1
|
Bai C, Kang J, Wang YQ. Kirigami-Inspired Light-Responsive Conical Spiral Actuators with Large Contraction Ratio Using Liquid Crystal Elastomer Fiber. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39997606 DOI: 10.1021/acsami.4c20234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Liquid crystal elastomers (LCEs) are among the key smart materials driving soft robotics and LCE fibers have garnered significant attention for their rapid response characteristics. A convenient and fast method for programming orientations of liquid crystal molecules is a focal issue in LCE applications. Inspired by the Kirigami technique, here, we propose a novel method for fabricating LCE fibers based on customizable cutting paths and secondary photo-cross-linking. While most existing LCE actuators exhibit contraction ratios of around 30 to 40%, our conical spiral actuator, fabricated from LCE-carbon nanotube (CNT) fiber using the proposed method, demonstrates a significantly higher contraction ratio, reaching up to 80%. The contraction ratio can be controlled by adjusting the cutting path parameters and we elucidate the mechanism linking liquid crystal orientation to the distribution of contraction ratio. Additionally, the conical spiral deformation of the actuator can be manipulated with light radiation, enabling versatile functionalities such as catching, twisting, and gripping. We hope that the novel LCE fiber fabrication method presented provides new insights for programming and preparing LCE fibers, offering a valuable reference for the application of smart soft materials.
Collapse
Affiliation(s)
- Cunping Bai
- Key Laboratory of Structural Dynamics of Liaoning Province, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jingtian Kang
- Key Laboratory of Structural Dynamics of Liaoning Province, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yan Qing Wang
- Key Laboratory of Structural Dynamics of Liaoning Province, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
2
|
Ding H, Yang D, Ding S, Ma F. Reprogrammable Flexible Piezoelectric Actuator Arrays with a High Degree of Freedom for Shape Morphing and Locomotion. Soft Robot 2025. [PMID: 39792479 DOI: 10.1089/soro.2024.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing. However, most existing methods are predetermined through the fabrication process and cannot reprogram their shape, facing limitations on multifunction. Besides, the achievable geometries are very limited due to the device's low integrated level of actuator elements. Here, we develop a polyvinylidene fluoride flexible piezoelectric actuator array based on a row/column addressing (RCA) scheme for reprogrammable high DoF shape morphing and locomotion. The specially designed row/column electrodes form a 6 × 6 array, which contains 36 actuator elements. By developing a high-voltage RCA control system, we can individually control all the elements in the array, leading to a highly reprogrammable array with various sophisticated high DoF shape morphing. We also demonstrate that the array is capable of propelling a robotic fish with various locomotions. This research provides a new method and approach for biomimetic robotics with better mimicry, aero/hydrodynamic efficiency, and maneuverability, as well as haptic display and object manipulation.
Collapse
Affiliation(s)
- Hong Ding
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Dengfei Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
- Advanced Institute of Information Technology, Peking University, Hangzhou, China
| | - Shuo Ding
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Fangyi Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
- School of Electromechanical Engineering & Transportation, Shaoxing Vocational & Technical College, Shaoxing, China
| |
Collapse
|
3
|
Zhang M, Sitti M. Shape-morphing of metastructures empowering locomotion. NATURE MATERIALS 2025; 24:12-13. [PMID: 39358587 DOI: 10.1038/s41563-024-02010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Affiliation(s)
- Mingchao Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
- School of Medicine and College of Engineering, Koç University, Istanbul, Turkey.
| |
Collapse
|
4
|
Cao Z, Sai H, Wang W, Yang K, Wang L, Lv P, Duan H, Huang T. Bioinspired Microhinged Actuators for Active Mechanism-Based Metamaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407231. [PMID: 39555911 PMCID: PMC11727244 DOI: 10.1002/advs.202407231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/03/2024] [Indexed: 11/19/2024]
Abstract
Mechanism-based metamaterials, comprising rigid elements interconnected by flexible hinges, possess the potential to develop intelligent micromachines with programmable motility and morphology. However, the absence of efficient microactuators has constrained the ability to achieve multimodal locomotion and active shape-morphing behaviors at the micro and nanoscale. In this study, inspiration from the flight mechanisms of tiny insects is drawn to develop a biomimetic microhinged actuator by integrating compliant mechanisms with soft hydrogel muscle. A Pseudo-Rigid-Body mechanical model is introduced to analyze structural deformation, demonstrating that this hydrogel-based microactuator can undergo significant folding while maintaining high structural stiffness. Furthermore, multiple microhinged actuators are combined to facilitate folding in multiple degrees of freedom and arbitrary directions. Fabricated by a multi-step four-dimensional (4D) direct laser writing technique, the microhinged actuators are integrated into 2D and 3D metamaterials enabling programable shape morphing. Additionally, micro-kirigami with photonic structures is demonstrated to show the pattern transforming actuated by the microhinges. This bioinspired design approach opens new avenues for the development of active mechanism-based metamaterials capable of intricate shape-morphing behaviors.
Collapse
Affiliation(s)
- Zi‐Yi Cao
- Department of Advanced Manufacturing and RoboticsState Key Laboratory for Turbulence and Complex SystemsBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Huayang Sai
- Department of Advanced Manufacturing and RoboticsState Key Laboratory for Turbulence and Complex SystemsBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Weiwei Wang
- Department of Advanced Manufacturing and RoboticsState Key Laboratory for Turbulence and Complex SystemsBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Kai‐Cheng Yang
- Department of Advanced Manufacturing and RoboticsState Key Laboratory for Turbulence and Complex SystemsBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Linlin Wang
- Department of Advanced Manufacturing and RoboticsState Key Laboratory for Turbulence and Complex SystemsBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Pengyu Lv
- Department of Advanced Manufacturing and RoboticsState Key Laboratory for Turbulence and Complex SystemsBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Huiling Duan
- Department of Advanced Manufacturing and RoboticsState Key Laboratory for Turbulence and Complex SystemsBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Tian‐Yun Huang
- Department of Advanced Manufacturing and RoboticsState Key Laboratory for Turbulence and Complex SystemsBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
- National Key Laboratory of Advanced Micro and Nano Manufacture TechnologyBeijing100871China
| |
Collapse
|
5
|
Abbasoglu T, Skarsetz O, Fanlo P, Grignard B, Detrembleur C, Walther A, Sardon H. Spatio-Selective Reconfiguration of Mechanical Metamaterials Through the Use of Dynamic Covalent Chemistries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407746. [PMID: 39439214 PMCID: PMC11615789 DOI: 10.1002/advs.202407746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/27/2024] [Indexed: 10/25/2024]
Abstract
Mechanical metamaterials achieve unprecedented mechanical properties through their periodically interconnected unit cell structure. However, their geometrical design and resulting mechanical properties are typically fixed during fabrication. Despite efforts to implement covalent adaptable networks (CANs) into metamaterials for permanent shape reconfigurability, emphasis is given to global rather than local shape reconfiguration. Furthermore, the change of effective material properties like Poisson's ratio remains to be explored. In this work, a non-isocyanate polyurethane elastomeric CAN, which can be thermally reconfigured, is introduced into a metamaterial architecture. Structural reconfiguration allows for the local and global reprogramming of the Poisson's ratio with change of unit cell angle from 60° to 90° for the auxetic and 120° to 90° for the honeycomb metamaterial. The respective Poisson's ratio changes from -1.4 up to -0.4 for the auxetic and from +0.7 to +0.2 for the honeycomb metamaterial. Carbon nanotubes are deposited on the metamaterials to enable global and spatial electrothermal heating for on-demand reshaping with a heterogeneous Poisson's ratio ranging from -2 to ≈0 for a single auxetic or +0.6 to ≈0 for a single honeycomb metamaterial. Finite element simulations reveal how permanent geometrical reconfiguration results from locally and globally relaxed heated patterns.
