1
|
Liu Y, Xu J, Wang S, Li Y, Ji L, Xie D, Zhou J. Convenient Biochemical Testing Technologies for Oral Disease Risk Warning: Opportunities and Challenges. BIOSENSORS 2025; 15:327. [PMID: 40422066 DOI: 10.3390/bios15050327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/09/2025] [Accepted: 05/11/2025] [Indexed: 05/28/2025]
Abstract
In recent years, attention toward oral health issues has increased with economic development and improvements in quality of life. Biochemical testing technologies offer an efficient method for identifying insidious pathological changes in the oral cavity. Frequent home-based self-screening can enable early identification of dental disease risks, thus facilitating timely interventions. Convenient home-based biochemical testing methods must be user-friendly, cost-effective, and operable without specialized equipment or extensive training. This review summarizes recent advances in convenient biochemical testing methods for the detection and diagnosis of oral diseases, focusing on their reliability, user compliance, and practicality for home-based applications. This review highlights the significance of biomarker distribution imaging for simultaneously identifying multiple lesions and provides perspectives on future research directions. By promoting interdisciplinary collaboration in biochemical diagnostics, this review outlines pathways toward personalized oral healthcare, precision dentistry, and enhanced overall health outcomes.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Biomaterials Engineering Technology Research Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Jincheng Xu
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Siyuan Wang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yuanfang Li
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Li Ji
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Dong Xie
- Guangdong Biomaterials Engineering Technology Research Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Jianhua Zhou
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
2
|
Dewan M, Shrivastava D, Goyal L, Zwiri A, Hussein AF, Alam MK, Srivastava KC, Anil S. Recent Advancements and Applications of Nanosensors in Oral Health: Revolutionizing Diagnosis and Treatment. Eur J Dent 2025; 19:286-297. [PMID: 39750525 PMCID: PMC12020585 DOI: 10.1055/s-0044-1792010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Advances in the field of nanomaterials are laying the foundation for the fabrication of nanosensors that are sensitive, selective, specific, cost-effective, biocompatible, and versatile. Being highly sensitive and selective, nanosensors are crucial in detecting small quantities of analytes and early diagnosis of diseases. These devices, operating on the nanoscale, detect signals, such as physical, chemical, optical, electrochemical, or biological, and then transduce them into a readable form. They show great promise for real-time, point-of-care, and home-based applications in health care. With the integration of wireless technology, these nanosensors, specifically biosensors, can potentially revolutionize therapeutic techniques. These advancements particularly impact the oral cavity, the primary entry point for various bodily substances. Nanosensors can transform oral and dental health practices, enabling timely disease diagnosis and precise drug delivery. This review examines the recent advancements in nanobiosensors, exploring their applications in various oral health conditions while discussing their benefits and potential limitations.
Collapse
Affiliation(s)
- Meghna Dewan
- Sudha Rastogi College of Dental Sciences and Research, Faridabad, Haryana, India
| | - Deepti Shrivastava
- Division of Periodontics, Department of Preventive Dentistry, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| | - Lata Goyal
- Division of Periodontics, Department of Dentistry, All India Institute of Medical Sciences, Bathinda, India
| | - Abdalwhab Zwiri
- Department of Oral Surgery and Diagnostic Sciences, Faculty of Dentistry, Applied Sciences Private University, Amman, Jordan
| | - Areen Fareed Hussein
- Department of Oral Surgery and Diagnostic Sciences, Faculty of Dentistry, Applied Sciences Private University, Amman, Jordan
| | - Mohammad Khursheed Alam
- Division of Orthodontics, Department of Preventive Dentistry, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
- Department of Dental Research Cell, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
- Department of Public Health, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Kumar Chandan Srivastava
- Department of Oral & Maxillofacial Surgery & Diagnostic Sciences, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
- Department of Oral Medicine and Radiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Sukumaran Anil
- Department of Dentistry, Oral Health Institute, Hamad Medical Corporation, Doha, Qatar, College of Dental Medicine, Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Lu MC, Yang YC, Lee CJ, Chiu CW. Helicobacter pylori Detection Based on Synergistic Electromagnetic and Chemical Enhancement of Surface-Enhanced Raman Scattering in 3D Hotspot-Activated Gold Nanorods/Nano Mica Platelets/ZnO Quantum Dots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503562. [PMID: 40265978 DOI: 10.1002/advs.202503562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/06/2025] [Indexed: 04/24/2025]
Abstract
Gold nanorods (AuNRs) with a controllable aspect ratio are anchored on the surface of delaminated nano mica platelets (NMPs) in the presence of a cationic interfacial activator and protective agent enabling the positive charging of the AuNR and nanohybrid surfaces. The high anionic charge and specific surface area of NMPs stabilize AuNR growth and benefit the adsorption of anionic analytes. The nanohybrids (AuNRs/NMPs) exhibit a 3D hotspot effect due to self-assembly and feature regularly arranged AuNRs, thus enabling Raman signal enhancement and sensitive (limit of detection (LOD) = 10-9 m, Raman enhancement factor (EF) = 2.0 × 108) and reproducible (relative standard deviation (RSD) = 8.82%) adenine detection based on surface-enhanced Raman scattering (SERS). The further incorporation of ZnO quantum dots (QDs) affords nanohybrids (AuNRs/NMPs/ZnO QDs) that exhibit electromagnetic and chemical signal enhancement mechanisms and enable more sensitive and reproducible adenine detection (LOD = 10-10 m, EF = 1.6 × 109, RSD = 7.66%). AuNRs/NMPs/ZnO QDs are subsequently used for the selective and sensitive SERS-based detection of Helicobacter pylori (LOD = 90 CFU mL-1). Thus, this work paves the way for the noninvasive, nonfluorescent labeling, rapid, sensitive, selective, and reproducible detection of H. pylori.
