1
|
Lu M, Sun J, Li R, Zhang J, Bai H, Zhang L. Construction of 0-dimensional silver quantum dot/MoSe 2@MXene/3-dimensional porous copper foam composite electrodes with heterogeneous interfaces for synergistic electrocatalytic degradation of antibiotics. J Colloid Interface Sci 2025; 679:503-518. [PMID: 39467362 DOI: 10.1016/j.jcis.2024.10.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
This study proposes a novel and efficient Ag quantum dots (QDs)/MoSe2@two-dimensional transition metal carbide/nitride (MXene)/copper foam (CF) composite electrode to address the challenge of electrocatalytic degradation of antibiotics in water. The electrode formed a unique electron donor-acceptor system by loading Ag QDs and heterostructured nanosheets on CF, significantly facilitating charge transfer and segregation at the interface. The catalytically active sites at the edges and defective locations of MoSe2 in conjunction with the two-dimensional MXene structure, which formed an efficient electron transfer channel, promoted the electron transfer from the interior to the surface and accelerated the hydrogen adsorption and reduction reactions. Moreover, the charge redistribution at the interface of Ag QDs and MoSe2@MXene formed interfacial dipoles, increasing the active sites on the catalyst surface and promoting the generation of cathodic atomic hydrogen (H*). Under optimal conditions, the degradation rate of tigecycline (TGC) reached as high as 90.1 % ± 2.4 % within 60 min. The anode-generated OH and HClO, along with the cathode-generated H, further promoted the degradation of TGC through co-catalysis. The degradation pathways were analyzed using density-functional theory (DFT) calculations and liquid chromatography-mass spectrometry (LC-MS) techniques. Moreover, toxicity analysis of the degradation products was carried out to ensure the safety of the treated wastewater discharge. A reflux continuous effluent reactor was also designed to achieve high degradation efficiency and low energy consumption after stable operation, laying the foundation for industrial applications. This technology provides new ideas for the design of green, efficient, stable, and low-consumption electrocatalytic reactors and contributes to a sustainable future environment.
Collapse
Affiliation(s)
- Muchen Lu
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Jie Sun
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Ruoyi Li
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Jian Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Haina Bai
- School of Biological and Food Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - Lanhe Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|
2
|
Wang G, Li Q, Zhang W, Liang Z, Wang J, Lin Z, Huang Z, Xie S, Xu J, Huang S. Grid-Like Structured Sb@DNC Anode by Self-Sacrificial Etching for Fast and Durable Sodium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409483. [PMID: 39544153 DOI: 10.1002/smll.202409483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Alloying-type materials are promising anodes for sodium storage due to high specific capacities and appropriate redox potentials, but their practical application is impeded by rapid capacity decay from volume change during sodium ion insertion/extraction. Hence, a dual-type N-doped carbon-confined antimony (Sb) nanoparticle (Sb@DNC, where DNC contains an outer N-doped carbon armor and an inner N-doped grid-like carbon skeleton) anode material is fabricated via a self-sacrificial etching strategy to address this challenge. Specifically, the dual-type N-doped carbon matrix can prevent the agglomeration and precipitation of Sb particles, increase a large number of reactive active sites, alleviate severe volume expansion/contraction, and construct a highly interconnected electron/ion transport network. Benefiting from the exquisite structure, the Sb@DNC electrode exhibits excellent cycling stability (2400 cycles at 1.0 A g-1) and astonishing high-rate performance (331.0 mAh g-1 at 10.0 A g-1). Additionally, the state-of-the-art in/ex situ technologies reveals the sodium storage mechanism of the "battery-capacitance dual-mode" and the origin of the ability to withstand continuous volumetric strain for the Sb@DNC electrode. Finally, the derived sodium-ion full cell presents outstanding practical potential. This work emphasizes the great significance of rational structural engineering strategies in the field of alloy-type anode materials for high-performance sodium-ion batteries.
Collapse
Affiliation(s)
- Guang Wang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qinghua Li
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou, 510006, China
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wei Zhang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhixin Liang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou, 510006, China
| | - Junling Wang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zeyu Lin
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhijiao Huang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou, 510006, China
| | - Sike Xie
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jinbao Xu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shaoming Huang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou, 510006, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
3
|
Liu Y, Xu A, Wang J, Jiang F, Pang H, Yang J, Zhou Y. Amorphous MoS 3 Anchored within Hollow Carbon as a Cathode Material for Magnesium-Ion Batteries. ACS NANO 2024. [PMID: 39568212 DOI: 10.1021/acsnano.4c12188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Magnesium-ion batteries are considered the next-generation promising large-scale energy storage devices owing to the low-cost and nondendritic features of metallic Mg anode. Nevertheless, such strong electrostatic interaction between bivalent Mg2+ and crystalline cathode materials will lead to low capacity and poor diffusion kinetics, which seriously hinders the further development of magnesium-ion batteries. Herein, amorphization and anion-rich strategies are employed to prepare well-designed cathode materials with MoS3 anchored on hollow carbon nanospheres (a-MoS3/HCS). The amorphous MoS3 provides unrestricted 3D diffusion access and effectively boosts the Mg2+ diffusion kinetics, while the anion-rich feature of MoS3 offers rich active sites for Mg2+ storage and finally contributes to a high discharge capacity driven by the anionic redox mechanism. Moreover, the effective modification of hollow carbon nanospheres buffers the volumetric changes of MoS3 and improves the electron transfer efficiency. Owing to the above-mentioned multiple advantages, a-MoS3/HCS exhibits an ultrahigh discharge capacity (489.2 mAh g-1 at 50 mA g-1) and high cyclic performance (200.1 mAh g-1 at 2 A g-1 for 300 cycles), distinctly superior to those of crystalline 1T/2H-MoS2/HCS and 2H-MoS2/HCS and surpassing almost all of the molybdenum sulfide-based cathodes. Furthermore, the high-performance a-MoS3/HCS-based pouch cell with the ability to drive various mini-type devices confirms the potential application values. The excellent magnesium storage properties of a-MoS3/HCS are further verified by the related kinetics analysis, DFT theoretical calculation, and reversible electrochemical reactions. The amorphous and redox-rich tactics of a-MoS3/HCS provide an innovative pathway to explore high-efficiency cathode materials for various multivalent-ion batteries.
Collapse
Affiliation(s)
- Yan Liu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Ao Xu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Jiahui Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Fuyi Jiang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Jian Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yanli Zhou
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| |
Collapse
|
4
|
Pandey H, Chithaiah P, Vishwanathan S, Ramakrishna Matte HSS, Rao CNR. Topochemically synthesized Nb 3VS 6 as a stable anode for sodium-ion batteries. Chem Commun (Camb) 2024; 60:10017-10020. [PMID: 39177092 DOI: 10.1039/d4cc02630f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Ternary metal sulfides having layered morphology are considered as potential active materials for various applications. Herein, Nb3VS6 is synthesized topochemically for the first time using a Nb-V-HDA complex having a lamellar structure by employing H2S gas as the sulfidation agent. Nb3VS6, as an anode for SIBs, exhibited a specific capacity of 101.15 mA h g-1 at 0.5 A g-1, along with excellent cycling stability with 100% capacity retention after 2500 cycles.
Collapse
Affiliation(s)
- Harshit Pandey
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences, Bangalore 562162, India
| | - Pallellappa Chithaiah
- New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore-560064, India.
| | - Savithri Vishwanathan
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences, Bangalore 562162, India
| | - H S S Ramakrishna Matte
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences, Bangalore 562162, India
| | - C N R Rao
- New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore-560064, India.
| |
Collapse
|
5
|
Xue Y, Xu T, Wang C, Fu L. Recent advances of two-dimensional materials-based heterostructures for rechargeable batteries. iScience 2024; 27:110392. [PMID: 39129831 PMCID: PMC11315162 DOI: 10.1016/j.isci.2024.110392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Abstract
Because of their unique layer structure, 2D materials have demonstrated to be promising electrode materials for rechargeable batteries. However, individual 2D materials cannot meet all the performance requirements of energy density, power density, and cycle life. Constructing 2D materials-based heterostructures offers an opportunity to synergistically handle the deficiencies of individual 2D materials and modulate the physical and electrochemical properties. The enlarged interlayer distance and increased binding energy with ions of heterostructures can facilitate charge transfer, boost electrochemical reactivities, resulting in an enhanced performance in rechargeable batteries. Here we summarize the latest development of heterostructures consisted of 2D materials and their applications in rechargeable batteries. Firstly, different preparation strategies and optimized structure engineering strategies of 2D materials-based heterostructures are systematically introduced. Secondly, the unique functions of 2D materials-based heterostructures in rechargeable batteries are discussed respectively. Finally, challenges and perspectives are presented to inspire the future study of 2D materials-based heterostructures.