Collapse
Affiliation(s)
- Tansu Abbasoglu
- POLYMATUniversity of the Basque Country UPV/EHUJoxe Mari Korta CenterAvda. Tolosa 72Donostia‐San Sebastián20018Spain
| | - Oliver Skarsetz
- Life‐Like Materials and SystemsDepartment of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Paula Fanlo
- POLYMATUniversity of the Basque Country UPV/EHUJoxe Mari Korta CenterAvda. Tolosa 72Donostia‐San Sebastián20018Spain
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM)CESAM Research UnitDepartment of ChemistryUniversity of LiègeLiège4000Belgium
- FRITCO2T PlatformUniversity of LiègeSart‐Tilman B6aLiège4000Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM)CESAM Research UnitDepartment of ChemistryUniversity of LiègeLiège4000Belgium
- WEL Research InstituteWavre1300Belgium
| | - Andreas Walther
- Life‐Like Materials and SystemsDepartment of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Haritz Sardon
- POLYMATUniversity of the Basque Country UPV/EHUJoxe Mari Korta CenterAvda. Tolosa 72Donostia‐San Sebastián20018Spain
| |
Collapse
|
6
|
Zhang Z, Raymond JE, Lahann J, Pena-Francesch A. Janus Swarm Metamaterials for Information Display, Memory, and Encryption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406149. [PMID: 39279608 DOI: 10.1002/adma.202406149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/20/2024] [Indexed: 09/18/2024]
Abstract
Metamaterials are emerging as an unconventional platform to perform computing abstractions in physical systems by processing environmental stimuli into information. While computation functions have been demonstrated in mechanical systems, they rely on compliant mechanisms to achieve predefined states, which impose inherent design restrictions that limit their miniaturization, deployment, reconfigurability, and functionality. Here, a metamaterial system is described based on responsive magnetoactive Janus particle (MAJP) swarms with multiple programmable functions. MAJPs are designed with tunable structure and properties in mind, that is, encoded swarming behavior and fully reversible switching mechanisms, to enable programmable dynamic display, non-volatile and semi-volatile memory, Boolean logic, and information encryption functions in soft, wearable devices. MAJPs and their unique swarming behavior open new functions for the design of multifunctional and reconfigurable display devices, and constitute a promising building block to develop the next generation of soft physical computing devices, with growing applications in security, defense, anti-counterfeiting, camouflage, soft robotics, and human-robot interaction.
Collapse
Affiliation(s)
- Zenghao Zhang
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffery E Raymond
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joerg Lahann
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Abdon Pena-Francesch
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Robotics Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
7
|
Gonçalves JD, Dias JH, Machado-Neves M, Vergani GB, Ahmadi B, Pereira Batista RIT, Souza-Fabjan JMG, Oliveira MEF, Bartlewski PM, da Fonseca JF. Transcervical uterine flushing and embryo transfer in sheep: Morphophysiological basis for approaches currently used, major challenges, potential improvements, and new directions (alas, including some old ideas). Reprod Biol 2024; 24:100920. [PMID: 38970979 DOI: 10.1016/j.repbio.2024.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
At present, the success of non-surgical embryo recovery (NSER) and transfer (NSET) hinges upon the cervical passage of catheters, but penetration of the uterine cervix in ewes is problematic due to its anatomical structure (i.e., long and narrow cervical lumen with misaligned folds and rings). It is a major obstacle limiting the widespread application of NSER and NSET in sheep. While initial attempts to traverse the uterine cervix focused on adapting or re-designing insemination catheters, more recent studies demonstrated that cervical relaxation protocols were instrumental for transcervical penetration in the ewe. An application of such protocols more than tripled cervical penetration rates (currently at 90-95 %) in sheep of different breeds (e.g., Dorper, Lacaune, Santa Inês, crossbred, and indigenous Brazilian breeds) and ages/parity. There is now sufficient evidence to suggest that even repeatedly performed cervical passages do not adversely affect overall health and reproductive function of ewes. Despite these improvements, appropriate selection of donors and recipients remains one of the most important requirements for maintaining high success rates of NSER and NSET, respectively. Non-surgical ovine embryo recovery has gradually become a commercially viable method as even though the procedure still cannot be performed by untrained individuals, it is inexpensive, yields satisfactory results, and complies with current public expectations of animal welfare standards. This article reviews critical morphophysiological aspects of transcervical embryo flushing and transfer, and the prospect of both techniques to replace surgical methods for multiple ovulation and embryo transfer (MOET) programs in sheep. We have also discussed some potential pharmacological and technical developments in the field of non-invasive embryo recovery and deposition.
Collapse
Affiliation(s)
- Joedson Dantas Gonçalves
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University, Via de acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Jenniffer Hauschildt Dias
- Department of Veterinary Medicine, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, CEP 36570-000 Viçosa, MG, Brazil
| | - Mariana Machado-Neves
- Department of Veterinary Medicine, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, CEP 36570-000 Viçosa, MG, Brazil
| | - Gabriel Brun Vergani
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University, Via de acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Bahareh Ahmadi
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | - Maria Emilia Franco Oliveira
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University, Via de acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Pawel Mieczyslaw Bartlewski
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
8
|
Lyu X, Zheng Z, Shiva A, Han M, Dayan CB, Zhang M, Sitti M. Capillary trapping of various nanomaterials on additively manufactured scaffolds for 3D micro-/nanofabrication. Nat Commun 2024; 15:6693. [PMID: 39107326 PMCID: PMC11303746 DOI: 10.1038/s41467-024-51086-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
High-precision additive manufacturing technologies, such as two-photon polymerization, are mainly limited to photo-curable polymers and currently lacks the possibility to produce multimaterial components. Herein, we report a physically bottom-up assembly strategy that leverages capillary force to trap various nanomaterials and assemble them onto three-dimensional (3D) microscaffolds. This capillary-trapping strategy enables precise and uniform assembly of nanomaterials into versatile 3D microstructures with high uniformity and mass loading. Our approach applies to diverse materials irrespective of their physiochemical properties, including polymers, metals, metal oxides, and others. It can integrate at least four different material types into a single 3D microstructure in a sequential, layer-by-layer manner, opening immense possibilities for tailored functionalities on demand. Furthermore, the 3D microscaffolds are removable, facilitating the creation of pure material-based 3D microstructures. This universal 3D micro-/nanofabrication technique with various nanomaterials enables the creation of advanced miniature devices with potential applications in multifunctional microrobots and smart micromachines.
