1
|
Cai T, Zhang W, Charlton F, Sun Y, Chen Y, Fu Y, Zhang Q, Liu S. BiVO 4/C 3N 4 heterojunction-gated organic photoelectrochemical transistor for sensitive detection of neurotransmitter. Biosens Bioelectron 2025; 280:117444. [PMID: 40209650 DOI: 10.1016/j.bios.2025.117444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/29/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
Developing advanced signal amplification strategies is essential for improving performance of state-of-the-art photoelectrochemical (PEC) analysis and integrated organic electrochemical transistor (OECT) devices. This study introduces a novel approach by integrating a BiVO4/C3N4 heterojunction photoanode with organic photoelectrochemical transistor (OPECT) devices to achieve efficient signal modulation. The BiVO4/C3N4 heterojunction is designed to promote effective charge separation and enhance the photoelectrochemical effect, introducing an efficient dual electrochemical signal amplification strategy. Dopamine (DA), a key neurotransmitter, is used as the target analyte as a proof-of-concept study. It acts as an effective electron donor, directly participating in redox reactions to amplify the channel signal and indirectly modulating the channel response through the BiVO4/C3N4 electrode. The signal amplification results in the signal enhancement of three orders of magnitude. The developed bioanalytical method enables sensitive detection of DA with a good linear range from 10-7 to 10-4 M. Importantly, this dual amplification mechanism is independent of interactions between biological recognition molecules and analytes, providing a universal dual electrochemical signal amplification OPECT sensing platform. These findings indicate the potential this device has for the real-time monitoring of neurotransmitter levels, important for neurological disease monitoring.
Collapse
Affiliation(s)
- Ting Cai
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China
| | - Wenran Zhang
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China
| | - Francessca Charlton
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Yali Sun
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China
| | - Yuxuan Chen
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China
| | - Ying Fu
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom.
| | - Qian Zhang
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China.
| | - Shenghua Liu
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China.
| |
Collapse
|
2
|
Liu X, Qiu X, Pan Z, Chen J, Li S, Cheng J. Label-free detection of E. coli by alternating current electrokinetic capacitive sensors. Anal Chim Acta 2025; 1354:343972. [PMID: 40253073 DOI: 10.1016/j.aca.2025.343972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Escherichia coli (E. coli) is one of the most common pathogens in water and foods, and it poses a significant threat to global public health, particularly in low- and middle-income countries. However, most of the state-of-art detection method for E. coli bacteria sensing needs fluorescence staining or pre-immobilizations or specific biomaker as labels before tests, making the detection process a time costing and labor intensitive work. Thus, it is desirable to develop a label-free and no-immobilization detection method for the sensitive detection of E. coli or other pathogens. RESULTS In this work, we developed a sensitive method for E. coli detection without any labels or pre-immobilizations. Here the source AC signal provides ACEK effects to trap bacteria onto the electrode surface. As the source AC signal is cut off, the enriched bacteria would release from sensor electrodes. Then, a significant interfacial capacitance change along with particle releasing is observed by applying a measurement AC signal. The DEP capture of E. coli bacteria at different AC frequencies and voltages are experimentally investigated to optimize the performance of capacitive sensors. To note, the total area of our sensitive unit can be as large as 2 mm × 2 mm with the geometry design of isomotive DEP. Capacitive sensing tests of river water collected from local river and tap water with several control groups are performed to show its reliability as a biosensing approach for the sensitive detection of E. coli. SIGNIFICANCE The most significant advantage of this method is that we do not need to pre-immobilize any probes (antigens, or antibodies, etc.) or take incubation onto the sensor electrode before taking capacitance measurement. Moreover, the straight forward operation is pre-immobilization free, and therefore it meets the requirements of on-site bacteria detection for pathogen detection in water quality monitoring or food safety.