Collapse
Affiliation(s)
- Ming-Chang Lu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Yung-Chi Yang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chia-Jung Lee
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chih-Wei Chiu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| |
Collapse
|
4
|
Dai C, Shi Z, Xu Y, Su L, Li X, Deng P, Wen H, Wang J, Ye Q, Han RPS, Liu Q. Wearable Multifunctional Hydrogel for Oral Microenvironment Visualized Sensing Coupled with Sonodynamic Bacterial Elimination and Tooth Whitening. Adv Healthc Mater 2025; 14:e2401269. [PMID: 39468859 DOI: 10.1002/adhm.202401269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Bacterial-driven dental caries and tooth discoloration are growing concerns as the most common oral health problems. Current diagnostic methods and treatment strategies hardly allow simultaneous early detection and non-invasive treatment of these oral diseases. Herein, a wearable multifunctional double network hydrogel combined with polyaniline and barium titanate (PANI@BTO) nanoparticles is developed for oral microenvironment visualized sensing and sonodynamic therapy. Due to the colorimetric properties of polyaniline, the hydrogel displays a highly sensitive and selective response for visualized sensing of oral acidic microenvironment. Meanwhile, the barium titanate in the hydrogel efficiently generates reactive oxygen species (ROS) under ultrasound irradiation, realizing non-invasive treatment in the oral cavity. Through bacterial elimination experiments and tooth whitening studies, the hydrogel can achieve the dual effect of effectively inhibiting the growth of cariogenic bacteria and degrading tooth surface pigments. Owing to the visualized sensing of the oral acidic microenvironment and efficient sonodynamic therapy function, the proposed hydrogel system offers a solution for the prevention of caries and tooth whitening, which is promising in developing the biomedical system targeting the simultaneous sensing and therapy for oral diseases.
Collapse
Affiliation(s)
- Chaobo Dai
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zhenghan Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yi Xu
- Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, P. R. China
| | - Lingkai Su
- Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, P. R. China
| | - Xin Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Peixue Deng
- Life Sciences Institute, Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China
| | - Hao Wen
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jiahao Wang
- Cancer Research Center, College of Computer Science, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Qing Ye
- Cancer Research Center, College of Computer Science, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Ray P S Han
- Cancer Research Center, College of Computer Science, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
5
|
Zong B, Wu S, Yang Y, Li Q, Tao T, Mao S. Smart Gas Sensors: Recent Developments and Future Prospective. NANO-MICRO LETTERS 2024; 17:54. [PMID: 39489808 PMCID: PMC11532330 DOI: 10.1007/s40820-024-01543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024]
Abstract
Gas sensor is an indispensable part of modern society with wide applications in environmental monitoring, healthcare, food industry, public safety, etc. With the development of sensor technology, wireless communication, smart monitoring terminal, cloud storage/computing technology, and artificial intelligence, smart gas sensors represent the future of gas sensing due to their merits of real-time multifunctional monitoring, early warning function, and intelligent and automated feature. Various electronic and optoelectronic gas sensors have been developed for high-performance smart gas analysis. With the development of smart terminals and the maturity of integrated technology, flexible and wearable gas sensors play an increasing role in gas analysis. This review highlights recent advances of smart gas sensors in diverse applications. The structural components and fundamental principles of electronic and optoelectronic gas sensors are described, and flexible and wearable gas sensor devices are highlighted. Moreover, sensor array with artificial intelligence algorithms and smart gas sensors in "Internet of Things" paradigm are introduced. Finally, the challenges and perspectives of smart gas sensors are discussed regarding the future need of gas sensors for smart city and healthy living.
Collapse
Affiliation(s)
- Boyang Zong
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Shufang Wu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People's Republic of China
| | - Yuehong Yang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Qiuju Li
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| | - Tian Tao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Shun Mao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
6
|
Hooshiar MH, Moghaddam MA, Kiarashi M, Al-Hijazi AY, Hussein AF, A Alrikabi H, Salari S, Esmaelian S, Mesgari H, Yasamineh S. Recent advances in nanomaterial-based biosensor for periodontitis detection. J Biol Eng 2024; 18:28. [PMID: 38637787 PMCID: PMC11027550 DOI: 10.1186/s13036-024-00423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
Periodontitis, a chronic inflammatory condition caused by bacteria, often causes gradual destruction of the components that support teeth, such as the alveolar bone, cementum, periodontal ligament, and gingiva. This ultimately results in teeth becoming loose and eventually falling out. Timely identification has a crucial role in preventing and controlling its progression. Clinical measures are used to diagnose periodontitis. However, now, there is a hunt for alternative diagnostic and monitoring methods due to the progress of technology. Various biomarkers have been assessed using multiple bodily fluids as sample sources. Furthermore, conventional periodontal categorization factors do not provide significant insights into the present disease activity, severity and amount of tissue damage, future development, and responsiveness to treatment. In recent times, there has been a growing utilization of nanoparticle (NP)-based detection strategies to create quick and efficient detection assays. Every single one of these platforms leverages the distinct characteristics of NPs to identify periodontitis. Plasmonic NPs include metal NPs, quantum dots (QDs), carbon base NPs, and nanozymes, exceptionally potent light absorbers and scatterers. These find application in labeling, surface-enhanced spectroscopy, and color-changing sensors. Fluorescent NPs function as photostable and sensitive instruments capable of labeling various biological targets. This article presents a comprehensive summary of the latest developments in the effective utilization of various NPs to detect periodontitis.
Collapse
Affiliation(s)
| | - Masoud Amiri Moghaddam
- Assistant Professor of Periodontics, Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Kiarashi
- College of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | | | - Hareth A Alrikabi
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Sara Salari
- Doctor of Dental Surgery, Islamic Azad University of Medical Sciences, Esfahan, Iran
| | - Samar Esmaelian
- Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran.
| | - Hassan Mesgari
- Department, Faculty of Dentistry Oral and Maxillofacial Surgery, Islamic Azad University, Tehran Branch, Tehran, Iran.
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
7
|
Hu C, Zhou J, Zhang J, Zhao Y, Xie C, Yin W, Xie J, Li H, Xu X, Zhao L, Qin M, Li J. A structural color hydrogel for diagnosis of halitosis and screening of periodontitis. MATERIALS HORIZONS 2024; 11:519-530. [PMID: 37982193 DOI: 10.1039/d3mh01563g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Oral pathogens can produce volatile sulfur compounds (VSCs), which is the main reason for halitosis and indicates the risk of periodontitis. High-sensitivity detection of exhaled VSCs is urgently desired for promoting the point-of-care testing (POCT) of halitosis and screening of periodontitis. However, current detection methods often require bulky and costly instruments, as well as professional training, making them impractical for widespread detection. Here, a structural color hydrogel for naked-eye detection of exhaled VSCs is presented. VSCs can reduce disulfide bonds within the network, leading to expansion of the hydrogel and thus change of the structural color. A linear detection range of 0-1 ppm with a detection limit of 61 ppb can be achieved, covering the typical VSC concentration in the breath of patients with periodontitis. Furthermore, visual and in situ monitoring of Porphyromonas gingivalis responsible for periodontitis can be realized. By integrating the hydrogels into a sensor array, the oral health conditions of patients with halitosis can be evaluated and distinguished, offering risk assessment of periodontitis. Combined with a smartphone capable of color analysis, POCT of VSCs can be achieved, providing an approach for the monitoring of halitosis and screening of periodontitis.