Collapse
Affiliation(s)
- Xianglong Lyu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Zhiqiang Zheng
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Anitha Shiva
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Mertcan Han
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Cem Balda Dayan
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Mingchao Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland.
- School of Medicine and College of Engineering, Koç University, Istanbul, Turkey.
| |
Collapse
|
9
|
Lee J, Park HK, Hwang GW, Kang GR, Choi YS, Pang C. Highly Adaptive Kirigami-Metastructure Adhesive with Vertically Self-Aligning Octopus-like 3D Suction Cups for Efficient Wet Adhesion to Complexly Curved Surfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37147-37156. [PMID: 38949691 DOI: 10.1021/acsami.4c03363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
An essential requirement for biomedical devices is the capability of conformal adaptability on diverse irregular 3D (three-dimensional) nonflat surfaces in the human body that may be covered with liquids such as mucus or sweat. However, the development of reversible adhesive interface materials for biodevices that function on complex biological surfaces is challenging due to the wet, slippery, smooth, and curved surface properties. Herein, we present an ultra-adaptive bioadhesive for irregular 3D oral cavities covered with saliva by integrating a kirigami-metastructure and vertically self-aligning suction cups. The flared suction cup, inspired by octopus tentacles, allows adhesion to moist surfaces. Additionally, the kirigami-based auxetic metastructure with a negative Poisson's ratio relieves the stress caused by tensile strain, thereby mitigating the stress caused by curved surfaces and enabling conformal contact with the surface. As a result, the adhesive strength of the proposed auxetic adhesive is twice that of adhesives with a flat backbone on highly curved porcine palates. For potential application, the proposed auxetic adhesive is mounted on a denture and performs successfully in human subject feasibility evaluations. An integrated design of these two structures may provide functionality and potential for biomedical applications.
Collapse
Affiliation(s)
- Jihyun Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hyoung-Ki Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Gui Won Hwang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Gyun Ro Kang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Yoon Seok Choi
- Department of Internal Medicine, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
10
|
Zhang M, Pal A, Lyu X, Wu Y, Sitti M. Artificial-goosebump-driven microactuation. NATURE MATERIALS 2024; 23:560-569. [PMID: 38336868 PMCID: PMC10990938 DOI: 10.1038/s41563-024-01810-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
Microactuators provide controllable driving forces for precise positioning, manipulation and operation at the microscale. Development of microactuators using active materials is often hampered by their fabrication complexity and limited motion at small scales. Here we report light-fuelled artificial goosebumps to actuate passive microstructures, inspired by the natural reaction of hair bristling (piloerection) on biological skin. We use light-responsive liquid crystal elastomers as the responsive artificial skin to move three-dimensionally printed passive polymer microstructures. When exposed to a programmable femtosecond laser, the liquid crystal elastomer skin generates localized artificial goosebumps, resulting in precise actuation of the surrounding microstructures. Such microactuation can tilt micro-mirrors for the controlled manipulation of light reflection and disassemble capillary-force-induced self-assembled microstructures globally and locally. We demonstrate the potential application of the proposed microactuation system for information storage. This methodology provides precise, localized and controllable manipulation of microstructures, opening new possibilities for the development of programmable micromachines.
Collapse
Affiliation(s)
- Mingchao Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Aniket Pal
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Institute of Applied Mechanics, University of Stuttgart, Stuttgart, Germany
| | - Xianglong Lyu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Yingdan Wu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland.
- School of Medicine and College of Engineering, Koç University, Istanbul, Turkey.
| |
Collapse
|
11
|
Zheng Z, Han J, Shi Q, Demir SO, Jiang W, Sitti M. Single-step precision programming of decoupled multiresponsive soft millirobots. Proc Natl Acad Sci U S A 2024; 121:e2320386121. [PMID: 38513101 PMCID: PMC10990116 DOI: 10.1073/pnas.2320386121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Stimuli-responsive soft robots offer new capabilities for the fields of medical and rehabilitation robotics, artificial intelligence, and soft electronics. Precisely programming the shape morphing and decoupling the multiresponsiveness of such robots is crucial to enable them with ample degrees of freedom and multifunctionality, while ensuring high fabrication accuracy. However, current designs featuring coupled multiresponsiveness or intricate assembly processes face limitations in executing complex transformations and suffer from a lack of precision. Therefore, we propose a one-stepped strategy to program multistep shape-morphing soft millirobots (MSSMs) in response to decoupled environmental stimuli. Our approach involves employing a multilayered elastomer and laser scanning technology to selectively process the structure of MSSMs, achieving a minimum machining precision of 30 μm. The resulting MSSMs are capable of imitating the shape morphing of plants and hand gestures and resemble kirigami, pop-up, and bistable structures. The decoupled multistimuli responsiveness of the MSSMs allows them to conduct shape morphing during locomotion, perform logic circuit control, and remotely repair circuits in response to humidity, temperature, and magnetic field. This strategy presents a paradigm for the effective design and fabrication of untethered soft miniature robots with physical intelligence, advancing the decoupled multiresponsive materials through modular tailoring of robotic body structures and properties to suit specific applications.
Collapse
Affiliation(s)
- Zhiqiang Zheng
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Jie Han
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an710054, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an710054, China
| | - Qing Shi
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing100081, China
| | - Sinan Ozgun Demir
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Weitao Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an710054, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an710054, China
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich8092, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul34450, Turkey
| |
Collapse
|
12
|
Pinchin NP, Guo H, Meteling H, Deng Z, Priimagi A, Shahsavan H. Liquid Crystal Networks Meet Water: It's Complicated! ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303740. [PMID: 37392137 DOI: 10.1002/adma.202303740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
Abstract
Soft robots are composed of compliant materials that facilitate high degrees of freedom, shape-change adaptability, and safer interaction with humans. An attractive choice of material for soft robotics is crosslinked networks of liquid crystal polymers (LCNs), as they are responsive to a wide variety of external stimuli and capable of undergoing fast, programmable, complex shape morphing, which allows for their use in a wide range of soft robotic applications. However, unlike hydrogels, another popular material in soft robotics, LCNs have limited applicability in flooded or aquatic environments. This can be attributed not only to the poor efficiency of common LCN actuation methods underwater but also to the complicated relationship between LCNs and water. In this review, the relationship between water and LCNs is elaborated and the existing body of literature is surveyed where LCNs, both hygroscopic and non-hygroscopic, are utilized in aquatic soft robotic applications. Then the challenges LCNs face in widespread adaptation to aquatic soft robotic applications are discussed and, finally, possible paths forward for their successful use in aquatic environments are envisaged.