Collapse
Affiliation(s)
- Xingchi Liu
- Arizona College of Technology at Hebei University of Technology, Tianjin, 300401, China; Hebei Key Laboratory of Robotic Sensing and Human-robot Interactions, School of Mechanical Engineering, Tianjin, 300130, China
| | - Xinchen Qiu
- Arizona College of Technology at Hebei University of Technology, Tianjin, 300401, China; Hebei Key Laboratory of Robotic Sensing and Human-robot Interactions, School of Mechanical Engineering, Tianjin, 300130, China
| | - Zhang Pan
- Department of Basic Courses, Tangshan University, Tangshan, 063000, China
| | - Jing Chen
- Department of Basic Courses, Tangshan University, Tangshan, 063000, China
| | - Shanshan Li
- Hebei Key Laboratory of Robotic Sensing and Human-robot Interactions, School of Mechanical Engineering, Tianjin, 300130, China
| | - Jingmeng Cheng
- Hebei Key Laboratory of Robotic Sensing and Human-robot Interactions, School of Mechanical Engineering, Tianjin, 300130, China.
| |
Collapse
|
3
|
Zhang S, Xia C, Wang J, Chen S, Wang Y, Zhang S, Geng Z, Tang K, Erdem A, Zhu B. Ready-to-Use OECT Biosensor toward Rapid and Real-Time Protein Detection in Complex Biological Environments. ACS Sens 2025; 10:3369-3380. [PMID: 40289497 DOI: 10.1021/acssensors.4c03072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Organic electrochemical transistor (OECT) sensors are a promising approach for point-of-care testing (POCT) thanks to their high sensitivity and ability to operate in an aqueous environment. However, OECTs suffer from biological fouling at the gate and channel interfaces when exposed to complex biological samples. These nonspecific interactions can often obscure the weak signal from the trace biomarker, compromising the accuracy and sensitivity of measurements and even leading to false detection outcomes. In this study, we developed an intrinsically antifouling OECT by modifying both the gate and channel with phosphorylcholine-functionalized poly(3,4-ethylenedioxythiophene) (PEDOT-PC). This modification notably enhances the OECT performance by leveraging the material's inherent mixed electron-ion conductivity, which increases transconductance and decreases gate voltage. Additionally, the zwitterionic nature of the device enables its ultrasensitive detection of C-reactive protein (CRP) with a limit of detection of 0.11 pg/mL, mediated by calcium ions. This exceptional sensitivity arises from the device's enhanced transconductance and ability to sense through the gate and channel interfaces simultaneously. Furthermore, the zwitterionic OECT sensor has demonstrated the fastest sample-to-result time for protein detection (≤60 s), making it highly suitable for real-time CRP monitoring. Importantly, it provides precise real-time detection of CRP without interference from nonspecific proteins such as bovine serum albumin, fibrinogen, lysozyme, and fetal bovine serum. We envision this intrinsically antifouling OECT device offering a robust biosensing platform for the rapid and convenient detection of biomarkers in complex biological environments, providing a reliable and efficient solution for POCT diagnostics.
Collapse
Affiliation(s)
- Shouyan Zhang
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Chunyang Xia
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Jun Wang
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Shixiong Chen
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - YiXuan Wang
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Shuhua Zhang
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Zhi Geng
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Ke Tang
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Arzum Erdem
- Department of Analytical Chemistry, Ege UniversityFaculty of Pharmacy, Bornova Izmir35100, Turkey
| | - Bo Zhu
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, 99 Shangda Road, Baoshan, Shanghai 200444, China
| |
Collapse
|
4
|
Ohayon D, Hamidi-Sakr A, Surgailis J, Wustoni S, Dereli B, Wehbe N, Nastase S, Chen X, McCulloch I, Cavallo L, Inal S. Impact of Noncompensating Ions on the Electrochemical Performance of n-Type Polymeric Mixed Conductors. J Am Chem Soc 2025; 147:12523-12533. [PMID: 40189902 PMCID: PMC12006988 DOI: 10.1021/jacs.4c17579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 04/17/2025]
Abstract
Organic mixed ionic-electronic conductors (OMIECs) have emerged as essential materials for applications in bioelectronics, neuromorphics, and energy storage, owing to their ability to transport both ions and electrons. While significant progress has been made in understanding their operation, the role of noncompensating ions in polymer redox processes remains underexplored, particularly in the context of their impact on charge compensation and device performance. In this study, we systematically investigate the influence of noncompensating ions on the performance of n-type OMIECs with and without polar side chains, focusing on their interactions with electrolytes containing anions from the Hofmeister series. Our findings reveal a stark contrast in charging behavior and organic electrochemical transistor (OECT) performance based on side-chain chemistry. Polar oligoether side chains promote interactions with anions, resulting in significant performance variations. We demonstrate the critical role of polymer side-chain interactions with the different anions, where polyatomic anions capable of infiltrating the film degrade device performance, particularly in terms of transconductance and operational stability. In contrast, OMIECs without side chains exhibit performance independent of the noncompensating ion nature. Through electrochemical analysis, spectroscopic techniques, and molecular dynamics simulations, we provide a comprehensive understanding of how ion incorporation and polymer-electrolyte interactions shape device behavior. This study highlights the transformative role of side-chain functionality in tailoring the properties of the OMIEC and offers a design framework for high-performance OECTs, enabling advancements in biosensing, neuromorphic computing, and beyond.
