1
|
Li B, Kong Y, Li T, Li H, Zhao H, Cheng P, Yuan J. Enhanced Intramolecular Hole Transfer in Block Copolymer Enables >15% and Operational Stable Single-Material-Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408988. [PMID: 39318082 DOI: 10.1002/adma.202408988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Recent studies on narrow bandgap all-conjugated block copolymer (BCP) single-material-organic solar cells (SMOSCs) have made unprecedented progress in power conversion efficiency (PCE); however, it still lacks understanding of the structure-property relationship in these highly mixed materials. Herein, the impact of different synthetic protocols (direct synthesis (d-BCP) versus sequential synthesis (s-BCP)) is first investigated on the relevant photovoltaic properties. Targeting the same BCP, namely PBDB-T-b-PYIT, it is found that the change in polymerization reaction leads to quite different optical and transport properties. The d-BCP outputs a record-high PCE of 15.02% for SMOSCs as well as enhanced operation stability under simulated 1-sun illumination, which is significantly higher than that of s-BCP (10.33%) and even close to its bulk heterojunction (BHJ) counterparts. Detailed transient absorption spectroscopy reveals ultrafast dynamics of charge transfer (CT) and exciton dissociation in BCP. In together with morphology characterization, it is revealed that the d-BCP has more phase pure composition, enhanced molecular ordering, and higher intramolecular CT efficiency relative to those of s-BCP. These findings gain insight into both the structure and carrier dynamic of BCP and demonstrate the possibility of achieving high-efficiency and stable SMOSCs.
Collapse
Affiliation(s)
- Bin Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yuxin Kong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Tao Li
- Shanghai Ultra-precision Optical Manufacturing Engineering Research Center and Key Laboratory of Micro & Nano Photonic Structures (Ministry of Education), Department of Optical Science & Engineering, Fudan University, Shanghai, 200433, P. R. China
| | - Hongxiang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Haibin Zhao
- Shanghai Ultra-precision Optical Manufacturing Engineering Research Center and Key Laboratory of Micro & Nano Photonic Structures (Ministry of Education), Department of Optical Science & Engineering, Fudan University, Shanghai, 200433, P. R. China
| | - Pei Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jianyu Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
2
|
Min Z, Wang B, Kong Y, Guo J, Ling X, Ma W, Yuan J. Pyridalthiadiazole-Based Molecular Chromophores for Defect Passivation Enables High-Performance Perovskite Solar Cells. CHEMSUSCHEM 2024:e202401852. [PMID: 39345007 DOI: 10.1002/cssc.202401852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
Passivation of defects at the surface and grain boundaries of perovskite films has become one of the most important strategies to suppress nonradiative recombination and improve optoelectronic performance of perovskite solar cells (PSCs). In this work, two conjugated molecules, abbreviated as CPT and SiPT, are designed and synthesized as the passivator to enhance both efficiency and stability of PSCs. The CPT and SiPT contain pyridalthiadiazole (PT) units, which can coordinate with undercoordinated Pb2+ at the surface and grain boundaries to passivate the defects in perovskite films. In addition, with the incorporation of CPT, the crystallized perovskite films exhibit more uniform grain size and smoother surface morphology relative to the control ones. The efficient passivation by CPT also results in better charge extraction and less carrier recombination in PSCs. Consequently, the CPT-passivated PSCs yield the highest power conversion efficiency (PCE) of 23.14 % together with better storage stability under ambient conditions, which is enhanced relative to the control devices with a PCE of 22.14 %. Meanwhile, the SiPT-passivated PSCs also show a slightly enhanced performance with a PCE of 22.43 %. Our findings provide a new idea for the future design of functional passivating molecules towards high-performance PSCs.
Collapse
Affiliation(s)
- Zhangtao Min
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Bei Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Yuxin Kong
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Junjun Guo
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Xufeng Ling
- College of Physics, Chongqing University, Chongqing, 401331, P. R. China
| | - Wanli Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Jianyu Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
3
|
Cheng Y, Huang B, Mao Q, Huang X, Liu J, Zhou C, Zhou W, Ren X, Kim S, Kim W, Sun Z, Wu F, Yang C, Chen L. Three-in-One Strategy Enables Single-Component Organic Solar Cells with Record Efficiency and High Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312938. [PMID: 38320218 DOI: 10.1002/adma.202312938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Indexed: 02/08/2024]
Abstract
Single-component organic solar cells (SCOSCs) with covalently bonding donor and acceptor are becoming increasingly attractive because of their superior stability over traditional multicomponent blend organic solar cells (OSCs). Nevertheless, the efficiency of SCOSCs is far behind the state-of-the-art multicomponent OSCs. Herein, by combination of the advantages of three-component and single-component devices, this work reports an innovative three-in-one strategy to boost the performance of SCOSCs. In this three-in-one strategy, three independent components (PM6, D18, and PYIT) are covalently linked together to create a new single-component active layer based on ternary conjugated block copolymer (TCBC) PM6-D18-b-PYIT by a facile polymerization. Precisely manipulating the component ratios in the polymer chains of PM6-D18-b-PYIT is able to broaden light utilization, promote charge dynamics, optimize, and stabilize film morphology, contributing to the simultaneously enhanced efficiency and stability of the SCOSCs. Ultimately, the PM6-D18-b-PYIT-based device exhibits a power conversion efficiency (PCE) of 14.89%, which is the highest efficiency of the reported SCOSCs. Thanks to the aggregation restriction of each component and chain entanglement in the three-in-one system, the PM6-D18-b-PYIT-based SCOSC displays significantly higher stability than the corresponding two-component (PM6-D18:PYIT) and three-component (PM6:D18:PYIT). These results demonstrate that the three-in-one strategy is facile and promising for developing SCOSCs with superior efficiency and stability.