Collapse
Affiliation(s)
- Chuanshun Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jieyu Zhou
- West China School/Hospital of Stomatology, Department of Periodontics, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yonghang Zhao
- College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Chunyu Xie
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Yin
- West China School/Hospital of Stomatology, Department of Preventive Dentistry, Sichuan University, Chengdu 610041, China
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Huiying Li
- College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Zhao
- West China School/Hospital of Stomatology, Department of Periodontics, Sichuan University, Chengdu 610041, China
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Chato L, Regentova E. Survey of Transfer Learning Approaches in the Machine Learning of Digital Health Sensing Data. J Pers Med 2023; 13:1703. [PMID: 38138930 PMCID: PMC10744730 DOI: 10.3390/jpm13121703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Machine learning and digital health sensing data have led to numerous research achievements aimed at improving digital health technology. However, using machine learning in digital health poses challenges related to data availability, such as incomplete, unstructured, and fragmented data, as well as issues related to data privacy, security, and data format standardization. Furthermore, there is a risk of bias and discrimination in machine learning models. Thus, developing an accurate prediction model from scratch can be an expensive and complicated task that often requires extensive experiments and complex computations. Transfer learning methods have emerged as a feasible solution to address these issues by transferring knowledge from a previously trained task to develop high-performance prediction models for a new task. This survey paper provides a comprehensive study of the effectiveness of transfer learning for digital health applications to enhance the accuracy and efficiency of diagnoses and prognoses, as well as to improve healthcare services. The first part of this survey paper presents and discusses the most common digital health sensing technologies as valuable data resources for machine learning applications, including transfer learning. The second part discusses the meaning of transfer learning, clarifying the categories and types of knowledge transfer. It also explains transfer learning methods and strategies, and their role in addressing the challenges in developing accurate machine learning models, specifically on digital health sensing data. These methods include feature extraction, fine-tuning, domain adaptation, multitask learning, federated learning, and few-/single-/zero-shot learning. This survey paper highlights the key features of each transfer learning method and strategy, and discusses the limitations and challenges of using transfer learning for digital health applications. Overall, this paper is a comprehensive survey of transfer learning methods on digital health sensing data which aims to inspire researchers to gain knowledge of transfer learning approaches and their applications in digital health, enhance the current transfer learning approaches in digital health, develop new transfer learning strategies to overcome the current limitations, and apply them to a variety of digital health technologies.
Collapse
Affiliation(s)
- Lina Chato
- Department of Electrical and Computer Engineering, University of Nevada, Las Vegas, NV 89154, USA;
| | | |
Collapse
|
9
|
Li S, Zhang J, He J, Liu W, Wang Y, Huang Z, Pang H, Chen Y. Functional PDMS Elastomers: Bulk Composites, Surface Engineering, and Precision Fabrication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304506. [PMID: 37814364 DOI: 10.1002/advs.202304506] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 10/11/2023]
Abstract
Polydimethylsiloxane (PDMS)-the simplest and most common silicone compound-exemplifies the central characteristics of its class and has attracted tremendous research attention. The development of PDMS-based materials is a vivid reflection of the modern industry. In recent years, PDMS has stood out as the material of choice for various emerging technologies. The rapid improvement in bulk modification strategies and multifunctional surfaces has enabled a whole new generation of PDMS-based materials and devices, facilitating, and even transforming enormous applications, including flexible electronics, superwetting surfaces, soft actuators, wearable and implantable sensors, biomedicals, and autonomous robotics. This paper reviews the latest advances in the field of PDMS-based functional materials, with a focus on the added functionality and their use as programmable materials for smart devices. Recent breakthroughs regarding instant crosslinking and additive manufacturing are featured, and exciting opportunities for future research are highlighted. This review provides a quick entrance to this rapidly evolving field and will help guide the rational design of next-generation soft materials and devices.
Collapse
Affiliation(s)
- Shaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiaqi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jian He
- Yizhi Technology (Shanghai) Co., Ltd, No. 99 Danba Road, Putuo District, Shanghai, 200062, China
| | - Weiping Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Center for Composites, COMAC Shanghai Aircraft Manufacturing Co. Ltd, Shanghai, 201620, China
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
- Maryland NanoCenter, University of Maryland, College Park, MD, 20742, USA
| | - Zhongjie Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
10
|
Huang C, Zhou J, Gu S, Pan P, Hou Y, Xiong H, Tang T, Wu Q, Wu J. Mouthguards Based on the Shear-Stiffening Effect: Excellent Shock Absorption Ability with Softness Perception. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53242-53250. [PMID: 37934067 DOI: 10.1021/acsami.3c12648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Mouthguards are used to prevent craniomaxillofacial injuries when collisions happen during contact and high-speed sports. However, poor compliance with mouthguard wear in athletes is attributed to discomfort because of its thickness and hardness. These drawbacks significantly restrict their protective performance for oral tissues and applications during contact sports; as a result, the incidence of craniomaxillofacial injuries increases. In this study, non-Newton material is introduced into mouthguard material and then a mouthguard with shear-stiffening behavior is fabricated, which is named the shear-stiffening mouthguard (SSM). Compared with commercial mouthguard materials (Erkoflex and Erkoloc-pro), SSMs show remarkable enhancement of shock absorption ability with an approximately 60% reduction in peak force relative to commercial materials and approximately 3-fold extensive buffer time. Moreover, Young's modulus of SSMs (average 0.48 MPa) is extremely lower compared to commercial materials (22.88 MPa for Erkoflex and 26.71 MPa for Erkoloc-pro). This manifests that SSMs have not only excellent shock absorption ability but also softness perception. Moreover, SSMs show biocompatibility in vitro. In conclusion, this work provides a platform to develop a new type of thin and soft mouthguard with a shear-stiffening effect and broadens the horizon in protecting oral tissues with shear-stiffening materials.
