transition states in energy materials during electrochemical processes. Advanced forms of in situ/operando TEM and STEM microscopic techniques also provide incredible insights into material phenomena at the finest scale and aid to monitor phase transformations and degradation mechanisms in lithium-ion batteries. Notably, the solid-electrolyte interface (SEI) is one the most significant factors that associated with the performance of rechargeable batteries. The SEI critically controls the electrochemical reactions occur at the electrode-electrolyte interface. Intricate chemical reactions in energy materials interfaces can be effectively monitored using temperature-sensitive in situ STEM techniques, deciphering the reaction mechanisms prevailing in the degradation pathways of energy materials with nano- to micrometer-scale spatial resolution. Further, the advent of cryogenic (Cryo)-TEM has enhanced these studies by preserving the native state of sensitive materials. Cryo-TEM also allows the observation of metastable phases and reaction intermediates that are otherwise challenging to capture. Along with these sophisticated techniques, Focused ion beam (FIB) induction has also been instrumental in preparing site-specific cross-sectional samples, facilitating the high-resolution analysis of interfaces and layers within energy devices. The holistic integration of these advanced characterization techniques provides a comprehensive understanding of the dynamic changes in energy materials. This review highlights the recent progress in employing state-of-the-art characterization techniques such as in situ TEM, STEM, Cryo-TEM, and FIB for detailed investigation into the structural and chemical dynamics of energy storage and conversion materials.
Collapse
Affiliation(s)
| | - Sampathkumar Jeevanandham
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida 201313, Uttar Pradesh, India
| | - Natarajan Vijay
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sivasubramani Divya
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Peter Jerome
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
9
|
Recalde-Benitez O, Pivak Y, Winkler R, Jiang T, Adabifiroozjaei E, Perez-Garza HH, Molina-Luna L. Multi-Stimuli Operando Transmission Electron Microscopy for Two-Terminal Oxide-Based Devices. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:200-207. [PMID: 38526872 DOI: 10.1093/mam/ozae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/30/2024] [Accepted: 03/02/2024] [Indexed: 03/27/2024]
Abstract
The integration of microelectromechanical systems (MEMS)-based chips for in situ transmission electron microscopy (TEM) has emerged as a highly promising technique in the study of nanoelectronic devices within their operational parameters. This innovative approach facilitates the comprehensive exploration of electrical properties resulting from the simultaneous exposure of these devices to a diverse range of stimuli. However, the control of each individual stimulus within the confined environment of an electron microscope is challenging. In this study, we present novel findings on the effect of a multi-stimuli application on the electrical performance of TEM lamella devices. To approximate the leakage current measurements of macroscale electronic devices in TEM lamellae, we have developed a postfocused ion beam (FIB) healing technique. This technique combines dedicated MEMS-based chips and in situ TEM gas cells, enabling biasing experiments under environmental conditions. Notably, our observations reveal a reoxidation process that leads to a decrease in leakage current for SrTiO3-based memristors and BaSrTiO3-based tunable capacitor devices following ion and electron bombardment in oxygen-rich environments. These findings represent a significant step toward the realization of multi-stimuli TEM experiments on metal-insulator-metal devices, offering the potential for further exploration and a deeper understanding of their intricate behavior.
Collapse
Affiliation(s)
- Oscar Recalde-Benitez
- Advanced Electron Microscopy Division, Institute of Materials Science, Department of Materials and Geosciences, Technische Universität Darmstadt, Peter-Grünber-strasse 2, Darmstadt 64287, Germany
| | - Yevheniy Pivak
- DENSsolutions BV, Informaticalaan 12, Delft 2628 ZD, The Netherlands
| | - Robert Winkler
- Advanced Electron Microscopy Division, Institute of Materials Science, Department of Materials and Geosciences, Technische Universität Darmstadt, Peter-Grünber-strasse 2, Darmstadt 64287, Germany
| | - Tianshu Jiang
- Advanced Electron Microscopy Division, Institute of Materials Science, Department of Materials and Geosciences, Technische Universität Darmstadt, Peter-Grünber-strasse 2, Darmstadt 64287, Germany
| | - Esmaeil Adabifiroozjaei
- Advanced Electron Microscopy Division, Institute of Materials Science, Department of Materials and Geosciences, Technische Universität Darmstadt, Peter-Grünber-strasse 2, Darmstadt 64287, Germany
| | | | - Leopoldo Molina-Luna
- Advanced Electron Microscopy Division, Institute of Materials Science, Department of Materials and Geosciences, Technische Universität Darmstadt, Peter-Grünber-strasse 2, Darmstadt 64287, Germany
| |
Collapse
|
10
|
Zorro F, Carbo-Argibay E, Ferreira PJ. Novel Method for the Preparation of Lamellas From Porous and Brittle Materials for In Situ TEM Heating/Biasing. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:41-48. [PMID: 38321710 DOI: 10.1093/micmic/ozad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 02/08/2024]
Abstract
A novel method for the preparation of lamellas made from porous and brittle compressed green powder using a focused ion beam (FIB) is described. One of the main purposes for the development of this methodology is to use this type of samples in micro-electromechanical systems (MEMS) chips for in situ transmission electron microscopy heating/biasing experiments, concomitant with maintaining the mechanical integrity and the absence of contamination of samples. This is accomplished through a modification of the standard FIB procedure for the preparation of lamellas, the adaptation of conventional chips, as well as the specific transfer of the lamella onto the chips. This method is versatile enough to be implemented in most commercially available FIB systems and MEMS chips.