Collapse
Affiliation(s)
- Yujun Cheng
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Bin Huang
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, 156 Ke Jia Road, Ganzhou, 341000, China
| | - Qilong Mao
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xuexiang Huang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jiabin Liu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Chunxiang Zhou
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Wen Zhou
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xinyuan Ren
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Seoyoung Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Wonjun Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Zhe Sun
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Feiyan Wu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Lie Chen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| |
Collapse
|
4
|
Ji J, Wu Z, Xie J, Wang W, Qian H, Liang Z. Dual Polymerized Y-Acceptors of Distinct-Dimensionality Create Neuron-Like Interpenetrating Hierarchical Network towards Efficient and Stable All-Polymer Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313237. [PMID: 38214364 DOI: 10.1002/adma.202313237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Indexed: 01/13/2024]
Abstract
All-polymer solar cells have garnered particular attention thanks to their superior thermal, photo, and mechanical stabilities for large-scale manufacturing, yet the performance enhancement remains largely restrained by inherent morphological challenges of the bulk-heterojunction active layer. Herein, a 3D Y-branched polymerized small-molecule acceptor named PYBF, characteristic of high molecular weight and glass transition temperature, is designed and synthesized by precisely linking C3h-symmetric benzotrifuran with Y6 acceptors. In comparison to the benchmark thiophene-bridged linear PYIT acceptor, an optical blue-shift absorption is observed for PYBF yet a slightly higher power conversion efficiency (PCE) of 15.7% (vs 15.14%) is obtained when paired with polymer donor PM6, which benefit from the more crystalline and face-on-oriented PYBF domains. However, the star-like bulky structure of PYBF results in the nucleation-growth dominant phase-separation in polymeric blends, which generates stumpy droplet-like acceptor fibrils and impairs the continuity of acceptor phases. This issue is however surprisingly resolved by incorporating a small amount of PYIT, which leads to the formation of the more interconnective neuron-like dual-acceptor domains by long-chain entanglements of linear acceptors and alleviates bimolecular recombination. Thus, the champion device realizes a respectable PCE of up to ≈17% and importantly exhibits thermal and storage stabilities superior to the linear counterpart.
Collapse
Affiliation(s)
- Jingjing Ji
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Zhiyuan Wu
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Jiaqi Xie
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Weiyi Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Ziqi Liang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
5
|
Ding P, Yang D, Yang S, Ge Z. Stability of organic solar cells: toward commercial applications. Chem Soc Rev 2024; 53:2350-2387. [PMID: 38268469 DOI: 10.1039/d3cs00492a] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Organic solar cells (OSCs) have attracted a great deal of attention in the field of clean solar energy due to their advantages of transparency, flexibility, low cost and light weight. Introducing them to the market enables seamless integration into buildings and windows, while also supporting wearable, portable electronics and internet-of-things (IoT) devices. With the development of photovoltaic materials and the optimization of fabrication technology, the power conversion efficiencies (PCEs) of OSCs have rapidly improved and now exceed 20%. However, there is a significant lack of focus on material stability and device lifetime, causing a severe hindrance to commercial applications. In this review, we carefully review important strategies employed to improve the stability of OSCs over the past three years from the perspectives of material design and device engineering. Furthermore, we analyze and discuss the current important progress in terms of air, light, thermal and mechanical stability. Finally, we propose the future research directions to overcome the challenges in achieving highly stable OSCs. We expect that this review will contribute to solving the stability problem of OSCs, eventually paving the way for commercial applications in the near future.
Collapse
Affiliation(s)
- Pengfei Ding
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daobin Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuncheng Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Ziyi Ge
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Theunissen D, Smeets S, Maes W. Single-component organic solar cells-Perspective on the importance of chemical precision in conjugated block copolymers. Front Chem 2023; 11:1326131. [PMID: 38694020 PMCID: PMC11061845 DOI: 10.3389/fchem.2023.1326131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/17/2023] [Indexed: 05/03/2024] Open
Abstract
Organic photovoltaics (OPV) present a promising thin-film solar cell technology with particular benefits in terms of weight, aesthetics, transparency, and cost. However, despite being studied intensively since the mid 90's, OPV has not entered the mass consumer market yet. Although the efficiency gap with other thin-film photovoltaics has largely been overcome, active layer stability and performance reproducibility issues have not been fully resolved. State-of-the-art OPV devices employ a physical mixture of electron donor and acceptor molecules in a bulk heterojunction active layer. These blends are prone to morphological changes, leading to performance losses over time. On the other hand, in "single-component" organic solar cells, the donor and acceptor constituents are chemically connected within a single material, preventing demixing and thereby enhancing device stability. Novel single-component materials affording reasonably high solar cell efficiencies and improved lifetimes have recently emerged. In particular, the combination of donor and acceptor structures in conjugated block copolymers (CBCs) presents an exciting approach. Nevertheless, the current CBCs are poorly defined from a structural point of view, while synthetic protocols remain unoptimized. More controlled synthesis followed by proper structural analysis of CBCs is, however, essential to develop rational structure-property-device relations and to drive the field forward. In this perspective, we provide a short overview of the state-of-the-art in single-component organic solar cells prepared from CBCs, reflect on their troublesome characterization and the importance of chemical precision in these structures, give some recommendations, and discuss the potential impact of these aspects on the field.