Collapse
Affiliation(s)
- Chao Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan ,China
| | - Jing Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan ,China
| | - Shiyu Gu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, Sichuan ,China
| | - Peiyue Pan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan ,China
| | - Yujia Hou
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, Sichuan ,China
| | - Hui Xiong
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, Sichuan ,China
| | - Tian Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan ,China
| | - Qi Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, Sichuan ,China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, Sichuan ,China
| |
Collapse
|
11
|
Zhao G, Wu T, Wang R, Li Z, Yang Q, Wang L, Zhou H, Jin B, Liu H, Fang Y, Wang D, Xu F. Hydrogel-assisted microfluidic spinning of stretchable fibers via fluidic and interfacial self-adaptations. SCIENCE ADVANCES 2023; 9:eadj5407. [PMID: 37862410 PMCID: PMC10588953 DOI: 10.1126/sciadv.adj5407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 10/22/2023]
Abstract
Stretchable polymeric fibers have enormous potential, but their production requires rigorous environmental controls and considerable resource consumption. It's also challenging for elastic polymers with high performance but poor spinnability, such as silicones like polydimethylsiloxane and Ecoflex. We present a hydrogel-assisted microfluidic spinning (HAMS) method to address these challenges by encapsulating their prepolymers within arbitrarily long, protective, and sacrificable hydrogel fibers. By designing simple apparatuses and manipulating the fluidic and interfacial self-adaptations of oil/water flows, we successfully produce fibers with widely controllable diameter (0.04 to 3.70 millimeters), notable length, high quality (e.g., smooth surface, whole-length uniformity, and rounded section), and remarkable stretchability (up to 1300%) regardless of spinnability. Uniquely, this method allows an easy, effective, and controllable reshaping production of helical fibers with exceptional stretchability and mechanical compliance. We deeply reveal the mechanisms in producing these fibers and demonstrate their potential as textile components, optoelectronic devices, and actuators. The HAMS method would be a powerful tool for mass-producing high-quality stretchable fibers.
Collapse
Affiliation(s)
- Guoxu Zhao
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, P.R. China
| | - Tinglong Wu
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, P.R. China
| | - Ruhai Wang
- School of Material Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, P.R. China
| | - Zhong Li
- School of Material Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, P.R. China
| | - Qingzhen Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Lei Wang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, P.R. China
| | - Hongwei Zhou
- School of Material Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, P.R. China
| | - Birui Jin
- School of Material Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, P.R. China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Yunsheng Fang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Dong Wang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, P.R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
| |
Collapse
|
12
|
Huang W, Ding Q, Wang H, Wu Z, Luo Y, Shi W, Yang L, Liang Y, Liu C, Wu J. Design of stretchable and self-powered sensing device for portable and remote trace biomarkers detection. Nat Commun 2023; 14:5221. [PMID: 37633989 PMCID: PMC10460451 DOI: 10.1038/s41467-023-40953-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023] Open
Abstract
Timely and remote biomarker detection is highly desired in personalized medicine and health protection but presents great challenges in the devices reported so far. Here, we present a cost-effective, flexible and self-powered sensing device for H2S biomarker analysis in various application scenarios based on the structure of galvanic cells. The sensing mechanism is attributed to the change in electrode potential resulting from the chemical adsorption of gas molecules on the electrode surfaces. Intrinsically stretchable organohydrogels are used as solid-state electrolytes to enable stable and long-term operation of devices under stretching deformation or in various environments. The resulting open-circuit sensing device exhibits high sensitivity, low detection limit, and excellent selectivity for H2S. Its application in the non-invasive halitosis diagnosis and identification of meat spoilage is demonstrated, emerging great commercial value in portable medical electronics and food security. A wireless sensory system has also been developed for remote H2S monitoring with the participation of Bluetooth and cloud technologies. This work breaks through the shortcomings in the traditional chemiresistive sensors, offering a direction and theoretical foundation for designing wearable sensors catering to other stimulus detection requirements.
Collapse
Affiliation(s)
- Wenxi Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, 510275, Guangzhou, China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, 510275, Guangzhou, China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, 510275, Guangzhou, China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yibing Luo
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, 510275, Guangzhou, China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Le Yang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56th Lingyuanxi Road, 510055, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, 510080, Guangzhou, Guangdong, China
| | - Yujie Liang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56th Lingyuanxi Road, 510055, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, 510080, Guangzhou, Guangdong, China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, 510275, Guangzhou, China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
13
|
Song Z, Zhou S, Qin Y, Xia X, Sun Y, Han G, Shu T, Hu L, Zhang Q. Flexible and Wearable Biosensors for Monitoring Health Conditions. BIOSENSORS 2023; 13:630. [PMID: 37366995 DOI: 10.3390/bios13060630] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Flexible and wearable biosensors have received tremendous attention over the past decade owing to their great potential applications in the field of health and medicine. Wearable biosensors serve as an ideal platform for real-time and continuous health monitoring, which exhibit unique properties such as self-powered, lightweight, low cost, high flexibility, detection convenience, and great conformability. This review introduces the recent research progress in wearable biosensors. First of all, the biological fluids often detected by wearable biosensors are proposed. Then, the existing micro-nanofabrication technologies and basic characteristics of wearable biosensors are summarized. Then, their application manners and information processing are also highlighted in the paper. Massive cutting-edge research examples are introduced such as wearable physiological pressure sensors, wearable sweat sensors, and wearable self-powered biosensors. As a significant content, the detection mechanism of these sensors was detailed with examples to help readers understand this area. Finally, the current challenges and future perspectives are proposed to push this research area forward and expand practical applications in the future.
Collapse
Affiliation(s)
- Zhimin Song
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shu Zhou
- Department of Anesthesiology, Jilin Cancer Hospital, Changchun 130021, China
| | - Yanxia Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiangjiao Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yanping Sun
- School of Biomedical Engineering, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, International Health Science Innovation Center, Research Center for Biosensor and Nanotheranostic, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Tong Shu
- School of Biomedical Engineering, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, International Health Science Innovation Center, Research Center for Biosensor and Nanotheranostic, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Liang Hu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
14
|
Chen E, Wang T, Tu Y, Sun Z, Ding Y, Gu Z, Xiao S. ROS-scavenging biomaterials for periodontitis. J Mater Chem B 2023; 11:482-499. [PMID: 36468674 DOI: 10.1039/d2tb02319a] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Periodontitis is defined as a chronic inflammatory disease in which the continuous activation of oxidative stress surpasses the reactive oxygen species (ROS) scavenging capacity of the endogenous antioxidative defense system. Studies have demonstrated that ROS-scavenging biomaterials should be promising candidates for periodontitis therapy. To benefit the understanding and design of scavenging biomaterials for periodontitis, this review details the relationship between ROS and periodontitis, including direct and indirect damage, the application of ROS-scavenging biomaterials in periodontitis, including organic and inorganic ROS-scavenging biomaterials, and the various dosage forms of fabricated materials currently used for periodontal therapy. Finally, the current situation and further prospects of ROS-scavenging biomaterials in periodontal applications are summarized. Expecting that improved ROS-scavenging biomaterials could be better designed and developed for periodontal and even clinical application.