Collapse
Affiliation(s)
- David Ohayon
- Organic
Bioelectronics Laboratory, Biological and Environmental Sciences and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Institute
for Functional Intelligent Materials, National
University of Singapore, Singapore 117544, Singapore
- Departments
of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Amer Hamidi-Sakr
- Organic
Bioelectronics Laboratory, Biological and Environmental Sciences and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jokubas Surgailis
- Organic
Bioelectronics Laboratory, Biological and Environmental Sciences and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Shofarul Wustoni
- Organic
Bioelectronics Laboratory, Biological and Environmental Sciences and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Busra Dereli
- Catalysis
Research Center, Physical Sciences and Engineering Division, KAUST, Thuwal 23955-6900, Saudi
Arabia
| | - Nimer Wehbe
- Imaging
and Characterization Core Lab, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Stefan Nastase
- Catalysis
Research Center, Physical Sciences and Engineering Division, KAUST, Thuwal 23955-6900, Saudi
Arabia
| | - Xingxing Chen
- KAUST Solar
Center, Physical Sciences and Engineering Division, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Iain McCulloch
- KAUST Solar
Center, Physical Sciences and Engineering Division, KAUST, Thuwal 23955-6900, Saudi Arabia
- Department
of Chemistry, University of Oxford, Oxford OX1 3TF, United Kingdom
| | - Luigi Cavallo
- Catalysis
Research Center, Physical Sciences and Engineering Division, KAUST, Thuwal 23955-6900, Saudi
Arabia
| | - Sahika Inal
- Organic
Bioelectronics Laboratory, Biological and Environmental Sciences and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
5
|
Yu J, Zhou R, Liu S, Zheng J, Yan H, Su S, Chai N, Segal E, Jiang C, Guo K, Li CZ. Electrochemical Biosensors for the Detection of Exosomal microRNA Biomarkers for Early Diagnosis of Neurodegenerative Diseases. Anal Chem 2025; 97:5355-5371. [PMID: 40057850 PMCID: PMC11923972 DOI: 10.1021/acs.analchem.4c02619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 02/10/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Early and precise diagnosis of neurodegenerative disorders like Alzheimer's (AD) and Parkinson's (PD) is crucial for slowing their progression and enhancing patient outcomes. Exosomal microRNAs (miRNAs) are emerging as promising biomarkers due to their ability to reflect the diseases' pathology, yet their low abundance poses significant detection hurdles. This review article delves into the burgeoning field of electrochemical biosensors, designed for the precise detection of exosomal miRNA biomarkers. Electrochemical biosensors offer a compelling solution, combining the sensitivity required to detect low-abundance biomarkers with the specificity needed to discern miRNA profiles distinctive to neural pathological states. We explore the operational principles of these biosensors, including the electrochemical transduction mechanisms that facilitate miRNA detection. The review also summarizes advancements in nanotechnology, signal enhancement, bioreceptor anchoring, and microfluidic integration that improve sensor accuracy. The evidence of their use in neurodegenerative disease diagnosis is analyzed, focusing on the clinical impact, diagnostic precision, and obstacles faced in practical applications. Their potential integration into point-of-care testing and regulatory considerations for their market entry are discussed. Looking toward the future, the article highlights forthcoming innovations that might revolutionize early diagnostic processes. Electrochemical biosensors, with their impressive sensitivity, specificity, and point-of-care compatibility, are on track to become instrumental in the early diagnosis of neurodegenerative diseases, possibly transforming patient care and prognosis.
