1
|
Hu K, Chen W, Pan Y, Li S, Lv Z, He Y, Zheng C, Huang F, Dong W. Bimetallic Sulfides Cr 0.99V 1.8S 4 with Loosely Packed Structure: Exploring the Boundary of Conversion and Intercalation Sodium-Ion Storage Mechanism. NANO LETTERS 2025; 25:1823-1830. [PMID: 39868720 DOI: 10.1021/acs.nanolett.4c04750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Metal sulfide electrodes for sodium-ion batteries face trade-offs among high capacity, fast kinetics, and stability. The challenge lies in breaking and restoring metal-sulfur bonds and allowing rapid ionic transport. Here we explore the boundary of conversion- and intercalation-type metal sulfides to develop ideal sodium-ion storage materials. We focus on sulfides of vanadium and chromium because of their adjacent atomic numbers but different energy storage mechanism. Among various sulfides of vanadium and chromium, a loosely packed bimetallic sulfide, Cr0.99V1.8S4, with cationic vacancies and metallic conductivity (4.28 S m-1), shows optimal sodium-ion storage performance: an initial Coulombic efficiency of 95.6%, a reversible capacity of 551 mAh g-1 at 1.6 C, and maintaining 100% capacity after 600 cycles at a high rate of 16-66 C.
Collapse
Affiliation(s)
- Keyan Hu
- School of Mechanical and Electrical Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Wen Chen
- School of Mechanical and Electrical Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
- Shanghai, China State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Youtan Pan
- School of Mechanical and Electrical Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Shuai Li
- School of Mechanical and Electrical Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Zhuoran Lv
- Shanghai, China State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Yuting He
- School of Mechanical and Electrical Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Chong Zheng
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Fuqiang Huang
- Shanghai, China State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
- Future Materials Innovation Center, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Wujie Dong
- Shanghai, China State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
- Future Materials Innovation Center, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| |
Collapse
|
2
|
Pan Y, Chen W, Zheng C, Lv Z, Zhong M, Hu K, Huang F, Dong W. "Lasagna"-Structured SnS-TaS 2 Misfit Layered Sulfide for Capacitive and Robust Sodium-Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404127. [PMID: 38982955 DOI: 10.1002/smll.202404127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Indexed: 07/11/2024]
Abstract
Stannous sulfide (SnS), a conversion-alloying type anode for sodium-ion batteries, is strong Na+ storage activity, a low voltage platform, and high theoretical capacity. However, grain pulverization induced by intolerable volume change and phase aggregation causes quick capacity degradation and unsatisfactory rate capability. Herein, a novel "lasagna" strategy is developed by embedding a SnS layer into the interlayer of an electrochemically robust and electron-active TaS2 to form a misfit layered (SnS)1.15TaS2 superlattice. For Na+ storage, the rationally designed (SnS)1.15TaS2 anode exhibits high specific capacity, excellent rate capability, and robust cycling stability (729 mAh cm-3 at 15 C after 2000 cycles). Moreover, the as-assembled (SnS)1.15TaS2 || Na3V2(PO4)3 full cells achieve robust and fast Na+ storage performance with ≈100% capacity retention after 650 cycles at 15 C, which also demonstrates good low-temperature performance at -20 °C with a capacity retention of 75% and 2 C high-rate charge/discharge ability.