Collapse
Affiliation(s)
- Fátima Zorro
- Mechanical Engineering Department and IDMEC, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Enrique Carbo-Argibay
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Paulo J Ferreira
- Mechanical Engineering Department and IDMEC, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
- Materials Science and Engineering Program, University of Texas at Austin, 204 E. Dean Keeton Street, Austin, TX 78712, USA
| |
Collapse
|
11
|
Bijelić L, Ruiz-Zepeda F, Hodnik N. The role of high-resolution transmission electron microscopy and aberration corrected scanning transmission electron microscopy in unraveling the structure-property relationships of Pt-based fuel cells electrocatalysts. Inorg Chem Front 2024; 11:323-341. [PMID: 38235274 PMCID: PMC10790562 DOI: 10.1039/d3qi01998e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
Platinum-based fuel cell electrocatalysts are structured on a nano level in order to extend their active surface area and maximize the utilization of precious and scarce platinum. Their performance is dictated by the atomic arrangement of their surface layers atoms via structure-property relationships. Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) are the preferred methods for characterizing these catalysts, due to their capacity to achieve local atomic-level resolutions. Size, morphology, strain and local composition are just some of the properties of Pt-based nanostructures that can be obtained by (S)TEM. Furthermore, advanced methods of (S)TEM are able to provide insights into the quasi-in situ, in situ or even operando stability of these nanostructures. In this review, we present state-of-the-art applications of (S)TEM in the investigation and interpretation of structure-activity and structure-stability relationships.
Collapse
Affiliation(s)
- Lazar Bijelić
- Laboratory for Electrocatalysis, Department of Materials Chemistry, National Insititute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- University of Nova Gorica Vipavska 13 Nova Gorica SI-5000 Slovenia
| | - Francisco Ruiz-Zepeda
- Laboratory for Electrocatalysis, Department of Materials Chemistry, National Insititute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- Department of Physics and Chemistry of Materials, Institute for Metals and Technology IMT Lepi pot 11 1000 Ljubljana Slovenia
| | - Nejc Hodnik
- Laboratory for Electrocatalysis, Department of Materials Chemistry, National Insititute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- University of Nova Gorica Vipavska 13 Nova Gorica SI-5000 Slovenia
| |
Collapse
|
12
|
Zúñiga-Miranda J, Guerra J, Mueller A, Mayorga-Ramos A, Carrera-Pacheco SE, Barba-Ostria C, Heredia-Moya J, Guamán LP. Iron Oxide Nanoparticles: Green Synthesis and Their Antimicrobial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2919. [PMID: 37999273 PMCID: PMC10674528 DOI: 10.3390/nano13222919] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
The rise of antimicrobial resistance caused by inappropriate use of these agents in various settings has become a global health threat. Nanotechnology offers the potential for the synthesis of nanoparticles (NPs) with antimicrobial activity, such as iron oxide nanoparticles (IONPs). The use of IONPs is a promising way to overcome antimicrobial resistance or pathogenicity because of their ability to interact with several biological molecules and to inhibit microbial growth. In this review, we outline the pivotal findings over the past decade concerning methods for the green synthesis of IONPs using bacteria, fungi, plants, and organic waste. Subsequently, we delve into the primary challenges encountered in green synthesis utilizing diverse organisms and organic materials. Furthermore, we compile the most common methods employed for the characterization of these IONPs. To conclude, we highlight the applications of these IONPs as promising antibacterial, antifungal, antiparasitic, and antiviral agents.
Collapse
Affiliation(s)
- Johana Zúñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Julio Guerra
- Facultad de Ingeniería en Ciencias Aplicadas, Universidad Técnica del Norte, Ibarra 100107, Ecuador;
| | - Alexander Mueller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA;
| | - Arianna Mayorga-Ramos
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador;
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Linda P. Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| |
Collapse
|
13
|
Lin H, Yu J, Chen F, Li R, Xia BY, Xu ZL. Visualizing the Interfacial Chemistry in Multivalent Metal Anodes by Transmission Electron Microscopy. SMALL METHODS 2023; 7:e2300561. [PMID: 37415543 DOI: 10.1002/smtd.202300561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/24/2023] [Indexed: 07/08/2023]
Abstract
Multivalent metal batteries (MMBs) have been considered potentially high-energy and low-cost alternatives to commercial Li-ion batteries, thus attracting tremendous research interest for energy-storage applications. However, the plating and stripping of multivalent metals (i.e., Zn, Ca, Mg) suffer from low Coulombic efficiencies and short cycle life, which are largely rooted in the unstable solid electrolyte interphase. Apart from exploring new electrolytes or artificial layers for robust interphases, fundamental works on deciphering interfacial chemistry have also been conducted. This work is dedicated to summarizing the state-of-the-art advances in understanding the interphases for multivalent metal anodes revealed by transmission electron microscopy (TEM) methods. Operando and cryogenic TEM with high spatial and temporal resolutions realize the dynamic visualization of the vulnerable chemical structures in interphase layers. Following a scrutinization of the interphases on different metal anodes, we elucidate their features for appealing multivalent metal anodes. Finally, perspectives are proposed for the remaining issues on analyzing and regulating interphases for practical MMBs.