Collapse
Affiliation(s)
- Yinghui Xue
- Henan Joint International Research Laboratory of Nanocomposite Sensing Materials, Anyang Institute of Technology, Anyang 455000, China
| | - Tianjie Xu
- Henan Joint International Research Laboratory of Nanocomposite Sensing Materials, Anyang Institute of Technology, Anyang 455000, China
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Chenyang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Cheng S, Zuo Z, Li Y. Self-Adaptive Graphdiyne/Sn Interface for High-Performance Sodium Storage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401240. [PMID: 38733090 PMCID: PMC11267299 DOI: 10.1002/advs.202401240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/22/2024] [Indexed: 05/13/2024]
Abstract
Efficiently reconciling the substantial volume strain with maintaining the stabilities of both interfacial protection and three-dimensional (3D) conductive networks is a scientific and technical challenge in developing tin-based anodes for sodium ion storage. To address this issue, a proof-of-concept self-adaptive protection for the Sn anode is designed, taking advantage of the arbitrary substrate growth of graphdiyne. This protective layer, employing a flexible chain doping strategy, combines the benefits of 2D graphdiyne and linear chain structures to achieve 2D mechanical stability, electronic and ion conductions, ion selectivity, adequate elongation, and flexibility. It establishes close contact with the Sn particles and can adapt to dynamic size changes while effectively facilitating both electronic and ion transports. It successfully mitigates the detrimental effects of particle pulverization and coarsening induced by large-volume changes. The as-obtained Sn electrodes demonstrate exceptional stability, enduring 1800 cycles at a high current density of 2.5 A g-1. This strategy promises to address the general issues associated with large-strain electrodes in next-generation of high-energy-density batteries.
Collapse
Affiliation(s)
- Shujin Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- Department of ChemistryUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Zicheng Zuo
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Yuliang Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- Department of ChemistryUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
7
|
Zhang Y, He X, Li H, Zhao W, Wang K, Jiang K. In-situ dynamic catalysis electrode electrolyte interphase enabling Mg 2+ insertion in 2D metal-organic polymer for high-capacity and long-lifespan magnesium batteries. J Colloid Interface Sci 2024; 674:603-611. [PMID: 38945027 DOI: 10.1016/j.jcis.2024.06.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
Rechargeable magnesium battery is regarded as the promising candidate for the next generation of high-specific-energy storage systems. Nevertheless, issues related to severe Mg-Cl dissociation at the electrolyte-electrode interface impede the insertion of Mg2+ into most materials, leading to severe polarization and low utilization of Mg-storage electrodes. In this study, a metal-organic polymer (MOP) Ni-TABQ (Ni-coordinated tetramino-benzoquinone) with superior surface catalytic activity is proposed to achieve the high-capacity Mg-MOP battery. The layered Ni-TABQ cathode, featuring a unique 2D π-d linear conjugated structure, effectively reduces the dissociation energy of MgxCly clusters at the Janus interface, thereby facilitating Mg2+ insertion. Due to the high utilization of active sites, Ni-TABQ achieves high capacities of 410 mAh/g at 200 mA g-1, attributable to a four-electron redox process involving two redox centers, benzoid carbonyls, and imines. This research highlights the importance of surface electrochemical processes in rechargeable magnesium batteries and paves the way for future development in multivalent metal-ion batteries.
Collapse
Affiliation(s)
- Yujie Zhang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xin He
- School of Electrical and Electronic Engineering, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Haomiao Li
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; School of Electrical and Electronic Engineering, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Engineering Research Center of Power Safety and Efficiency, Ministry of Education, Wuhan, Hubei 430074, China.
| | - Wenjie Zhao
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Kangli Wang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; School of Electrical and Electronic Engineering, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Engineering Research Center of Power Safety and Efficiency, Ministry of Education, Wuhan, Hubei 430074, China.
| | - Kai Jiang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; School of Electrical and Electronic Engineering, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Engineering Research Center of Power Safety and Efficiency, Ministry of Education, Wuhan, Hubei 430074, China
| |
Collapse
|
8
|
Liu ZG, Zhao J, Yao H, He XX, Zhang H, Qiao Y, Wu XQ, Li L, Chou SL. P-doped spherical hard carbon with high initial coulombic efficiency and enhanced capacity for sodium ion batteries. Chem Sci 2024; 15:8478-8487. [PMID: 38846387 PMCID: PMC11151814 DOI: 10.1039/d4sc01395f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/10/2024] [Indexed: 06/09/2024] Open
Abstract
Hard carbon (HC) is one of the most promising anode materials for sodium-ion batteries (SIBs) due to its cost-effectiveness and low-voltage plateau capacity. Heteroatom doping is considered as an effective strategy to improve the sodium storage capacity of HC. However, most of the previous heteroatom doping strategies are performed at a relatively low temperature, which could not be utilized to raise the low-voltage plateau capacity. Moreover, extra doping of heteroatoms could create new defects, leading to a low initial coulombic efficiency (ICE). Herein, we propose a repair strategy based on doping a trace amount of P to achieve a high capacity along with a high ICE. By employing the cross-linked interaction between glucose and phytic acid to achieve the in situ P doped spherical hard carbon, the obtained PHC-0.2 possesses a large interlayer space that facilitates Na+ storage and transportation. In addition, doping a suitable amount of P could repair some defects in carbon layers. When used as an anode material for SIBs, the PHC-0.2 exhibits an enhanced reversible capacity of 343 mA h g-1 at 20 mA g-1 with a high ICE of 92%. Full cells consisting of a PHC-0.2 anode and a Na2Fe0.5Mn0.5[Fe(CN)6] cathode exhibited an average potential of 3.1 V with an initial discharge capacity of 255 mA h g-1 and an ICE of 85%. The full cell displays excellent cycling stability with a capacity retention of 80.3% after 170 cycles. This method is simple and low-cost, which can be extended to other energy storage materials.
Collapse
Affiliation(s)
- Zheng-Guang Liu
- School of Environment and Chemical Engineering, Shanghai University Shanghai 20444 P. R. China
| | - Jiahua Zhao
- School of Environment and Chemical Engineering, Shanghai University Shanghai 20444 P. R. China
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 P. R. China
| | - Hao Yao
- School of Environment and Chemical Engineering, Shanghai University Shanghai 20444 P. R. China
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 P. R. China
| | - Xiang-Xi He
- School of Environment and Chemical Engineering, Shanghai University Shanghai 20444 P. R. China
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 P. R. China
| | - Hang Zhang
- School of Environment and Chemical Engineering, Shanghai University Shanghai 20444 P. R. China
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 P. R. China
| | - Yun Qiao
- School of Environment and Chemical Engineering, Shanghai University Shanghai 20444 P. R. China
| | - Xing-Qiao Wu
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 P. R. China
| | - Li Li
- School of Environment and Chemical Engineering, Shanghai University Shanghai 20444 P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education), Nankai University Tianjin 300071 P. R. China
| | - Shu-Lei Chou
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 P. R. China
| |
Collapse
|
9
|
Tian YR, Yi ZL, Su FY, Xie LJ, Zhang XF, Li XF, Cheng JY, Chen JP, Chen CM. Regulating the Pore Structure of Activated Carbon by Pitch for High-Performance Sodium-Ion Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17553-17562. [PMID: 38533759 DOI: 10.1021/acsami.4c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The pore structure of carbon anodes plays a crucial role in enhancing the sodium storage capacity. Designing more confined pores in carbon anodes is accepted as an effective strategy. However, current design strategies for confined pores in carbon anodes fail to achieve both high capacity and initial Coulombic efficiency (ICE) simultaneously. Herein, we develop a strategy for utilizing the repeated impregnation and precarbonization method of liquid pitch to regulate the pore structure of the activated carbon (AC) material. Driven by capillary coalescence, the pitch is impregnated into the pores of AC, which reduces the specific surface area of the material. During the carbonization process, numerous pores with diameters less than 1 nm are formed, resulting in a high capacity and improved ICE of the carbon anode. Moreover, the ordered carbon layers derived from the liquid pitch also enhance the electrical conductivity, thereby improving the rate capability of as-obtained carbon anodes. This enables the fabricated material (XA-4T-1300) to have a high ICE of 91.1% and a capacity of 383.0 mA h g-1 at 30 mA g-1. The capacity retention is 95.5% after 300 cycles at 1 A g-1. This study proposes a practical approach to adjust the microcrystalline and pore structures to enhance the performance of sodium-ion storage in materials.