Collapse
Affiliation(s)
- Youtan Pan
- School of Mechanical and Electrical Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Wen Chen
- School of Mechanical and Electrical Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Chong Zheng
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Zhuoran Lv
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Mengjuan Zhong
- School of Mechanical and Electrical Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Keyan Hu
- School of Mechanical and Electrical Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Fuqiang Huang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Future Materials Innovation Center, Zhang jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Wujie Dong
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
3
|
Li X, Wang JH, Yang L, Liu TY, Huang S, Ho B, Hsueh H, Chen J, He L, Guo Z, Liu M, Li W. Element Screening Engineering for High-Entropy Alloy Anodes: Achieving Fast and Robust Li-Storage With Optimal Working Potential. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409278. [PMID: 39363675 DOI: 10.1002/adma.202409278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/10/2024] [Indexed: 10/05/2024]
Abstract
While the high-entropy strategy is highly effective in enhancing the performance of materials across various fields, an optimal methodology for selecting component elements for performance optimization is still lacking. Here the findings on uncovering the element selection rules for rational design of high-entropy alloy anodes with exceptional lithium storage performance are reported. It is investigated high-entropy element screening rules by modifying stable diamond-structured Ge with P to induce a tetrahedrally coordinated sphalerite structure for enhanced metallic conductivity, further stabilized by incorporating Zn and other elements. Moreover, both theoretical and experimental results confirm that Li-storage performance improves with increasing atomic number: BZnGeP3 < AlZnGeP3 < GaZnGeP3 < InZnGeP3. InZnGeP3-based electrodes demonstrate the highest Li-ion affinity, fastest electronic and Li-ion transport, largest Li-storage capacity and reversibility, and best mechanical integrity. Further element screening based on the above criteria leads to high entropy alloy anodes with metallic conductivity like GaCuSnInZnGeP6, GaCu(or Sn)InZnGeP5, CuSnInZnGeP5, InZnGePSeS(or Te), InZnGeP2S(or Se) which show superior Li-storage performances. The excellent phase stability is attributed to their high configurational entropy. This study offers profound insights into element screening for high-entropy alloy-based anodes in Li-ion batteries, providing guidance and reference for the element combination and screening of other high-entropy functional materials.
Collapse
Affiliation(s)
- Xinwei Li
- School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seoburo, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Jeng-Han Wang
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan, 11677, China
| | - Lufeng Yang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Tzu-Yu Liu
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan, 11677, China
| | - Shengchi Huang
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan, 11677, China
| | - Betty Ho
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan, 11677, China
| | - Howard Hsueh
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan, 11677, China
| | - Jie Chen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Lunhua He
- Spallation Neutron Source Science Center, Dongguan, 523803, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zaiping Guo
- School of Chemical Engineering & Advanced Materials, The University of Adelaide Adelaide, SA, 5005, Australia
| | - Meilin Liu
- School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Wenwu Li
- School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seoburo, Jangan-gu, Suwon, 440-746, Republic of Korea
| |
Collapse
|
4
|
Zhang X, Kang Q, Su M, Song C, Gao F, Lu Q. Template-Assisted Epitaxial Growth of Ordered SnO 2 Nanorods Arrays with Different Hollow Structures for High-Performance Sodium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405322. [PMID: 39155418 DOI: 10.1002/smll.202405322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Indexed: 08/20/2024]
Abstract
Anode materials for sodium ion batteries (SIBs) are confronted with severe volume expansion and poor electrical conductivity. Construction of assembled structures featuring hollow interior and carbon material modification is considered as an efficient strategy to address the issues. Herein, a novel template-assisted epitaxial growth method, ingeniously exploiting lattice matching nature, is developed to fabricate hollow ordered architectures assembled by SnO2 nanorods. SnO2 nanorods growing along [100] direction can achieve lattice-matched epitaxial growth on (110) plane of α-Fe2O3. Driven by the lattice matching, different α-Fe2O3 templates possessing different crystal plane orientations enable distinct assembly modes of SnO2, and four kinds of hollow ordered SnO2@C nanorods arrays (HONAs) with different morphologies including disc, hexahedron, dodecahedron and tetrakaidecahedron (denoted as Di-, He-, Do-, and Te-SnO2@C) are achieved. Benefiting from the synergy of hollow structure, carbon coating and ordered assembly structure, good structural integrity and stability and enhanced electrical conductivity are realized, resulting in impressive sodium storage performances when utilized as SIB anodes. Specifically, Te-SnO2@C HONAs exhibit excellent rate capability (385.6 mAh·g-1 at 2.0 A·g-1) and remarkable cycling stability (355.4 mAh·g-1 after 2000 cycles at 1.0 A·g-1). This work provides a promising route for constructing advanced SIB anode materials through epitaxial growth for rational structural design.