Collapse
Affiliation(s)
- Huijun Lin
- Research Institute for Advanced Manufacturing, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Jingya Yu
- Research Institute for Advanced Manufacturing, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Feiyang Chen
- Research Institute for Advanced Manufacturing, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Renjie Li
- Research Institute for Advanced Manufacturing, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, P. R. China
| | - Zheng-Long Xu
- Research Institute for Advanced Manufacturing, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
- State Key Laboratory of Ultraprecision Machining Technology, the Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| |
Collapse
|
14
|
Zhang X, Zhou Y, Chen Y, Li M, Yu H, Li X. Advanced In Situ TEM Microchip with Excellent Temperature Uniformity and High Spatial Resolution. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094470. [PMID: 37177673 PMCID: PMC10181734 DOI: 10.3390/s23094470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/22/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
Transmission electron microscopy (TEM) is a highly effective method for scientific research, providing comprehensive analysis and characterization. However, traditional TEM is limited to observing static material structures at room temperature within a high-vacuum environment. To address this limitation, a microchip was developed for in situ TEM characterization, enabling the real-time study of material structure evolution and chemical process mechanisms. This microchip, based on microelectromechanical System (MEMS) technology, is capable of introducing multi-physics stimulation and can be used in conjunction with TEM to investigate the dynamic changes of matter in gas and high-temperature environments. The microchip design ensures a high-temperature uniformity in the sample observation area, and a system of tests was established to verify its performance. Results show that the temperature uniformity of 10 real-time observation windows with a total area of up to 1130 μm2 exceeded 95%, and the spatial resolution reached the lattice level, even in a flowing atmosphere of 1 bar.
Collapse
Affiliation(s)
- Xuelin Zhang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufan Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Chen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Yu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxin Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Zhang J, Ji Y, Liu H, Cheng N, Guo S, Yang M, Ren L, Ge B. Approaching Elaborate Control of the Nano-Products of Carbothermal Reduction Reaction Through In Situ Identification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206404. [PMID: 36610052 DOI: 10.1002/smll.202206404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Atomic understanding of a chemical reaction can realize the programmable design and synthesis of desired products with specific compositions and structures. Through directly monitoring the phase transition and tracking the dynamic evolution of atoms in a chemical reaction, in situ transmission electron microscopy (TEM) techniques offer the feasibility of revealing the reaction kinetics at the atomic level. Nevertheless, such investigation is quite challenging, especially for reactions involving multi-phase and complex interfaces, such as the widely adopted carbothermal reduction (CTR) reactions. Herein, in-situ TEM is applied to monitor the CTR of Co3 O4 nanocubes on reduced graphene oxide nanosheets. Together with the first-principle calculation, the migration route of Co atoms during the phase transition of the CTR reaction is revealed. Meanwhile, the interfacial edge-dislocations/stress-gradient is identified as a result of the atomistic diffusion, which in turn can affect the morphology variation of the reactants. Accordingly, controllable synthesis of Co-based nanostructure with a desirable phase and structure has been achieved. This work not only provides atomic kinetic insight into CTR reactions but also offers a novel strategy for the design and synthesis of functional nanostructures for emerging energy technologies.
Collapse
Affiliation(s)
- Jialin Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Yuan Ji
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Huating Liu
- School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Ningyan Cheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Siqi Guo
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Ming Yang
- School of Physics, Beihang University, Beijing, 100191, P. R. China
| | - Long Ren
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
16
|
Time-resolved transmission electron microscopy for nanoscale chemical dynamics. Nat Rev Chem 2023; 7:256-272. [PMID: 37117417 DOI: 10.1038/s41570-023-00469-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/24/2023]
Abstract
The ability of transmission electron microscopy (TEM) to image a structure ranging from millimetres to Ångströms has made it an indispensable component of the toolkit of modern chemists. TEM has enabled unprecedented understanding of the atomic structures of materials and how structure relates to properties and functions. Recent developments in TEM have advanced the technique beyond static material characterization to probing structural evolution on the nanoscale in real time. Accompanying advances in data collection have pushed the temporal resolution into the microsecond regime with the use of direct-electron detectors and down to the femtosecond regime with pump-probe microscopy. Consequently, studies have deftly applied TEM for understanding nanoscale dynamics, often in operando. In this Review, time-resolved in situ TEM techniques and their applications for probing chemical and physical processes are discussed, along with emerging directions in the TEM field.