Collapse
Affiliation(s)
- Jiacheng Yu
- Biotechnology
and Food Engineering, Guangdong Technion-Israel
Institute of Technology (GTIIT), Shantou 515063, China
- Faculty
of Biotechnology and Food Engineering, Technion-Israel
Institute of Technology (IIT), Haifa 3200003, Israel
| | - Runzhi Zhou
- Biotechnology
and Food Engineering, Guangdong Technion-Israel
Institute of Technology (GTIIT), Shantou 515063, China
- Faculty
of Biotechnology and Food Engineering, Technion-Israel
Institute of Technology (IIT), Haifa 3200003, Israel
| | - Shan Liu
- Sichuan
Provincial Key Laboratory for Human Disease Gene Study, Department
of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan
Provincial People’s Hospital, University
of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jintao Zheng
- Biotechnology
and Food Engineering, Guangdong Technion-Israel
Institute of Technology (GTIIT), Shantou 515063, China
- Faculty
of Biotechnology and Food Engineering, Technion-Israel
Institute of Technology (IIT), Haifa 3200003, Israel
| | - Haoyang Yan
- Biotechnology
and Food Engineering, Guangdong Technion-Israel
Institute of Technology (GTIIT), Shantou 515063, China
- Faculty
of Biotechnology and Food Engineering, Technion-Israel
Institute of Technology (IIT), Haifa 3200003, Israel
| | - Song Su
- Department
of Gastroenterology, The First Medical Center
of Chinese PLA General Hospital, Beijing 100853, China
| | - Ningli Chai
- Department
of Gastroenterology, The First Medical Center
of Chinese PLA General Hospital, Beijing 100853, China
| | - Ester Segal
- Faculty
of Biotechnology and Food Engineering, Technion-Israel
Institute of Technology (IIT), Haifa 3200003, Israel
| | - Cheng Jiang
- School
of Medicine, The Chinese University of Hong
Kong Shenzhen, Shenzhen 518172, China
| | - Keying Guo
- Biotechnology
and Food Engineering, Guangdong Technion-Israel
Institute of Technology (GTIIT), Shantou 515063, China
- Faculty
of Biotechnology and Food Engineering, Technion-Israel
Institute of Technology (IIT), Haifa 3200003, Israel
- Guangdong
Provincial Key Laboratory of Materials and Technologies for Energy
Conversion, Shantou 515063, China
- Monash Institute
of Pharmaceutical Sciences (MIPS), Monash
University, Parkville VIC 3052, Australia
| | - Chen-zhong Li
- School
of Medicine, The Chinese University of Hong
Kong Shenzhen, Shenzhen 518172, China
| |
Collapse
|
6
|
Cai T, Zhang W, Lian L, Sun Y, Xia Z, Chen Y, Shuai J, Lin P, Zhang Q, Liu S. Shadow Effect-Triggered Photosensitive Gate of Organic Photoelectrochemical Transistor for Enhanced Biodetection. Anal Chem 2025; 97:526-534. [PMID: 39723967 DOI: 10.1021/acs.analchem.4c04755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The integration of a photosensitive gate into an organic electrochemical transistor has currently emerged as a promising route for biological sensing. However, the modification of the photosensitive gate always involves complex processes, and the degradation of sensitivity of the functional materials under illumination will significantly decrease the stability of the devices. Herein, we designed an organic photoelectrochemical transistor (OPECT) biosensor employing horseradish peroxidase (HRP)@glucose oxidase (GOx)/Pt/n-Si as the photosensitive gate based on the "shadow effect". The glucose-dependent hydrogen peroxide with HRP/GOx was modified on the gate electrode, triggering a biocatalytic precipitation reaction, which induces the illumination contrast, resulting in a biologically gating effect on the corresponding channel current response. Thus, high sensitivity and selectivity in glucose detection of the OPECT devices will be realized. Given the easy fabrication and high stability of the Pt/n-Si electrode, it has great potential to become a superior selectivity as an OPECT gate electrode. This work provides conceptual validation for the study of the interaction between the photosensitive gate based on the "shadow effect" and biomolecular sensing, which can further expand the application of the OPECT biosensors under interior lighting and shadow surroundings.