Collapse
Affiliation(s)
- Yan-Ru Tian
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zong-Lin Yi
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Fang-Yuan Su
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Li-Jing Xie
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Xu-Feng Zhang
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiong-Fei Li
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Yao Cheng
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Jing-Peng Chen
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Cheng-Meng Chen
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Zhang Y, Zhou X, Yang C, Liu X, Wang M, Han J, Yan H, You Y. Air-Stable Prussian White Cathode Materials for Sodium-Ion Batteries Enabled by ZnO Surface Modification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15649-15656. [PMID: 38525501 DOI: 10.1021/acsami.4c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Iron-based Prussian white (PW) is one of the promising cathodes for sodium-ion batteries, owing to its high capacity and low cost. However, the practical application of PW is hindered by its poor air stability. The metal-oxide coating has been proven to be an effective way to improve the air stability of electrode materials. Whereas, the target electrode materials conventionally need to be dissolved in the aqueous solution to obtain precursor composites and subsequently calcined at a high temperature during the metal-oxide coating process, which could destroy the phase structure of PW as a result of the sodium leaching into the water and thermal decomposition at the high temperature. In this work, we propose a facile method to construct a ZnO surface layer on PW by utilizing ethanol as a solvent and a mild post-treatment temperature. The ZnO coating layer effectively enhances the air stability of PW and induces the formation of the stable interface on PW. The PW-5 wt % ZnO-E (exposed in 60% humidity air after 30 days) cathode demonstrates a much higher capacity retention (94.1%) at 1 C after 200 cycles than that of PW-E (54%). This work lays a solid foundation for further application of PW.
Collapse
Affiliation(s)
- Youcai Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Hubei Wuhan 430070, People's Republic of China
| | - Xing Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Hubei Wuhan 430070, People's Republic of China
| | - Chao Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Hubei Wuhan 430070, People's Republic of China
| | - Xiaowei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Hubei Wuhan 430070, People's Republic of China
| | - Meilong Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Hubei Wuhan 430070, People's Republic of China
| | - Jin Han
- International School of Materials Science and Engineering, School of Materials Science and Microelectronics, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Hua Yan
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, Hunan 410083, China
| | - Ya You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Hubei Wuhan 430070, People's Republic of China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, China
- International School of Materials Science and Engineering, School of Materials Science and Microelectronics, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
11
|
Hu L, Yang T, Yan X, Liu Y, Zhang W, Zhang J, Xia Y, Wang Y, Gan Y, He X, Xia X, Fang R, Tao X, Huang H. In Situ Construction of LiF-Li 3N-Rich Interface Contributed to Fast Ion Diffusion in All-Solid-State Lithium-Sulfur Batteries. ACS NANO 2024; 18:8463-8474. [PMID: 38451076 DOI: 10.1021/acsnano.4c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
All-solid-state lithium-sulfur batteries (ASSLSBs) have attracted wide attention due to their ultrahigh theoretical energy density and the ability of completely avoiding the shuttle effect. However, the further development of ASSLSBs is limited by the poor kinetic properties of the solid electrode interface. It remains a great challenge to achieve good kinetic properties, by common strategies to substitute sulfur-transition metal and organosulfur composites for sulfur without reducing the specific capacity of ASSLSBs. In this study, a sulfur-(Ketjen Black)-(bistrifluoromethanesulfonimide lithium salt) (S-KB-LiTFSI) composite is constructed by introducing LiTFSI into the S-KB composite. The initial discharge capacity reaches up to 1483 mA h g-1, benefited from the improved ionic conductivity and diffusion kinetics of the S-KB-LiTFSI composite, where numerous LiF interphases with a Li3N component are in situ formed during cycling. Combined with DFT calculations, it is found that the migration barriers of LiF and Li3N are much smaller than that of the Li6PS5Cl solid electrolyte. The fast ionic conductors of LiF and Li3N not only enhance the Li+ transfer efficiency but also improve the interfacial stability. Therefore, the assembled ASSLSBs operate stably for 600 cycles at 200 mA g-1, and this study provides an effective strategy for the further development of ASSLSBs.
Collapse
Affiliation(s)
- Liuyi Hu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Tianqi Yang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xiang Yan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yaning Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Wenkui Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jun Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yang Xia
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yao Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yongping Gan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xinping He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xinhui Xia
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Ruyi Fang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xinyong Tao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Hui Huang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
12
|
Li J, Yu H, Zhao Y, Zhu K, Zhu C, Ren J, Chou S, Chen Y. Stress Dissipation Driven by Multi-Interface Built-In Electric Fields and Desert-Rose-Like Structure for Ultrafast and Superior Long-Term Sodium Ion Storage. Angew Chem Int Ed Engl 2024; 63:e202318000. [PMID: 38226788 DOI: 10.1002/anie.202318000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
The kinetics and durability of conversion-based anodes greatly depend on the intrinsic stress regulating ability of the electrode materials, which has been significantly neglected. Herein, a stress dissipation strategy driven by multi-interface built-in electric fields (BEFs) and architected structure, is innovatively proposed to design ultrafast and long-term sodium ion storage anodes. Binary Mo/Fe sulfide heterostructured nanorods with multi-interface BEFs and staggered cantilever configuration are fabricated to prove our concept. Multi-physics simulations and experimental results confirm that the inner stress in multiple directions can be dissipated by the multi-interface BEFs at the micro-scale, and by the staggered cantilever structure at the macro-scale, respectively. As a result, our designed heterostructured nanorods anode exhibits superb rate capability (332.8 mAh g-1 at 10.0 A g-1 ) and durable cyclic stability over 900 cycles at 5.0 A g-1 , outperforming other metal chalcogenides. This proposed stress dissipation strategy offers a new insight for developing stable structures for conversion-based anodes.
Collapse
Affiliation(s)
- Jinhang Li
- Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Huiying Yu
- Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Yingying Zhao
- Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
- Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Kai Zhu
- Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Chunling Zhu
- Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Jing Ren
- Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Yujin Chen
- Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
- Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| |
Collapse
|
13
|
Zheng T, Hu P, Wang Z, Guo T. 2D Amorphous Iron Selenide Sulfide Nanosheets for Stable and Rapid Sodium-Ion Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306577. [PMID: 37572373 DOI: 10.1002/adma.202306577] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Sodium ion batteries (SIBs) suffer from large electrode volume change and sluggish redox kinetics for the relatively large ionic radius of sodium ions, raising a significant challenge to improve their long-term cyclability and rate capacity. Here, it is proposed to apply 2D amorphous iron selenide sulfide nanosheets (a-FeSeS NSs) as an anode material for SIBs and demonstrate that they exhibit remarkable rate capability of 528.7 mAh g-1 at 1 A g-1 and long-life cycle (10 000 cycles) performance (300.4 mAh g-1 ). This performance is much more superior to that of the previously reported Fe-based anode materials, which is attributed to their amorphous structure that alleviates volume expansion of electrode, 2D nature that facilitates electrons/ions transfer, and the S/Se double anions that offer more reaction sites and stabilize the amorphous structure. Such a 2D amorphous strategy provides a fertile platform for structural engineering of other electrode materials, making a more secure energy prospect closer to a reality.