Collapse
|
17
|
Zhang S, Tian X, Zheng Y, Zhang Y, Ye W. In situ TEM observations of growth mechanisms of PbO nanoparticles from a Sm-doped PMN-PT matrix. NANOSCALE 2022; 14:13801-13811. [PMID: 36102882 DOI: 10.1039/d2nr03809a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An excess PbO is usually added to raw materials to compensate for PbO volatilization during high-temperature sintering of a (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) piezoelectric material. However, the detailed growth mechanism of liquid phase and solid phase PbO due to excess PbO during the sintering process is still unknown. Here, the evolution behavior and growth mechanism of PbO nanoparticles from a Sm-doped 0.70PMN-0.30PT (Sm-PMN-PT) matrix were in situ observed using transmission electron microscopy with the help of electron beam irradiation. It was found that PbO nanodroplets firstly separated from the Sm-PMN-PT matrix, leading to rapid growth of newly formed PbO nanodroplets. Then, these nanodroplets coalesced into solid phase PbO nanoparticles with their size increased. After that, small solid phase nanoparticles further grew into large PbO nanoparticles by either rapidly engulfing adjacent nanodroplets and nanoparticles or slowly merging by matching these same crystal planes of adjacent nanoparticles. Finally, a heterojunction was formed between the formed large PbO nanoparticles and Sm-PMN-PT matrix. Our investigations demonstrate that the excess PbO could provide a liquid environment at the interface of Sm-PMN-PT, and the PbO nanoparticles formed act as the secondary phase at the grain boundaries of the Sm-PMN-PT matrix. This work provides a deep understanding of the role of excess PbO in the synthesis of lead-based piezoelectric materials.
Collapse
Affiliation(s)
- Shuang Zhang
- College of Physics, State Key Laboratory of Bio-fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Xue Tian
- College of Physics, State Key Laboratory of Bio-fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Ying Zheng
- College of Physics, State Key Laboratory of Bio-fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Yongcheng Zhang
- College of Physics, State Key Laboratory of Bio-fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Wanneng Ye
- College of Physics, State Key Laboratory of Bio-fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
18
|
Olszta M, Hopkins D, Fiedler KR, Oostrom M, Akers S, Spurgeon SR. An Automated Scanning Transmission Electron Microscope Guided by Sparse Data Analytics. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-11. [PMID: 35686442 DOI: 10.1017/s1431927622012065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Artificial intelligence (AI) promises to reshape scientific inquiry and enable breakthrough discoveries in areas such as energy storage, quantum computing, and biomedicine. Scanning transmission electron microscopy (STEM), a cornerstone of the study of chemical and materials systems, stands to benefit greatly from AI-driven automation. However, present barriers to low-level instrument control, as well as generalizable and interpretable feature detection, make truly automated microscopy impractical. Here, we discuss the design of a closed-loop instrument control platform guided by emerging sparse data analytics. We hypothesize that a centralized controller, informed by machine learning combining limited a priori knowledge and task-based discrimination, could drive on-the-fly experimental decision-making. This platform may unlock practical, automated analysis of a variety of material features, enabling new high-throughput and statistical studies.
Collapse
Affiliation(s)
- Matthew Olszta
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Derek Hopkins
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Kevin R Fiedler
- College of Arts and Sciences, Washington State University - Tri-Cities, Richland, WA 99354, USA
| | - Marjolein Oostrom
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Sarah Akers
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Steven R Spurgeon
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
19
|
Cao P, Tang P, Bekheet MF, Du H, Yang L, Haug L, Gili A, Bischoff B, Gurlo A, Kunz M, Dunin-Borkowski RE, Penner S, Heggen M. Atomic-Scale Insights into Nickel Exsolution on LaNiO 3 Catalysts via In Situ Electron Microscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:786-796. [PMID: 35059098 PMCID: PMC8762657 DOI: 10.1021/acs.jpcc.1c09257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Using a combination of in situ bulk and surface characterization techniques, we provide atomic-scale insight into the complex surface and bulk dynamics of a LaNiO3 perovskite material during heating in vacuo. Driven by the outstanding activity LaNiO3 in the methane dry reforming reaction (DRM), attributable to the decomposition of LaNiO3 during DRM operation into a Ni//La2O3 composite, we reveal the Ni exsolution dynamics both on a local and global scale by in situ electron microscopy, in situ X-ray diffraction and in situ X-ray photoelectron spectroscopy. To reduce the complexity and disentangle thermal from self-activation and reaction-induced effects, we embarked on a heating experiment in vacuo under comparable experimental conditions in all methods. Associated with the Ni exsolution, the remaining perovskite grains suffer a drastic shrinkage of the grain volume and compression of the structure. Ni particles mainly evolve at grain boundaries and stacking faults. Sophisticated structure analysis of the elemental composition by electron-energy loss mapping allows us to disentangle the distribution of the different structures resulting from LaNiO3 decomposition on a local scale. Important for explaining the DRM activity, our results indicate that most of the Ni moieties are oxidized and that the formation of NiO occurs preferentially at grain edges, resulting from the reaction of the exsolved Ni particles with oxygen released from the perovskite lattice during decomposition via a spillover process from the perovskite to the Ni particles. Correlating electron microscopy and X-ray diffraction data allows us to establish a sequential two-step process in the decomposition of LaNiO3 via a Ruddlesden-Popper La2NiO4 intermediate structure. Exemplified for the archetypical LaNiO3 perovskite material, our results underscore the importance of focusing on both surface and bulk characterization for a thorough understanding of the catalyst dynamics and set the stage for a generalized concept in the understanding of state-of-the art catalyst materials on an atomic level.