Collapse
Affiliation(s)
- Ting Cai
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| | - Wenran Zhang
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| | - Lizhen Lian
- Songshan Lake Materials Laboratory, Songshan Lake Mat Lab, Dongguan 523808, China
| | - Yali Sun
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| | - Zihao Xia
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| | - Yuxuan Chen
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| | - Jing Shuai
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong, Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qian Zhang
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| | - Shenghua Liu
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| |
Collapse
|
7
|
Nayak PD, Dereli B, Ohayon D, Wustoni S, Hidalgo Castillo TC, Druet V, Wang Y, Hama A, Combe C, Griggs S, Alsufyani M, Sheelamanthula R, McCulloch I, Cavallo L, Inal S. Understanding Oxygen-Induced Reactions and Their Impact on n-Type Polymeric Mixed Conductor-Based Devices. ACS CENTRAL SCIENCE 2024; 10:2229-2241. [PMID: 39735307 PMCID: PMC11672553 DOI: 10.1021/acscentsci.4c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 12/31/2024]
Abstract
Electron transporting (n-type) polymeric mixed conductors are an exciting class of materials for devices with aqueous electrolyte interfaces, such as bioelectronic sensors, actuators, and soft charge storage systems. However, their charge transport performance falls short of their p-type counterparts, primarily due to electrochemical side reactions such as the oxygen reduction reaction (ORR). To mitigate ORR, a common strategy in n-type organic semiconductor design focuses on lowering the lowest unoccupied molecular orbital (LUMO) level. Despite empirical observations suggesting a correlation between deep LUMO levels, low ORR, and enhanced electrochemical cycling stability in water, this relationship lacks robust evidence. In this work, we delve into the electrochemical reactions of n-type polymeric mixed conductors with varying LUMO levels and assess the impact of ORR on charge storage performance and organic electrochemical transistor (OECT) operation. Our results reveal a limited correlation between LUMO levels and ORR currents, as well as the electrochemical operational stability of the films. While ORR currents minimally contribute to OECT channel currents under fixed biasing conditions, n-type films self-discharge rapidly at floating potentials in a capacitor-like configuration. The density functional theory analysis, complemented by X-ray photoelectron spectroscopy, underscores the critical role of backbone chemistry in controlling O2-related degradation pathways and device performance losses. These findings highlight the persistent challenge posed by ORR in n-type semiconductor design and advocate for shifting the focus toward exploring chemical moieties with limited O2 interactions to enhance operational stability and performance at n-type film/water interfaces.
Collapse
Affiliation(s)
- Prem D. Nayak
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Büsra Dereli
- Physical
Sciences and Engineering Division, KAUST
Catalysis Center, KAUST, Thuwal 23955-6900, Saudi
Arabia
| | - David Ohayon
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Shofarul Wustoni
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Tania Cecilia Hidalgo Castillo
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Victor Druet
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yazhou Wang
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Adel Hama
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Craig Combe
- KAUST
Solar Center, Physical Sciences and Engineering Division, KAUST, Thuwal 23955-6900, Saudi
Arabia
| | - Sophie Griggs
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K.
| | - Maryam Alsufyani
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K.
| | - Rajendar Sheelamanthula
- KAUST
Solar Center, Physical Sciences and Engineering Division, KAUST, Thuwal 23955-6900, Saudi
Arabia
| | - Iain McCulloch
- KAUST
Solar Center, Physical Sciences and Engineering Division, KAUST, Thuwal 23955-6900, Saudi
Arabia
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K.
| | - Luigi Cavallo
- Physical
Sciences and Engineering Division, KAUST
Catalysis Center, KAUST, Thuwal 23955-6900, Saudi
Arabia
| | - Sahika Inal
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
8
|
Meng Q, Li H, Zhao W, Song M, Zhang W, Li X, Chen J, Wang L. Overcoming Debye screening effect in field-effect transistors for enhanced biomarker detection sensitivity. NANOSCALE 2024; 16:20864-20884. [PMID: 39452895 DOI: 10.1039/d4nr03481c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Field-effect transistor (FET)-based biosensors not only enable label-free detection by measuring the intrinsic charges of biomolecules, but also offer advantages such as high sensitivity, rapid response, and ease of integration. This enables them to play a significant role in disease diagnosis, point-of-care detection, and drug screening, among other applications. However, when FET sensors detect biomolecules in physiological solutions (such as whole blood, serum, etc.), the charged molecules will be surrounded by oppositely charged ions in the solution. This causes the effective charge carried by the biomolecules to be shielded, thereby significantly weakening their ability to induce charge rearrangement at the sensing interface. Such shielding hinders the change of carriers inside the sensing material, reduces the variation of current between the source and drain electrodes of the FET, and seriously limits the sensitivity and reliability of the device. In this article, we summarize the research progress in overcoming the Debye screening effect in FET-based biosensors over the past decade. Here, we first elucidate the working principles of FET sensors for detecting biomarkers and the mechanism of the Debye screening. Subsequently, we emphasize optimization strategies to overcome the Debye screening effect. Finally, we summarize and provide an outlook on the research on FET biosensors in overcoming the Debye screening effect, hoping to help the development of FET electronic devices with high sensitivity, specificity, and stability. This work is expected to provide new ideas for next-generation biosensing technology.
