1
|
Shi H, Kuang F, Huo H, Gao Y, Duan X, Shen J, Wan J, Li Y, Du G, Yang L. Temperature-Responsive Cellulose-Based Janus Hydrogel as Underwater Electronic Skin. NANO LETTERS 2025; 25:7835-7844. [PMID: 40304080 DOI: 10.1021/acs.nanolett.5c00985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
This study develops a Janus-structured hydrogel sensor (P(AA-co-PNIPAM/CDs)) through template-assisted copolymerization of acrylic acid and N-isopropylacrylamide with dopamine-cellulose carbon dots (CDs). The hydrogel demonstrates temperature-responsive strain sensing regulation and enhanced interfacial adhesion, achieving remarkable peel strengths of 237.8 N m-1 (air, 25 °C) and 42.7 N m-1 (water, 50 °C). CD incorporation improves conductivity (1.219 mS cm-1) while reinforcing dynamic adhesion through hydrogen bonding and π-π interactions. The dual-responsive hydrogel exhibits exceptional joint motion monitoring capabilities across diverse environments, maintaining a stable electrical signal output during repetitive stretching (100% strain). Its temperature-modulated underwater adhesion and strain-sensitive conductivity enable the precise detection of both macroscopic movements (joint flexion) and subtle physiological signals (pulse waves). These synergistic properties position P(AA-co-PNIPAM/CDs) as a promising candidate for next-generation smart sensors in athletic monitoring and aquatic robotics, particularly in addressing challenges in underwater wearable electronics and adaptive human-machine interfaces.
Collapse
Affiliation(s)
- Haoran Shi
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Feng Kuang
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Huanxin Huo
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Yihong Gao
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Xin Duan
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Jingjie Shen
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Jianyong Wan
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Yanmei Li
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Guanben Du
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Long Yang
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
2
|
Acharya R, Dutta SD, Mallik H, Patil TV, Ganguly K, Randhawa A, Kim H, Lee J, Park H, Mo C, Lim KT. Physical stimuli-responsive DNA hydrogels: design, fabrication strategies, and biomedical applications. J Nanobiotechnology 2025; 23:233. [PMID: 40119420 PMCID: PMC11929200 DOI: 10.1186/s12951-025-03237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/16/2025] [Indexed: 03/24/2025] Open
Abstract
Physical stimuli-responsive DNA hydrogels hold immense potential for tissue engineering due to their inherent biocompatibility, tunable properties, and capacity to replicate the mechanical environment of natural tissue, making physical stimuli-responsive DNA hydrogels a promising candidate for tissue engineering. These hydrogels can be tailored to respond to specific physical triggers such as temperature, light, magnetic fields, ultrasound, mechanical force, and electrical stimuli, allowing precise control over their behavior. By mimicking the extracellular matrix (ECM), DNA hydrogels provide structural support, biomechanical cues, and cell signaling essential for tissue regeneration. This article explores various physical stimuli and their incorporation into DNA hydrogels, including DNA self-assembly and hybrid DNA hydrogel methods. The aim is to demonstrate how DNA hydrogels, in conjunction with other biomolecules and the ECM environment, generate dynamic scaffolds that respond to physical stimuli to facilitate tissue regeneration. We investigate the most recent developments in cancer therapies, including injectable DNA hydrogel for bone regeneration, personalized scaffolds, and dynamic culture models for drug discovery. The study concludes by delineating the remaining obstacles and potential future orientations in the optimization of DNA hydrogel design for the regeneration and reconstruction of tissue. It also addresses strategies for surmounting current challenges and incorporating more sophisticated technologies, thereby facilitating the clinical translation of these innovative hydrogels.
Collapse
Affiliation(s)
- Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institution of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hemadri Mallik
- Department of Botany, The University of Burdwan, Bardhaman, West Bengal, 713104, India
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Changyeun Mo
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Institution of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
3
|
Chen H, Qin H, Yao X, Cong HP, Yu SH. Incompatible Geometry Regulation of Nanowire Assemblies Enabled Light-Driven Shape Morphing and Motions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418730. [PMID: 39906914 DOI: 10.1002/adma.202418730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/16/2025] [Indexed: 02/06/2025]
Abstract
Photoresponsive shape-changing materials have significant applications in miniaturized smart robotics and biomedicine powered in a remote and wireless manner. Existing light-fuelled soft materials suffer from limited continuous shape manipulation and constrained mobility and locomotive modes. One promising solution is developing a hierarchical structure design approach to integrate rapid, reversible photoactive molecular alignment and mechanically incompatible geometry in a macroscopic system. Here, a nanowire assemblies-induced geometry engineering method is reported for the fabrication of silver nanowire-incorporated nematic liquid crystalline elastomers with prominent anisotropic structures at multi-length scales and incompatible elasticity that show sharp morphological transitions among the rings, helicoids, and spirals with diverse helical configurations. The engineered composite films can realize complex light-driven motions including rotating, rolling, and jumping with the controlled directionality and magnitude that are pre-encoded in their both molecular and macroscopic configurations. Owing to the great controllability of multimodal locomotion, a spiral robot can undertake task-specific configuration to climb up complex terrains. The complete regulatory relationship among molecular orientation, shape geometry, and light-driven motions is also established. This study may open an avenue for elaborate design and precise fabrication of novel shape-morphing materials for future applications in intelligent robotic systems.
Collapse
Affiliation(s)
- Hong Chen
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Haili Qin
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Xin Yao
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Huai-Ping Cong
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Shu-Hong Yu
- Institute of Innovative Materials, Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230009, P. R. China
| |
Collapse
|
4
|
Saenz G, Pogostin BH, Cole CC, Agrawal A, Chew-Martinez D, Dubackic M, Pal A, Olsson U, McHugh KJ, Hartgerink JD. Nanofibrous Peptide Hydrogels Leveraging Histidine to Modulate pH-Responsive Supramolecular Assembly and Antibody Release. Biomacromolecules 2025; 26:490-502. [PMID: 39801309 PMCID: PMC11912180 DOI: 10.1021/acs.biomac.4c01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
In this work, we investigate the pH-responsive behavior of multidomain peptide (MDP) hydrogels containing histidine. Small-angle X-ray scattering confirmed that MDP nanofibers sequester nonpolar residues into a hydrophobic core surrounded by a shell of hydrophilic residues. MDPs with histidine on the hydrophilic face formed nanofibers at all pH values tested, but the morphology of the fibers was influenced by the protonation state and the location of histidine in the MDP sequence. MDPs with histidine residues within the hydrophobic face disassemble below physiological pH and form nanofibers at higher pH. Taking advantage of their stimulus-triggered behavior, an anti-PD-1 antibody was loaded into histidine MDP hydrogels to examine pH-dependent differences in payload delivery in vitro. Hydrogels composed of MDPs with histidine on the hydrophilic face demonstrated pH-dependent payload retention. Additionally, they showed significantly slower antibody release and reduced antibody diffusion rates in vitro compared to MDP hydrogels lacking histidine.