Collapse
Affiliation(s)
- Xinyu Zhang
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Qiaoling Kang
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Mengfei Su
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Chuang Song
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Feng Gao
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Qingyi Lu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
5
|
Pang X, Lee H, Rong J, Zhu Q, Xu S. Self-Thermal Management in Filtered Selenium-Terminated MXene Films for Flexible Safe Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309580. [PMID: 38705865 DOI: 10.1002/smll.202309580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/04/2024] [Indexed: 05/07/2024]
Abstract
Li-ion batteries with superior interior thermal management are crucial to prevent thermal runaway and ensure safe, long-lasting operation at high temperatures or during rapid discharging and charging. Typically, such thermal management is achieved by focusing on the separator and electrolyte. Here, the study introduces a Se-terminated MXene free-standing electrode with exceptional electrical conductivity and low infrared emissivity, synergistically combining high-rate capacity with reduced heat radiation for safe, large, and fast Li+ storage. This is achieved through a one-step organic Lewis acid-assisted gas-phase reaction and vacuum filtration. The Se-terminated Nb2Se2C outperformed conventional disordered O/OH/F-terminated materials, enhancing Li+-storage capacity by ≈1.5 times in the fifth cycle (221 mAh·g-1 at 1 A·g-1) and improving mid-infrared adsorption with low thermal radiation. These benefits result from its superior electrical conductivity, excellent structural stability, and high permittivity in the infrared region. Calculations further reveal that increased permittivity and conductivity along the z-direction can reduce heat radiation from electrodes. This work highlights the potential of surface groups-terminated layered material-based free-standing flexible electrodes with self-thermal management ability for safe, fast energy storage.
Collapse
Affiliation(s)
- Xin Pang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hyunjin Lee
- Department of Biomedical Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Jingzhi Rong
- State Key Lab of High-Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Qiaoyu Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Shumao Xu
- Department of Biomedical Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| |
Collapse
|
6
|
Wang X, Du X, Luo J, Li L, Tan L, Dong W, Li D, Guo Z. Olivine-Type Fe 2GeX 4 (X = S, Se, and Te): A Novel Class of Anode Materials for Exceptional Sodium Storage Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407492. [PMID: 39118571 DOI: 10.1002/adma.202407492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/17/2024] [Indexed: 08/10/2024]
Abstract
The introduction of abundant metals to form ternary germanium-based chalcogenides can dilute the high price and effectively buffer the volume variation of germanium. Herein, olivine-structured Fe2GeX4 (X = S, Se, and Te) are synthesized by a chemical vapor transport method to compare their sodium storage properties. A series of in situ and ex situ measurements validate a combined intercalation-conversion-alloying reaction mechanism of Fe2GeX4. Fe2GeS4 exhibits a high capacity of 477.9 mA h g-1 after 2660 cycles at 8 A g-1, and excellent rate capability. Furthermore, the Na3V2(PO4)3//Fe2GeS4 full cell delivers a capacity of 375.5 mA h g-1 at 0.5 A g-1, which is more than three times that of commercial hard carbon, with a high initial Coulombic efficiency of 93.23%. Capacity-contribution and kinetic analyses reveal that the alloying reaction significantly contributes to the overall capacity and serves as the rate-determining step within the reaction for both Fe2GeS4 and Fe2GeSe4. Upon reaching a specific cycle threshold, the assessment of the kinetic properties of Fe2GeX4 primarily relies on the ion diffusion process that occurs during charging. This work demonstrates that Fe2GeX4 possesses promising practical potential to outperform hard carbon, offering valuable insights and impetus for the advancement of ternary germanium-based anodes.