Collapse
Affiliation(s)
- Dries Theunissen
- Design and Synthesis of Organic Semiconductors, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Diepenbeek, Belgium
- Associated Lab IMOMEC, IMEC, Diepenbeek, Belgium
- Energyville, Genk, Belgium
| | - Sander Smeets
- Design and Synthesis of Organic Semiconductors, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Diepenbeek, Belgium
- Associated Lab IMOMEC, IMEC, Diepenbeek, Belgium
- Energyville, Genk, Belgium
| | - Wouter Maes
- Design and Synthesis of Organic Semiconductors, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Diepenbeek, Belgium
- Associated Lab IMOMEC, IMEC, Diepenbeek, Belgium
- Energyville, Genk, Belgium
| |
Collapse
|
7
|
Cheng Y, Mao Q, Zhou C, Huang X, Liu J, Deng J, Sun Z, Jeong S, Cho Y, Zhang Y, Huang B, Wu F, Yang C, Chen L. Regulating the Sequence Structure of Conjugated Block Copolymers Enables Large-Area Single-Component Organic Solar Cells with High Efficiency and Stability. Angew Chem Int Ed Engl 2023; 62:e202308267. [PMID: 37539636 DOI: 10.1002/anie.202308267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023]
Abstract
Single-component organic solar cells (SCOSCs) based on conjugated block copolymers (CBCs) by covalently bonding a polymer donor and polymer acceptor become more and more appealing due to the formation of a favorable and stable morphology. Unfortunately, a deep understanding of the effect of the assembly behavior caused by the sequence structure of CBCs on the device performance is still missing. Herein, from the aspect of manipulating the sequence length and distribution regularity of CBCs, we synthesized a series of new CBCs, namely D18(20)-b-PYIT, D18(40)-b-PYIT and D18(60)-b-PYIT by two-pot polymerization, and D18(40)-b-PYIT(r) by traditional one-pot method. It is observed that precise manipulation of sequence length and distribution regularity of the polymer blocks fine-tunes the self-assembly of the CBCs, optimizes film morphology, improves optoelectronic properties, and reduces energy loss, leading to simultaneously improved efficiency and stability. Among these CBCs, the D18(40)-b-PYIT-based device achieves a high efficiency of 13.4 % with enhanced stability, which is an outstanding performance among SCOSCs. Importantly, the regular sequence distribution and suitable sequence length of the CBCs enable a facile film-forming process of the printed device. For the first time, the blade-coated large-area rigid/flexible SCOSCs are fabricated, delivering an impressive efficiency of 11.62 %/10.73 %, much higher than their corresponding binary devices.
Collapse
Affiliation(s)
- Yujun Cheng
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Qilong Mao
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Chunxiang Zhou
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xuexiang Huang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jiabin Liu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jiawei Deng
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Zhe Sun
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Seonghun Jeong
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Yongjoon Cho
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Youhui Zhang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Bin Huang
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology 156 Ke Jia Road, Ganzhou, 341000 (China)
| | - Feiyan Wu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Lie Chen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| |
Collapse
|
8
|
Yang X, Li B, Zhang X, Li S, Zhang Q, Yuan L, Ko DH, Ma W, Yuan J. Intrinsic Role of Volatile Solid Additive in High-Efficiency PM6:Y6 Series Nonfullerene Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301604. [PMID: 36929606 DOI: 10.1002/adma.202301604] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/09/2023] [Indexed: 06/16/2023]
Abstract
Organic nonfullerene solar cells (ONSCs) have made unprecedented progress; however, morphology optimization of ONSCs is proven to be particularly challenging relative to classical fullerene-based devices. Here, a novel volatile solid additive (VSA), 2-hydroxy-4-methoxybenzophenone (2-HM), is reported for achieving high-efficiency ONSCs. 2-HM functions as a universal morphology-directing agent for several well-known PM6:Y6 series nonfullerene blends, viz. PM6:Y6, PM6:BTP-eC9, PM6:L8-BO, leading to a best efficiency of 18.85% at the forefront of reported binary ONSCs. VSAs have recently emerged, while the intrinsic kinetics is still unclear. Herein, a set of in situ and ex situ characterizations is employed to first illustrate the molecule-aggregate-domain transition dynamic process assisted by the VSA. More specifically, the role of 2-HM in individual donor PM6 and acceptor Y6 systems is unlocked, and the function of 2-HM in altering the PM6:Y6 bulk heterojunction blends is further revealed for enhanced photovoltaic performance. It is believed that the achievement brings not only a deep insight into emerging volatile solid additive, but also a new hope to further improve the molecular ordering, film microstructure, and relevant performance of ONSCs.
Collapse
Affiliation(s)
- Xue Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Bin Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xuliang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Siying Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Qilin Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Lin Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Doo-Hyun Ko
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Wanli Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jianyu Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
9
|
Lowrie W, Westbrook RJE, Guo J, Gonev HI, Marin-Beloqui J, Clarke TM. Organic photovoltaics: The current challenges. J Chem Phys 2023; 158:110901. [PMID: 36948814 DOI: 10.1063/5.0139457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Organic photovoltaics are remarkably close to reaching a landmark power conversion efficiency of 20%. Given the current urgent concerns regarding climate change, research into renewable energy solutions is crucially important. In this perspective article, we highlight several key aspects of organic photovoltaics, ranging from fundamental understanding to implementation, that need to be addressed to ensure the success of this promising technology. We cover the intriguing ability of some acceptors to undergo efficient charge photogeneration in the absence of an energetic driving force and the effects of the resulting state hybridization. We explore one of the primary loss mechanisms of organic photovoltaics-non-radiative voltage losses-and the influence of the energy gap law. Triplet states are becoming increasingly relevant owing to their presence in even the most efficient non-fullerene blends, and we assess their role as both a loss mechanism and a potential strategy to enhance efficiency. Finally, two ways in which the implementation of organic photovoltaics can be simplified are addressed. The standard bulk heterojunction architecture could be superseded by either single material photovoltaics or sequentially deposited heterojunctions, and the attributes of both are considered. While several important challenges still lie ahead for organic photovoltaics, their future is, indeed, bright.