Collapse
Affiliation(s)
- Tian Zheng
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Pengfei Hu
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Zhongchang Wang
- Department of Advanced Materials and Computing, International Iberian Nanotechnology Laboratory (INL), 4715-330, Braga, Portugal
| | - Tianqi Guo
- Department of Advanced Materials and Computing, International Iberian Nanotechnology Laboratory (INL), 4715-330, Braga, Portugal
| |
Collapse
|
14
|
Ye S, Yao N, Chen X, Ma M, Wang L, Chen Z, Yao Y, Zhang Q, Yu Y. Boosting the "Solid-Liquid-Solid" Conversion Reaction via Bifunctional Carbonate-Based Electrolyte for Ultra-long-life Potassium-Sulfur Batteries. Angew Chem Int Ed Engl 2023; 62:e202307728. [PMID: 37707498 DOI: 10.1002/anie.202307728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
Potassium-sulfur (K-S) batteries have attracted wide attention owing to their high theoretical energy density and low cost. However, the intractable shuttle effect of K polysulfides results in poor cyclability of K-S batteries, which severely limits their practical application. Herein, a bifunctional concentrated electrolyte (3 mol L-1 potassium bis(trifluoromethanesulfonyl)imide in ethylene carbonate (EC)) with high ionic conductivity and low viscosity is developed to regulate the dissolution behavior of polysulfides and induce uniform K deposition. The organic groups in the cathode electrolyte interphase layer derived from EC can effectively block the polysulfide shuttle and realize a "solid-liquid-solid" reaction mechanism. The KF-riched solid-electrolyte interphase inhibits K dendrite growth during cycling. As a result, the achieved K-S batteries display a high reversible capacity of 654 mAh g-1 at 0.5 A g-1 after 800 cycles and a long lifespan over 2000 cycles at 1 A g-1 .
Collapse
Affiliation(s)
- Shufen Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Nan Yao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiang Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Mingze Ma
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lifeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhihao Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Yao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
- National Synchrotron Radiation Laboratory, Hefei, Anhui, 230026, China
| |
Collapse
|
15
|
Zhou Y, Li Q, Han Q, Zhao L, Liu Y, Wang Y, Li Z, Dong C, Sun X, Yang J, Zhang X, Jiang F. Design of High-Capacity MoS 3 Decorated Nitrogen Doped Carbon Coated Cu 2 S Electrode Structures with Dual Heterogenous Interfaces for Outstanding Sodium-Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303742. [PMID: 37267931 DOI: 10.1002/smll.202303742] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Indexed: 06/04/2023]
Abstract
The hierarchical Cu2 S@NC@MoS3 heterostructures have been firstly constructed by the high-capacity MoS3 and high-conductive N-doped carbon to co-decorate the Cu2 S hollow nanospheres. During the heterostructure, the middle N-doped carbon layer as the linker facilitates the uniform deposition of MoS3 and enhances the structural stability and electronic conductivity. The popular hollow/porous structures largely restrain the big volume changes of active materials. Due to the cooperative effect of three components, the new Cu2 S@NC@MoS3 heterostructures with dual heterogenous interfaces and small voltage hysteresis for sodium ion storage display a high charge capacity (545 mAh g-1 for 200 cycles at 0.5 A g-1 ), excellent rate capability (424 mAh g-1 at 15 A g-1 ) and ultra-long cyclic life (491 mAh g-1 for 2000 cycles at 3 A g-1 ). Except for the performance test, the reaction mechanism, kinetics analysis, and theoretical calculation have been performed to explain the reason of excellent electrochemical performance of Cu2 S@NC@MoS3 . The rich active sites and rapid Na+ diffusion kinetics of this ternary heterostructure is beneficial to the high efficient sodium storage. The assembled full cell matched with Na3 V2 (PO4 )3 @rGO cathode likewise displays remarkable electrochemical properties. The outstanding sodium storage performances of Cu2 S@NC@MoS3 heterostructures indicate the potential applications in energy storage fields.
Collapse
Affiliation(s)
- Yanli Zhou
- School of Environment and Material Engineering, Yantai University, Yantai, 264005, China
| | - Qiming Li
- School of Environment and Material Engineering, Yantai University, Yantai, 264005, China
| | - Qi Han
- School of Environment and Material Engineering, Yantai University, Yantai, 264005, China
| | - Lanling Zhao
- School of Physics, Shandong University, Jinan, 250100, China
| | - Yan Liu
- School of Environment and Material Engineering, Yantai University, Yantai, 264005, China
| | - Yifei Wang
- School of Environment and Material Engineering, Yantai University, Yantai, 264005, China
| | - Zhiqi Li
- School of Environment and Material Engineering, Yantai University, Yantai, 264005, China
| | - Caifu Dong
- School of Environment and Material Engineering, Yantai University, Yantai, 264005, China
| | - Xueqin Sun
- School of Environment and Material Engineering, Yantai University, Yantai, 264005, China
| | - Jian Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xiaoyu Zhang
- School of Environment and Material Engineering, Yantai University, Yantai, 264005, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, Shandong, 265503, China
| | - Fuyi Jiang
- School of Environment and Material Engineering, Yantai University, Yantai, 264005, China
| |
Collapse
|
16
|
He Q, Sheng B, Zhu K, Zhou Y, Qiao S, Wang Z, Song L. Phase Engineering and Synchrotron-Based Study on Two-Dimensional Energy Nanomaterials. Chem Rev 2023; 123:10750-10807. [PMID: 37581572 DOI: 10.1021/acs.chemrev.3c00389] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In recent years, there has been significant interest in the development of two-dimensional (2D) nanomaterials with unique physicochemical properties for various energy applications. These properties are often derived from the phase structures established through a range of physical and chemical design strategies. A concrete analysis of the phase structures and real reaction mechanisms of 2D energy nanomaterials requires advanced characterization methods that offer valuable information as much as possible. Here, we present a comprehensive review on the phase engineering of typical 2D nanomaterials with the focus of synchrotron radiation characterizations. In particular, the intrinsic defects, atomic doping, intercalation, and heterogeneous interfaces on 2D nanomaterials are introduced, together with their applications in energy-related fields. Among them, synchrotron-based multiple spectroscopic techniques are emphasized to reveal their intrinsic phases and structures. More importantly, various in situ methods are employed to provide deep insights into their structural evolutions under working conditions or reaction processes of 2D energy nanomaterials. Finally, conclusions and research perspectives on the future outlook for the further development of 2D energy nanomaterials and synchrotron radiation light sources and integrated techniques are discussed.
Collapse
Affiliation(s)
- Qun He
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Beibei Sheng
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Kefu Zhu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yuzhu Zhou
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Sicong Qiao
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zhouxin Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
- Zhejiang Institute of Photonelectronics, Jinhua, Zhejiang 321004, China
| |
Collapse
|
17
|
Yin X, Feng W, Cheng S, Huang Q, Zou X, Wang Z, Yang X, Lu S, Lu X, Zhao Y. Chemically bonding inorganic fillers with polymer to achieve ultra-stable solid-state sodium batteries. J Colloid Interface Sci 2023; 648:855-864. [PMID: 37327628 DOI: 10.1016/j.jcis.2023.06.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
Inorganic/organic composite solid electrolytes (CSEs) have attracted ever-increasing attentions due to their outstanding mechanical stability and processibility. However, the inferior inorganic/organic interface compatibility limits their ionic conductivity and electrochemical stability, which hinders their application in solid-state batteries. Herein, we report a homogeneously distributed inorganic fillers in polymer by in-situ anchoring SiO2 particles in polyethylene oxide (PEO) matrix (I-PEO-SiO2). Compared with ex-situ CSEs (E-PEO-SiO2), SiO2 particles and PEO chains in I-PEO-SiO2 CSEs are closely welded by strong chemical bonds, thus addressing the issue of interfacial compatibility and realizing excellent dendrite-suppression ability. In addition, the Lewis acid-base interactions between SiO2 and salts facilitate the dissociation of sodium salts and increase the concentration of free Na+. Consequently, the I-PEO-SiO2 electrolyte demonstrates an improved Na+ conductivity (2.3 × 10-4 S cm-1 at 60 °C) and Na+ transference number (0.46). The as constructed Na3V2(PO4)3 ‖ I-PEO-SiO2 ‖ Na full-cell demonstrates a high specific capacity of 90.5 mAh g-1 at 3C and an ultra-long cycling stability (>4000 cycles at 1C), outperforming the state-of-the-art literatures. This work provides an effective way to solve the issue of interfacial compatibility, which can enlighten other CSEs to overcome their interior compatibility.