Collapse
Affiliation(s)
- Xinyu Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Xin Du
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Jiangli Luo
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Longhui Li
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Lei Tan
- Institute of Theoretical Physics, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Weiwei Dong
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dan Li
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Zaiping Guo
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, 5005, Australia
| |
Collapse
|
7
|
Chen W, Hu K, Zheng H, Pan Y, Lv Z, Tu X, Zheng C, He T, Huang F, Dong W. GeV 4S 8: a Novel Bimetallic Sulfide for Robust and Fast Potassium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311638. [PMID: 38342598 DOI: 10.1002/smll.202311638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/30/2024] [Indexed: 02/13/2024]
Abstract
Potassium-ion batteries (PIBs) have attracted much attention due to their low production cost and abundant resources. Germanium is a promising alloying-type anode with a high theoretical capacity for PIBs, yet suffering significant volume expansion and sluggish potassium-ion transport kinetics. Herein, a rational strategy is formulated to disperse Ge atoms into transition metal V-S sulfide frameworks to form a loosely packed and metallic GeV4S8 medium. The theoretical prediction shows that GeV4S8 is conducive to the adsorption and diffusion of K+. The V-S frameworks provide fast ion/electron diffusion channels and also help to buffer the volume expansion during K+ insertion. In situ and ex situ characterizations manifest that KGe alloy clusters are constrained and dispersed by potassiated VS2 topological structure during discharging, and revert to the original GeV4S8 after charging. Consequently, as a novel anode for PIBs, GeV4S8 provides a high specific capacity of ≈400 mAh g-1 at 0.5 C, maintaining 160 mAh g-1 even at 12.5 C and ≈80% capacity after 1000 cycles at 5 C, superior to most of the state-of-the-art anode materials. The proposed strategy of combining alloy and intercalation dual-functional units is expected to open up a new way for high-capacity and high-rate anode for PIBs.
Collapse
Affiliation(s)
- Wen Chen
- Shanghai, China State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Mechanical and Electrical Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Keyan Hu
- School of Mechanical and Electrical Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Hongshun Zheng
- Southwest United Graduate School, Kunming, 650091, China
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Youtan Pan
- School of Mechanical and Electrical Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Zhuoran Lv
- Shanghai, China State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Xueyang Tu
- Shanghai, China State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Chong Zheng
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Tianwei He
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Fuqiang Huang
- Shanghai, China State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Mechanical and Electrical Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Wujie Dong
- Shanghai, China State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| |
Collapse
|
8
|
Zhang Y, Dong C, Zheng C, Lv Z, Tian RN, Wang M, Chen J, Wang D, Zhang X, Mao Z. Soft-in-Rigid Strategy Promoting Rapid and High-Capacity Lithium Storage by Chemical Scissoring. Inorg Chem 2024; 63:11406-11415. [PMID: 38835144 DOI: 10.1021/acs.inorgchem.4c01493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Large and rapid lithium storage is hugely demanded for high-energy/power lithium-ion batteries; however, it is difficult to achieve these two indicators simultaneously. Sn-based materials with a (de)alloying mechanism show low working potential and high theoretical capacity, but the huge volume expansion and particle agglomeration of Sn restrict cyclic stability and rate capability. Herein, a soft-in-rigid concept was proposed and achieved by chemical scissoring where a soft Sn-S bond was chosen as chemical tailor to break the Ti-S bond to obtain a loose stacking structure of 1D chain-like Sn1.2Ti0.8S3. The in situ and ex situ (micro)structural characterizations demonstrate that the Sn-S bonds are reduced into Sn domains and such Sn disperses in the rigid Ti-S framework, thus relieving the volume expansion and particle agglomeration by chemical and physical shielding. Benefiting from the merits of large-capacity Sn with an alloying mechanism and high-rate TiS2 with an intercalation mechanism, the Sn1.2Ti0.8S3 anode offers a high specific capacity of 963.2 mA h g-1 at 0.1 A g-1 after 100 cycles and a reversible capacity of 250 mA h g-1 at 10 A g-1 after 3900 cycles. Such a strategy realized by chemical tailoring at the structural unit level would broaden the prospects for constructing joint high-capacity and high-rate LIB anodes.