Collapse
Affiliation(s)
- Gabriel Saenz
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Brett H Pogostin
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Carson C Cole
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Anushka Agrawal
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | | | - Marija Dubackic
- Division of Physical Chemistry, Lund University, Lund SE-221 00, Sweden
| | - Antara Pal
- Department of Physics, Stockholm University, Stockholm SE-221 00, Sweden
- MAX IV Laboratory, Lund SE-221 00, Sweden
| | - Ulf Olsson
- Division of Physical Chemistry, Lund University, Lund SE-221 00, Sweden
| | - Kevin J McHugh
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Jeffrey D Hartgerink
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
5
|
Lee M, Choi Y, Bae YM, Nam S, Shin K. Stretchable and Shape-Transformable Organohydrogel with Gallium Mesh Frame. Gels 2024; 10:769. [PMID: 39727527 DOI: 10.3390/gels10120769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/18/2024] [Accepted: 11/23/2024] [Indexed: 12/28/2024] Open
Abstract
Shape-memory materials are widely utilized in biomedical devices and tissue engineering, particularly for their ability to undergo predefined shape changes in response to external stimuli. In this study, a shape-transformable organohydrogel was developed by incorporating a gallium mesh into a polyacrylamide/alginate/glycerol matrix. The gallium mesh, which transitions between solid and liquid states at moderate temperatures (~29.8 °C), enhanced the hydrogel's mechanical properties and enabled shape-memory functionality. The composite organohydrogel exhibited a high elastic modulus of ~900 kPa in the solid gallium state and ~30 kPa in the liquid gallium state, enabling reversible deformation and structural stability. Glycerol improved the hydrogel's moisture retention, maintaining stretchability and repeated heating and cooling cycles. After multiple cycles of the shape-changing process, the organohydrogel retained its mechanical integrity, achieving shape-fixation and recovery ratios of ~96% and 95%, respectively. This combination of shape-memory functionality, stretchability, and mechanical stability makes this organohydrogel highly suitable for applications in flexible electronics, soft robotics, and biomedical devices, where adaptability and shape retention are essential.
Collapse
Affiliation(s)
- Mincheol Lee
- Electro-Medical Equipment Research Division, Korea Electrotechnology Research Institute (KERI), Ansan 15588, Republic of Korea
| | - Youngjin Choi
- Electro-Medical Equipment Research Division, Korea Electrotechnology Research Institute (KERI), Ansan 15588, Republic of Korea
| | - Young Min Bae
- Electro-Medical Equipment Research Division, Korea Electrotechnology Research Institute (KERI), Ansan 15588, Republic of Korea
| | - Seonghyeon Nam
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Kiyoung Shin
- Electro-Medical Equipment Research Division, Korea Electrotechnology Research Institute (KERI), Ansan 15588, Republic of Korea
| |
Collapse
|
6
|
Nowitzke J, Bista S, Raman S, Dahal N, Stirnemann G, Popa I. Mechanical Unfolding of Network Nodes Drives the Stress Response of Protein-Based Materials. ACS NANO 2024; 18:31031-31043. [PMID: 39487800 DOI: 10.1021/acsnano.4c07352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Biomaterials synthesized from cross-linked folded proteins have untapped potential for biocompatible, resilient, and responsive implementations, but face challenges due to costly molecular refinement and limited understanding of their mechanical response. Under a stress vector, these materials combine the gel-like response of cross-linked networks with the mechanical unfolding and extension of proteins from well-defined 3D structures to unstructured polypeptides. Yet the nanoscale dynamics governing their viscoelastic response remains poorly understood. This lack of understanding is further exacerbated by the fact that the mechanical stability of protein domains depends not only on their structure, but also on the direction of the force vector. To this end, here we propose a coarse-grained network model based on the physical characteristics of polyproteins and combine it with the mechanical unfolding response of protein domains, obtained from single molecule measurements and steered molecular dynamics simulations, to explain the macroscopic response of protein-based materials to a stress vector. We find that domains are about 10-fold more stable when force is applied along their end-to-end coordinate than along the other tethering geometries that are possible inside the biomaterial. As such, the macroscopic response of protein-based materials is mainly driven by the unfolding of the node-domains and rearrangement of these nodes inside the material. The predictions from our models are then confirmed experimentally using force-clamp rheometry. This model is a critical step toward developing protein-based materials with predictable response and that can enable applications for shape memory and energy storage and dissipation.
Collapse
Affiliation(s)
- Joel Nowitzke
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Sanam Bista
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Sadia Raman
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Narayan Dahal
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Guillaume Stirnemann
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris 75005, France
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
7
|
Sathuvan M, Min S, Narayanan K, Gaur A, Hong H, Vivek R, Ganapathy A, Cheong KL, Kang H, Thangam R. β-Cyclodextrin-based materials for 3D printing, cancer therapy, tissue engineering, and wound healing. CHEMICAL ENGINEERING JOURNAL 2024; 500:157272. [DOI: 10.1016/j.cej.2024.157272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Guo P, Zhang Z, Qian C, Wang R, Cheng L, Tian Y, Wu H, Zhu S, Liu A. Programming Hydrogen Bonds for Reversible Elastic-Plastic Phase Transition in a Conductive Stretchable Hydrogel Actuator with Rapid Ultra-High-Density Energy Conversion and Multiple Sensory Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410324. [PMID: 39308311 DOI: 10.1002/adma.202410324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/12/2024] [Indexed: 11/16/2024]
Abstract
Smart hydrogels have recently garnered significant attention in the fields of actuators, human-machine interaction, and soft robotics. However, when constructing large-scale actuated systems, they usually exhibit limited actuation forces (≈2 kPa) and actuation speeds. Drawing inspiration from hairspring energy conversion mechanism, an elasticity-plasticity-controllable composite hydrogel (PCTA) with robust contraction capabilities is developed. By precisely manipulating intermolecular and intramolecular hydrogen-bonding interactions, the material's elasticity and plasticity can be programmed to facilitate efficient energy storage and release. The proposed mechanism enables rapid generation of high contraction forces (900 kPa) at ultra-high working densities (0.96 MJ m-3). Molecular dynamics simulations reveal that modifications in the number and nature of hydrogen bonds lead to a distinct elastic-plastic transition in hydrogels. Furthermore, the conductive PCTA hydrogel exhibits multimodal sensing capabilities including stretchable strain sensing with a wide sensing range (1-200%), fast response time (180 ms), and excellent linearity of the output signal. Moreover, it demonstrates exceptional temperature and humidity sensing capabilities with high detection accuracy. The strong actuation power and real-time sensory feedback from the composite hydrogels are expected to inspire novel flexible driving materials and intelligent sensing systems.
Collapse
Affiliation(s)
- Ping Guo
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhaoxin Zhang
- Center for X-Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Institute of Applied Mechanics, Zhejiang University, Hangzhou, 310000, China
| | - Chengnan Qian
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruofei Wang
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lin Cheng
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ye Tian
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Huaping Wu
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Shuze Zhu
- Center for X-Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Institute of Applied Mechanics, Zhejiang University, Hangzhou, 310000, China
| | - Aiping Liu
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
9
|
Nie Z, Kwak JW, Han M, Rogers JA. Mechanically Active Materials and Devices for Bio-Interfaced Pressure Sensors-A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2205609. [PMID: 35951770 DOI: 10.1002/adma.202205609] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Pressures generated by external forces or by internal body processes represent parameters of critical importance in diagnosing physiological health and in anticipating injuries. Examples span intracranial hypertension from traumatic brain injuries, high blood pressure from poor diet, pressure-induced skin ulcers from immobility, and edema from congestive heart failure. Pressures measured on the soft surfaces of vital organs or within internal cavities of the body can provide essential insights into patient status and progression. Challenges lie in the development of high-performance pressure sensors that can softly interface with biological tissues to enable safe monitoring for extended periods of time. This review focuses on recent advances in mechanically active materials and structural designs for classes of soft pressure sensors that have proven uses in these contexts. The discussions include applications of such sensors as implantable and wearable systems, with various unique capabilities in wireless continuous monitoring, minimally invasive deployment, natural degradation in biofluids, and/or multiplexed spatiotemporal mapping. A concluding section summarizes challenges and future opportunities for this growing field of materials and biomedical research.