Collapse
Affiliation(s)
- Xuemin Yin
- College of Sciences & Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China; Hebei Key Laboratory of Green Development of Rock and Mineral Materials, Hebei GEO University, Shijiazhuang 050031, China
| | - Wuliang Feng
- College of Sciences & Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
| | - Shuling Cheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qiuan Huang
- College of Sciences & Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
| | - Xingli Zou
- Department of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
| | - Zhenwei Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xinxin Yang
- Department of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
| | - Shigang Lu
- Department of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
| | - Xionggang Lu
- College of Sciences & Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
| | - Yufeng Zhao
- College of Sciences & Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
18
|
Ling F, Wang L, Liu F, Ma M, Zhang S, Rui X, Shao Y, Yang Y, He S, Pan H, Wu X, Yao Y, Yu Y. Multi-Scale Structure Engineering of ZnSnO 3 for Ultra-Long-Life Aqueous Zinc-Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208764. [PMID: 37022921 DOI: 10.1002/adma.202208764] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/03/2023] [Indexed: 06/09/2023]
Abstract
Suppressing the severe water-induced side reactions and uncontrolled dendrite growth of zinc (Zn) metal anodes is crucial for aqueous Zn-metal batteries to achieve ultra-long cyclic lifespans and promote their practical applications. Herein, a concept of multi-scale (electronic-crystal-geometric) structure design is proposed to precisely construct the hollow amorphous ZnSnO3 cubes (HZTO) for optimizing Zn metal anodes. In situ gas chromatography demonstrates that Zn anodes modified by HZTO (HZTO@Zn) can effectively inhibit the undesired hydrogen evolution. The pH stabilization and corrosion suppression mechanisms are revealed via operando pH detection and in situ Raman analysis. Moreover, comprehensive experimental and theoretical results prove that the amorphous structure and hollow architecture endow the protective HZTO layer with strong Zn affinity and rapid Zn2+ diffusion, which are beneficial for achieving the ideal dendrite-free Zn anode. Accordingly, excellent electrochemical performances for the HZTO@Zn symmetric battery (6900 h at 2 mA cm-2 , 100 times longer than that of bare Zn), HZTO@Zn||V2 O5 full battery (99.3% capacity retention after 1100 cycles), and HZTO@Zn||V2 O5 pouch cell (120.6 Wh kg-1 at 1 A g-1 ) are achieved. This work with multi-scale structure design provides significant guidance to rationally develop advanced protective layers for other ultra-long-life metal batteries.
Collapse
Affiliation(s)
- Fangxin Ling
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lifeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fanfan Liu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mingze Ma
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shipeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xianhong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yu Shao
- Jiujiang DeFu Technology Co., LTD., Jiujiang, Jiangxi, 332000, China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Shengnan He
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Xiaojun Wu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Yao
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
- National Synchrotron Radiation Laboratory, Hefei, Anhui, 230026, China
| |
Collapse
|
19
|
Hu Z, Chen Z, Liu Q, Zhao W, Xu Y, Wu HB. Compact TiO 2@SnO 2@C heterostructured particles as anode materials for sodium-ion batteries with improved volumetric capacity. iScience 2023; 26:106642. [PMID: 37182107 PMCID: PMC10173603 DOI: 10.1016/j.isci.2023.106642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/15/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
Sodium-ion batteries (SIBs) are promising candidates for large-scale energy storage. Increasing the energy density of SIBs demands anode materials with high gravimetric and volumetric capacity. To overcome the drawback of low density of conventional nanosized or porous electrode materials, compact heterostructured particles are developed in this work with improved Na storage capacity by volume, which are composed of SnO2 nanoparticles loaded into nanoporous TiO2 followed by carbon coating. The resulted TiO2@SnO2@C (denoted as TSC) particles inherit the structural integrity of TiO2 and extra capacity contribution from SnO2, delivering a volumetric capacity of 393 mAh cm-3 notably higher than that of porous TiO2 and commercial hard carbon. The heterogeneous interface between TiO2 and SnO2 is believed to promote the charge transfer and facilitate the redox reactions in the compact heterogeneous particles. This work demonstrates a useful strategy for electrode materials with high volumetric capacity.
Collapse
Affiliation(s)
- Zhikun Hu
- Institute for Composites Science Innovation (InCSI) and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zerui Chen
- Institute for Composites Science Innovation (InCSI) and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Qianqian Liu
- Key Laboratory of Electronic Materials and Devices of Tianjin, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin, China
| | - Wei Zhao
- Institute for Composites Science Innovation (InCSI) and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yifei Xu
- Institute for Composites Science Innovation (InCSI) and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hao Bin Wu
- Institute for Composites Science Innovation (InCSI) and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
20
|
Ye L, Lu N, Zhang B, Qin H, Wang C, Ou X. In-situ catalytic mechanism coupling quantum dot effect for achieving high-performance sulfide anode in potassium-ion batteries. J Colloid Interface Sci 2023; 638:606-615. [PMID: 36774874 DOI: 10.1016/j.jcis.2023.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Though numerous framework structures have been constructed to strengthen the reaction kinetics and durability, the inevitable generation of polysulfide dissolution during conversion-process can cause irreparable destruction to ion-channel and crystal structure integrality, which has become a huge obstacle to the application of metal-sulfide in potassium-ion batteries. Herein, the quantum dot structure with catalytic conversion capability is synchronously introduced into the design of FeS2 anode materials to heighten its K+-storage performance. The constructed quantum dot structure anchored by the graphene with space-confinement effect can shorten the ion diffusion path and enlarge the active area, thus accelerating the K+-ions transmission kinetics and absorption action, respectively. The intermediate phase of formed Fe-nanoclusters possesses high-active catalysis ability, which can effectively suppress the polysulfide shuttle combined with the enhanced absorption effect, fully guaranteeing the structure stability and cycling reversibility. Predictably, the fabricated quantum dot FeS2 can express a prominent advantage in rapid potassiation/depotassiation processes (518.1 mAh g-1, 10 A g-1) and a superior cycling lifespan with gratifying reversible capacity at superhigh rate (177.7 mAh g-1, 9000 cycles, 5 A g-1). Therefore, engineering quantum dot structure with self-induced catalysis action for detrimental polysulfide is an achievable strategy to implement high-performance sulfide anode materials for K-ions accommodation.