Collapse
Affiliation(s)
- Yuanxia Zhang
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P.R. China
| | - Chenlong Dong
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P.R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
| | - Chong Zheng
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Zhuoran Lv
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
| | - Ru-Ning Tian
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P.R. China
| | - Mei Wang
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P.R. China
| | - Jingjing Chen
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P.R. China
| | - Dajian Wang
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P.R. China
| | - Xian Zhang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, P. R. China
| | - Zhiyong Mao
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P.R. China
| |
Collapse
|
9
|
Lv Z, Zhao C, Xie M, Cai M, Peng B, Ren D, Fang Y, Dong W, Zhao W, Lin T, Lv X, Zheng G, Huang F. 1D Insertion Chains Induced Small-Polaron Collapse in MoS 2 2D Layers Toward Fast-Charging Sodium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309637. [PMID: 37985136 DOI: 10.1002/adma.202309637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Molybdenum disulfide (MoS2 ) with high theoretical capacity is viewed as a promising anode for sodium-ion batteries but suffers from inferior rate capability owing to the polaron-induced slow charge transfer. Herein, a polaron collapse strategy induced by electron-rich insertions is proposed to effectively solve the above issue. Specifically, 1D [MoS] chains are inserted into MoS2 to break the symmetry states of 2D layers and induce small-polaron collapse to gain fast charge transfer so that the as-obtained thermodynamically stable Mo2 S3 shows metallic behavior with 107 times larger electrical conductivity than that of MoS2 . Theoretical calculations demonstrate that Mo2 S3 owns highly delocalized anions, which substantially reduce the interactions of Na-S to efficiently accelerate Na+ diffusion, endowing Mo2 S3 lower energy barrier (0.38 vs 0.65 eV of MoS2 ). The novel Mo2 S3 anode exhibits a high capacity of 510 mAh g-1 at 0.5 C and a superior high-rate stability of 217 mAh g-1 at 40 C over 15 000 cycles. Further in situ and ex situ characterizations reveal the in-depth reversible redox chemistry in Mo2 S3 . The proposed polaron collapse strategy for intrinsically facilitating charge transfer can be conducive to electrode design for fast-charging batteries.
Collapse
Affiliation(s)
- Zhuoran Lv
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201210, China
| | - Chendong Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Miao Xie
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Mingzhi Cai
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Baixin Peng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Dayong Ren
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yuqiang Fang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Wujie Dong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Wei Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Tianquan Lin
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201210, China
| | - Ximeng Lv
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Fuqiang Huang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201210, China
| |
Collapse
|
10
|
Zheng T, Hu P, Wang Z, Guo T. 2D Amorphous Iron Selenide Sulfide Nanosheets for Stable and Rapid Sodium-Ion Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306577. [PMID: 37572373 DOI: 10.1002/adma.202306577] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Sodium ion batteries (SIBs) suffer from large electrode volume change and sluggish redox kinetics for the relatively large ionic radius of sodium ions, raising a significant challenge to improve their long-term cyclability and rate capacity. Here, it is proposed to apply 2D amorphous iron selenide sulfide nanosheets (a-FeSeS NSs) as an anode material for SIBs and demonstrate that they exhibit remarkable rate capability of 528.7 mAh g-1 at 1 A g-1 and long-life cycle (10 000 cycles) performance (300.4 mAh g-1 ). This performance is much more superior to that of the previously reported Fe-based anode materials, which is attributed to their amorphous structure that alleviates volume expansion of electrode, 2D nature that facilitates electrons/ions transfer, and the S/Se double anions that offer more reaction sites and stabilize the amorphous structure. Such a 2D amorphous strategy provides a fertile platform for structural engineering of other electrode materials, making a more secure energy prospect closer to a reality.
Collapse
Affiliation(s)
- Tian Zheng
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Pengfei Hu
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Zhongchang Wang
- Department of Advanced Materials and Computing, International Iberian Nanotechnology Laboratory (INL), 4715-330, Braga, Portugal
| | - Tianqi Guo
- Department of Advanced Materials and Computing, International Iberian Nanotechnology Laboratory (INL), 4715-330, Braga, Portugal
| |
Collapse
|
11
|
Huang X, Tao K, Han T, Li J, Zhang H, Hu C, Niu J, Liu J. Long-Cycling-Life Sodium-Ion Battery Using Binary Metal Sulfide Hybrid Nanocages as Anode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302706. [PMID: 37246262 DOI: 10.1002/smll.202302706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Indexed: 05/30/2023]
Abstract
Due to the relatively high capacity and lower cost, transition metal sulfides (TMS) as anode show promising potential in sodium-ion batteries (SIBs). Herein, a binary metal sulfide hybrid consisting of carbon encapsulated CoS/Cu2 S nanocages (CoS/Cu2 S@C-NC) is constructed. The interlocked hetero-architecture filled with conductive carbon accelerates the Na+ /e- transfer, thus leading to improved electrochemical kinetics. Also the protective carbon layer can provide better volume accommondation upon charging/discharging. As a result, the battery with CoS/Cu2 S@C-NC as anode displays a high capacity of 435.3 mAh g-1 after 1000 cycles at 2.0 A g-1 (≈3.4 C). Under a higher rate of 10.0 A g-1 (≈17 C), a capacity of as high as 347.2 mAh g-1 is still remained after long 2300 cycles. The capacity decay per cycle is only 0.017%. The battery also exhibits a better temperature tolerance at 50 and -5 °C. A low internal impedance analyzed by X-ray diffraction patterns and galvanostatic intermittent titration technique, narrow band gap, and high density of states obtained by first-principle calculations of the binary sulfides, ensure the rapid Na+ /e- transport. The long-cycling-life SIB using binary metal sulfide hybrid nanocages as anode shows promising applications in versatile electronic devices.