Collapse
Affiliation(s)
- Natalie P Pinchin
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Hongshuang Guo
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Henning Meteling
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Zixuan Deng
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Arri Priimagi
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Hamed Shahsavan
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
13
|
Leanza S, Wu S, Sun X, Qi HJ, Zhao RR. Active Materials for Functional Origami. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302066. [PMID: 37120795 DOI: 10.1002/adma.202302066] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
In recent decades, origami has been explored to aid in the design of engineering structures. These structures span multiple scales and have been demonstrated to be used toward various areas such as aerospace, metamaterial, biomedical, robotics, and architectural applications. Conventionally, origami or deployable structures have been actuated by hands, motors, or pneumatic actuators, which can result in heavy or bulky structures. On the other hand, active materials, which reconfigure in response to external stimulus, eliminate the need for external mechanical loads and bulky actuation systems. Thus, in recent years, active materials incorporated with deployable structures have shown promise for remote actuation of light weight, programmable origami. In this review, active materials such as shape memory polymers (SMPs) and alloys (SMAs), hydrogels, liquid crystal elastomers (LCEs), magnetic soft materials (MSMs), and covalent adaptable network (CAN) polymers, their actuation mechanisms, as well as how they have been utilized for active origami and where these structures are applicable is discussed. Additionally, the state-of-the-art fabrication methods to construct active origami are highlighted. The existing structural modeling strategies for origami, the constitutive models used to describe active materials, and the largest challenges and future directions for active origami research are summarized.
Collapse
Affiliation(s)
- Sophie Leanza
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
14
|
Yang Y, Meng L, Zhang J, Gao Y, Hao Z, Liu Y, Niu M, Zhang X, Liu X, Liu S. Near-Infrared Light-Driven MXene/Liquid Crystal Elastomer Bimorph Membranes for Closed-Loop Controlled Self-Sensing Bionic Robots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307862. [PMID: 37985651 PMCID: PMC10787073 DOI: 10.1002/advs.202307862] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 11/22/2023]
Abstract
More recently, soft actuators have evoked great interest in the next generation of soft robots. Despite significant progress, the majority of current soft actuators suffer from the lack of real-time sensory feedback and self-control functions, prohibiting their effective sensing and multitasking functions. Therefore, in this work, a near-infrared-driven bimorph membrane, with self-sensing and feedback loop control functions, is produced by layer by layer (LBL) assembling MXene/PDDA (PM) onto liquid crystal elastomer (LCE) film. The versatile integration strategy successfully prevents the separation issues that arise from moduli mismatch between the sensing and the actuating layers, ultimately resulting in a stable and tightly bonded interface adhesion. As a result, the resultant membrane exhibited excellent mechanical toughness (tensile strengths equal to 16.3 MPa (||)), strong actuation properties (actuation stress equal to 1.56 MPa), and stable self-sensing (gauge factor equal to 4.72) capabilities. When applying the near-infrared (NIR) laser control, the system can perform grasping, traction, and crawling movements. Furthermore, the wing actuation and the closed-loop controlled motion are demonstrated in combination with the insect microcontroller unit (MCU) models. The remote precision control and the self-sensing capabilities of the soft actuator pave a way for complex and precise task modulation in the future.
Collapse
Affiliation(s)
- Youwei Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Lingxian Meng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Juzhong Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yadong Gao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zijuan Hao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yang Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Mingjun Niu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiaomeng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xuying Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shuiren Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
15
|
Wang L, Chang Y, Wu S, Zhao RR, Chen W. Physics-aware differentiable design of magnetically actuated kirigami for shape morphing. Nat Commun 2023; 14:8516. [PMID: 38129420 PMCID: PMC10739944 DOI: 10.1038/s41467-023-44303-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Shape morphing that transforms morphologies in response to stimuli is crucial for future multifunctional systems. While kirigami holds great promise in enhancing shape-morphing, existing designs primarily focus on kinematics and overlook the underlying physics. This study introduces a differentiable inverse design framework that considers the physical interplay between geometry, materials, and stimuli of active kirigami, made by soft material embedded with magnetic particles, to realize target shape-morphing upon magnetic excitation. We achieve this by combining differentiable kinematics and energy models into a constrained optimization, simultaneously designing the cuts and magnetization orientations to ensure kinematic and physical feasibility. Complex kirigami designs are obtained automatically with unparalleled efficiency, which can be remotely controlled to morph into intricate target shapes and even multiple states. The proposed framework can be extended to accommodate various active systems, bridging geometry and physics to push the frontiers in shape-morphing applications, like flexible electronics and minimally invasive surgery.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yilong Chang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Wei Chen
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
16
|
Saeed MH, Choi MY, Kim K, Lee JH, Kim K, Kim D, Kim SU, Kim H, Ahn SK, Lan R, Na JH. Electrostatically Powered Multimode Liquid Crystalline Elastomer Actuators. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56285-56292. [PMID: 37991738 DOI: 10.1021/acsami.3c13140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Soft actuators based on liquid crystalline elastomers (LCEs) are captivating significant interest because of their unique properties combining the programmable liquid crystalline molecular order and elasticity of polymeric materials. For practical applications, the ability to perform multimodal shape changes in a single LCE actuator at a subsecond level is a bottleneck. Here, we fabricate a monodomain LCE powered by electrostatic force, which enables fast multidirectional bending, oscillation, rotation, and complex actuation with a high degree of freedom. By tuning the dielectric constant and resistivity in LCE gels, a complete cycle of oscillation and rotation only takes 0.1 s. In addition, monodomain actuators exhibit anisotropic actuation behaviors that promise a more complex deployment in a potential electromechanical system. The presented study will pave the way for electrostatically controllable isothermal manipulation for a fast and multimode soft actuator.