Collapse
Affiliation(s)
- William Lowrie
- Department of Chemistry, University College London, Christopher Ingold Building, London WC1H 0AJ, United Kingdom
| | - Robert J E Westbrook
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Junjun Guo
- Department of Chemistry, University College London, Christopher Ingold Building, London WC1H 0AJ, United Kingdom
| | - Hristo Ivov Gonev
- Department of Chemistry, University College London, Christopher Ingold Building, London WC1H 0AJ, United Kingdom
| | - Jose Marin-Beloqui
- Departamento de Química Física, Universidad de Malaga, Campus Teatinos s/n, 29071 Málaga, Spain
| | - Tracey M Clarke
- Department of Chemistry, University College London, Christopher Ingold Building, London WC1H 0AJ, United Kingdom
| |
Collapse
|
10
|
Hu H, Mu X, Li B, Gui R, Shi R, Chen T, Liu J, Yuan J, Ma J, Gao K, Hao X, Yin H. Desirable Uniformity and Reproducibility of Electron Transport in Single-Component Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205040. [PMID: 36658728 PMCID: PMC10015880 DOI: 10.1002/advs.202205040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Despite the simplified fabrication process and desirable microstructural stability, the limited charge transport properties of block copolymers and double-cable conjugated polymers hinder the overall performance of single-component photovoltaic devices. Based on the key distinction in the donor (D)-acceptor (A) bonding patterns between single-component and bulk heterojunction (BHJ) devices, rationalizing the difference between the transport mechanisms is crucial to understanding the structure-property correlation. Herein, the barrier formed between the D-A covalent bond that hinders electron transport in a series of single-component photovoltaic devices is investigated. The electron transport in block copolymer-based devices is strongly dependent on the electric field. However, these devices demonstrate exceptional advantages with respect to the charge transport properties, involving high stability to compositional variations, improved film uniformity, and device reproducibility. This work not only illustrates the specific charge transport behavior in block copolymer-based devices but also clarifies the enormous commercial viability of large-area single-component organic solar cells (SCOSCs).
Collapse
Affiliation(s)
- Haixia Hu
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Xinyu Mu
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Bin Li
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesCollaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhou215123P. R. China
| | - Ruohua Gui
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Rui Shi
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Tao Chen
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Jianqiang Liu
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Jianyu Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesCollaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhou215123P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon TechnologiesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of EducationSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Kun Gao
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Xiaotao Hao
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Hang Yin
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| |
Collapse
|
11
|
Liu B, Sun H, Lee JW, Jiang Z, Qiao J, Wang J, Yang J, Feng K, Liao Q, An M, Li B, Han D, Xu B, Lian H, Niu L, Kim BJ, Guo X. Efficient and stable organic solar cells enabled by multicomponent photoactive layer based on one-pot polymerization. Nat Commun 2023; 14:967. [PMID: 36810743 PMCID: PMC9944902 DOI: 10.1038/s41467-023-36413-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Degradation of the kinetically trapped bulk heterojunction film morphology in organic solar cells (OSCs) remains a grand challenge for their practical application. Herein, we demonstrate highly thermally stable OSCs using multicomponent photoactive layer synthesized via a facile one-pot polymerization, which show the advantages of low synthetic cost and simplified device fabrication. The OSCs based on multicomponent photoactive layer deliver a high power conversion efficiency of 11.8% and exhibit excellent device stability for over 1000 h (>80% of their initial efficiency retention), realizing a balance between device efficiency and operational lifetime for OSCs. In-depth opto-electrical and morphological properties characterizations revealed that the dominant PM6-b-L15 block polymers with backbone entanglement and the small fraction of PM6 and L15 polymers synergistically contribute to the frozen fine-tuned film morphology and maintain well-balanced charge transport under long-time operation. These findings pave the way towards the development of low-cost and long-term stable OSCs.
Collapse
Affiliation(s)
- Bin Liu
- grid.411863.90000 0001 0067 3588Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006 P.R. China ,grid.263817.90000 0004 1773 1790Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 P.R. China
| | - Huiliang Sun
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P.R. China. .,Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P.R. China.
| | - Jin-Woo Lee
- grid.37172.300000 0001 2292 0500Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Zhengyan Jiang
- grid.263817.90000 0004 1773 1790Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 P.R. China
| | - Junqin Qiao
- grid.41156.370000 0001 2314 964XState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023 P.R. China
| | - Junwei Wang
- grid.263817.90000 0004 1773 1790Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 P.R. China
| | - Jie Yang
- grid.263817.90000 0004 1773 1790Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 P.R. China
| | - Kui Feng
- grid.263817.90000 0004 1773 1790Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 P.R. China
| | - Qiaogan Liao
- grid.263817.90000 0004 1773 1790Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 P.R. China
| | - Mingwei An
- grid.263817.90000 0004 1773 1790Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 P.R. China
| | - Bolin Li
- grid.263817.90000 0004 1773 1790Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 P.R. China
| | - Dongxue Han
- grid.411863.90000 0001 0067 3588Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006 P.R. China
| | - Baomin Xu
- grid.263817.90000 0004 1773 1790Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 P.R. China
| | - Hongzhen Lian
- grid.41156.370000 0001 2314 964XState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023 P.R. China
| | - Li Niu
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P.R. China.