Collapse
Affiliation(s)
- Long Ye
- National Engineering Laboratory for High Efficiency Recovery of Refractory Nonferrous Metals, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Na Lu
- National Engineering Laboratory for High Efficiency Recovery of Refractory Nonferrous Metals, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Bao Zhang
- National Engineering Laboratory for High Efficiency Recovery of Refractory Nonferrous Metals, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Haozhe Qin
- National Engineering Laboratory for High Efficiency Recovery of Refractory Nonferrous Metals, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Chunhui Wang
- National Engineering Laboratory for High Efficiency Recovery of Refractory Nonferrous Metals, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| | - Xing Ou
- National Engineering Laboratory for High Efficiency Recovery of Refractory Nonferrous Metals, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| |
Collapse
|
21
|
Zhou X, Wang Z, Wang Y, Du F, Li Y, Su Y, Wang M, Ma M, Yang G, Ding S. Graphene supported FeS 2 nanoparticles with sandwich structure as a promising anode for High-Rate Potassium-Ion batteries. J Colloid Interface Sci 2023; 636:73-82. [PMID: 36621130 DOI: 10.1016/j.jcis.2022.12.168] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/24/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
Pyrite FeS2 now emerges as a promising anode for potassium-ion batteries (PIBs) due to its low cost and high theoretical capacity. However, the significant volume expansion, low electrical conductivity, and the ambiguous mechanism related to potassium storage severely hinder its development for PIBs anodes. Herein, FeS2 nanostructures are skillfully dispersed on the graphene surface layer by layer (FeS2@C-rGO) to form a sandwich structure by using Fe-based metal organic framework (Fe-MOF) as precursors. The unique structural design can improve the transfer kinetics of K+ and effectively buffer the volume expansion during cycling, thereby enhancing the potassium storage performance. As a result, the FeS2@C-rGO delivers a high capacity of 550 mAh/g at a current density of 0.1 A/g. At a high rate of 2 A/g, the capacity can maintain 171 mAh/g even after 500 cycles. Moreover, the electrochemical reaction mechanism and potassium storage behavior are revealed by in-situ X-ray diffractionand density functional theory calculations. This work not only provides a novel insight into the structural design of electrode materials for high-performance PIBs, but also proposes a valuable understanding of the potassium storage mechanism of the FeS2-based anode.
Collapse
Affiliation(s)
- Xinyu Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ziwei Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yajun Wang
- Shaanxi Yulin Energy Group Energy and Chemical Research Institute Co., Ltd., Yulin 719000, China
| | - Fan Du
- Shaanxi Yulin Energy Group Energy and Chemical Research Institute Co., Ltd., Yulin 719000, China
| | - Yinhuan Li
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyue Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingming Ma
- Shaanxi Yulin Energy Group Energy and Chemical Research Institute Co., Ltd., Yulin 719000, China
| | - Guorui Yang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shujiang Ding
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
22
|
Huang G, Kong Q, Yao W, Wang Q. High Proportion of Active Nitrogen-Doped Hard Carbon Based on Mannich Reaction as Anode Material for High-Performance Sodium-Ion Batteries. CHEMSUSCHEM 2023; 16:e202202070. [PMID: 36624045 DOI: 10.1002/cssc.202202070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The potential for energy storage in carbonaceous materials is well known. Heteroatom doping - particularly nitrogen doping - can further enhance their electrochemical performance. The type of N configuration determines the reactivity of doped carbon. It remains a challenge, however, to achieve a high ratio of active N (N-5) in N-doped carbon. In this study, a high proportion of active nitrogen-doped hard carbon (PTA-Lys-800) is synthesized by the classical Mannich reaction, using tannic acid (TA) and amino acid as precursors. For sodium-ion batteries (SIBs), PTA-Lys-800 provides outstanding cycling stability and rate performance (338.8 mAh g-1 at 100 mA g-1 for 100 cycles, a capacity retention of 86 %; 131.1 mAh g-1 at 4 A g-1 after 5000 cycles). The excellent performance of PTA-Lys-800 is attributed to stable hierarchical pore structure, abundant defects, and a high proportion of N-5 formed during the carbonization process. Based on a detailed fundamental analysis, the pseudocapacitance mechanism is found to contribute to the higher sodium storage process in PTA-Lys-800. The Na-adsorption mechanism is further explored through ex situ Raman spectroscopy. A new method is presented for designing carbonaceous anode materials with high capacity and long cycle life.
Collapse
Affiliation(s)
- Gang Huang
- School of Mechanical Engineering, Chengdu University, No. 2025, Chengluo Avenue, 610106, Chengdu, P. R. China
| | - Qingquan Kong
- School of Mechanical Engineering, Chengdu University, No. 2025, Chengluo Avenue, 610106, Chengdu, P. R. China
| | - Weitang Yao
- School of Mechanical Engineering, Chengdu University, No. 2025, Chengluo Avenue, 610106, Chengdu, P. R. China
| | - Qingyuan Wang
- School of Mechanical Engineering, Chengdu University, No. 2025, Chengluo Avenue, 610106, Chengdu, P. R. China
| |
Collapse
|
23
|
Enhancing interfacial and internal reaction of sulfide electrode with zinc ions by synergistic effect of phase and structure engineering. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
24
|
Lei T, Gu M, Fu H, Wang J, Wang L, Zhou J, Liu H, Lu B. Bond modulation of MoSe 2+x driving combined intercalation and conversion reactions for high-performance K cathodes. Chem Sci 2023; 14:2528-2536. [PMID: 36908953 PMCID: PMC9993863 DOI: 10.1039/d2sc07121e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
The urgent demand for large-scale global energy storage systems and portable electronic devices is driving the need for considerable energy density and stable batteries. Here, Se atoms are introduced between MoSe2 layers (denoted as MoSe2+x ) by bond modulation to produce a high-performance cathode for potassium-ion batteries. The introduced Se atoms form covalent Se-Se bonds with the Se in MoSe2, and the advantages of bond modulation are as follows: (i) the interlayer spacing is enlarged which increases the storage space of K+; (ii) the system possesses a dual reaction mechanism, and the introduced Se can provide an additional conversion reaction when discharged to 0.5 V, which improves the capacity further; (iii) the Se atoms confined between MoSe2 layers do not give rise to the shuttle effect. MoSe2+x is compounded with rGO (MoSe2+x -rGO) as a cathode for potassium-ion batteries and displays an ultrahigh capacity (235 mA h g-1 at 100 mA g-1), a long cycle life (300 cycles at 100 mA g-1) and an extraordinary rate performance (135 mA h g-1 at 1000 mA g-1 and 89 mA h g-1 at 2000 mA g-1). Pairing the MoSe2+x -rGO cathode with graphite, the full cell delivers considerable energy density compared to other K cathode materials. The MoSe2+x -rGO cathode also exhibits excellent electrochemical performance for lithium-ion batteries. This study on bond modulation driving combined intercalation and conversion reactions offers new insights into the design of high-performance K cathodes.
Collapse
Affiliation(s)
- Ting Lei
- School of Physics and Electronics, Hunan University Changsha 410082 P. R. China
| | - Mingyuan Gu
- School of Physics and Electronics, Hunan University Changsha 410082 P. R. China
| | - Hongwei Fu
- School of Physics and Electronics, Hunan University Changsha 410082 P. R. China
| | - Jue Wang
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China
| | - Longlu Wang
- Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts & Telecommunications Nanjing 210003 P. R. China
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University Changsha 410083 P. R. China
| | - Huan Liu
- Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology Xiangtan 411201 P. R. China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
25
|
Zhu H, Wang F, Peng L, Qin T, Kang F, Yang C. Inlaying Bismuth Nanoparticles on Graphene Nanosheets by Chemical Bond for Ultralong-Lifespan Aqueous Sodium Storage. Angew Chem Int Ed Engl 2023; 62:e202212439. [PMID: 36397656 DOI: 10.1002/anie.202212439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 11/20/2022]
Abstract
Rechargeable aqueous sodium ion batteries (ASIBs) are rising as an important alternative to lithium ion batteries, owing to their safety and low cost. Metal anodes show a high theoretical capacity and nonselective hydrated ion insertion for ASIBs, yet their large volume expansion and sluggish reaction kinetics resulted in poor electrochemical stability. Herein, we demonstrate an electrode cyclability enhancement mechanism by inlaying bismuth (Bi) nanoparticles on graphene nanosheets through chemical bond, which is achieved by a unique laser induced compounding method. This anchored metal-graphene heterostructure can effectively mitigate volume variation, and accelerate the kinetic capability as the active Bi can be exposed to the electrolyte. Our method can achieve a reversible capacity of 122 mAh g-1 at a large current density of 4 A g-1 for over 9500 cycles. This finding offers a desirable structural design of other metal anodes for aqueous energy storage systems.