Collapse
Affiliation(s)
- Mohsin Hassan Saeed
- Department of Electrical, Electronics and Communication Engineering Education, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Moon-Young Choi
- Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kitae Kim
- Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin-Hyeong Lee
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Keumbee Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Dowon Kim
- Department of Electrical, Electronics and Communication Engineering Education, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Se-Um Kim
- Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Hyun Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Suk-Kyun Ahn
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Ruochen Lan
- Institute of Advanced Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Jun-Hee Na
- Department of Electrical, Electronics and Communication Engineering Education, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
17
|
Zhao F, Li Y, Gao H, Tao R, Mao Y, Chen Y, Zhou S, Zhao J, Wang D. Design and Characterization of Deformable Superstructures Based on Amine-Acrylate Liquid Crystal Elastomers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303594. [PMID: 37942681 PMCID: PMC10754073 DOI: 10.1002/advs.202303594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/06/2023] [Indexed: 11/10/2023]
Abstract
Deformable superstructures are man-made materials with large deformation properties that surpass those of natural materials. However, traditional deformable superstructures generally use conventional materials as substrates, limiting their applications in multi-mode reconfigurable robots and space-expandable morphing structures. In this work, amine-acrylate-based liquid crystal elastomers (LCEs) are used as deformable superstructures substrate to provide high driving stress and strain. By changing the molar ratio of amine to acrylate, the thermal and mechanical properties of the LCEs are modified. The LCE with a ratio of 0.9 exhibited improved polymerization degree, elongation at break, and toughness. Besides an anisotropic finite deformation model based on hyperelastic theory is developed for the LCEs to capture the configuration variation under temperature activation. Built upon these findings, an LCE-based paper-cutting structure with negative Poisson's ratio and a 2D lattice superstructure model are combined, processed, and molded by laser cutting. The developed superstructure is pre-programmed to the configuration required for service conditions, and the deformation processes are analyzed using both experimental and finite element methods. This study is expected to advance the application of deformable superstructures and LCEs in the fields of defense and military, aerospace, and bionic robotics.
Collapse
Affiliation(s)
- Fang Zhao
- Division of Material EngineeringChina Academy of Space TechnologyBeijing100094P. R. China
- Department of Materials Physics and ChemistrySchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Yuzhan Li
- Department of Materials Physics and ChemistrySchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Hong Gao
- Division of Material EngineeringChina Academy of Space TechnologyBeijing100094P. R. China
| | - Ran Tao
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081P. R. China
| | - Yiqi Mao
- Department of engineering mechanicsCollege of Mechanical and Vehicle EngineeringHunan UniversityChangshaHunan410082P. R. China
| | - Yu Chen
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081P. R. China
| | - Sheng Zhou
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081P. R. China
| | - Jianming Zhao
- Department of Materials Physics and ChemistrySchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Dong Wang
- Department of Materials Physics and ChemistrySchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| |
Collapse
|
18
|
Steck J, Kim J, Kutsovsky Y, Suo Z. Multiscale stress deconcentration amplifies fatigue resistance of rubber. Nature 2023; 624:303-308. [PMID: 38092910 DOI: 10.1038/s41586-023-06782-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Rubbers reinforced with rigid particles are used in high-volume applications, including tyres, dampers, belts and hoses1. Many applications require high modulus to resist excessive deformation and high fatigue threshold to resist crack growth under cyclic load. The particles are known to greatly increase modulus but not fatigue threshold. For example, adding carbon particles to natural rubber increases its modulus by one to two orders of magnitude1-3, but its fatigue threshold, reinforced or not, has remained approximately 100 J m-2 for decades4-7. Here we amplify the fatigue threshold of particle-reinforced rubbers by multiscale stress deconcentration. We synthesize a rubber in which highly entangled long polymers strongly adhere with rigid particles. At a crack tip, stress deconcentrates across two length scales: first through polymers and then through particles. This rubber achieves a fatigue threshold of approximately 1,000 J m-2. Mounts and grippers made of this rubber bear high loads and resist crack growth over repeated operation. Multiscale stress deconcentration expands the space of materials properties, opening doors to curtailing polymer pollution and building high-performance soft machines.
Collapse
Affiliation(s)
- Jason Steck
- John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, MA, USA
| | - Junsoo Kim
- John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, MA, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Yakov Kutsovsky
- Office of Technology Development, Harvard University, Cambridge, MA, USA.
| | - Zhigang Suo
- John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
19
|
Zhang M, Pal A, Zheng Z, Gardi G, Yildiz E, Sitti M. Hydrogel muscles powering reconfigurable micro-metastructures with wide-spectrum programmability. NATURE MATERIALS 2023; 22:1243-1252. [PMID: 37604911 PMCID: PMC10533409 DOI: 10.1038/s41563-023-01649-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
Stimuli-responsive geometric transformations endow metamaterials with dynamic properties and functionalities. However, using existing transformation mechanisms to program a single geometry to transform into diverse final configurations remains challenging, imposing crucial design restrictions on achieving versatile functionalities. Here, we present a programmable strategy for wide-spectrum reconfigurable micro-metastructures using linearly responsive transparent hydrogels as artificial muscles. Actuated by the hydrogel, the transformation of micro-metastructures arises from the collaborative buckling of their building blocks. Rationally designing the three-dimensional printing parameters and geometry features of the metastructures enables their locally isotropic or anisotropic deformation, allowing controllable wide-spectrum pattern transformation with programmable chirality and optical anisotropy. This reconfiguration mechanism can be applied to various materials with a wide range of mechanical properties. Our strategy enables a thermally reconfigurable printed metalattice with pixel-by-pixel mapping of different printing powers and angles for displaying or hiding complex information, providing opportunities for encryption, miniature robotics, photonics and phononics applications.
Collapse
Affiliation(s)
- Mingchao Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Aniket Pal
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Zhiqiang Zheng
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Gaurav Gardi
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Erdost Yildiz
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland.
- School of Medicine and College of Engineering, Koç University, Istanbul, Turkey.
| |
Collapse
|
20
|
Jiao P, Mueller J, Raney JR, Zheng XR, Alavi AH. Mechanical metamaterials and beyond. Nat Commun 2023; 14:6004. [PMID: 37752150 PMCID: PMC10522661 DOI: 10.1038/s41467-023-41679-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Mechanical metamaterials enable the creation of structural materials with unprecedented mechanical properties. However, thus far, research on mechanical metamaterials has focused on passive mechanical metamaterials and the tunability of their mechanical properties. Deep integration of multifunctionality, sensing, electrical actuation, information processing, and advancing data-driven designs are grand challenges in the mechanical metamaterials community that could lead to truly intelligent mechanical metamaterials. In this perspective, we provide an overview of mechanical metamaterials within and beyond their classical mechanical functionalities. We discuss various aspects of data-driven approaches for inverse design and optimization of multifunctional mechanical metamaterials. Our aim is to provide new roadmaps for design and discovery of next-generation active and responsive mechanical metamaterials that can interact with the surrounding environment and adapt to various conditions while inheriting all outstanding mechanical features of classical mechanical metamaterials. Next, we deliberate the emerging mechanical metamaterials with specific functionalities to design informative and scientific intelligent devices. We highlight open challenges ahead of mechanical metamaterial systems at the component and integration levels and their transition into the domain of application beyond their mechanical capabilities.