| | - Bumjoon J. Kim
- grid.37172.300000 0001 2292 0500Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P.R. China. .,Songshan Lake Materials Laboratory Dongguan, Guangdong, 523808, P.R. China.
| |
Collapse
|
12
|
Liu B, Liang S, Karuthedath S, He Y, Wang J, Tan WL, Li H, Xu Y, Laquai F, Brabec CJ, McNeill CR, Xiao C, Tang Z, Hou J, Yang F, Li W. Double-Cable Conjugated Polymers Based on Simple Non-Fused Electron Acceptors for Single-Component Organic Solar Cells. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Baiqiao Liu
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing100044, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Safakath Karuthedath
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Yakun He
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058Erlangen, Germany
| | - Jing Wang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - Wen Liang Tan
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria3800, Australia
| | - Hao Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Yunhua Xu
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing100044, P. R. China
| | - Frédéric Laquai
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Christoph J. Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058Erlangen, Germany
| | - Christopher R. McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria3800, Australia
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Fan Yang
- College of Chemistry, Chemical
Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan250014, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
| |
Collapse
|
13
|
Sun J, Li B, Hu L, Guo J, Ling X, Zhang X, Zhang C, Wu X, Huang H, Han C, Liu X, Li Y, Huang S, Wu T, Yuan J, Ma W. Hybrid Block Copolymer/Perovskite Heterointerfaces for Efficient Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206047. [PMID: 36303523 DOI: 10.1002/adma.202206047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Solution processable semiconductors like organics and emerging lead halide perovskites (LHPs) are ideal candidates for photovoltaics combining high performance and flexibility with reduced manufacturing cost. Moreover, the study of hybrid semiconductors would lead to advanced structures and deep understanding that will propel this field even further. Herein, a novel device architecture involving block copolymer/perovskite hybrid bulk heterointerfaces is investigated, such a modification could enhance light absorption, create an energy level cascade, and provides a thin hydrophobic layer, thus enabling enhanced carrier generation, promoting energy transfer and preventing moisture invasion, respectively. The resulting hybrid block copolymer/perovskite solar cell exhibits a champion efficiency of 24.07% for 0.0725 cm2 -sized devices and 21.44% for 1 cm2 -sized devices, respectively, together with enhanced stability, which is among the highest reports of organic/perovskite hybrid devices. More importantly, this approach has been effectively extended to other LHPs with different chemical compositions like MAPbI3 and CsPbI3 , which may shed light on the design of highly efficient block copolymer/perovskite hybrid materials and architectures that would overcome current limitations for realistic application exploration.
Collapse
Affiliation(s)
- Jianguo Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Bin Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Long Hu
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Junjun Guo
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xufeng Ling
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xuliang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Chi Zhang
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, P. R. China
| | - Xianxin Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hehe Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Chenxu Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Shujuan Huang
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Jianyu Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Wanli Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
14
|
Phan TNL, Lee JW, Oh ES, Lee S, Lee C, Kim TS, Li S, Kim BJ. Efficient and Nonhalogenated Solvent-Processed Organic Solar Cells Enabled by Conjugated Donor-Acceptor Block Copolymers Containing the Same Benzodithiophene Unit. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57070-57081. [PMID: 36515660 DOI: 10.1021/acsami.2c16908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organic solar cells (OSCs) based on conjugated block copolymers (CBCs) have gained considerable attention owing to their simple one-pot solution process. However, their power conversion efficiencies (PCEs) require significant improvement. Furthermore, the majority of efficient CBC-based OSCs are processed using environmentally toxic halogenated solvents. Herein, we develop a new CBC (PBDB-T-b-PY5BDT) and demonstrate efficient and stable OSCs achieved by a halogen-free solution process. We design a (D1-A1)-b-(D1-A2)-type CBC (PBDB-T-b-PY5BDT) that shares the same benzodithiophene (BDT) units in donor and acceptor blocks. This alleviates unfavorable molecular interactions between the blocks at their interfaces. The PBDB-T-b-PY5BDT-based devices exhibit a high PCE (10.55%), and they show good mechanical, thermal, and storage stabilities. Importantly, we discuss the potential of our OSCs by preparing two different control systems: one based on a binary polymer blend (PBDB-T:PY5BDT) and another based on a conjugated random copolymer (CRC, PBDB-T-r-PY5BDT). We demonstrate that the photovoltaic performance, device stability, and mechanical robustness of the CBC-based OSCs exceed those of the binary all-polymer solar cells and CRC-based OSCs.
Collapse
Affiliation(s)
- Tan Ngoc-Lan Phan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eun Sung Oh
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seungjin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Changyeon Lee
- School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sheng Li
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
15
|
Wang R, Xia D, Jiang X, Zhao C, Zhou S, Fang H, Wang J, Tang Z, Xiao C, Li W. N-Annulated Perylene Bisimide-Based Double-Cable Polymers with Open-Circuit Voltage Approaching 1.20 V in Single-Component Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47952-47960. [PMID: 36222398 DOI: 10.1021/acsami.2c10466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work, we have introduced single/double-sided N-annulated perylene bisimide (PBI) with deep energy levels into double-cable polymers with poly[1-(5-(4,8-bis(4-chloro-5-(2-ethylhexyl)thiophen-2-yl)-6-methylbenzo[1,2-b:4,5-b']dithiophen-2-yl)thiophen-2-yl)-5,7-bis(2-ethylhexyl)-3-(5-methylthiophen-2-yl)-4H,8H-benzo[1,2-c:4,5-c']dithiophene-4,8-dione] (PBDB-T-Cl) as a donor backbone, marking as s-PPNR and as-PPNR, according to the molecular symmetry. Both double-cable polymers displayed a high open-circuit voltage approaching 1.20 V in light of high energy level discrepancy between electron-donating and electron-withdrawing parts, which is the highest open-circuit voltage among double-cable-based single-component organic solar cell (SCOSC) devices. Additionally, the asymmetric polymer displayed improved absorption spectra, thereby promoting crystallization and phase separation. Consequently, the as-PPNR-based SCOSCs achieved a power conversion efficiency of 5.05% along with a higher short-circuit current density and fill factor than their s-PPNR-based counterparts. In this work, we have successfully incorporated N-annulated PBI into double-cable polymers and revealed the important effects on structural symmetry and phase separation of double-cable polymers for higher SCOSC performance.