Collapse
Affiliation(s)
- Enni Chen
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yuan Tu
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - ZhiYuan Sun
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yi Ding
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shimeng Xiao
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
15
|
Cui H, You Y, Cheng GW, Lan Z, Zou KL, Mai QY, Han YH, Chen H, Zhao YY, Yu GT. Advanced materials and technologies for oral diseases. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2156257. [PMID: 36632346 PMCID: PMC9828859 DOI: 10.1080/14686996.2022.2156257] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Oral disease, as a class of diseases with very high morbidity, brings great physical and mental damage to people worldwide. The increasing burden and strain on individuals and society make oral diseases an urgent global health problem. Since the treatment of almost all oral diseases relies on materials, the rapid development of advanced materials and technologies has also promoted innovations in the treatment methods and strategies of oral diseases. In this review, we systematically summarized the application strategies in advanced materials and technologies for oral diseases according to the etiology of the diseases and the comparison of new and old materials. Finally, the challenges and directions of future development for advanced materials and technologies in the treatment of oral diseases were refined. This review will guide the fundamental research and clinical translation of oral diseases for practitioners of oral medicine.
Collapse
Affiliation(s)
- Hao Cui
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yan You
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Wang Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhou Lan
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Long Zou
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Qiu-Ying Mai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-Hua Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Yue Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Guang-Tao Yu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Zhou ZX, Hu W, Zhao Z, Fu H. Photochemically Driven Polymeric Biocompatible and Antimicrobial Thiol-Acrylate Nanocomposite Suitable for Dental Restoration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46313-46323. [PMID: 36194167 DOI: 10.1021/acsami.2c13592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development a photochemically driven polymeric composite for dental restorative materials to restore tooth cavities with antibacterial, biocompatibility, and outstanding mechanical properties is an urgent need for clinical application in stomatology. Herein, a series of polyurethane acrylate (PUA) prepolymers and antibacterial polyurethane acrylate quaternary ammonium salts (PUAQASs) were synthesized, and their mechanical and biological properties were explored. The unique secondary mercaptan with a long shelf life and low odor was used to reduce oxygen inhibition and increase cross-linking density; meanwhile, modified photocurable nano zirconia (nano ZrO2) enhances mechanical properties of the nanocomposites and possesses preeminent dispersion in the matrix. The results show that minimal inhibitory concentrations (MICs) of PUAQASs are 200 and 800 μg/mL for Staphylococcus aureus and Escherichia coli, respectively. The addition of secondary thiols significantly increases the photopolymerization rate and monomer conversion. The highest hardness and modulus reach 1.8 and 8.7 GPa compared to 1.8 and 8.3 GPa for commercial resin. The lap shear stress on the pig bone is 912 MPa, and that on commercial resin is 921 MPa. Most importantly, the photochemically driven polymeric composite has excellent biocompatibility and significantly better antimicrobial properties than commonly used commercial resins.
Collapse
Affiliation(s)
- Zhao-Xi Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Green Chemical Product Technology, South China University of Technology, Guangzhou, Guangdong510640, People's Republic of China
| | - Wei Hu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Green Chemical Product Technology, South China University of Technology, Guangzhou, Guangdong510640, People's Republic of China
| | - Zhuowei Zhao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Green Chemical Product Technology, South China University of Technology, Guangzhou, Guangdong510640, People's Republic of China
| | - Heqing Fu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Green Chemical Product Technology, South China University of Technology, Guangzhou, Guangdong510640, People's Republic of China
| |
Collapse
|
17
|
Berger V, Luo Z, Leroux JC. 3D printing of a controlled fluoride delivery device for the prevention and treatment of tooth decay. J Control Release 2022; 348:870-880. [PMID: 35752251 DOI: 10.1016/j.jconrel.2022.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/05/2022] [Accepted: 06/18/2022] [Indexed: 10/17/2022]
Abstract
Dental decay is a highly prevalent chronic disease affecting people from all ages. Clinically, fluoride supplementation is the primary strategy in the prevention of dental decay. However, the current existing self-application formulations such as gels or mouthwashes are rapidly cleared after administration, resulting in modest efficacy even after repeated applications. Therefore, a user-friendly formulation that can provide sustained fluoride release in the oral cavity is of great interest for dental decay prevention. Herein, we report the utilization of fused deposition modelling to fabricate personalised mouthguards, which allow local and prolonged fluoride elution. Composite filaments comprising sodium fluoride and polymers with tuneable hydrophobicity were produced using blends of poly(ε-caprolactone) (PCL) and poly(vinyl alcohol) or poly(ethylene glycol) (PEG). The materials exhibited suitable mechanical properties for dental devices as well as different release kinetics depending on their composition. Ex vivo studies were performed on decayed human teeth using the 3D printed tooth caps that precisely fit the complex geometries of each specimen. A significant elevation of fluoride content in the lesion mineral in contact with the PCL/PEG tooth caps was achieved compared to the ones in contact with solutions mimicking dental care products. In conclusion, this study suggested that a sustained localized drug release of fluoride from personalised 3D printed mouthguards at the device-enamel interface can improve the incorporation of fluoride in the tooth matrix and prevent lesion progression.
Collapse
Affiliation(s)
- Valentine Berger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Zhi Luo
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.
| |
Collapse
|
18
|
Ma D, Chen B, Li Y, Pang X, Fu Q, Xiao Z, Shi Z, Li X, Luo C, Zhou Z, Chen Y, Zhou J. Au@Ag Nanorods-PDMS Wearable Mouthguard as a Visualized Detection Platform for Screening Dental Caries and Periodontal Diseases. Adv Healthc Mater 2022; 11:e2102682. [PMID: 34957703 DOI: 10.1002/adhm.202102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/19/2021] [Indexed: 11/10/2022]
Abstract
The development of easy-to-use, low-cost, and visualized detection platforms for screening human dental caries and periodontal diseases is in urgent demand. In this work, a Au@Ag nanorods-poly(dimethylsiloxane) (Au@Ag NRs-PDMS) wearable mouthguard, which can visualize the tooth lesion sites through the color change of it at the corresponding locations, is presented. The Au@Ag NRs-PDMS composite exhibits a distinct color response to hydrogen sulfide (H2 S) gas generated by bacterial decay at the lesion sites. Moreover, the Au@Ag NRs-PDMS mouthguard is demonstrated to own desired mechanical properties, excellent chemical stability, as well as good biocompatibility, and can accurately locate the lesion sites in human oral cavity. These findings suggest that the mouthguard has the potential to be utilized on a large scale to help people self-monitor their oral health in daily life, and treat oral diseases locally.