Collapse
Affiliation(s)
- Pengcheng Jiao
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, China
| | - Jochen Mueller
- Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jordan R Raney
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaoyu Rayne Zheng
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Amir H Alavi
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Hou X, Vogelbacher F, Lai X, Li K, Song Y, Li M. Bioinspired multichannel colorful encryption through kirigami activating grating. Sci Bull (Beijing) 2023; 68:276-283. [PMID: 36702683 DOI: 10.1016/j.scib.2023.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Optical encryption, exploiting degrees of freedom of light as parameters to encode and decode information, plays an indispensable role in our daily life. Responsive structural color materials can give real-time visible feedback to external stimuli and provide ideal candidates for optical encryption. However, the development of existing responsive structural color materials is hindered by poor repeatability and long feedback time. Meanwhile, there are only few strategies to exploit structural colors in multichannel information encryption. Herein, bioinspired by the structural color variation due to a change in angle arising from the movement of animal's scales or feathers, we developed a general multichannel information encryption strategy using a two-dimensional deformable kirigami arranging orientations of the grating arrays by design. The kirigami grating sheet shows rapid, repeatable, and programmable color change. This strategy utilizes the topological space deformation to guide the change of optical property, which suggests new possibilities for spatial and spectral encryption as well as mechano-sensing and camouflage.
Collapse
Affiliation(s)
- Xiaoyu Hou
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Florian Vogelbacher
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xintao Lai
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaixuan Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingzhu Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Materials Processing and Mold of the Ministry of Education, Zhengzhou University, Zhengzhou 450002, China.
| |
Collapse
|
22
|
Dominici S, Kamranikia K, Mougin K, Spangenberg A. Smart Nematic Liquid Crystal Polymers for Micromachining Advances. MICROMACHINES 2023; 14:124. [PMID: 36677185 PMCID: PMC9860665 DOI: 10.3390/mi14010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The miniaturization of tools is an important step in human evolution to create faster devices as well as precise micromachines. Studies around this topic have allowed the creation of small-scale objects capable of a wide range of deformation to achieve complex tasks. Molecular arrangements have been investigated through liquid crystal polymer (LCP) to program such a movement. Smart polymers and hereby liquid crystal matrices are materials of interest for their easy structuration properties and their response to external stimuli. However, up until very recently, their employment at the microscale was mainly limited to 2D structuration. Among the numerous issues, one concerns the ability to 3D structure the material while controlling the molecular orientation during the polymerization process. This review aims to report recent efforts focused on the microstructuration of LCP, in particular those dealing with 3D microfabrication via two-photon polymerization (TPP). Indeed, the latter has revolutionized the production of 3D complex micro-objects and is nowadays recognized as the gold standard for 3D micro-printing. After a short introduction highlighting the interest in micromachines, some basic principles of liquid crystals are recalled from the molecular aspect to their implementation. Finally, the possibilities offered by TPP as well as the way to monitor the motion into the fabricated microrobots are highlighted.
Collapse
Affiliation(s)
- Sébastien Dominici
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS–UMR 7361, Université de Haute-Alsace, 15 rue Jean Starcky, 68057 Mulhouse, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Keynaz Kamranikia
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS–UMR 7361, Université de Haute-Alsace, 15 rue Jean Starcky, 68057 Mulhouse, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Karine Mougin
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS–UMR 7361, Université de Haute-Alsace, 15 rue Jean Starcky, 68057 Mulhouse, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Arnaud Spangenberg
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS–UMR 7361, Université de Haute-Alsace, 15 rue Jean Starcky, 68057 Mulhouse, France
- Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
23
|
Zhang S, Ke X, Jiang Q, Chai Z, Wu Z, Ding H. Fabrication and Functionality Integration Technologies for Small-Scale Soft Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200671. [PMID: 35732070 DOI: 10.1002/adma.202200671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Small-scale soft robots are attracting increasing interest for visible and potential applications owing to their safety and tolerance resulting from their intrinsic soft bodies or compliant structures. However, it is not sufficient that the soft bodies merely provide support or system protection. More importantly, to meet the increasing demands of controllable operation and real-time feedback in unstructured/complicated scenarios, these robots are required to perform simplex and multimodal functionalities for sensing, communicating, and interacting with external environments during large or dynamic deformation with the risk of mismatch or delamination. Challenges are encountered during fabrication and integration, including the selection and fabrication of composite/materials and structures, integration of active/passive functional modules with robust interfaces, particularly with highly deformable soft/stretchable bodies. Here, methods and strategies of fabricating structural soft bodies and integrating them with functional modules for developing small-scale soft robots are investigated. Utilizing templating, 3D printing, transfer printing, and swelling, small-scale soft robots can be endowed with several perceptual capabilities corresponding to diverse stimulus, such as light, heat, magnetism, and force. The integration of sensing and functionalities effectively enhances the agility, adaptability, and universality of soft robots when applied in various fields, including smart manufacturing, medical surgery, biomimetics, and other interdisciplinary sciences.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xingxing Ke
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qin Jiang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhiping Chai
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhigang Wu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Han Ding
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
24
|
Zhang W, Wang H, Tan ATL, Sargur Ranganath A, Zhang B, Wang H, Chan JYE, Ruan Q, Liu H, Ha ST, Wang D, Ravikumar VK, Low HY, Yang JKW. Stiff Shape Memory Polymers for High-Resolution Reconfigurable Nanophotonics. NANO LETTERS 2022; 22:8917-8924. [PMID: 36354246 DOI: 10.1021/acs.nanolett.2c03007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reconfigurable metamaterials require constituent nanostructures to demonstrate switching of shapes with external stimuli. Yet, a longstanding challenge is in overcoming stiction caused by van der Waals forces in the deformed configuration, which impedes shape recovery. Here, we introduce stiff shape memory polymers. This designer material has a storage modulus of ∼5.2 GPa at room temperature and ∼90 MPa in the rubbery state at 150 °C, 1 order of magnitude higher than those in previous reports. Nanopillars with diameters of ∼400 nm and an aspect ratio as high as ∼10 were printed by two-photon lithography. Experimentally, we observe shape recovery as collapsed and touching structures overcome stiction to stand back up. We develop a theoretical model to explain the recoverability of these sub-micrometer structures. Reconfigurable structural color prints with a resolution of 21150 dots per inch and holograms are demonstrated, indicating potential applications of the stiff shape memory polymers in high-resolution reconfigurable nanophotonics.