Collapse
Affiliation(s)
- Zhongyi Nie
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Jean Won Kwak
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Departments of Biomedical Engineering, Materials Science and Engineering, Neurological Surgery, Chemistry, and Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
10
|
Tang H, Li Y, Liao S, Liu H, Qiao Y, Zhou J. Multifunctional Conductive Hydrogel Interface for Bioelectronic Recording and Stimulation. Adv Healthc Mater 2024; 13:e2400562. [PMID: 38773929 DOI: 10.1002/adhm.202400562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/11/2024] [Indexed: 05/24/2024]
Abstract
The past few decades have witnessed the rapid advancement and broad applications of flexible bioelectronics, in wearable and implantable electronics, brain-computer interfaces, neural science and technology, clinical diagnosis, treatment, etc. It is noteworthy that soft and elastic conductive hydrogels, owing to their multiple similarities with biological tissues in terms of mechanics, electronics, water-rich, and biological functions, have successfully bridged the gap between rigid electronics and soft biology. Multifunctional hydrogel bioelectronics, emerging as a new generation of promising material candidates, have authentically established highly compatible and reliable, high-quality bioelectronic interfaces, particularly in bioelectronic recording and stimulation. This review summarizes the material basis and design principles involved in constructing hydrogel bioelectronic interfaces, and systematically discusses the fundamental mechanism and unique advantages in bioelectrical interfacing with the biological surface. Furthermore, an overview of the state-of-the-art manufacturing strategies for hydrogel bioelectronic interfaces with enhanced biocompatibility and integration with the biological system is presented. This review finally exemplifies the unprecedented advancement and impetus toward bioelectronic recording and stimulation, especially in implantable and integrated hydrogel bioelectronic systems, and concludes with a perspective expectation for hydrogel bioelectronics in clinical and biomedical applications.
Collapse
Affiliation(s)
- Hao Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yuanfang Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shufei Liao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Houfang Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yancong Qiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
11
|
Yu W, Zhao W, Zhu X, Li M, Yi X, Liu X. Laser-Printed All-Carbon Responsive Material and Soft Robot. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401920. [PMID: 39011802 DOI: 10.1002/adma.202401920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/18/2024] [Indexed: 07/17/2024]
Abstract
Responsive materials and actuators are the basis for the development of various leading-edge technologies but have so far mostly been designed based on polymers, incurring key limitations related to sensitivity and environmental tolerance. This work reports a new responsive material, laser-printed carbon film (LPCF), produced via direct laser transformation of a liquid organic precursor and consists of graphitic and amorphous carbons. The high activity of amorphous carbon combined with the dual-gradient structure enables the LPCF to have a actuation speed of 9400° s-1 in response to the stimulus of organic vapor. LPCF exhibits a conductivity of 950 S m-1 and excellent resistance to various extreme environmental conditions, which are unachievable for polymer-based materials. Additionally, an LPCF-based all-carbon soft robot that can mimic the complex continuous backward somersaulting motions without manual intervention is constructed. The locomotion velocity of the robot reaches a value of 1.19 BL s-1, which is almost one to two orders of magnitude faster than that of reported soft robots. This work not only offers a new paradigm for highly responsive materials but also provides a great design and engineering example for the next generation of biomimetic robots with life-like performance.
Collapse
Affiliation(s)
- Wenjie Yu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiwei Zhao
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xinbei Zhu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingyue Li
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaosu Yi
- Yangtze River Delta Carbon Fiber and Composite Technology Innovation Center, Changzhou, 213000, China
| | - Xiaoqing Liu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
12
|
Lu J, Yang X, Xiao J, Wang Y, Yu Y, Wang Y, Zhang Z, Zou Y, Luan Y. DNA-functionalized cryogel based colorimetric biosensor for sensitive on-site detection of aflatoxin B1 in food samples. Talanta 2024; 275:126122. [PMID: 38663063 DOI: 10.1016/j.talanta.2024.126122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024]
Abstract
Hydrogel biosensors present numerous advantages in food safety analysis owing to their remarkable biocompatibility, cargo-loading capabilities and optical properties. However, the current drawbacks (slow target responsiveness and poor mechanical strength) restricted their further utilization at on-site detection of targets. To address these challenges, a DNA-functionalized cryogel with hierarchical pore structures is constructed to improve the reaction rate and the robustness of hydrogel biosensor. During cryogel preparation, ice crystals serve as templates, shaping interconnected hierarchical microporous structures to enhance mass transfer for faster responses. Meanwhile, in the non-freezing zone, concentrated monomers create a dense cross-linked network, strengthening cryogel matrix strength. Accordingly, a colorimetric biosensor based on DNA cryogel has been developed as a proof of concept for rapid detection of aflatoxin B1 (AFB1) in food samples, and an excellent analytical performance was obtained under the optimized conditions with a low detection limit (1 nM), broad detection range (5-100 nM), satisfactory accuracy and precision (recoveries, 81.2-112.6 %; CV, 2.75-5.53 %). Furthermore, by integrating with a smartphone sensing platform, a portable device was created for rapid on-site measurement of target within 45 min, which provided some insight for hydrogel biosensors design.
Collapse
Affiliation(s)
- Jian Lu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiaofeng Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jiaxuan Xiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yuhan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yue Yu
- Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Yuan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yanmin Zou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.
| | - Yu Luan
- Zhenjiang Food and Drug Supervision and Inspection Center, Zhenjiang, China.
| |
Collapse
|
13
|
Wu X, Teng F, Firlar E, Zhang T, Libera M. Elasto-plastic effects on shape-shifting electron-beam-patterned gel-based micro-helices. MATERIALS HORIZONS 2024; 11:3427-3436. [PMID: 38712865 DOI: 10.1039/d4mh00208c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Shape-shifting helical gels have been created by various routes, notably by photolithography. We explore electron-beam lithography as an alternative to prescribe microhelix formation in tethered patterns of pure poly(acrylic acid). Simulations indicate the nanoscale spatial distribution of deposited energy that drives the loss of acid groups and crosslinking. Upon exposure to buffer, a patterned line converts to a 3D helix whose cross section comprises a crosslinked and hydrophobic core surrounded by a high-swelling pH-responsive corona. Through-thickness asymmetries generate out-of-plane bending to drive helix formation. The relative core and corona fractions are determined by the electron dose which in turn controls the helical radius and pitch. Increasing pH substantially raises the swelling stress and the rod elongates plastically. The pitch concurrently changes from minimal to non-minimal. The in-plane asymmetry driving this change can be attributed to shear-band formation in the hydrophobic core. Subsequent pH cycling drives elastic cycling of the helical properties. These findings illustrate the effects of elastoplastic deformation on helical properties and elaborate unique attributes of electron lithography as an alternate means to create shape-shifting structures.
Collapse
Affiliation(s)
- Xinpei Wu
- Department of Chemical Engineering & Materials Science, Stevens Institute of Technology, Hoboken, NJ, USA.
| | - Feiyue Teng
- Department of Chemical Engineering & Materials Science, Stevens Institute of Technology, Hoboken, NJ, USA.
- presently with the Brookhaven National Laboratory, Upton, NY, USA
| | - Emre Firlar
- Rutgers CryoEM & Nanoimaging Facility and Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, USA
- presently with Bristol Myers Squibb, Molecular Structure & Design, Princeton, NJ, USA
| | - Teng Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY, USA
| | - Matthew Libera
- Department of Chemical Engineering & Materials Science, Stevens Institute of Technology, Hoboken, NJ, USA.
| |
Collapse
|
14
|
Wang ZJ, Lin J, Nakajima T, Gong JP. Hydrogel morphogenesis induced by force-controlled growth. Proc Natl Acad Sci U S A 2024; 121:e2402587121. [PMID: 38923994 PMCID: PMC11228514 DOI: 10.1073/pnas.2402587121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Morphogenesis is one of the most marvelous natural phenomena. The morphological characteristics of biological organs develop through growth, which is often triggered by mechanical force. In this study, we propose a bioinspired strategy for hydrogel morphogenesis through force-controlled chemical reaction and growth under isothermal conditions. We adopted a double network (DN) hydrogel with sacrificial bonds. Applying mechanical force to the gel caused deformation and sacrificial bond rupture. By supplying monomers to the gel, the radicals generated by the bond rupture triggered the formation of a new network inside the deformed gel. This new network conferred plasticity to the elastic gel, allowing it to maintain its deformed shape, along with increased volume and strength. We demonstrated that sheet-shaped DN hydrogels rapidly adopted various three-dimensional shapes at ambient temperature when subjected to forces such as drawing and blowing. This mechanism enables morphogenesis of elastic hydrogels and will promote the application of these materials in biomedical fields and soft machines.