Collapse
Affiliation(s)
- Pengfei Cao
- School of Chemical
Engineering and Technology, Xi’an
Jiaotong University, Xi’an 710049, China
- Ernst Ruska-Centre
for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Leo-Brandt-Strasse 1, D-52428 Jülich, Germany
| | - Pengyi Tang
- Ernst Ruska-Centre
for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Leo-Brandt-Strasse 1, D-52428 Jülich, Germany
- State Key Laboratory
of Information Functional Materials, 2020 X-Lab, ShangHai Institute
of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Maged F. Bekheet
- Chair of Advanced
Ceramic Materials, Institut für Werkstoffwissenschaften und
-technologien, Technical University Berlin, Hardenbergstrasse 40, D-10623 Berlin, Germany
| | - Hongchu Du
- Ernst Ruska-Centre
for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Leo-Brandt-Strasse 1, D-52428 Jülich, Germany
| | - Luyan Yang
- Ernst Ruska-Centre
for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Leo-Brandt-Strasse 1, D-52428 Jülich, Germany
| | - Leander Haug
- Department of Physical Chemistry, University
of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Albert Gili
- Chair of Advanced
Ceramic Materials, Institut für Werkstoffwissenschaften und
-technologien, Technical University Berlin, Hardenbergstrasse 40, D-10623 Berlin, Germany
| | - Benjamin Bischoff
- Chair of Advanced
Ceramic Materials, Institut für Werkstoffwissenschaften und
-technologien, Technical University Berlin, Hardenbergstrasse 40, D-10623 Berlin, Germany
| | - Aleksander Gurlo
- Chair of Advanced
Ceramic Materials, Institut für Werkstoffwissenschaften und
-technologien, Technical University Berlin, Hardenbergstrasse 40, D-10623 Berlin, Germany
| | - Martin Kunz
- Advanced Light Source, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rafal E. Dunin-Borkowski
- Ernst Ruska-Centre
for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Leo-Brandt-Strasse 1, D-52428 Jülich, Germany
| | - Simon Penner
- Department of Physical Chemistry, University
of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Marc Heggen
- Ernst Ruska-Centre
for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Leo-Brandt-Strasse 1, D-52428 Jülich, Germany
| |
Collapse
|
20
|
Petersen H, Weidenthaler C. A review of recent developments for the in situ/operando characterization of nanoporous materials. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00977c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This is a review on up-to-date in situ/operando methods for a comprehensive characterization of nanoporous materials. The group of nanoporous materials is constantly growing, and with it, the variety of...
Collapse
|
21
|
Cherednichenko K, Kopitsyn D, Batasheva S, Fakhrullin R. Probing Antimicrobial Halloysite/Biopolymer Composites with Electron Microscopy: Advantages and Limitations. Polymers (Basel) 2021; 13:3510. [PMID: 34685269 PMCID: PMC8538282 DOI: 10.3390/polym13203510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 01/07/2023] Open
Abstract
Halloysite is a tubular clay nanomaterial of the kaolin group with a characteristic feature of oppositely charged outer and inner surfaces, allowing its selective spatial modification. The natural origin and specific properties of halloysite make it a potent material for inclusion in biopolymer composites with polysaccharides, nucleic acids and proteins. The applications of halloysite/biopolymer composites range from drug delivery and tissue engineering to food packaging and the creation of stable enzyme-based catalysts. Another important application field for the halloysite complexes with biopolymers is surface coatings resistant to formation of microbial biofilms (elaborated communities of various microorganisms attached to biotic or abiotic surfaces and embedded in an extracellular polymeric matrix). Within biofilms, the microorganisms are protected from the action of antibiotics, engendering the problem of hard-to-treat recurrent infectious diseases. The clay/biopolymer composites can be characterized by a number of methods, including dynamic light scattering, thermo gravimetric analysis, Fourier-transform infrared spectroscopy as well as a range of microscopic techniques. However, most of the above methods provide general information about a bulk sample. In contrast, the combination of electron microscopy with energy-dispersive X-ray spectroscopy allows assessment of the appearance and composition of biopolymeric coatings on individual nanotubes or the distribution of the nanotubes in biopolymeric matrices. In this review, recent contributions of electron microscopy to the studies of halloysite/biopolymer composites are reviewed along with the challenges and perspectives in the field.