Collapse
Affiliation(s)
- Ruoyao Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Dongdong Xia
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Xudong Jiang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, P. R. China
| | - Chaowei Zhao
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Shengxi Zhou
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haisheng Fang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
16
|
Liang S, Liu B, Karuthedath S, Wang J, He Y, Tan WL, Li H, Xu Y, Li N, Hou J, Tang Z, Laquai F, McNeill CR, Brabec CJ, Li W. Double-Cable Conjugated Polymers with Pendent Near-Infrared Electron Acceptors for Single-Component Organic Solar Cells. Angew Chem Int Ed Engl 2022; 61:e202209316. [PMID: 35785422 DOI: 10.1002/anie.202209316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Indexed: 11/06/2022]
Abstract
Double-cable conjugated polymers with near-infrared (NIR) electron acceptors are synthesized for use in single-component organic solar cells (SCOSCs). Through the development of a judicious synthetic pathway, the highly sensitive nature of the 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (IC)-based electron acceptors in basic and protonic solvents is overcome. In addition, an asymmetric design motif is adopted to optimize the packing of donor and acceptor segments, enhancing charge separation efficiency. As such, the new double-cable polymers are successfully applied in SCOSCs, providing an efficiency of over 10 % with a broad photo response from 300 to 850 nm and exhibiting excellent thermal/light stability. These results demonstrate the powerful design of NIR-acceptor-based double-cable polymers and will enable SCOSCs to enter a new stage.
Collapse
Affiliation(s)
- Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Baiqiao Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Safakath Karuthedath
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jing Wang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yakun He
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Wen Liang Tan
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Hao Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yunhua Xu
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Ning Li
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany.,Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058, Erlangen, Germany.,State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Frédéric Laquai
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Christopher R McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany.,Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058, Erlangen, Germany
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
17
|
Li Y, Yu J, Zhou Y, Li Z. Molecular Insights of Non‐fused Ring Acceptors for High‐Performance Non‐fullerene Organic Solar Cells. Chemistry 2022; 28:e202201675. [DOI: 10.1002/chem.202201675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yibin Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology 1037 Luoyu Road Wuhan P. R. China
| | - Jiangsheng Yu
- MIIT Key Laboratory of Advanced Solid Laser School of Electronic and Optical Engineering Nanjing University of Science and Technology 200 Xiaolingwei Street, Xuanwu District Nanjing P. R. China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology 1037 Luoyu Road Wuhan P. R. China
| | - Zhong'an Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology 1037 Luoyu Road Wuhan P. R. China
| |
Collapse
|
18
|
Zhang G, Lin FR, Qi F, Heumüller T, Distler A, Egelhaaf HJ, Li N, Chow PCY, Brabec CJ, Jen AKY, Yip HL. Renewed Prospects for Organic Photovoltaics. Chem Rev 2022; 122:14180-14274. [PMID: 35929847 DOI: 10.1021/acs.chemrev.1c00955] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic photovoltaics (OPVs) have progressed steadily through three stages of photoactive materials development: (i) use of poly(3-hexylthiophene) and fullerene-based acceptors (FAs) for optimizing bulk heterojunctions; (ii) development of new donors to better match with FAs; (iii) development of non-fullerene acceptors (NFAs). The development and application of NFAs with an A-D-A configuration (where A = acceptor and D = donor) has enabled devices to have efficient charge generation and small energy losses (Eloss < 0.6 eV), resulting in substantially higher power conversion efficiencies (PCEs) than FA-based devices. The discovery of Y6-type acceptors (Y6 = 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]-thiadiazolo[3,4-e]-thieno[2″,3″:4',5']thieno-[2',3':4,5]pyrrolo-[3,2-g]thieno-[2',3':4,5]thieno-[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) with an A-DA' D-A configuration has further propelled the PCEs to go beyond 15% due to smaller Eloss values (∼0.5 eV) and higher external quantum efficiencies. Subsequently, the PCEs of Y6-series single-junction devices have increased to >19% and may soon approach 20%. This review provides an update of recent progress of OPV in the following aspects: developments of novel NFAs and donors, understanding of the structure-property relationships and underlying mechanisms of state-of-the-art OPVs, and tasks underpinning the commercialization of OPVs, such as device stability, module development, potential applications, and high-throughput manufacturing. Finally, an outlook and prospects section summarizes the remaining challenges for the further development of OPV technology.