Collapse
Affiliation(s)
- Zhi Jian Wang
- Graduate School of Life Science, Hokkaido University, Sapporo001-0021, Japan
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo001-0021, Japan
| | - Ji Lin
- Center for Mechanics Plus under Extreme Environments, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo315211, China
| | - Tasuku Nakajima
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo001-0021, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo001-0021, Japan
| |
Collapse
|
15
|
Wang J, Li XY, Qian HL, Wang XW, Wang YX, Ren KF, Ji J. Robust, Sprayable, and Multifunctional Hydrogel Coating through a Polycation Reinforced (PCR) Surface Bridging Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310216. [PMID: 38237136 DOI: 10.1002/adma.202310216] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/15/2023] [Indexed: 01/25/2024]
Abstract
The sprayable hydrogel coatings that can establish robust adhesion onto diverse materials and devices hold enormous potential; however, a significant challenge persists due to monomer hydration, which impedes even coverage during spraying and induces inadequate adhesion post-gelation. Herein, a polycation-reinforced (PCR) surface bridging strategy is presented to achieve tough and sprayable hydrogel coatings onto diverse materials. The polycations offer superior wettability and instant electrostatic interactions with plasma-treated substrates, facilitating an effective spraying application. This PCR-based hydrogel coatings demonstrate tough adhesion performance to inert PTFE and silicone, including remarkable shear strength (161 ± 49 kPa for PTFE), interfacial toughness (198 ± 27 J m-2 for PTFE), and notable tolerance to cyclic tension (10 000 cycles, 200% strain, silicone). Meanwhile, this method can be applied to various hydrogel formulations, offering diverse functionalities, including underwater adhesion, lubrication, and drug delivery. Furthermore, the PCR concept enables the conformal construction of durable hydrogel coatings onto sophisticated medical devices like cardiovascular stents. Given its simplicity and adaptability, this approach paves an avenue for incorporating hydrogels onto solid surfaces and potentially promotes untapped applications.
Collapse
Affiliation(s)
- Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, P. R. China
| | - Xin-Yi Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hong-Lin Qian
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xing-Wang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - You-Xiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, P. R. China
| |
Collapse
|
16
|
McKinley JP, O'Connell GD. Review of state-of-the-art micro and macro-bioreactors for the intervertebral disc. J Biomech 2024; 165:111964. [PMID: 38412621 DOI: 10.1016/j.jbiomech.2024.111964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024]
Abstract
Lower back pain continues to be a global epidemic, limiting quality of life and ability to work, due in large part to symptomatic disc degeneration. Development of more effective and less invasive biological strategies are needed to treat disc degeneration. In vitro models such as macro- or micro-bioreactors or mechanically active organ-chips hold great promise in reducing the need for animal studies that may have limited clinical translatability, due to harsher and more complex mechanical loading environments in human discs than in most animal models. This review highlights the complex loading conditions of the disc in situ, evaluates state-of-the-art designs for applying such complex loads across multiple length scales, from macro-bioreactors that load whole discs to organ-chips that aim to replicate cellular or engineered tissue loading. Emphasis was placed on the rapidly evolving more customizable organ-chips, given their greater potential for studying the progression and treatment of symptomatic disc degeneration. Lastly, this review identifies new trends and challenges for using organ-chips to assess therapeutic strategies.
Collapse
Affiliation(s)
- Jonathan P McKinley
- Berkeley BioMechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley 94720, CA, USA.
| | - Grace D O'Connell
- Berkeley BioMechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley 94720, CA, USA.
| |
Collapse
|
17
|
Liu H, Wu X, Liu R, Wang W, Zhang D, Jiang Q. Cartilage-on-a-chip with magneto-mechanical transformation for osteoarthritis recruitment. Bioact Mater 2024; 33:61-68. [PMID: 38024232 PMCID: PMC10661690 DOI: 10.1016/j.bioactmat.2023.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disease primarily induced by overstrain, leading to disability and significantly impacting patients' quality of life. However, current OA studies lack an ideal in vitro model, which can recapitulate the high peripheral strain of the joint and precisely model the disease onset process. In this paper, we propose a novel cartilage-on-a-chip platform that incorporates a biohybrid hydrogel comprising Neodymium (NdFeB)/Poly-GelMA-HAMA remote magneto-control hydrogel film. This platform facilitates chondrocyte culture and stress loading, enabling the investigation of chondrocytes under various stress stimuli. The Neodymium (NdFeB)/Poly-GelMA-HAMA hydrogel film exhibits magneto-responsive shape-transition behavior, further dragging the chondrocytes cultured in hydrogels under magnetic stimulation. It was investigated that inflammation-related genes and proteins in chondrocytes are changed with mechanical stress stimulation in the cartilage-on-a-chip. Especially, MMP-13 and the proportion of collagen secretion are upregulated, showing a phenotype similar to that of real human osteoarthritis. Therefore, we believed that this cartilage-on-a-chip platform provides a desired in vitro model for osteoarthritis, which is of great significance in disease research and drug development.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xiangyi Wu
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Rui Liu
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Weijun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Dagan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| |
Collapse
|
18
|
Petelinšek N, Mommer S. Tough Hydrogels for Load-Bearing Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307404. [PMID: 38225751 PMCID: PMC10966577 DOI: 10.1002/advs.202307404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Indexed: 01/17/2024]
Abstract
Tough hydrogels have emerged as a promising class of materials to target load-bearing applications, where the material has to resist multiple cycles of extreme mechanical impact. A variety of chemical interactions and network architectures are used to enhance the mechanical properties and fracture mechanics of hydrogels making them stiffer and tougher. In recent years, the mechanical properties of tough, high-performance hydrogels have been benchmarked, however, this is often incomplete as important variables like water content are largely ignored. In this review, the aim is to clarify the reported mechanical properties of state-of-the-art tough hydrogels by providing a comprehensive library of fracture and mechanical property data. First, common methods for mechanical characterization of such high-performance hydrogels are introduced. Then, various modes of energy dissipation to obtain tough hydrogels are discussed and used to categorize the individual datasets helping to asses the material's (fracture) mechanical properties. Finally, current applications are considered, tough high-performance hydrogels are compared with existing materials, and promising future opportunities are discussed.
Collapse
Affiliation(s)
- Nika Petelinšek
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Stefan Mommer
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| |
Collapse
|
19
|
Fu H, Cao N, Zeng W, Liao M, Yao S, Zhou J, Zhang W. Pumping Small Molecules Selectively through an Energy-Assisted Assembling Process at Nonequilibrium States. J Am Chem Soc 2024; 146:3323-3330. [PMID: 38273768 DOI: 10.1021/jacs.3c12228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
In living organisms, precise control over the spatial and temporal distribution of molecules, including pheromones, is crucial. This level of control is equally important for the development of artificial active materials. In this study, we successfully controlled the distribution of small molecules in the system at nonequilibrium states by actively transporting them, even against the apparent concentration gradient, with high selectivity. As a demonstration, in the aqueous solution of acid orange (AO7) and TMC10COOH, we found that AO7 molecules can coassemble with transient anhydride (TMC10CO)2O to form larger assemblies in the presence of chemical fuel 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide hydrochloride (EDC). This led to a decrease in local free AO7 concentration and caused AO7 molecules from other locations in the solution to move toward the assemblies. Consequently, AO7 accumulates at the location where EDC was injected. By continuously injecting EDC, we could maintain a stable high value of the apparent AO7 concentration at the injection point. We also observed that this process which operated at nonequilibrium states exhibited high selectivity.