Collapse
Affiliation(s)
- Wang Zhang
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Hao Wang
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Alvin T L Tan
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Anupama Sargur Ranganath
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Biao Zhang
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Hongtao Wang
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - John You En Chan
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Qifeng Ruan
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Hailong Liu
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Son Tung Ha
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Dong Wang
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Venkat K Ravikumar
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Hong Yee Low
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Joel K W Yang
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| |
Collapse
|
25
|
Pinchin NP, Lin CH, Kinane CA, Yamada N, Pena-Francesch A, Shahsavan H. Plasticized liquid crystal networks and chemical motors for the active control of power transmission in mechanical devices. SOFT MATTER 2022; 18:8063-8070. [PMID: 35969176 DOI: 10.1039/d2sm00826b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The miniaturization of mechanical devices poses new challenges in powering, actuation, and control since traditional approaches cannot be used due to inherent size limitations. This is particularly challenging in untethered small-scale machines where independent actuation of multicomponent and multifunctional complex systems is required. This work showcases the integration of self-powered chemical motors and liquid crystal networks into a powertrain transmission device to achieve orthogonal untethered actuation for power and control. Driving gears with a protein-based chemical motor were used to power the transmission system with Marangoni propulsive forces, while photothermal liquid crystal networks were used as a photoresponsive clutch to engage/disengage the gear system. Liquid crystal networks were plasticized for optimized photothermal bending actuation to break the surface tension of water and achieve reversible immersion/resurfacing at the air-water interface. This concept is demonstrated in a milliscale transmission gear system and offers potential solutions for aquatic soft robots whose powering and control mechanisms must be necessarily decoupled.
Collapse
Affiliation(s)
- Natalie P Pinchin
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Chia-Heng Lin
- Department of Materials Science and Engineering, Macromolecular Science and Engineering, Robotics Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Cecelia A Kinane
- Department of Materials Science and Engineering, Macromolecular Science and Engineering, Robotics Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Naoki Yamada
- Department of System Innovation, Osaka University, Osaka, 560-0043, Japan
| | - Abdon Pena-Francesch
- Department of Materials Science and Engineering, Macromolecular Science and Engineering, Robotics Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Hamed Shahsavan
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
26
|
Lin CH, Kinane C, Zhang Z, Pena-Francesch A. Functional Chemical Motor Coatings for Modular Powering of Self-Propelled Particles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39332-39342. [PMID: 35972784 DOI: 10.1021/acsami.2c08061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inspired by the locomotion of semiaquatic insects, a variety of surface swimming microrobots propelled by surface tension Marangoni forces have been developed over the years. However, most Marangoni micromotor systems present limitations in their applications due to poor performance, short lifetime, low efficiency, and toxicity. We have developed a functional chemical motor coating consisting of protein microfilms with entrapped fuel to functionalize inactive substrates or particles. This motor material system generates large Marangoni propulsive forces with extremely small amounts of fuel due to a self-regulated fuel release mechanism based on dynamic nanostructural changes in the protein matrix, enhancing the lifetime and efficiency performance over other material systems and motors. These motor functional coatings offer great versatility as they can be coated on a wide array of substrates and materials across length scales, with opportunities as modular power sources for microrobots and small-scale devices. The synergy between the protein motor matrix and the chemical fuel enables the wider design of self-powered surface microrobots without previous limitations in their fabrication and performance, including the new design of hybrid microrobots with protein functional coatings as a modular power source.
Collapse
Affiliation(s)
- Chia-Heng Lin
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Cecelia Kinane
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zenghao Zhang
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Abdon Pena-Francesch
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Robotics Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
27
|
Guan Z, Wang L, Bae J. Advances in 4D printing of liquid crystalline elastomers: materials, techniques, and applications. MATERIALS HORIZONS 2022; 9:1825-1849. [PMID: 35504034 DOI: 10.1039/d2mh00232a] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liquid crystalline elastomers (LCEs) are polymer networks exhibiting anisotropic liquid crystallinity while maintaining elastomeric properties. Owing to diverse polymeric forms and self-alignment molecular behaviors, LCEs have fascinated state-of-the-art efforts in various disciplines other than the traditional low-molar-mass display market. By patterning order to structures, LCEs demonstrate reversible high-speed and large-scale actuations in response to external stimuli, allowing for close integration with 4D printing and architectures of digital devices, which is scarcely observed in homogeneous soft polymer networks. In this review, we collect recent advances in 4D printing of LCEs, with emphases on synthesis and processing methods that enable microscopic changes in the molecular orientation and hence macroscopic changes in the properties of end-use objects. Promising potentials of printed complexes include fields of soft robotics, optics, and biomedical devices. Within this scope, we elucidate the relationships among external stimuli, tailorable morphologies in mesophases of liquid crystals, and programmable topological configurations of printed parts. Lastly, perspectives and potential challenges facing 4D printing of LCEs are discussed.
Collapse
Affiliation(s)
- Zhecun Guan
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Jinhye Bae
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA.
- Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
28
|
Brooks AK, Chakravarty S, Ali M, Yadavalli VK. Kirigami-Inspired Biodesign for Applications in Healthcare. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109550. [PMID: 35073433 DOI: 10.1002/adma.202109550] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Mechanically flexible and conformable materials and integrated devices have found diverse applications in personalized healthcare as diagnostics and therapeutics, tissue engineering and regenerative medicine constructs, surgical tools, secure systems, and assistive technologies. In order to impart optimal mechanical properties to the (bio)materials used in these applications, various strategies have been explored-from composites to structural engineering. In recent years, geometric cuts inspired by the art of paper-cutting, referred to as kirigami, have provided innovative opportunities for conferring precise mechanical properties via material removal. Kirigami-based approaches have been used for device design in areas ranging from soft bioelectronics to energy storage. In this review, the principles of kirigami-inspired engineering specifically for biomedical applications are discussed. Factors pertinent to their design, including cut geometry, materials, and fabrication, and the effect these parameters have on their properties and configurations are covered. Examples of kirigami designs in healthcare are presented, such as, various form factors of sensors (on skin, wearable), implantable devices, therapeutics, surgical procedures, and cellular scaffolds for regenerative medicine. Finally, the challenges and future scope for the successful translation of these biodesign concepts to broader deployment are discussed.