Collapse
Affiliation(s)
- Xiaofei Huang
- Key Laboratory of Functional Molecular Solids of the Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Kehao Tao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tianli Han
- Key Laboratory of Functional Molecular Solids of the Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Jinjin Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Huigang Zhang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chaoquan Hu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Junjie Niu
- Department of Materials Science and Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Jinyun Liu
- Key Laboratory of Functional Molecular Solids of the Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| |
Collapse
|
12
|
Wang F, Liu Z, Feng H, Wang Y, Zhang C, Quan Z, Xue L, Wang Z, Feng S, Ye C, Tan J, Liu J. Engineering CSFe Bond Confinement Effect to Stabilize Metallic-Phase Sulfide for High Power Density Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302200. [PMID: 37150868 DOI: 10.1002/smll.202302200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Indexed: 05/09/2023]
Abstract
Metallic-phase iron sulfide (e.g., Fe7 S8 ) is a promising candidate for high power density sodium storage anode due to the inherent metal electronic conductivity and unhindered sodium-ion diffusion kinetics. Nevertheless, long-cycle stability can not be achieved simultaneously while designing a fast-charging Fe7 S8 -based anode. Herein, Fe7 S8 encapsulated in carbon-sulfur bonds doped hollow carbon fibers (NHCFs-S-Fe7 S8 ) is designed and synthesized for sodium-ion storage. The NHCFs-S-Fe7 S8 including metallic-phase Fe7 S8 embrace higher electron specific conductivity, electrochemical reversibility, and fast sodium-ion diffusion. Moreover, the carbonaceous fibers with polar CSFe bonds of NHCFs-S-Fe7 S8 exhibit a fixed confinement effect for electrochemical conversion intermediates contributing to long cycle life. In conclusion, combined with theoretical study and experimental analysis, the multinomial optimized NHCFs-S-Fe7 S8 is demonstrated to integrate a suitable structure for higher capacity, fast charging, and longer cycle life. The full cell shows a power density of 1639.6 W kg-1 and an energy density of 204.5 Wh kg-1 , respectively, over 120 long cycles of stability at 1.1 A g-1 . The underlying mechanism of metal sulfide structure engineering is revealed by in-depth analysis, which provides constructive guidance for designing the next generation of durable high-power density sodium storage anodes.
Collapse
Affiliation(s)
- Fei Wang
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
- Ji Hua Laboratory, Foshan, Guangdong, 528000, China
| | - Zhendong Liu
- Ji Hua Laboratory, Foshan, Guangdong, 528000, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Huiyan Feng
- Ji Hua Laboratory, Foshan, Guangdong, 528000, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yuchen Wang
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
- Ji Hua Laboratory, Foshan, Guangdong, 528000, China
| | | | - Zhuohua Quan
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
- Ji Hua Laboratory, Foshan, Guangdong, 528000, China
| | - Lingxiao Xue
- Ji Hua Laboratory, Foshan, Guangdong, 528000, China
| | | | - Songhao Feng
- Ji Hua Laboratory, Foshan, Guangdong, 528000, China
| | - Chong Ye
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Jun Tan
- Ji Hua Laboratory, Foshan, Guangdong, 528000, China
| | - Jinshui Liu
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
13
|
Gao Y, Peng B, Lv Z, Han Z, Hu K, Huang F. Bifunctional structure modulation of Sb-based sulfide for boosting fast and high-capacity sodium storage. Inorg Chem Front 2023. [DOI: 10.1039/d3qi00173c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
A novel bimetallic sulfide CrSbS3 with both high sodium storage capacity and good rate performance is synthesized by introducing Cr atoms into the Sb2S3 structure.