Collapse
Affiliation(s)
- Kirill Cherednichenko
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas «Gubkin University», 65 Leninsky Prospekt, 119991 Moscow, Russia; (K.C.); (D.K.)
| | - Dmitry Kopitsyn
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas «Gubkin University», 65 Leninsky Prospekt, 119991 Moscow, Russia; (K.C.); (D.K.)
| | - Svetlana Batasheva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı, 18, 420008 Kazan, Republic of Tatarstan, Russia;
| | - Rawil Fakhrullin
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas «Gubkin University», 65 Leninsky Prospekt, 119991 Moscow, Russia; (K.C.); (D.K.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı, 18, 420008 Kazan, Republic of Tatarstan, Russia;
| |
Collapse
|
22
|
Zhao G, Yao Y, Lu W, Liu G, Guo X, Tricoli A, Zhu Y. Direct Observation of Oxygen Evolution and Surface Restructuring on Mn 2O 3 Nanocatalysts Using In Situ and Ex Situ Transmission Electron Microscopy. NANO LETTERS 2021; 21:7012-7020. [PMID: 34369791 DOI: 10.1021/acs.nanolett.1c02378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Direct observation of oxygen evolution reaction (OER) on catalyst surface may significantly advance the mechanistic understanding of OER catalysis. Here, we report the first real-time nanoscale observation of chemical OER on Mn2O3 nanocatalyst surface using an in situ liquid holder in a transmission electron microscope (TEM). The oxygen evolution process can be directly visualized from the development of oxygen nanobubbles around nanocatalysts. The high spatial and temporal resolution further enables us to unravel the real-time formation of a surface layer on Mn2O3, whose thickness oscillation reflects a partially reversible surface restructuring relevant to OER catalysis. Ex situ atomic-resolution TEM on the residual surface layer after OER reveals its amorphous nature with reduced Mn valence and oxygen coordination. Besides shedding light on the dynamic OER catalysis, our results also demonstrate a powerful strategy combining in situ and ex situ TEM for investigating various chemical reaction mechanisms in liquid.
Collapse
Affiliation(s)
- Guangming Zhao
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yunduo Yao
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Wei Lu
- University Research Facility in Materials Characterization and Device Fabrication, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Guanyu Liu
- Nanotechnology Research Laboratory, Research School of Engineering, The Australian National University, Canberra, Australian Capital Territory 2601 Australia
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| | - Xuyun Guo
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Antonio Tricoli
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
- Nanotechnology Research Laboratory, Research School of Chemistry, College of Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
23
|
Zhou S, Liu S, Chen W, Cheng Y, Fan J, Zhao L, Xiao X, Chen YH, Luo CX, Wang MS, Mei T, Wang X, Liao HG, Zhou Y, Huang L, Sun SG. A "Biconcave-Alleviated" Strategy to Construct Aspergillus niger-Derived Carbon/MoS 2 for Ultrastable Sodium Ion Storage. ACS NANO 2021; 15:13814-13825. [PMID: 34379979 DOI: 10.1021/acsnano.1c05590] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Two-dimensional layered materials commonly face hindered electron transfer and poor structure stability, thus limiting their application in high-rate and long-term sodium ion batteries. In the current study, we adopt finite element simulation to guide the rational design of nanostructures. By calculating the von Mises stress distribution of a series of carbon materials, we find that the hollow biconcave structure could effectively alleviate the stress concentration resulting from expansion. Accordingly, we propose a biconcave-alleviated strategy based on the Aspergillus niger-derived carbon (ANDC) to construct ANDC/MoS2 with a hollow biconcave structure. The ANDC/MoS2 is endowed with an excellent long-term cyclability as an anode of sodium ion batteries, delivering a discharge capacity of 496 mAh g-1 after 1000 cycles at 1 A g-1. A capacity retention rate of 94.5% is achieved, an increase of almost seven times compared with the bare MoS2 nanosheets. Even at a high current density of 5 A g-1, a reversible discharge capacity around 400 mAh g-1 is maintained after 300 cycles. ANDC/MoS2 could also be used for efficient lithium storage. By using in situ TEM, we further reveal that the hollow biconcave structure of ANDC/MoS2 has enabled stable and fast sodiation/desodiation.