Collapse
Affiliation(s)
- Anne Katherine Brooks
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Sudesna Chakravarty
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Maryam Ali
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
29
|
Liu Z, Li M, Dong X, Ren Z, Hu W, Sitti M. Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing. Nat Commun 2022; 13:2016. [PMID: 35440590 PMCID: PMC9019016 DOI: 10.1038/s41467-022-29645-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
Magnetically driven wireless miniature devices have become promising recently in healthcare, information technology, and many other fields. However, they lack advanced fabrication methods to go down to micrometer length scales with heterogeneous functional materials, complex three-dimensional (3D) geometries, and 3D programmable magnetization profiles. To fill this gap, we propose a molding-integrated direct laser writing-based microfabrication approach in this study and showcase its advanced enabling capabilities with various proof-of-concept functional microdevice prototypes. Unique motions and functionalities, such as metachronal coordinated motion, fluid mixing, function reprogramming, geometrical reconfiguring, multiple degrees-of-freedom rotation, and wireless stiffness tuning are exemplary demonstrations of the versatility of this fabrication method. Such facile fabrication strategy can be applied toward building next-generation smart microsystems in healthcare, robotics, metamaterials, microfluidics, and programmable matter.
Collapse
Affiliation(s)
- Zemin Liu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Stuttgart, Germany.,Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Meng Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Stuttgart, Germany
| | - Xiaoguang Dong
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Stuttgart, Germany.,Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Ziyu Ren
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Stuttgart, Germany.,Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Wenqi Hu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Stuttgart, Germany.
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Stuttgart, Germany. .,Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland. .,School of Medicine & College of Engineering, Koç University, 34450, Istanbul, Turkey.
| |
Collapse
|
30
|
Li Y, Liu T, Ambrogi V, Rios O, Xia M, He W, Yang Z. Liquid Crystalline Elastomers Based on Click Chemistry. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14842-14858. [PMID: 35319184 DOI: 10.1021/acsami.1c21096] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liquid crystalline elastomers (LCEs) have emerged as an important class of functional materials that are suitable for a wide range of applications, such as sensors, actuators, and soft robotics. The unique properties of LCEs originate from the combination between liquid crystal and elastomeric network. The control of macroscopic liquid crystalline orientation and network structure is crucial to realizing the useful functionalities of LCEs. A variety of chemistries have been developed to fabricate LCEs, including hydrosilylation, free radical polymerization of acrylate, and polyaddition of epoxy and carboxylic acid. Over the past few years, the use of click chemistry has become a more robust and energy-efficient way to construct LCEs with desired structures. This article provides an overview of emerging LCEs based on click chemistries, including aza-Michael addition between amine and acrylate, radical-mediated thiol-ene and thiol-yne reactions, base-catalyzed thiol-acrylate and thiol-epoxy reactions, copper-catalyzed azide-alkyne cycloaddition, and Diels-Alder cycloaddition. The similarities and differences of these reactions are discussed, with particular attention focused on the strengths and limitations of each reaction for the preparation of LCEs with controlled structures and orientations. The compatibility of these reactions with the traditional and emerging processing techniques, such as surface alignment and additive manufacturing, are surveyed. Finally, the challenges and opportunities of using click chemistry for the design of LCEs with advanced functionalities and applications are discussed.
Collapse
Affiliation(s)
- Yuzhan Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tuan Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Veronica Ambrogi
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Napoli 80125, Italy
| | - Orlando Rios
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Min Xia
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wanli He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhou Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
31
|
Qi J, Chen Z, Jiang P, Hu W, Wang Y, Zhao Z, Cao X, Zhang S, Tao R, Li Y, Fang D. Recent Progress in Active Mechanical Metamaterials and Construction Principles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102662. [PMID: 34716676 PMCID: PMC8728820 DOI: 10.1002/advs.202102662] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/31/2021] [Indexed: 05/03/2023]
Abstract
Active mechanical metamaterials (AMMs) (or smart mechanical metamaterials) that combine the configurations of mechanical metamaterials and the active control of stimuli-responsive materials have been widely investigated in recent decades. The elaborate artificial microstructures of mechanical metamaterials and the stimulus response characteristics of smart materials both contribute to AMMs, making them achieve excellent properties beyond the conventional metamaterials. The micro and macro structures of the AMMs are designed based on structural construction principles such as, phase transition, strain mismatch, and mechanical instability. Considering the controllability and efficiency of the stimuli-responsive materials, physical fields such as, the temperature, chemicals, light, electric current, magnetic field, and pressure have been adopted as the external stimuli in practice. In this paper, the frontier works and the latest progress in AMMs from the aspects of the mechanics and materials are reviewed. The functions and engineering applications of the AMMs are also discussed. Finally, existing issues and future perspectives in this field are briefly described. This review is expected to provide the basis and inspiration for the follow-up research on AMMs.
Collapse
Affiliation(s)
- Jixiang Qi
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Zihao Chen
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Peng Jiang
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Wenxia Hu
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Yonghuan Wang
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Zeang Zhao
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Xiaofei Cao
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Shushan Zhang
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Ran Tao
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Ying Li
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Daining Fang
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| |
Collapse
|
32
|
Carlotti M, Tricinci O, den Hoed F, Palagi S, Mattoli V. Direct laser writing of liquid crystal elastomers oriented by a horizontal electric field. OPEN RESEARCH EUROPE 2021; 1:129. [PMID: 37645193 PMCID: PMC10445945 DOI: 10.12688/openreseurope.14135.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 08/31/2023]
Abstract
Background: The ability to fabricate components capable of performing actuation in a reliable and controlled manner is one of the main research topics in the field of microelectromechanical systems (MEMS). However, the development of these technologies can be limited in many cases by 2D lithographic techniques employed in the fabrication process. Direct Laser Writing (DLW), a 3D microprinting technique based on two-photon polymerization, can offer novel solutions to prepare, both rapidly and reliably, 3D nano- and microstructures of arbitrary complexity. In addition, the use of functional materials in the printing process can result in the fabrication of smart and responsive devices. Methods: In this study, we present a novel methodology for the printing of 3D actuating microelements comprising Liquid Crystal Elastomers (LCEs) obtained by DLW. The alignment of the mesogens was performed using a static electric field (1.7 V/µm) generated by indium-tin oxide (ITO) electrodes patterned directly on the printing substrates. Results: When exposed to a temperature higher than 50°C, the printed microstructures actuated rapidly and reversibly of about 8% in the direction perpendicular to the director. Conclusions: A novel methodology was developed that allows the printing of directional actuators comprising LCEs via DLW. To impart the necessary alignment of the mesogens, a static electric field was applied before the printing process by making use of flat ITO electrodes present on the printing substrates. The resulting microelements showed a reversible change in shape when heated higher than 50 °C.
Collapse
Affiliation(s)
- Marco Carlotti
- Center for Materials Interfaces (CMI), Italian Institute of Technology, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Omar Tricinci
- Center for Materials Interfaces (CMI), Italian Institute of Technology, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Frank den Hoed
- Center for Materials Interfaces (CMI), Italian Institute of Technology, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Engineering and Technology institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, Groningen, 4747 AG, The Netherlands
| | - Stefano Palagi
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Virgilio Mattoli
- Center for Materials Interfaces (CMI), Italian Institute of Technology, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| |
Collapse
|