Collapse
Affiliation(s)
- Qi Meng
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Huimin Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Weilong Zhao
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Ming Song
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Wenhong Zhang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| |
Collapse
|
9
|
Zhong Y, Nayak PD, Wustoni S, Surgailis J, Parrado Agudelo JZ, Marks A, McCulloch I, Inal S. Ionic Liquid Gated Organic Electrochemical Transistors with Broadened Bandwidth. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61457-61466. [PMID: 37997899 DOI: 10.1021/acsami.3c11214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The organic electrochemical transistor (OECT) is a biosignal transducer known for its high amplification but relatively slow operation. Here, we demonstrate that the use of an ionic liquid as the dielectric medium significantly improves the switching speed of a p-type enhancement-mode OECT, regardless of the gate electrode used. The OECT response time with the ionic liquid improves up to ca. 41-fold and 46-fold for the silver/silver chloride (Ag/AgCl) and gold (Au) gates, respectively, compared with devices gated with the phosphate buffered saline (PBS) solution. Notably, the transistor gain remains uncompromised, and its maximum is reached at lower voltages compared to those of PBS-gated devices with Ag/AgCl as the gate electrode. Through ultraviolet-visible spectroscopy and etching X-ray photoelectron spectroscopy characterizations, we reveal that the enhanced bandwidth is associated with the prediffused ionic liquid inside the polymer, leading to a higher doping level compared to PBS. Using the ionic liquid-gated OECTs, we successfully detect electrocardiography (ECG) signals, which exhibit a complete waveform with well-distinguished features and a stable signal baseline. By integrating nonaqueous electrolytes that enhance the device bandwidth, we unlock the potential of enhancement-mode OECTs for physiological signal acquisition and other real-time biosignal monitoring applications.
Collapse
Affiliation(s)
- Yizhou Zhong
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Prem D Nayak
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Shofarul Wustoni
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Jokubas Surgailis
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Jessica Z Parrado Agudelo
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Adam Marks
- Department of Chemistry, University of Oxford, Oxford OX1 3TF, United Kingdom
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford OX1 3TF, United Kingdom
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| |
Collapse
|
10
|
Alexander E, Leong KW. Discovery of nanobodies: a comprehensive review of their applications and potential over the past five years. J Nanobiotechnology 2024; 22:661. [PMID: 39455963 PMCID: PMC11515141 DOI: 10.1186/s12951-024-02900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Nanobodies (Nbs) are antibody fragments derived from heavy-chain-only IgG antibodies found in the Camelidae family as well as cartilaginous fish. Their unique structural and functional properties, such as their small size, the ability to be engineered for high antigen-binding affinity, stability under extreme conditions, and ease of production, have made them promising tools for diagnostics and therapeutics. This potential was realized in 2018 with the approval of caplacizumab, the world's first Nb-based drug. Currently, Nbs are being investigated in clinical trials for a broad range of treatments, including targeted therapies against PDL1 and Epidermal Growth Factor Receptor (EGFR), cardiovascular diseases, inflammatory conditions, and neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. They are also being studied for their potential for detecting and imaging autoimmune conditions and infectious diseases such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A variety of methods are now available to generate target-specific Nbs quickly and efficiently at low costs, increasing their accessibility. This article examines these diverse applications of Nbs and their promising roles. Only the most recent articles published in the last five years have been used to summarize the most advanced developments in the field.
Collapse
Affiliation(s)
- Elena Alexander
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| |
Collapse
|
11
|
Salvigni L, Nayak PD, Koklu A, Arcangeli D, Uribe J, Hama A, Silva R, Hidalgo Castillo TC, Griggs S, Marks A, McCulloch I, Inal S. Reconfiguration of organic electrochemical transistors for high-accuracy potentiometric sensing. Nat Commun 2024; 15:6499. [PMID: 39090103 PMCID: PMC11294360 DOI: 10.1038/s41467-024-50792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
Organic electrochemical transistors have emerged as a promising alternative to traditional 2/3 electrode setups for sensing applications, offering in-situ transduction, electrochemical amplification, and noise reduction. Several of these devices are designed to detect potentiometric-derived signals. However, potentiometric sensing should be performed under open circuit potential conditions, allowing the system to reach thermodynamic equilibrium. This criterion is not met by conventional organic electrochemical transistors, where voltages or currents are directly applied to the sensing interface, that is, the gate electrode. In this work, we introduce an organic electrochemical transistor sensing configuration called the potentiometric‑OECT (pOECT), which maintains the sensing electrode under open circuit potential conditions. The pOECT exhibits a higher response than the 2-electrode setup and offers greater accuracy, response, and stability compared to conventional organic electrochemical transistors. Additionally, it allows for the implementation of high-impedance electrodes as gate/sensing surfaces, all without compromising the overall device size.