Collapse
Affiliation(s)
- Guichuan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| | - Francis R Lin
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Feng Qi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Thomas Heumüller
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Andreas Distler
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany
| | - Hans-Joachim Egelhaaf
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Ning Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Philip C Y Chow
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Hin-Lap Yip
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| |
Collapse
|
19
|
Liang S, Liu B, Karuthedath S, Wang J, He Y, Tan WL, Li H, Xu Y, Li N, Hou J, Tang Z, Laquai F, McNeill CR, Brabec CJ, Li W. Double‐Cable Conjugated Polymers with Pendent Near‐Infrared Electron Acceptors for Single‐Component Organic Solar Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shijie Liang
- Beijing University of Chemical Technology State Key Laboratory of Organic-Inorganic Composites CHINA
| | - Baiqiao Liu
- Beijing University of Chemical Technology State Key Laboratory of Organic-Inorganic Composites CHINA
| | - Safakath Karuthedath
- King Abdullah University of Science and Technology KAUST solar center SAUDI ARABIA
| | - Jing Wang
- Donghua University College of Materials Science and Engineering CHINA
| | - Yakun He
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute of Materials for Electronics and Energy Technology GERMANY
| | - Wen Liang Tan
- Monash University Department of Materials Science and Engineering AUSTRALIA
| | - Hao Li
- Institute of Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry CHINA
| | - Yunhua Xu
- Beijing Jiaotong University College of Materials Science and Engineering CHINA
| | - Ning Li
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute of Materials for Electronics and Energy Technology GERMANY
| | - Jianhui Hou
- Institute of Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry CHINA
| | - Zheng Tang
- Donghua University College of Materials Science and Engineering CHINA
| | - Frédéric Laquai
- King Abdullah University of Science and Technology KAUST solar center SAUDI ARABIA
| | | | - Christoph J. Brabec
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute of Materials for Electronics and Energy Technology GERMANY
| | - Weiwei Li
- Beijing University of Chemical Technology State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology, Beijing 100029 100190 Beijing CHINA
| |
Collapse
|
20
|
Aubele A, He Y, Kraus T, Li N, Mena-Osteritz E, Weitz P, Heumüller T, Zhang K, Brabec CJ, Bäuerle P. Molecular Oligothiophene-Fullerene Dyad Reaching Over 5% Efficiency in Single-Material Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103573. [PMID: 34463391 DOI: 10.1002/adma.202103573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/05/2021] [Indexed: 06/13/2023]
Abstract
A novel donor-acceptor dyad, 4, in which the conjugated oligothiophene donor is covalently connected to fullerene PC71 BM by a flexible alkyl ester linker, is synthesized and applied as photoactive layer in solution-processed single-material organic solar cells (SMOSCs). Excellent photovoltaic performance, including a high short-circuit current density (JSC ) of 13.56 mA cm-2 , is achieved, leading to a power conversion efficiency of 5.34% in an inverted cell architecture, which is substantially increased compared to other molecular single materials. Furthermore, dyad 4-based SMOSCs display excellent stability maintaining 96% of the initial performance after 750 h (one month) of continuous illumination and operation under simulated AM 1.5G irradiation. These results will strengthen the rational molecular design to further develop SMOSCs for potential industrial application.
Collapse
Affiliation(s)
- Anna Aubele
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Yakun He
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Straße 6, 91052, Erlangen, Germany
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Teresa Kraus
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Ning Li
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
- Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058, Erlangen, Germany
| | - Elena Mena-Osteritz
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Paul Weitz
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Thomas Heumüller
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Kaicheng Zhang
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
- Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058, Erlangen, Germany
| | - Peter Bäuerle
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
21
|
Liu BQ, Xu YH, Liu F, Xie CC, Liang SJ, Chen QM, Li WW. Double-Cable Conjugated Polymers with Fullerene Pendant for Single-Component Organic Solar Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2732-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Bright future of polymerizing small-molecule acceptors in realizing high performance all-polymer solar cells. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Guo Y, Li Z, Sha M, Deng P, Lin X, Li J, Zhang L, Yin H, Zhan H. Synthesis of a Low-Cost Thiophene-Indoloquinoxaline Polymer Donor and Its Application to Polymer Solar Cells. Polymers (Basel) 2022; 14:polym14081554. [PMID: 35458305 PMCID: PMC9030569 DOI: 10.3390/polym14081554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
A simple wide-bandgap conjugated polymer based on indoloquinoxaline unit (PIQ) has been newly designed and synthesized via cheap and commercially available starting materials. The basic physicochemical properties of the PIQ have been investigated. PIQ possesses a broad and strong absorption band in the wavelength range of 400~660 nm with a bandgap of 1.80 eV and lower-lying highest occupied molecular orbital energy level of −5.58 eV. Polymer solar cells based on PIQ and popular acceptor Y6 blend display a preliminarily optimized power conversion efficiency of 6.4%. The results demonstrate indoloquinoxaline is a promising building unit for designing polymer donor materials for polymer solar cells.
Collapse
Affiliation(s)
- Yiping Guo
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.G.); (Z.L.); (X.L.); (J.L.); (L.Z.); (H.Z.)
| | - Zeyang Li
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.G.); (Z.L.); (X.L.); (J.L.); (L.Z.); (H.Z.)
| | - Mengzhen Sha
- State Key Laboratory of Crystal Materials, School of Physics, Shandong University, Jinan 250100, China;
| | - Ping Deng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.G.); (Z.L.); (X.L.); (J.L.); (L.Z.); (H.Z.)