Collapse
Affiliation(s)
- Huimin Fu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Nengjie Cao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wang Zeng
- National Centre for Inorganic Mass Spectrometry in Shanghai, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Min Liao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shenglin Yao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jiajia Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wei Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
20
|
Li T, Qi H, Zhao Y, Kumar P, Zhao C, Li Z, Dong X, Guo X, Zhao M, Li X, Wang X, Ritchie RO, Zhai W. Robust and sensitive conductive nanocomposite hydrogel with bridge cross-linking-dominated hierarchical structural design. SCIENCE ADVANCES 2024; 10:eadk6643. [PMID: 38306426 PMCID: PMC10836727 DOI: 10.1126/sciadv.adk6643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/02/2024] [Indexed: 02/04/2024]
Abstract
Conductive hydrogels have a remarkable potential for applications in soft electronics and robotics, owing to their noteworthy attributes, including electrical conductivity, stretchability, biocompatibility, etc. However, the limited strength and toughness of these hydrogels have traditionally impeded their practical implementation. Inspired by the hierarchical architecture of high-performance biological composites found in nature, we successfully fabricate a robust and sensitive conductive nanocomposite hydrogel through self-assembly-induced bridge cross-linking of MgB2 nanosheets and polyvinyl alcohol hydrogels. By combining the hierarchical lamellar microstructure with robust molecular B─O─C covalent bonds, the resulting conductive hydrogel exhibits an exceptional strength and toughness. Moreover, the hydrogel demonstrates exceptional sensitivity (response/relaxation time, 20 milliseconds; detection lower limit, ~1 Pascal) under external deformation. Such characteristics enable the conductive hydrogel to exhibit superior performance in soft sensing applications. This study introduces a high-performance conductive hydrogel and opens up exciting possibilities for the development of soft electronics.
Collapse
Affiliation(s)
- Tian Li
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Haobo Qi
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Yijing Zhao
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Punit Kumar
- Department of Materials Science & Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cancan Zhao
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Zhenming Li
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Xinyu Dong
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Xiao Guo
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Miao Zhao
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Xinwei Li
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Robert O Ritchie
- Department of Materials Science & Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wei Zhai
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
21
|
Hamidinejad M, Wang H, Sanders KA, De Volder M. Electrochemically Responsive 3D Nanoarchitectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304517. [PMID: 37702306 DOI: 10.1002/adma.202304517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Responsive nanomaterials are being developed to create new unique functionalities such as switchable colors and adhesive properties or other programmable features in response to external stimuli. While many existing examples rely on changes in temperature, humidity, or pH, this study aims to explore an alternative approach relying on simple electric input signals. More specifically, 3D electrochromic architected microstructures are developed using carbon nanotube-Tin (Sn) composites that can be reconfigured by lithiating Sn with low power electric input (≈50 nanowatts). These microstructures have a continuous, regulated, and non-volatile actuation determined by the extent of the electrochemical lithiation process. In addition, this proposed fabrication process relies only on batch lithographic techniques, enabling the parallel production of thousands of 3D microstructures. Structures with a 30-97% change in open-end area upon actuation are demonstrated and the importance of geometric factors in the response and structural integrity of 3D architected microstructures during electrochemical actuation is highlighted.
Collapse
Affiliation(s)
- Mahdi Hamidinejad
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FS, UK
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G1H9, Canada
| | - Heng Wang
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Kate A Sanders
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Michael De Volder
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FS, UK
| |
Collapse
|
22
|
Rajasooriya T, Ogasawara H, Dong Y, Mancuso JN, Salaita K. Force-Triggered Self-Destructive Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305544. [PMID: 37724392 PMCID: PMC10764057 DOI: 10.1002/adma.202305544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/22/2023] [Indexed: 09/20/2023]
Abstract
Self-destructive polymers (SDPs) are defined as a class of smart polymers that autonomously degrade upon experiencing an external trigger, such as a chemical cue or optical excitation. Because SDPs release the materials trapped inside the network upon degradation, they have potential applications in drug delivery and analytical sensing. However, no known SDPs that respond to external mechanical forces have been reported, as it is fundamentally challenging to create mechano-sensitivity in general and especially so for force levels below those required for classical force-induced bond scission. To address this challenge, the development of force-triggered SDPs composed of DNA crosslinked hydrogels doped with nucleases is described here. Externally applied piconewton forces selectively expose enzymatic cleavage sites within the DNA crosslinks, resulting in rapid polymer self-degradation. The synthesis and the chemical and mechanical characterization of DNA crosslinked hydrogels, as well as the kinetics of force-triggered hydrolysis, are described. As a proof-of-concept, force-triggered and time-dependent rheological changes in the polymer as well as encapsulated nanoparticle release are demonstrated. Finally, that the kinetics of self-destruction are shown to be tuned as a function of nuclease concentration, incubation time, and thermodynamic stability of DNA crosslinkers.
Collapse
Affiliation(s)
| | | | - Yixiao Dong
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | | | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
23
|
Kim J, Choi YS, Park G, Kim M, Myung JS, Choi WJ, Park SM, Yoon DK. On-Demand Aligned DNA Hydrogel Via Light Scanning. ACS NANO 2023; 17:22778-22787. [PMID: 37947399 DOI: 10.1021/acsnano.3c07493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
DNA is an anisotropic, water-attracting, and biocompatible material, an ideal building block for hydrogel. The alignment of the anisotropic DNA chains is essential to maximize hydrogel properties, which has been little explored. Here, we present a method to fabricate the anisotropic DNA hydrogel that allows precise control for the polymerization process of photoreactive cationic monomers. Scanning ultraviolet light enables the uniaxial alignment of DNA chains through the polymerization-induced diffusive mass flow using a concentration gradient. While studying anisotropic mechanical properties and orientation recovery according to the DNA chain alignment direction, we demonstrate the potential of directionally controlled DNA hydrogels as smart materials.