Collapse
|
14
|
Wu T, Xu S, Zhang Z, Luo M, Wang R, Tang Y, Wang J, Huang F. Bimetal Modulation Stabilizing a Metallic Heterostructure for Efficient Overall Water Splitting at Large Current Density. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202750. [PMID: 35818696 PMCID: PMC9443435 DOI: 10.1002/advs.202202750] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Large current-driven alkaline water splitting for large-scale hydrogen production generally suffers from the sluggish charge transfer kinetics. Commercial noble-metal catalysts are unstable in large-current operation, while most non-noble metal catalysts can only achieve high activity at low current densities <200 mA cm-2 , far lower than industrially-required current densities (>500 mA cm-2 ). Herein, a sulfide-based metallic heterostructure is designed to meet the industrial demand by regulating the electronic structure of phase transition coupling with interfacial defects from Mo and Ni incorporation. The modulation of metallic Mo2 S3 and in situ epitaxial growth of bifunctional Ni-based catalyst to construct metallic heterostructure can facilitate the charge transfer for fast Volmer H and Heyrovsky H2 generation. The Mo2 S3 @NiMo3 S4 electrolyzer requires an ultralow voltage of 1.672 V at a large current density of 1000 mA cm-2 , with ≈100% retention over 100 h, outperforming the commercial RuO2 ||Pt/C, owing to the synergistic effect of the phase and interface electronic modulation. This work sheds light on the design of metallic heterostructure with an optimized interfacial electronic structure and abundant active sites for industrial water splitting.
Collapse
Affiliation(s)
- Tong Wu
- State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Shumao Xu
- State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
| | - Zhuang Zhang
- State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Mengjia Luo
- State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Ruiqi Wang
- State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Yufeng Tang
- State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jiacheng Wang
- State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Fuqiang Huang
- State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
15
|
Nagaura T, Li J, Fernando JFS, Ashok A, Alowasheeir A, Nanjundan AK, Lee S, Golberg DV, Na J, Yamauchi Y. Expeditious Electrochemical Synthesis of Mesoporous Chalcogenide Flakes: Mesoporous Cu 2 Se as a Potential High-Rate Anode for Sodium-Ion Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106629. [PMID: 35905492 DOI: 10.1002/smll.202106629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Nanostructured copper selenide (Cu2 Se) attracts much interest as it shows outstanding performance as thermoelectric, photo-thermal, and optical material. The mesoporous structure is also a promising morphology to obtain better performance for electrochemical and catalytic applications, thanks to its high surface area. A simple one-step electrochemical method is proposed for mesoporous chalcogenides synthesis. The synthesized Cu2 Se material has two types of mesopores (9 and 18 nm in diameter), which are uniformly distributed inside the flakes. These materials are also implemented for sodium (Na) ion battery (NIB) anode as a proof of concept. The electrode employing the mesoporous Cu2 Se exhibits superior and more stable specific capacity as a NIB anode compared to the non-porous samples. The electrode also exhibits excellent rate tolerance at each current density, from 100 to 1000 mA g-1 . It is suggested that the mesoporous structure is advantageous for the insertion of Na ions inside the flakes. Electrochemical analysis indicates that the mesoporous electrode possesses more prominent diffusion-controlled kinetics during the sodiation-desodiation process, which contributes to the improvement of Na-ion storage performance.
Collapse
Affiliation(s)
- Tomota Nagaura
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jinliang Li
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Joseph F S Fernando
- Centre for Materials Science and School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Str., Brisbane, QLD, 4000, Australia
| | - Aditya Ashok
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Azhar Alowasheeir
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Ashok Kumar Nanjundan
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sukho Lee
- Research and Development (R&D) Division, Green Energy Institute, Mokpo, Jeollanamdo, 58656, Republic of Korea
| | - Dmitri V Golberg
- Centre for Materials Science and School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Str., Brisbane, QLD, 4000, Australia
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Research and Development (R&D) Division, Green Energy Institute, Mokpo, Jeollanamdo, 58656, Republic of Korea
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|