Collapse
Affiliation(s)
- Shiyuan Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Sangui Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Weixin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yong Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| | - JingJing Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Longze Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiang Xiao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - You-Hu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chen-Xu Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Ming-Sheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| | - Tao Mei
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Hong-Gang Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yao Zhou
- College of Energy, Xiamen University, Xiamen 361005, People's Republic of China
| | - Ling Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
24
|
Interfacial compatibility issues in rechargeable solid-state lithium metal batteries: a review. Sci China Chem 2021. [DOI: 10.1007/s11426-021-9985-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Kuchenbrod MT, Schubert US, Heintzmann R, Hoeppener S. Revisiting staining of biological samples for electron microscopy: perspectives for recent research. MATERIALS HORIZONS 2021; 8:685-699. [PMID: 34821312 DOI: 10.1039/d0mh01579b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This review revisits essential staining protocols for electron microscopy focussing on the visualization of active sites, i.e. enzymes, metabolites or proteins, in cells and tissues, which have been developed 50 to 60 years ago, however, never were established as standard protocols being used in electron microscopy in a routine fashion. These approaches offer numerous possibilities to expand the knowledge of cellular function and specifically address the localization of active compounds of these systems. It is our conviction, that many of these techniques are still useful, in particular when applied in conjunction with correlative light and electron microscopy. Revisiting specialized classical electron microscopy staining protocols for use in correlative microscopy is particularly promising, as some of these protocols were originally developed as staining methods for light microscopy. To account for this history, rather than summarizing the most recent achievements in literature, we instead first provide an overview of techniques that have been used in the past. While some of these techniques have been successfully implemented into modern microscopy techniques during recent years already, more possibilities are yet to be re-discovered and provide exciting new perspectives for their future use.
Collapse
Affiliation(s)
- Maren T Kuchenbrod
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena, Humboldstr. 10, 07743, Germany.
| | | | | | | |
Collapse
|
26
|
Li S, Wi TU, Ji M, Cui Z, Lee HW, Lu Z. The Role of Polymer and Inorganic Coatings to Enhance Interparticle Connections Diagnosed by In Situ Techniques. NANO LETTERS 2021; 21:1530-1537. [PMID: 33508942 DOI: 10.1021/acs.nanolett.0c05035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surface coating on alloy anodes renders an effective remedy to tolerate internal stress and alleviate the side reaction with electrolytes for long-lasting reversible lithium redox reactions in lithium-ion batteries. However, the role of surface coating on the interparticle connections of alloy anodes remains not fully understood. Herein, we exploit real-time lithiation and mechanic measurement of SnO2 nanoparticles via in situ TEM with different coating layers, including conducting polymer polypyrrole and metal oxide MnO2. As a result, polypyrrole is more flexible to accommodate the volume expansion issue. More importantly, the polypyrrole coating layers offer a large contact area and strong adhesion force between the SnO2 nanoparticles, ensuring fast lithiation kinetics and high cycling stability. These observations provide new insight into how the interparticle connections of alloy anodes with diverse coating approaches can impact battery performance, shedding light on the practical processing of the alloy anode materials for high-energy Li-ion batteries.
Collapse
Affiliation(s)
- Shiheng Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Tae-Ung Wi
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Ji
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Zhiyang Cui
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Hyun-Wook Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Zhenda Lu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China
| |
Collapse
|
27
|
Zhou F, Li S, Han K, Li Y, Liu YN. Polymerization inspired synthesis of MnO@carbon nanowires with long cycling stability for lithium ion battery anodes: growth mechanism and electrochemical performance. Dalton Trans 2021; 50:535-545. [PMID: 33337455 DOI: 10.1039/d0dt03540h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Manganese-based transition metal oxides are regarded as one kind of high capacity and low cost anode material for Li-ion batteries. To overcome the challenges of poor electrical conductivity and large volumetric expansion during the charging-discharging process of MnO, we here synthesize MnO@carbon (MnO@C) nanowires via the polymerization inspired in situ growth of [Mn-NTA] (NTA = nitrilotriacetic acid) precursor nanowires with a subsequent heat treatment process. The growth mechanism of [Mn-NTA] precursor nanowires was studied. The morphology of the precursor nanowires depended largely on the molar ratio of MnCl2 to NTA reactants. At a molar ratio of 2, the length of the [Mn-NTA] nanowires reached up to more than 140 μm. Furthermore, the as-synthesized MnO@C nanowires were integrated with a very low content of reduced graphene oxide (rGO) to prepare a self-standing paper-like MnO@C/rGO anode for lithium ion batteries without a binder. The MnO@C/rGO anode showed a unique structure with one-dimensional porous MnO nanowires hierarchically encapsulated by a conductive carbon framework. As a result, the self-standing electrode achieved a high capacity of 1368 mA h g-1 after 100 cycles at a current density of 100 mA g-1 and prominent cycling stability with a capacity of 689.9 mA h g-1 even after 1700 cycles at 2000 mA g-1.