Collapse
Affiliation(s)
- Juri Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yun-Seok Choi
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos 87545, New Mexico, USA
| | - Geonhyeong Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Mingeun Kim
- Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Jin Suk Myung
- Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Woo Jin Choi
- Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Soon Mo Park
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca 14853, New York, USA
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
24
|
Choi JH, Choi HK, Lee KB. In Situ Detection of Neuroinflammation using Multi-cellular 3D Neurovascular Unit-on-a-Chip. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2304382. [PMID: 39308874 PMCID: PMC11412436 DOI: 10.1002/adfm.202304382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 09/25/2024]
Abstract
The human neurovascular system is a complex network of blood vessels and brain cells that is essential to the proper functioning of the brain. In recent years, researchers have become increasingly interested in the role of this system in developing drugs to treat neuroinflammation. This process is believed to contribute to the development of several neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. While much remains to be learned about the precise mechanisms by which the neurovascular system interacts with the brain and how it can be targeted for therapeutic purposes, this area of research holds great promise for the future of neurology and medicine. Currently, creating neurovascular models begins with animal models, followed by testing on humans in clinical trials. However, the high number of medication failures that pass through animal testing indicates that animal models do not always reflect the outcome of human clinical trials. To overcome the challenges of neurovascular systems and the issues with animal models, we have developed a one-of-a-kind in vitro neurovascular unit-on-a-chip to accurately replicate the in vivo human neurovascular microenvironment. This neuroinflammation-on-a-chip platform has the potential to enhance the current methods of drug development and testing to treat neurodegenerative diseases. By replicating the human neurovascular unit in vitro, a more accurate representation of human physiology can be achieved compared to animal models. The ability to detect pro-inflammatory cytokines in situ and monitor physiological changes, such as barrier function, in real-time can provide an invaluable tool for evaluating the efficacy and safety of drugs. Moreover, using nano-sized graphene oxide for in situ detection of inflammatory responses is an innovative approach that can advance the field of neuroinflammation research. Overall, our developed neuroinflammation-on-a-chip system has the potential to provide a more efficient and effective method for developing drugs for treating neurodegenerative diseases and other central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Jin-Ha Choi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey,123 Bevier Road, Piscataway, NJ 08854, USA
- School of Chemical Engineering, Jeonbuk National University, Jeonju, 54896, Korea
| | - Hye Kyu Choi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey,123 Bevier Road, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey,123 Bevier Road, Piscataway, NJ 08854, USA
| |
Collapse
|
25
|
Fern J, Shi R, Liu Y, Xiong Y, Gracias DH, Schulman R. Swelling characteristics of DNA polymerization gels. SOFT MATTER 2023; 19:6525-6534. [PMID: 37589045 DOI: 10.1039/d3sm00321c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The development of biomolecular stimuli-responsive hydrogels is important for biomimetic structures, soft robots, tissue engineering, and drug delivery. DNA polymerization gels are a new class of soft materials composed of polymer gel backbones with DNA duplex crosslinks that can be swollen by sequential strand displacement using hairpin-shaped DNA strands. The extensive swelling can be tuned using physical parameters such as salt concentration and biomolecule design. Previously, DNA polymerization gels have been used to create shape-changing gel automata with a large design space and high programmability. Here we systematically investigate how the swelling response of DNA polymerization gels can be tuned by adjusting the design and concentration of DNA crosslinks in the hydrogels or DNA hairpin triggers, and the ionic strength of the solution in which swelling takes place. We also explore the effect hydrogel size and shape have on the swelling response. Tuning these variables can alter the swelling rate and extent across a broad range and provide a quantitative connection between biochemical reactions and macroscopic material behaviour.
Collapse
Affiliation(s)
- Joshua Fern
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Ruohong Shi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Yixin Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Yan Xiong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - David H Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, 21218, USA
- Center for MicroPhysiological Systems (MPS), Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
26
|
Merotto E, Pavan PG, Piccoli M. Three-Dimensional Bioprinting of Naturally Derived Hydrogels for the Production of Biomimetic Living Tissues: Benefits and Challenges. Biomedicines 2023; 11:1742. [PMID: 37371837 DOI: 10.3390/biomedicines11061742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Three-dimensional bioprinting is the process of manipulating cell-laden bioinks to fabricate living structures. Three-dimensional bioprinting techniques have brought considerable innovation in biomedicine, especially in the field of tissue engineering, allowing the production of 3D organ and tissue models for in vivo transplantation purposes or for in-depth and precise in vitro analyses. Naturally derived hydrogels, especially those obtained from the decellularization of biological tissues, are promising bioinks for 3D printing purposes, as they present the best biocompatibility characteristics. Despite this, many natural hydrogels do not possess the necessary mechanical properties to allow a simple and immediate application in the 3D printing process. In this review, we focus on the bioactive and mechanical characteristics that natural hydrogels may possess to allow efficient production of organs and tissues for biomedical applications, emphasizing the reinforcement techniques to improve their biomechanical properties.
Collapse
Affiliation(s)
- Elena Merotto
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6a, 35129 Padova, Italy
| | - Piero G Pavan
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6a, 35129 Padova, Italy
| | - Martina Piccoli
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
| |
Collapse
|
27
|
Ha JH, Lim JH, Lee JM, Chung BG. Electro-Responsive Conductive Blended Hydrogel Patch. Polymers (Basel) 2023; 15:2608. [PMID: 37376253 DOI: 10.3390/polym15122608] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The proposed electro-responsive hydrogel has great benefit for transdermal drug delivery system (TDDS) applications. To improve the physical or chemical properties of hydrogels, a number of researchers have previously studied the mixing efficiencies of the blended hydrogels. However, few studies have focused on improving the electrical conductivity and drug delivery of the hydrogels. We developed a conductive blended hydrogel by mixing alginate with gelatin methacrylate (GelMA) and silver nanowire (AgNW). We demonstrated that and the tensile strength of blended hydrogels were increased by a factor of 1.8 by blending GelMA and the electrical conductivity was enhanced by a factor of 18 by the addition of AgNW. Furthermore, the GelMA-alginate-AgNW (Gel-Alg-AgNW) blended hydrogel patch enabled on-off controllable drug release, indicating 57% doxorubicin release in response to electrical stimulation (ES) application. Therefore, this electro-responsive blended hydrogel patch could be useful for smart drug delivery applications.
Collapse
Affiliation(s)
- Jang Ho Ha
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Jae Hyun Lim
- Research Center, Sogang University, Seoul 04107, Republic of Korea
| | - Jong Min Lee
- Division of Chemical Industry, Yeungnam University College, Daegu 42415, Republic of Korea
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Republic of Korea
- Institute of Smart Biosensor, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
28
|
Peng S, Cao X, Sun Y, Chen L, Ma C, Yang L, Zhao H, Liu Q, Liu Z, Ma C. Polyurethane Shape Memory Polymer/pH-Responsive Hydrogel Hybrid for Bi-Function Synergistic Actuations. Gels 2023; 9:gels9050428. [PMID: 37233019 DOI: 10.3390/gels9050428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023] Open
Abstract
Stimuli-responsive actuating hydrogels response to the external stimulus with complex deformation behaviors based on the programmable anisotropic structure design are one of the most important smart soft materials, which have great potential applications in artificial muscles, smart values, and mini-robots. However, the anisotropic structure of one actuating hydrogel can only be programmed one time, which can only provide single actuating performance, and subsequently, has severely limited their further applications. Herein, we have explored a novel SMP/hydrogel hybrid actuator through combining polyurethane shape memory polymer (PU SMP) layer and pH-responsive polyacrylic-acid (PAA) hydrogel layer by a napkin with UV-adhesive. Owing to both the super-hydrophilicity and super-lipophilicity of the cellulose-fiber based napkin, the SMP and the hydrogel can be bonded firmly by the UV-adhesive in the napkin. More importantly, this bilayer hybrid 2D sheet can be programmed by designing a different temporary shape in heat water which can be fixed easily in cool water to achieve various fixed shapes. This hybrid with a fixed temporary shape can achieve complex actuating performance based on the bi-functional synergy of temperature-triggered SMP and pH-responsive hydrogel. The relatively high modulus PU SMP achieved high to 87.19% and 88.92% shape-fixing ratio, respectively, correspond to bending and folding shapes. The hybrid actuator can actuate with the 25.71 °/min actuating speed. Most importantly, one SMP/hydrogel bi-layer hybrid sheet was repeatedly programmed at least nine times in our research to fix various temporary 1D, 2D and 3D shapes, including bending, folding and spiraling shapes. As a result, only one SMP/hydrogel hybrid can provide various complex stimuli-responsive actuations, including the reversable bending-straightening, spiraling-unspiraling. A few of the intelligent devices have been designed to simulate the movement of the natural organisms, such as bio-mimetic "paw", "pangolin" and "octopus". This work has developed a new SMP/hydrogel hybrid with excellent multi-repeatable (≥9 times) programmability for high-level complex actuations, including the 1D to 2D bending and the 2D to 3D spiraling actuations, which also provides a new strategy to design other new soft intelligent materials and systems.