Collapse
Affiliation(s)
- Dongxu Ma
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510275 China
| | - Baiqi Chen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510275 China
| | - Yuanfang Li
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510275 China
| | - Xueyuan Pang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510275 China
| | - Quanying Fu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510275 China
| | - Zihan Xiao
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510275 China
| | - Zhonghong Shi
- State Key Laboratory of Optoelectronic Materials and Technologies School of Physics Sun Yat‐sen University Guangzhou 510275 China
| | - Xiaolei Li
- Department of Orthodontics Guanghua School of Stomatology Hospital of Stomatology Sun Yat‐sen University Guangzhou 510055 China
| | - Chongdai Luo
- Department of Stomatology Guangzhou Women and Children's Medical Center Guangzhou 510275 China
| | - Zhang‐kai Zhou
- State Key Laboratory of Optoelectronic Materials and Technologies School of Physics Sun Yat‐sen University Guangzhou 510275 China
| | - Yin Chen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510275 China
| | - Jianhua Zhou
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510275 China
| |
Collapse
|
19
|
Tan X, Zheng J. A Novel Porous PDMS-AgNWs-PDMS (PAP)-Sponge-Based Capacitive Pressure Sensor. Polymers (Basel) 2022; 14:polym14081495. [PMID: 35458245 PMCID: PMC9031670 DOI: 10.3390/polym14081495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022] Open
Abstract
The development of capacitive pressure sensors with low cost, high sensitivity and facile fabrication techniques is desirable for flexible electronics and wearable devices. In this project, a highly sensitive and flexible capacitive pressure sensor was fabricated by sandwiching a porous PAP sponge dielectric layer between two copper electrodes. The porous PAP sponge dielectric layer was fabricated by introducing highly conductive silver nanowires (AgNWs) into the PDMS sponge with 100% sucrose as a template and with a layer of polydimethylsiloxane (PDMS) film coating the surface. The sensitivity of the PAP sponge capacitive pressure sensor was optimized by increasing the load amount of AgNWs. Experimental results demonstrated that when the load amount of AgNWs increased to 150 mg in the PAP sponge, the sensitivity of the sensor was the highest in the low-pressure range of 0–1 kPa, reaching 0.62 kPa−1. At this point, the tensile strength and elongation of sponge were 1.425 MPa and 156.38%, respectively. In addition, the specific surface area of PAP sponge reached 2.0 cm2/g in the range of 0–10 nm pore size, and showed excellent waterproof performance with high elasticity, low hysteresis, light weight, and low density. Furthermore, as an application demonstration, ~110 LED lights were shown to light up when pressed onto the optimized sensor. Hence, this novel porous PAP-sponge-based capacitive pressure sensor has a wide range of potential applications in the field of wearable electronics.
Collapse
|
20
|
Chen W, Wang Z, Wang L, Chen X. Smart Chemical Engineering-Based Lightweight and Miniaturized Attachable Systems for Advanced Drug Delivery and Diagnostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106701. [PMID: 34643302 DOI: 10.1002/adma.202106701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Smart attachable systems have attracted much attention owing to their capabilities in terms of body performance evaluation, disease diagnostics, and drug delivery. Recent advances in chemical and engineering techniques provide many opportunities to improve device fabrication and applications owing to the advantages of being lightweight and easy to control as well as their battery absence and functional diversity. This review highlights the latest developments in the field of chemical engineering-based lightweight and miniaturized attachable systems, which are mainly inspired by the natural world. Their applications for real-time monitoring, point-of-care sampling, biomarker detection, and controlled release are discussed thoroughly with respect to specific products/prototypes. The perspectives of the field, including persistence guarantee, burden reduction, and personality improvement, are also discussed. It is believed that chemical engineering-based lightweight and miniaturized attachable systems have good potential in both clinical and industrial fields, indicating a large potential to improve human lives in the near future.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Huazhong University of Science & Technology, Wuhan, 430022, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology and Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Departments of Chemical and Biomolecular Engineering and Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
21
|
Jiang N, Zhao S, Wang S, Lu Z. Proteomics of Streptococcus mutans to Reveal the Antibiofilm Formation Mechanism of Ag/ZnO Nanocomposites with Light-Emitting Diode Radiation. Int J Nanomedicine 2021; 16:7741-7757. [PMID: 34848957 PMCID: PMC8612293 DOI: 10.2147/ijn.s333432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/30/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction As a biofilm-associated disease, dental caries benefits from nanoparticle (NP)-based therapies. Streptococcus mutans (S. mutans) is a primary aetiologic agent for dental caries development. We successfully applied a synergistic therapy of Ag/ZnO nanocomposites combined with light-emitting diode (LED) radiation to inhibit S. mutans biofilms. However, the antibiofilm mechanism has not been fully elucidated, and little is known about the biofilm formation ability of bacteria that survive NP-based therapies. Methods This study explored the antibiofilm formation mechanism of this synergistic therapy by an integrated approach based upon proteomics. Results Synergistic therapy killed 99.8% of bacteria, while the biofilm formation ability of 0.2% surviving bacteria was inhibited. The proteomic responses of S. mutans to synergistic therapy were comprehensively characterized to unveil the mechanism of bacterial death and biofilm formation inhibition of the surviving bacteria. In total, 55 differentially expressed proteins (12 upregulated and 43 downregulated) were recorded. The bioinformatic analysis demonstrated that cellular integrity damage and regulated expression of structure-associated proteins were the main reasons for bacterial death. In addition, the proteomic study indicated the potential inhibition of metabolism in surviving bacteria and provided a biofilm-related network consisting of 17 differentially expressed proteins, explaining the multiantibiofilm formation actions. Finally, we reported and verified the inhibitory effects of synergistic therapy on sucrose metabolism and D-alanine metabolism, which disturbed the biofilm formation of surviving bacteria. Conclusion Our findings demonstrated that synergistic therapy killed most bacteria and inhibited the surviving bacteria from forming biofilms. Furthermore, the antibiofilm formation mechanism was revealed by proteomics analysis of S. mutans after synergistic therapy and subsequent metabolic studies. Our success may provide a showcase to explore the antibiofilm formation mechanism of NP-based therapies using proteomic studies.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Shuaiwei Zhao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Shilei Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Zhong Lu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| |