Collapse
Affiliation(s)
- Haojie Zhu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.,School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Fangcheng Wang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.,Shenzhen Institute of Advanced Electronic Materials-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Lu Peng
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Tingting Qin
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Feiyu Kang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.,School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Cheng Yang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
26
|
Li W, Zhang Q, Yang Z, Ji H, Wu T, Wang H, Cai Z, Xie C, Li Y, Wang H. Isotropic Amorphous Protective Layer with Uniform Interfacial Zincophobicity for Stable Zinc Anode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205667. [PMID: 36373682 DOI: 10.1002/smll.202205667] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Aqueous zinc-ion batteries (AZIBs) have drawn the attention of numerous researchers owing to their high safety and cost-effectiveness. However, the dendrite growth and side reactions of the zinc (Zn) anodes limit their further practical applications. Herein, a porous amorphous silicon nitride protective layer with high zincophobicity is constructed on the Zn anode surface, which can guide the uniform stripping/plating of Zn2+ underneath the protective layer through its isotropic Zn affinity to alleviate the growth of dendrites and by-products. As a result, the amorphous silicon nitride-protected Zn anode can maintain a stable Coulombic efficiency (CE) of 98.8% and low voltage hysteresis for 710 cycles in the half cell. The full cell with the as-prepared Zn anode can deliver excellent electrochemical performances (89.0% capacity retention and 144.4 mAh g-1 discharge capacity after 1000 cycles at 4 A g-1 ). This work reveals the key role of uniform metal affinity induced by the amorphous materials in the interface modification of metal anodes, which is instructive for the design of stable metal anodes.
Collapse
Affiliation(s)
- Wenbin Li
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Qi Zhang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Zefang Yang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Huimin Ji
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Tingqing Wu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Hao Wang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Zhiwen Cai
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Chunlin Xie
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yixin Li
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Haiyan Wang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
27
|
Pan Q, Tong Z, Su Y, Zheng Y, Shang L, Tang Y. Flat-Zigzag Interface Design of Chalcogenide Heterostructure toward Ultralow Volume Expansion for High-Performance Potassium Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203485. [PMID: 35962631 DOI: 10.1002/adma.202203485] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Heterostructure construction of layered metal chalcogenides can boost their alkali-metal storage performance, where the charge transfer kinetics can be promoted by the built-in electric fields. However, these heterostructures usually undergo interface separation due to severe layer expansion, especially for large-size potassium accommodation, resulting in the deconstruction of heterostructures and battery performance fading. Herein, first a stable interface design strategy where two metal chalcogenides with totally different layer-morphologies are stacked to form large K+ transport channels, rendering ultralow interlayer expansion, is presented. As a proof of concept, the flat-zigzag MoS2 /Bi2 S3 heterostructures stacked with zigzag-morphology Bi2 S3 and flat-morphology MoS2 present an ultralow expansion ratio (1.98%) versus MoS2 (9.66%) and Bi2 S3 (9.61%), which deliver an ultrahigh potassium storage capacity of above 600 mAh g-1 and capacity retention of 76% after 500 cycles, together with the built-in electric field of heterostructures. Once the heterostructures are used as an anode for potassium-based dual-ion batteries (K-DIBs), it achieves a superior full-cell capacity of ≈166 mAh g-1 with a capacity retention of 71% after 400 cycles, which is an outstanding performance among the reported K-DIBs. This proposed interface stacking strategy may offer a new way toward stable heterostructure design for metal ions storage and transport applications.
Collapse
Affiliation(s)
- Qingguang Pan
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Zhaopeng Tong
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanqiang Su
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongping Zheng
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Lin Shang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Advanced Materials Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
28
|
Wang P, Bai J, Zhao B, Ma H, Li W, Zhu X, Sun Y. Intercalation Reaction in Amorphous Layer-Wrapped Ni 0.2Mo 0.8N/Ni 3N Heterostructure Toward Efficient Lithium-Ion Storage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38875-38886. [PMID: 35976057 DOI: 10.1021/acsami.2c10781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transition metal nitrides (TMNs) with high specific capacity and electric conductivity have drawn considerable attention as electrode materials of lithium-ion batteries (LIBs). However, the cycling stability of most TMNs is not satisfactory, which was caused by the large volume variation during cycles due to their intrinsic conversion reaction mechanism. Herein, by rational design, a much stable tremella-like Ni0.2Mo0.8N/Ni3N heterostructure with amorphous Ni0.2Mo0.8N wrapped layer has been fabricated. The Ni3N particles worked as pillars to support the Ni0.2Mo0.8N material as well as conductive medium to facilitate ionic and electronic transport. The amorphous layer can relieve the structural stress of Ni0.2Mo0.8N during cycles. Moreover, an exotic intercalation-type reaction mechanism in the ternary nitride Ni0.2Mo0.8N was revealed by a series ex situ and in situ characterization. Profiting from these advantages, the Ni0.2Mo0.8N/Ni3N heterostructure anode displays an outstanding electrochemical performance with a high initial reversible discharge capacity of 1001.6 mA h g-1 at 0.1 A g-1, excellent cycle stability of 695.5 mA h g-1 at 2 A g-1 after 600 cycles, and superior rate capability of 595.3 mA h g-1 at a high current density of 5 A g-1. This work provides a new insight for designing high efficiency LIBs based on intercalation reaction for practical applications.
Collapse
Affiliation(s)
- Peiyao Wang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jin Bai
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Bangchuan Zhao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Hongyang Ma
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Wanyun Li
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Xuebin Zhu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Yuping Sun
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| |
Collapse
|
29
|
Huang H, Chi C, Zhang J, Zheng X, Wu Y, Shen J, Wang X, Wang S. Fast Ion Transport Mechanism and Electrochemical Stability of Trivalent Metal Iodide-based Na Superionic Conductors Na 3XI 6 (X = Sc, Y, La, and In). ACS APPLIED MATERIALS & INTERFACES 2022; 14:36864-36874. [PMID: 35938862 DOI: 10.1021/acsami.2c09814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The exploration of solid-state sodium superionic conductors with high sodium-ion conductivity, structural and electrochemical stability, and grand interface compatibility has become the key to the next-generation energy storage applications with high energy density and long cycling life. Among them, halide-based compounds exhibit great potential with the higher electronegativity of halogens than that of the sulfur element. In this work, combined with first-principles calculation and ab initio molecular dynamic simulation, the investigation of trivalent metal iodide-based Na superionic conductors C2/m-Na3XI6 (X = Sc, Y, La, and In) was conducted, including the fast ion transport mechanism, structural stability, and interface electrochemical compatibility with electrode materials. Along with the tetrahedral-center saddle site-predominant three-dimensional octahedral-tetrahedral-octahedral diffusion network, C2/m-Na3XI6 possesses the merits of high Na ionic conductivities of 0.36, 0.35, and 0.20 mS cm-1 for Na3ScI6, Na3YI6, and Na3LaI6, respectively. Benefiting from its structural stabilities, C2/m-Na3XI6 exhibits lower interface reaction energy and better electrochemical compatibility in contact with both Na metal and high-voltage poly-anion (fluoro)phosphate cathode materials than those of sulfide-based ones. Our theoretical work provides rational design principles for screening and guiding iodide-based C2/m-Na3XI6 (X = Sc, Y, La, and In) as promising Na superionic conductor candidates used in all-solid-state energy storage applications.
Collapse
Affiliation(s)
- He Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Cheng Chi
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Jingyan Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xinqi Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanfei Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianxin Shen
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiao Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shouguo Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
30
|
Hollow nanospheres constructed by ultrafine few-layered MoS 2 partially with amorphous fragments homogeneously incorporated in N-doped amorphous carbon for enhanced lithium storage performance. J Colloid Interface Sci 2022; 627:804-814. [PMID: 35901560 DOI: 10.1016/j.jcis.2022.07.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022]
Abstract
The rational design of ultrathin and few-layered structures for three-dimensional MoS2 nanospheres is crucial for achieving attractive lithium-ion batteries (LIBs). Herein, hollow nanospheres constructed by ultrafine and few-layered MoS2 homogeneously incorporated in N-doped amorphous carbon (HUF-MoS2/NC) have been successfully synthesized as high-performance anode for LIBs. Using Mo-glycerol spheres as templates and dopamine hydrochloride as coordination ligands, hollow Mo-glycerol-polydopamine precursors are formed with Mo-containing groups which are surrounded by organic carbon species. Consequently, the MoS2 is confined to the nanoscale and grows partially amorphous fragments while being uniformly embedded in NC. This unique architecture can not only hinder the substantial restacking between MoS2 interlayers, offering more active sites, but also vastly enhance the electrical conductivity and relieve the mechanical stress ascribed to volume changes. As a result, the HUF-MoS2/NC composite anode exhibits excellent cyclic stability (980mAhg-1 after 300 cycles at 0.2Ag-1) and superior rate performance (498mAhg-1 at 5.0Ag-1) for LIBs.