Collapse
Affiliation(s)
- Shuyi Peng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xingyu Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Ye Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Lin Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Chao Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Lang Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Hongliang Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Key Laboratory of Quality Safe Evaluation and Research of Degradable Material for State Market Regulation, Products Quality Supervision and Testing Institute of Hainan Province, Haikou 570203, China
| | - Qijie Liu
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou 318000, China
| | - Zhenzhong Liu
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou 318000, China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Key Laboratory of Quality Safe Evaluation and Research of Degradable Material for State Market Regulation, Products Quality Supervision and Testing Institute of Hainan Province, Haikou 570203, China
| |
Collapse
|
29
|
Wei X, Wu Q, Chen L, Sun Y, Chen L, Zhang C, Li S, Ma C, Jiang S. Remotely Controlled Light/Electric/Magnetic Multiresponsive Hydrogel for Fast Actuations. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10030-10043. [PMID: 36779704 DOI: 10.1021/acsami.2c22831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As a kind of soft smart material, hydrogel actuators have extensive development prospects, but it is still difficult for these actuators to integrate multiresponsiveness, multiple remote actuation, high strength, fast responsiveness, and programmable complex deformation. Herein, we have explored an anisotropic bilayer hydrogel actuator with an Fe3O4/co-poly(isopropylacrylamide-4-benzoylphenyl acrylate) [Fe3O4/P(NIPAM-ABP)] active layer and an isotropic conductive adhesive (ICAs) passive layer based on the layer-by-layer method. Benefiting from the fibrosis and porosity of the Fe3O4/P(NIPAM-ABP) hydrogel, the ICAs-Fe3O4/P(NIPAM-ABP) hydrogel actuator has excellent mechanical strength (tensile strength of 3.1 ± 0.3 MPa) and response speed (temperature (45 °C): bending speed of 2400.3°/s; near-infrared (NIR) light: bending speed of 356.4°/s; electricity (2 V): bending speed of 180°/s; water (10 °C): recovery speed of 30.0°/s). In addition, the good photothermal properties and magnetic conductivity of Fe3O4 nanoparticles provide precise remotely controllable light- and magnetic-actuated properties for the hydrogel actuator. The Ag microsheets with excellent conductivity (1.4 × 104 S/cm) provide remotely controllable electrical-actuated property for the hydrogel actuator. Combined with the responsiveness of P(NIPAM-ABP), the actuator can achieve short-range actuation including temperature-, ethanol-, and salt-responses. More importantly, it can achieve remote actuation including light, electrical, and magnetic responses. Finally, the Fe3O4/P(NIPAM-ABP) fibers can provide excellent anisotropic structures for the actuator to achieve precise deformational programmability. Inspired by some phenomena in nature, several actuating devices with the above characteristics have been successfully developed. This study can provide a general method for multifunctional anisotropic hydrogel actuators and will provide a new strategy for exploring smart materials suitable for complex bioinspired systems.
Collapse
Affiliation(s)
- Xianshuo Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qijun Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lian Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ye Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Lin Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610000, China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Key Laboratory of quality safe evaluation and research of degradable material for State Market Regulation, Products Quality Supervision and Testing Institute of Hainan Province, Haikou 570203, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
30
|
Du X, He PP, Wang C, Wang X, Mu Y, Guo W. Fast Transport and Transformation of Biomacromolecular Substances via Thermo-Stimulated Active "Inhalation-Exhalation" Cycles of Hierarchically Structured Smart pNIPAM-DNA Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206302. [PMID: 36268982 DOI: 10.1002/adma.202206302] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Although smart hydrogels hold great promise in biosensing and biomedical applications, their response to external stimuli is governed by the passive diffusion-dependent substance transport between hydrogels and environments and within the 3D hydrogel matrices, resulting in slow response to biomacromolecules and limiting their extensive applications. Herein, inspired by the respiration systems of organisms, an active strategy to achieve highly efficient biomolecular substance transport through the thermo-stimulated "inhalation-exhalation" cycles of hydrogel matrices is demonstrated. The cryo-structured poly(N-isopropylacrylamide) (pNIPAM)-DNA hydrogels, composed of functional DNA-tethered pNIPAM networks and free-water-containing macroporous channels, exhibit thermally triggered fast and reversible shrinking/swelling cycles with high-volume changes, which drive the formation of dynamic water stream to accelerate the intake of external substances and expelling of endogenous substances, thus promoting the functional properties of hydrogel systems. Demonstrated by catalytic DNAzyme and CRISPR-Cas12a-incorporating hydrogels, significantly enhanced catalytic efficiency with up to 280% and 390% is achieved, upon the introduction of active "inhalation-exhalation" cycles, respectively. Moreover, remotely near-infrared (NIR)-triggering of "inhalation-exhalation" cycles is achieved after the introduction of NIR-responsive MXene nanosheets into the hydrogel matrix. These hydrogel systems with enhanced substance transport and transformation properties hold promise in the development of more effective biosensing and therapeutic systems.
Collapse
Affiliation(s)
- Xiaoxue Du
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ping-Ping He
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Chunyan Wang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaowen Wang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yali Mu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Weiwei Guo
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
31
|
Wang H, Song X, Xiong J, Cheang UK. Fabrication of Bilayer Magnetically Actuated L-Shaped Microrobot Based on Chitosan via Photolithography. Polymers (Basel) 2022; 14:polym14245509. [PMID: 36559876 PMCID: PMC9784805 DOI: 10.3390/polym14245509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Magnetically actuated microrobots showed increasing potential in various fields, especially in the biomedical area, such as invasive surgery, targeted cargo delivery, and treatment. However, it remains a challenge to incorporate biocompatible natural polymers that are favorable for practical biomedical applications. In this work, bilayer magnetic microrobots with an achiral planar design were fabricated using a biocompatible natural polymer and Fe3O4 nanoparticles through the photolithography by applying the layer-by-layer method. The microrobots consisted of a magnetic bottom layer and a photo-crosslinked chitosan top layer. The SEM results showed that the microrobot processed the L-shaped planar structure with the average width, length, and thickness of 99.18 ± 5.11 μm, 189.56 ± 11.37 μm, and 23.56 ± 4.08 μm, respectively. Moreover, microrobots actuated using a three-dimensional (3D) Helmholtz coil system was characterized and reached up to an average maximum velocity of 325.30 μm/s and a step-out frequency of 14 Hz. Furthermore, the microrobots exhibited excellent cell biocompatibility towards L929 cells in the CCK-8 assay. Therefore, the development of bi-layered chitosan-based microrobots offers a general solution for using magnetic microrobots in biomedical applications by providing an easy-to-fabricate, highly mobile microrobotic platform with the incorporation of biocompatible natural polymers for enhanced biocompatibility.
Collapse
Affiliation(s)
- Haoying Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: (H.W.); (U.K.C.)
| | - Xiaoxia Song
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junfeng Xiong
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - U Kei Cheang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: (H.W.); (U.K.C.)
| |
Collapse
|
32
|
Chen XC, Zhang H, Liu SH, Zhou Y, Jiang L. Engineering Polymeric Nanofluidic Membranes for Efficient Ionic Transport: Biomimetic Design, Material Construction, and Advanced Functionalities. ACS NANO 2022; 16:17613-17640. [PMID: 36322865 DOI: 10.1021/acsnano.2c07641] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Design elements extracted from biological ion channels guide the engineering of artificial nanofluidic membranes for efficient ionic transport and spawn biomimetic devices with great potential in many cutting-edge areas. In this context, polymeric nanofluidic membranes can be especially attractive because of their inherent flexibility and benign processability, which facilitate massive fabrication and facile device integration for large-scale applications. Herein, the state-of-the-art achievements of polymeric nanofluidic membranes are systematically summarized. Theoretical fundamentals underlying both biological and synthetic ion channels are introduced. The advances of engineering polymeric nanofluidic membranes are then detailed from aspects of structural design, material construction, and chemical functionalization, emphasizing their broad chemical and reticular/topological variety as well as considerable property tunability. After that, this Review expands on examples of evolving these polymeric membranes into macroscopic devices and their potentials in addressing compelling issues in energy conversion and storage systems where efficient ion transport is highly desirable. Finally, a brief outlook on possible future developments in this field is provided.