Collapse
|
22
|
Kim HI, Raja N, Choi Y, Kim J, Sung A, Choi YJ, Yun HS, Park H. Selective Detection of an Infection Biomarker by an Osteo-Friend Scaffold: Development of a Multifunctional Artificial Bone Substitute. BIOSENSORS 2021; 11:473. [PMID: 34940230 PMCID: PMC8699388 DOI: 10.3390/bios11120473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022]
Abstract
Developments in three-dimensional (3D) printing technologies have led to many potential applications in various biomedical fields, especially artificial bone substitutes (ABSs). However, due to the characteristics of artificial materials, biocompatibility and infection remain issues. Here, multifunctional ABSs have been designed to overcome these issues by the inclusion of a biochemical modality that allows simultaneous detection of an infection biomarker by osteo-friend 3D scaffolds. The developed multifunctional scaffolds consist of calcium-deficient hydroxyapatite (CDHA), which has a similar geometric structure and chemical composition to human bone, and gold nanoparticles (Au NPs), which assists osteogenesis and modulates the fluorescence of labels in their microenvironment. The Au NPs were subsequently conjugated with fluorescent dye-labeled probe DNA, which allowed selective interaction with a specific target biomarker, and the fluorescent signal of the dye was temporally quenched by the Au NP-derived Förster resonance energy transfer (FRET). When the probe DNA unfolded to bind to the target biomarker, the fluorescence signal was recovered due to the increased distance between the dye and Au NPs. To demonstrate this sensing mechanism, a microbial oligonucleotide was selected as a target biomarker. Consequently, the multifunctional scaffold simultaneously facilitated osteogenic proliferation and the detection of the infection biomarker.
Collapse
Affiliation(s)
- Hye-In Kim
- Department of Advanced Biomaterials Research, Ceramics Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon 51508, Korea; (H.-I.K.); (N.R.); (Y.C.); (J.K.); (A.S.); (Y.-J.C.); (H.-s.Y.)
| | - Naren Raja
- Department of Advanced Biomaterials Research, Ceramics Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon 51508, Korea; (H.-I.K.); (N.R.); (Y.C.); (J.K.); (A.S.); (Y.-J.C.); (H.-s.Y.)
| | - Youngjun Choi
- Department of Advanced Biomaterials Research, Ceramics Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon 51508, Korea; (H.-I.K.); (N.R.); (Y.C.); (J.K.); (A.S.); (Y.-J.C.); (H.-s.Y.)
| | - Jueun Kim
- Department of Advanced Biomaterials Research, Ceramics Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon 51508, Korea; (H.-I.K.); (N.R.); (Y.C.); (J.K.); (A.S.); (Y.-J.C.); (H.-s.Y.)
- Department of Advanced Materials Engineering, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Aram Sung
- Department of Advanced Biomaterials Research, Ceramics Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon 51508, Korea; (H.-I.K.); (N.R.); (Y.C.); (J.K.); (A.S.); (Y.-J.C.); (H.-s.Y.)
| | - Yeong-Jin Choi
- Department of Advanced Biomaterials Research, Ceramics Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon 51508, Korea; (H.-I.K.); (N.R.); (Y.C.); (J.K.); (A.S.); (Y.-J.C.); (H.-s.Y.)
| | - Hui-suk Yun
- Department of Advanced Biomaterials Research, Ceramics Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon 51508, Korea; (H.-I.K.); (N.R.); (Y.C.); (J.K.); (A.S.); (Y.-J.C.); (H.-s.Y.)
- Department of Advanced Materials Engineering, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Honghyun Park
- Department of Advanced Biomaterials Research, Ceramics Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon 51508, Korea; (H.-I.K.); (N.R.); (Y.C.); (J.K.); (A.S.); (Y.-J.C.); (H.-s.Y.)
| |
Collapse
|
23
|
Jin X, Li L, Zhao S, Li X, Jiang K, Wang L, Shen G. Assessment of Occlusal Force and Local Gas Release Using Degradable Bacterial Cellulose/Ti 3C 2T x MXene Bioaerogel for Oral Healthcare. ACS NANO 2021; 15:18385-18393. [PMID: 34739207 DOI: 10.1021/acsnano.1c07891] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Dental diseases resulting from movement disorders and volatile gases are very common. The classic method for detecting occlusal force is effective; however, its function is one-time rather than real-time monitoring, and the technology is very time-consuming. Herein, we report a multifunctional, flexible, and degradable bacterial cellulose/Ti3C2Tx MXene bioaerogel for the accurate detection of occlusal force and early diagnosis of periodontal diseases. Combining the mechanical properties of MXene and the abundant functional groups of bacterial cellulose, 3D porous bioaerogels exhibit both pressure-sensitive and ammonia (NH3)-sensitive responses. By integrating these substances into a flexible array, the resulting device can distinguish the intensity, location, and even the time sequence of the occlusion force; moreover, it can provide NH3 gas and occlusion force response signals. Therefore, this technology is promising for both disease diagnosis and oral health. In addition, the introduction of a renewable biomaterial allows the bioaerogel to degrade completely using a low-concentration hydrogen peroxide solution, making the device environmentally friendly and satisfying the demands for sustainable development.
Collapse
Affiliation(s)
- Xiujuan Jin
- School of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang 471023, China
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China
| | - Linlin Li
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China
| | - Shufang Zhao
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China
| | - Xiaohong Li
- School of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang 471023, China
| | - Kai Jiang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA & Key Laboratory of Digital Hepetobiliary Surgery, Chinese PLA, Beijing 100853, China
| | - Lili Wang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China
| | - Guozhen Shen
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China
| |
Collapse
|
24
|
Yang B, Jiang X, Fang X, Kong J. Wearable chem-biosensing devices: from basic research to commercial market. LAB ON A CHIP 2021; 21:4285-4310. [PMID: 34672310 DOI: 10.1039/d1lc00438g] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wearable chem-biosensors have been garnering tremendous interest due to the significant potential in tailored healthcare diagnostics and therapeutics. With the development of the medical diagnostics revolution, wearable chem-biosensors as a rapidly emerging wave allow individuals to perform on-demand detection and obtain the required in-depth information. In contrast to commercial wearables, which tend to be miniaturized for measuring physical activities, the recent progressive wearable chem-biosensing device have mainly focused on non-invasive or minimally invasive monitoring biomarkers at the molecular level. Wearables is a multidisciplinary subject, and chem-biosensing is one of the most significant technologies. In this review, the currently basic academic research of wearable chem-biosensing devices and its commercial transformation were summarized and highlighted. Moreover, some representative wearable products on the market for individual health managements are presented. Strategies for the identification and sensing of biomarkers are discussed to further promote the development of wearable chem-biosensing devices. We also shared the limitations and breakthroughs of the next generation of chemo-biosensor wearables, from home use to clinical diagnosis.