Collapse
|
31
|
Li M, Li Q, Hu M, Du Y, Duan Z, Fan H, Cui Y, Liu S, Jin Y, Liu W. N-doped engineering of a high-voltage LiNi 0.5Mn 1.5O 4 cathode with superior cycling capability for wide temperature lithium-ion batteries. Phys Chem Chem Phys 2022; 24:12214-12225. [PMID: 35575198 DOI: 10.1039/d2cp00835a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Spinel LiNi0.5Mn1.5O4 (LNMO) is one potential cathode candidate for next-generation high energy-density lithium-ion batteries (LIBs). However, serious capacity decay from its poor structural stability, especially at high operating temperatures, shadows its application prospects. In this work, N-doped LNMO (LNMON) was synthesized by a facile co-precipitation method and multistep calcination, exhibiting a unique yolk-shell architecture. Concurrently, N dopants are introduced into a LNMO lattice, endowing LNMON with a more stable structure via stronger Ni-N/Mn-N bindings. Benefiting from the synergistic effect of the yolk-shell structure and N-doped engineering, the obtained LNMON cathode exhibits an impressive rate and the state-of-the-art cycling capability, delivering a high capacity of 103 mA h g-1 at 25 °C after 8000 cycles. Even at a high operating temperature of 60 °C, the capacity retention remains at 92% after 1000 cycles. The discovery of N dopants in improving the cycling capability of LNMO in our case offers a prospective approach to enable 5 V LNMO cathode materials with excellent cycling capability.
Collapse
Affiliation(s)
- Mingzhu Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Qingping Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Maofeng Hu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Yongxu Du
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Zhipeng Duan
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Hongguang Fan
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Yongpeng Cui
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Shuang Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Yongcheng Jin
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Wei Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| |
Collapse
|
32
|
Xu X, Xu F, Zhang X, Qu C, Zhang J, Qiu Y, Zhuang R, Wang H. Laser-Derived Interfacial Confinement Enables Planar Growth of 2D SnS 2 on Graphene for High-Flux Electron/Ion Bridging in Sodium Storage. NANO-MICRO LETTERS 2022; 14:91. [PMID: 35362824 PMCID: PMC8975989 DOI: 10.1007/s40820-022-00829-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Establishing covalent heterointerfaces with face-to-face contact is promising for advanced energy storage, while challenge remains on how to inhibit the anisotropic growth of nucleated crystals on the matrix. Herein, face-to-face covalent bridging in-between the 2D-nanosheets/graphene heterostructure is constructed by intentionally prebonding of laser-manufactured amorphous and metastable nanoparticles on graphene, where the amorphous nanoparticles were designed via the competitive oxidation of Sn-O and Sn-S bonds, and metastable feature was employed to facilitate the formation of the C-S-Sn covalent bonding in-between the heterostructure. The face-to-face bridging of ultrathin SnS2 nanosheets on graphene enables the heterostructure huge covalent coupling area and high loading and thus renders unimpeded electron/ion transfer pathways and indestructible electrode structure, and impressive reversible capacity and rate capability for sodium-ion batteries, which rank among the top in records of the SnS2-based anodes. Present work thus provides an alternative of constructing heterostructures with planar interfaces for electrochemical energy storage and even beyond.
Collapse
Affiliation(s)
- Xiaosa Xu
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China
| | - Fei Xu
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China
| | - Xiuhai Zhang
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China
| | - Changzhen Qu
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China
| | - Jinbo Zhang
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China
| | - Yuqian Qiu
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China
| | - Rong Zhuang
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China.
| |
Collapse
|
33
|
Zheng Y, Zhang Z, Liu W, Wu Y, Fu X, Li L, Su J, Gao Y. Investigations on the Electrochemical and Mechanical Properties of Sb 2 O 3 Nanobelts by In Situ Transmission Electron Microscopy. SMALL METHODS 2022; 6:e2101416. [PMID: 35132830 DOI: 10.1002/smtd.202101416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Sb2 O3 shows great promise as a high-capacity anode material for sodium-ion batteries (SIBs) due to the combined mechanisms of intercalation, conversion, and alloying. In this work, the electrochemical performance and mechanical property of Sb2 O3 nanobelts during sodiation/desodiation are revealed by constructing nanoscale solid-state SIBs in a high-resolution transmission electron microscopy. It is found that the Sb2 O3 nanobelt exhibits an ultrahigh sodiation speed of ≈13.5 nm s-1 and experiences a three-step sodiation reaction including the intercalation reaction to form Nax Sb2 O3 , the conversion reaction to form Sb, and the alloying reaction to form NaSb. The alloying reaction is found to be reversible, while the conversion reaction is partially reversible. The Sb2 O3 nanobelt shows anisotropic expansion and the orientation of the Sb2 O3 nanobelt has great influence on the expansion ratio. It is found that the existence of a {010} plane with large d-spacing in the nanobelt leads to a surprisingly small expansion ratio (≈5%). The morphology of the Sb2 O3 nanobelt is well maintained during multiple electrochemical cycles. In situ bending experiments suggest that the sodiated Sb2 O3 nanobelts show improved toughness and flexibility compared to pristine Sb2 O3 nanobelts. These fundamental studies provide insight into the rational design of anode materials with improved electrochemical and mechanical performance in SIBs.
Collapse
Affiliation(s)
- Yifan Zheng
- School of Physics, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhi Zhang
- School of Physics, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weifeng Liu
- School of Physics, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yonghui Wu
- School of Physics, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiutao Fu
- School of Physics, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Luying Li
- School of Physics, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jun Su
- School of Physics, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yihua Gao
- School of Physics, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
34
|
Liu J, Hao R, Jia B, Zhao H, Guo L. Manipulation on Two-Dimensional Amorphous Nanomaterials for Enhanced Electrochemical Energy Storage and Conversion. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3246. [PMID: 34947594 PMCID: PMC8705007 DOI: 10.3390/nano11123246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
Low-carbon society is calling for advanced electrochemical energy storage and conversion systems and techniques, in which functional electrode materials are a core factor. As a new member of the material family, two-dimensional amorphous nanomaterials (2D ANMs) are booming gradually and show promising application prospects in electrochemical fields for extended specific surface area, abundant active sites, tunable electron states, and faster ion transport capacity. Specifically, their flexible structures provide significant adjustment room that allows readily and desirable modification. Recent advances have witnessed omnifarious manipulation means on 2D ANMs for enhanced electrochemical performance. Here, this review is devoted to collecting and summarizing the manipulation strategies of 2D ANMs in terms of component interaction and geometric configuration design, expecting to promote the controllable development of such a new class of nanomaterial. Our view covers the 2D ANMs applied in electrochemical fields, including battery, supercapacitor, and electrocatalysis, meanwhile we also clarify the relationship between manipulation manner and beneficial effect on electrochemical properties. Finally, we conclude the review with our personal insights and provide an outlook for more effective manipulation ways on functional and practical 2D ANMs.
Collapse
Affiliation(s)
- Juzhe Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, China; (J.L.); (R.H.); (B.J.)
- School of Physics, Beihang University, Beijing 100191, China
| | - Rui Hao
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, China; (J.L.); (R.H.); (B.J.)
- School of Physics, Beihang University, Beijing 100191, China
| | - Binbin Jia
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, China; (J.L.); (R.H.); (B.J.)
| | - Hewei Zhao
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, China; (J.L.); (R.H.); (B.J.)
| | - Lin Guo
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, China; (J.L.); (R.H.); (B.J.)
| |
Collapse
|