- Key Laboratory of Eco-materials Advanced Technology Fuzhou University, Fuzhou 350108, China
- Correspondence: (P.D.); (H.Y.)
| | - Xinyu Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.G.); (Z.L.); (X.L.); (J.L.); (L.Z.); (H.Z.)
| | - Jun Li
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.G.); (Z.L.); (X.L.); (J.L.); (L.Z.); (H.Z.)
| | - Liang Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.G.); (Z.L.); (X.L.); (J.L.); (L.Z.); (H.Z.)
| | - Hang Yin
- State Key Laboratory of Crystal Materials, School of Physics, Shandong University, Jinan 250100, China;
- Correspondence: (P.D.); (H.Y.)
| | - Hongbing Zhan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.G.); (Z.L.); (X.L.); (J.L.); (L.Z.); (H.Z.)
| |
Collapse
|
24
|
Tseng YC, Kato A, Chang JF, Chen WC, Higashihara T, Chueh CC. Impact of the segment ratio on a donor-acceptor all-conjugated block copolymer in single-component organic solar cells. NANOSCALE 2022; 14:5472-5481. [PMID: 35322845 DOI: 10.1039/d2nr00437b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of single-component organic solar cells (SCOSCs) using only one photoactive component with a chemically bonded D/A structure has attracted increasing research attention in recent years. At represent, most relevant studies focus on comparing the performance difference between a donor-acceptor (D-A) conjugated block copolymer (CBC) and the commensurate blending systems based on the same donor and acceptor segments, and still there are no reports on the impact of the segment ratio for a certain D-A CBC on the resultant photovoltaic performance. In this study, we synthesized a D-A all-conjugated polymers based on an n-type PNDI2T block and a p-type PBDB-T donor block but with three different segment ratios (P1-P3) and demonstrate the significance of the D/A segment ratio on photovoltaic performance. Our results reveal that the n-type PNDI2T block plays a more critical role in the inter/intra-chain charge transfer. P1 with a higher content of PNDI2T delivers superior exciton dissociation and charge transfer behavior than P2 and P3, benefitting from its more balanced hole/electron mobility. In addition, a higher packing regularity associated with a more dominant face-on orientation is also observed for P1. As a result, SCOSC based on P1 exhibits the highest PCE among the synthesized CBCs. It also possesses a minimal energy loss due to the better suppressed non-radiative recombination loss. This work provides the first discussion of the impact of the segment ratio for a D-A all-conjugated block copolymer and signifies the critical role of the n-type segment in designing high-performance single-component CBCs.
Collapse
Affiliation(s)
- Yu-Cheng Tseng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Aoto Kato
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Jia-Fu Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
25
|
Kini GP, Han YW, Jeon SJ, Lee EJ, Lee YJ, Goh M, Moon DK. Tailoring microstructure and morphology via sequential fluorination to enhance the photovoltaic performance of low-cost polymer donors for organic solar cells. Macromol Rapid Commun 2022; 43:e2200070. [PMID: 35298093 DOI: 10.1002/marc.202200070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Indexed: 11/08/2022]
Abstract
For utilizing the organic solar cells for commercial applications, reducing the overall cost of the photo absorbent materials is also very crucial, along with the realization of high power conversion efficiency (PCE) and excellent stability. Herein, we tried to address such challenge by synergistically controlling the amount of fluorine (F)-substituents (n = 2, 4) on easily scalable, low-cost wide-bandgap molecular design involving alternate fluorinated-thienyl benzodithiophene donor and 2,5-difluoro benzene (2FBn) or 2,3,5,6 tetrafluorobenzene (4FBn) to form two new polymer donors PBDT-2FBn and PBDT-4FBn, respectively. As expected, sequential fluorination causes lowering of the frontier energy levels and planarization of polymer backbone via F···S and C-H···F noncovalent molecular locks, which results in more pronounced molecular packing and enhanced crystallinity from PBDT-2FBn to PBDT-4FBn. By mixing with IT-4F acceptor, PBDT-2FBn:IT-4F-based blend demonstrated favorable molecular orientation with shorter π-π stacking distance, higher carrier mobilities with good trade-off ratio and desirable nanoscale morphology, hence delivered good PCE of 9.3% than PBDT-2FBn:IT-4F counterpart (8.6%). Furthermore, pairing PBDT-2FBn with BTP-BO-4Cl acceptor further improved absorption range and promoted privileged morphology with ideal domain sizes for efficient exciton dissociation and charge transport, resulting in further improvement of PCE to 10.2% with remarkably low energy loss of 0.46 eV, which is seldomly reported in NF-OSCs. Consequently, this study provides valuable guidelines for designing efficient and low-cost polymer donors for organic solar cell applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gururaj P Kini
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - Yong Woon Han
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - Sung Jae Jeon
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - Eui Jin Lee
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - Yoon Jae Lee
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - Munju Goh
- Department of Chemical Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - Doo Kyung Moon
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| |
Collapse
|
26
|
Lee YW, Yeop J, Kim JY, Woo HY. Fullerene-Based Photoactive A-D-A Triads for Single-Component Organic Solar Cells: Incorporation of Non-Fused Planar Conjugated Core. Macromol Res 2022. [DOI: 10.1007/s13233-021-9100-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Kwon NY, Park SH, Cho S, Lee DW, Harit AK, Woo HY, Cho MJ, Choi DH. Polymer solar cells made with photocrosslinkable conjugated donor–acceptor block copolymers: improvement in the thermal stability and morphology with a single-component active layer. Polym Chem 2022. [DOI: 10.1039/d2py00413e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New photocrosslinkable conjugated donor–acceptor block copolymer bearing oxetane side chains is synthesized by one-pot polymerization to improve the thermal and morphological properties.
Collapse
Affiliation(s)
- Na Yeon Kwon
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Su Hong Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Seunguk Cho
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Dong Won Lee
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Amit Kumar Harit
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Han Young Woo
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Min Ju Cho
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Dong Hoon Choi
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|