Collapse
Affiliation(s)
- Bin Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, P. R. China.
| | - Xingyu Jiang
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Xueen Fang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, P. R. China.
| | - Jilie Kong
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, P. R. China.
| |
Collapse
|
25
|
Zhang H, Guo J, Wang Y, Sun L, Zhao Y. Stretchable and Conductive Composite Structural Color Hydrogel Films as Bionic Electronic Skins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102156. [PMID: 34436831 PMCID: PMC8529447 DOI: 10.1002/advs.202102156] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/30/2021] [Indexed: 05/19/2023]
Abstract
Electronic skins have received increasing attention in biomedical areas. Current efforts about electronic skins are focused on the development of multifunctional materials to improve their performance. Here, the authors propose a novel natural-synthetic polymers composite structural color hydrogel film with high stretchability, flexibility, conductivity, and superior self-reporting ability to construct ideal multiple-signal bionic electronic skins. The composite hydrogel film is prepared by using the mixture of polyacrylamide (PAM), silk fibroin (SF), poly(3,4-ethylenedioxythiophene):poly (4-styrene sulfonate) (PEDOT:PSS, PP), and graphene oxide (GO) to replicate colloidal crystal templates and construct inverse opal scaffolds, followed by subsequent acid treatment. Due to these specific structures and components, the resultant film is imparted with vivid structural color and high conductivity while retaining the composite hydrogel's original stretchability and flexibility. The authors demonstrate that the composite hydrogel film has obvious color variation and electromechanical properties during the stretching and bending process, which could thus be utilized as a multi-signal response electronic skin to realize real-time color sensing and electrical response during human motions. These features indicate that the proposed composite structural color hydrogel film can widen the practical value of bionic electronic skins.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jiahui Guo
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yu Wang
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Lingyu Sun
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023China
| |
Collapse
|
26
|
Jeong GJ, Kang TW, Park YJ, Park YJ, Lee Y, Bae B, Kim SW. Development of a cyan blue-emitting Ba 3La 2(BO 3) 4:Ce 3+,Tb 3+ phosphor for use in dental glazing materials: color tunable emission and energy transfer. RSC Adv 2021; 11:24949-24957. [PMID: 35481023 PMCID: PMC9036909 DOI: 10.1039/d1ra04384f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Herein, we demonstrated the possibility of using Ba3La2(BO3)4:Ce3+,Tb3+ phosphors in dental glazing paste.
Collapse
Affiliation(s)
- Gyu Jin Jeong
- Electronic Convergence Materials Division
- Optic & Electronic Component Materials Center
- Korea Institute of Ceramic Engineering and Technology
- Jinju 52851
- Korea
| | - Tae Wook Kang
- Electronic Convergence Materials Division
- Optic & Electronic Component Materials Center
- Korea Institute of Ceramic Engineering and Technology
- Jinju 52851
- Korea
| | - Young Ji Park
- Electronic Convergence Materials Division
- Optic & Electronic Component Materials Center
- Korea Institute of Ceramic Engineering and Technology
- Jinju 52851
- Korea
| | - Ye Jin Park
- Electronic Convergence Materials Division
- Optic & Electronic Component Materials Center
- Korea Institute of Ceramic Engineering and Technology
- Jinju 52851
- Korea
| | - Younki Lee
- Division of Materials Science and Engineering & Convergence Technology
- Gyeongsang National University
- Jinju 52828
- Korea
| | - Byungseo Bae
- Advanced Resources Team
- Yeongwol Industrial Promotion Agency
- Gangwon-do 26240
- Korea
| | - Sun Woog Kim
- Electronic Convergence Materials Division
- Optic & Electronic Component Materials Center
- Korea Institute of Ceramic Engineering and Technology
- Jinju 52851
- Korea
| |
Collapse
|
27
|
Kim JJ, Stafford GR, Beauchamp C, Kim SA. Development of a Dental Implantable Temperature Sensor for Real-Time Diagnosis of Infectious Disease. SENSORS 2020; 20:s20143953. [PMID: 32708671 PMCID: PMC7412512 DOI: 10.3390/s20143953] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
Implantable sensors capable of real-time measurements are powerful tools to diagnose disease and maintain health by providing continuous or regular biometric monitoring. In this paper, we present a dental implantable temperature sensor that can send early warning signals in real time before the implant fails. Using a microfabrication process on a flexible polyimide film, we successfully fabricated a multi-channel temperature sensor that can be wrapped around a dental implant abutment wing. In addition, the feasibility, durability, and implantability of the sensor were investigated. First, high linearity and repeatability between electrical resistance and temperature confirmed the feasibility of the sensor with a temperature coefficient of resistance (TCR) value of 3.33 × 10–3/°C between 20 and 100 °C. Second, constant TCR values and robust optical images without damage validated sufficient thermal, chemical, and mechanical durability in the sensor’s performance and structures. Lastly, the elastic response of the sensor’s flexible substrate film to thermal and humidity variations, simulating in the oral environment, suggested its successful long-term implantability. Based on these findings, we have successfully developed a polymer-based flexible temperature sensor for dental implant systems.
Collapse
Affiliation(s)
- Jeffrey J. Kim
- American Dental Association Science & Research Institute, American Dental Association, Gaithersburg, MD 20899, USA;
| | - Gery R. Stafford
- Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA; (G.R.S.); (C.B.)
| | - Carlos Beauchamp
- Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA; (G.R.S.); (C.B.)
| | - Shin Ae Kim
- American Dental Association Science & Research Institute, American Dental Association, Gaithersburg, MD 20899, USA;
- Correspondence: ; Tel.: +1-301-975-6805
| |
Collapse
|