Collapse
Affiliation(s)
- Fang Zhou
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China.
| | | | | | | | | |
Collapse
|
28
|
Chattot R, Bordet P, Martens I, Drnec J, Dubau L, Maillard F. Building Practical Descriptors for Defect Engineering of Electrocatalytic Materials. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02144] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Raphaël Chattot
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
- European Synchrotron Radiation Facility, ID 31 Beamline, BP 220, F-38043 Grenoble, France
| | - Pierre Bordet
- Univ. Grenoble Alpes, CNRS, Institut Néel, F-38000 Grenoble, France
| | - Isaac Martens
- European Synchrotron Radiation Facility, ID 31 Beamline, BP 220, F-38043 Grenoble, France
| | - Jakub Drnec
- European Synchrotron Radiation Facility, ID 31 Beamline, BP 220, F-38043 Grenoble, France
| | - Laetitia Dubau
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
| | - Frédéric Maillard
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
| |
Collapse
|
29
|
Abstract
A review with 132 references. Societal and regulatory pressures are pushing industry towards more sustainable energy sources, such as solar and wind power, while the growing popularity of portable cordless electronic devices continues. These trends necessitate the ability to store large amounts of power efficiently in rechargeable batteries that should also be affordable and long-lasting. Lithium-sulfur (Li-S) batteries have recently gained renewed interest for their potential low cost and high energy density, potentially over 2600 Wh kg−1. The current review will detail the most recent advances in early 2020. The focus will be on reports published since the last review on Li-S batteries. This review is meant to be helpful for beginners as well as useful for those doing research in the field, and will delineate some of the cutting-edge adaptations of many avenues that are being pursued to improve the performance and safety of Li-S batteries.
Collapse
|
30
|
Arciniegas MP, Castelli A, Brescia R, Serantes D, Ruta S, Hovorka O, Satoh A, Chantrell R, Pellegrino T. Unveiling the Dynamical Assembly of Magnetic Nanocrystal Zig-Zag Chains via In Situ TEM Imaging in Liquid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907419. [PMID: 32459051 DOI: 10.1002/smll.201907419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/23/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
The controlled assembly of colloidal magnetic nanocrystals is key to many applications such as nanoelectronics, storage memory devices, and nanomedicine. Here, the motion and ordering of ferrimagnetic nanocubes in water via liquid-cell transmission electron microscopy is directly imaged in situ. Through the experimental analysis, combined with molecular dynamics simulations and theoretical considerations, it is shown that the presence of highly competitive interactions leads to the formation of stable monomers and dimers, acting as nuclei, followed by a dynamic growth of zig-zag chain-like assemblies. It is demonstrated that such arrays can be explained by first, a maximization of short-range electrostatic interactions, which at a later stage become surpassed by magnetic forces acting through the easy magnetic axes of the nanocubes, causing their tilted orientation within the arrays. Moreover, in the confined volume of liquid in the experiments, interactions of the nanocube surfaces with the cell membranes, when irradiated at relatively low electron dose, slow down the kinetics of their self-assembly, facilitating the identification of different stages in the process. The study provides crucial insights for the formation of unconventional linear arrays made of ferrimagnetic nanocubes that are essential for their further exploitation in, for example, magnetic hyperthermia, magneto-transport devices, and nanotheranostic tools.
Collapse
Affiliation(s)
| | - Andrea Castelli
- Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Rosaria Brescia
- Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - David Serantes
- Applied Physics Department and Instituto de Investigacións Tecnolóxicas, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Sergiu Ruta
- Department of Physics, University of York, York, YO10 5DD, UK
| | - Ondrej Hovorka
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO16 7QF, UK
| | - Akira Satoh
- Faculty of System Science and Technology, Akita Prefecture University, Yurihonjo, 015-0055, Japan
| | - Roy Chantrell
- Department of Physics, University of York, York, YO10 5DD, UK
| | - Teresa Pellegrino
- Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
31
|
Ren XC, Zhang XQ, Xu R, Huang JQ, Zhang Q. Analyzing Energy Materials by Cryogenic Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908293. [PMID: 32249530 DOI: 10.1002/adma.201908293] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Safe and high-energy-density rechargeable batteries are increasingly indispensable in the pursuit of a wireless and fossil-free society. Advancements in present battery technologies and the investigation of next-generation batteries highly depend on the ever-deepening fundamental understanding and the rational designs of working electrodes, electrolytes, and interfaces. However, accurately analyzing energy materials and interfaces is severely hindered by their intrinsic limitations of air and electron-beam sensitivity, which restrains the research of energy materials in a low-efficiency trial-and-error paradigm. The emergence of cryogenic electron microscopy (cryo-EM) has enabled the nondestructive characterization of air- and electron-beam sensitive energy materials in the microscale and nanoscale, and even at atomic resolutions, affording closer insights into the primary chemistry and physics of working batteries. Herein, the development of cryo-EM and the applications in detecting energy materials are reviewed and analyzed from its overwhelming advantages in disclosing the underlying mystery of energy materials. Critical sample preparation methods as the precondition for cryo-EM are compared, which strongly affect the characterization accuracy. Furthermore, new developments in the analysis of energy materials, especially bulk electrodes and interfaces in lithium metal batteries, are presented according to different functions of cryo-EM. Finally, future directions of cryo-EM for analyzing energy materials are prospected.
Collapse
Affiliation(s)
- Xiao-Chuan Ren
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xue-Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Rui Xu
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jia-Qi Huang
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|