Collapse
Affiliation(s)
- Xia-Chao Chen
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Hao Zhang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Sheng-Hua Liu
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Yahong Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| |
Collapse
|
33
|
Rapid formation of uniformly layered materials by coupling reaction-diffusion processes with mechanical responsiveness. Proc Natl Acad Sci U S A 2022; 119:e2123156119. [PMID: 36122212 PMCID: PMC9522343 DOI: 10.1073/pnas.2123156119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Straightforward manufacturing pathways toward large-scale, uniformly layered composites may enable the next generation of materials with advanced optical, thermal, and mechanical properties. Reaction-diffusion systems are attractive candidates to this aim, but while layered composites theoretically could spontaneously arise from reaction-diffusion, in practice randomly oriented patches separated by defects form, yielding nonuniformly patterned materials. A propagating reaction front can prevent such nonuniform patterning, as is the case for Liesegang processes, in which diffusion drives a reaction front to produce layered precipitation patterns. However, while diffusion is crucial to control patterning, it slows down transport of reactants to the front and results in a steady increase of the band spacing as the front advances. Here, we circumvent these diffusive limitations by embedding the Liesegang process in mechanically responsive hydrogels. The coupling between a moving reaction front and hydrogel contraction induces the formation of a self-regulated transport channel that ballistically carries reactants toward the area where patterning occurs. This ensures rapid and uniform patterning. Specifically, large-scale ([Formula: see text]5-cm) uniform banding patterns are produced with tunable band distance (d = 60 to 160 µm) of silver dichromate crystals inside responsive gelatin-alginate hydrogels. The generality and applicability of our mechanoreaction-diffusion strategy are demonstrated by forming patterns of precipitates in significantly smaller microscopic banding patterns (d = 10 to 30 µm) that act as self-organized diffraction gratings. By circumventing the inherent limitations of diffusion, our strategy unlocks the potential of reaction-diffusion processes for the manufacturing of uniformly layered materials.
Collapse
|
34
|
Li Z, Li G, Xu J, Li C, Han S, Zhang C, Wu P, Lin Y, Wang C, Zhang J, Li X. Hydrogel Transformed from Nanoparticles for Prevention of Tissue Injury and Treatment of Inflammatory Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109178. [PMID: 35195940 DOI: 10.1002/adma.202109178] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Functional hydrogels responsive to physiological and pathological signals have extensive biomedical applications owing to their multiple advanced attributes. Herein, engineering of functional hydrogels is reported via transformable nanoparticles in response to the physiologically and pathologically acidic microenvironment. These nanoparticles are assembled by a multivalent hydrophobic, pH-responsive cyclodextrin host material and a multivalent hydrophilic guest macromolecule. Driven by protons, the pH-responsive host-guest nanoparticles can be transformed into hydrogel, resulting from proton-triggered hydrolysis of the host material, generation of a hydrophilic multivalent host compound, and simultaneously enhanced inclusion interactions between host and guest molecules. By in situ forming a hydrogel barrier, the orally delivered transformable nanoparticles protect mice from ethanol- or drug-induced gastric injury. In addition, this type of nanoparticles can serve as responsive and transformable nanovehicles for therapeutic agents to achieve triggerable and sustained drug delivery, thereby effectively treating typical inflammatory diseases, including periodontitis and arthritis in rats. With combined advantages of nanoparticles and hydrogels, together with their good in vivo safety, the engineered transformable nanoparticles hold great promise in tissue injury protection and site-specific/local delivery of molecular and cellular therapeutic agents.
Collapse
Affiliation(s)
- Zimeng Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, P. R. China
| | - Gang Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Jiajia Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, P. R. China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Songling Han
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Chunfan Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Peng Wu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
- College of Pharmacy and Medical Technology, Hanzhong Vocational and Technical College, Hanzhong, Shaanxi, 723000, P. R. China
| | - Yongyao Lin
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Chenping Wang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Xiaodong Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, P. R. China
| |
Collapse
|
35
|
Kavand H, Nasiri R, Herland A. Advanced Materials and Sensors for Microphysiological Systems: Focus on Electronic and Electrooptical Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107876. [PMID: 34913206 DOI: 10.1002/adma.202107876] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Advanced in vitro cell culture systems or microphysiological systems (MPSs), including microfluidic organ-on-a-chip (OoC), are breakthrough technologies in biomedicine. These systems recapitulate features of human tissues outside of the body. They are increasingly being used to study the functionality of different organs for applications such as drug evolutions, disease modeling, and precision medicine. Currently, developers and endpoint users of these in vitro models promote how they can replace animal models or even be a better ethically neutral and humanized alternative to study pathology, physiology, and pharmacology. Although reported models show a remarkable physiological structure and function compared to the conventional 2D cell culture, they are almost exclusively based on standard passive polymers or glass with none or minimal real-time stimuli and readout capacity. The next technology leap in reproducing in vivo-like functionality and real-time monitoring of tissue function could be realized with advanced functional materials and devices. This review describes the currently reported electronic and optical advanced materials for sensing and stimulation of MPS models. In addition, an overview of multi-sensing for Body-on-Chip platforms is given. Finally, one gives the perspective on how advanced functional materials could be integrated into in vitro systems to precisely mimic human physiology.
Collapse
Affiliation(s)
- Hanie Kavand
- Division of Micro- and Nanosystems, Department of Intelligent Systems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
| | - Rohollah Nasiri
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
- Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23a, Solna, 171 65, Sweden
| | - Anna Herland
- Division of Micro- and Nanosystems, Department of Intelligent Systems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
- Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23a, Solna, 171 65, Sweden
| |
Collapse
|
36
|
Wang Y, Chen Z, Li N, Zhang H, Wei J. Programmable photo-responsive self-healing hydrogels for optical information coding and encryption. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
37
|
Yamakado T, Saito S. Ratiometric Flapping Force Probe That Works in Polymer Gels. J Am Chem Soc 2022; 144:2804-2815. [PMID: 35108003 DOI: 10.1021/jacs.1c12955] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polymer gels have recently attracted attention for their application in flexible devices, where mechanically robust gels are required. While there are many strategies to produce tough gels by suppressing nanoscale stress concentration on specific polymer chains, it is still challenging to directly verify the toughening mechanism at the molecular level. To solve this problem, the use of the flapping molecular force probe (FLAP) is promising because it can evaluate the nanoscale forces transmitted in the polymer chain network by ratiometric analysis of a stress-dependent dual fluorescence. A flexible conformational change of FLAP enables real-time and reversible responses to the nanoscale forces at the low force threshold, which is suitable for quantifying the percentage of the stressed polymer chains before structural damage. However, the previously reported FLAP only showed a negligible response in solvated environments because undesirable spontaneous planarization occurs in the excited state, even without mechanical force. Here, we have developed a new ratiometric force probe that functions in common organogels. Replacement of the anthraceneimide units in the flapping wings with pyreneimide units largely suppresses the excited-state planarization, leading to the force probe function under wet conditions. The FLAP-doped polyurethane organogel reversibly shows a dual-fluorescence response under sub-MPa compression. Moreover, the structurally modified FLAP is also advantageous in the wide dynamic range of its fluorescence response in solvent-free elastomers, enabling clearer ratiometric fluorescence imaging of the molecular-level stress concentration during crack growth in a stretched polyurethane film.
Collapse
Affiliation(s)
- Takuya Yamakado
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shohei Saito
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|