Collapse
Affiliation(s)
- Luca Salvigni
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Prem Depan Nayak
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Anil Koklu
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Danilo Arcangeli
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Johana Uribe
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Adel Hama
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Raphaela Silva
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Tania Cecilia Hidalgo Castillo
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Sophie Griggs
- University of Oxford, Department of Chemistry, Oxford, UK
| | - Adam Marks
- University of Oxford, Department of Chemistry, Oxford, UK
| | - Iain McCulloch
- University of Oxford, Department of Chemistry, Oxford, UK
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia.
| |
Collapse
|
12
|
Pan T, Jiang X, van Doremaele ERW, Li J, van der Pol TPA, Yan C, Ye G, Liu J, Hong W, Chiechi RC, van de Burgt Y, Zhang Y. Over 60 h of Stable Water-Operation for N-Type Organic Electrochemical Transistors with Fast Response and Ambipolarity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400872. [PMID: 38810112 PMCID: PMC11304290 DOI: 10.1002/advs.202400872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/28/2024] [Indexed: 05/31/2024]
Abstract
Organic electrochemical transistors (OECTs) are of great interest in low-power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic-electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC materials significantly restricts the practical application of OECTs. Therefore, the non-fused planar naphthalenediimide (NDI)-dialkoxybithiazole (2Tz) copolymers are fine-tuned through varying ethylene glycol (EG) side chain lengths from tri(ethylene glycol) to hexa(ethylene glycol) (namely P-XO, X = 3-6) to achieve OECTs with high-stability and low threshold voltage. As a result, the NDI-2Tz copolymers exhibit ambipolarity, rapid response (<10 ms), and ultra-high n-type stability. Notably, the P-6O copolymers display a threshold voltage as low as 0.27 V. They can operate in n-type mode in an aqueous solution for over 60 h, maintaining an on-off ratio of over 105. This work sheds light on the design of exceptional n-type/ambipolar materials for OECTs. It demonstrates the potential of incorporating these ambipolar polymers into water-operational integrated circuits for long-term biosensing systems and energy-efficient brain-inspired computing.
Collapse
Affiliation(s)
- Tao Pan
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Xinnian Jiang
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Eveline R. W. van Doremaele
- MicrosystemsDepartment of Mechanical Engineering & Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Junyu Li
- Sinopec Shanghai Research Institute of Petrochemical TechnologyShanghai201028P. R. China
| | - Tom P. A. van der Pol
- Molecular Materials and Nanosystems & Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Chenshuai Yan
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Gang Ye
- Key Laboratory for the Green Preparation and Application of Functional MaterialsHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityYouyi Road 368Wuhan430062P. R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Wenjing Hong
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Ryan C. Chiechi
- Department of Chemistry & Organic and Carbon Electronics ClusterNorth Carolina State UniversityRaleighNC27695‐8204USA
| | - Yoeri van de Burgt
- MicrosystemsDepartment of Mechanical Engineering & Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Yanxi Zhang
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| |
Collapse
|
13
|
Zhao C, Yang J, Ma W. Transient Response and Ionic Dynamics in Organic Electrochemical Transistors. NANO-MICRO LETTERS 2024; 16:233. [PMID: 38954272 PMCID: PMC11219702 DOI: 10.1007/s40820-024-01452-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
The rapid development of organic electrochemical transistors (OECTs) has ushered in a new era in organic electronics, distinguishing itself through its application in a variety of domains, from high-speed logic circuits to sensitive biosensors, and neuromorphic devices like artificial synapses and organic electrochemical random-access memories. Despite recent strides in enhancing OECT performance, driven by the demand for superior transient response capabilities, a comprehensive understanding of the complex interplay between charge and ion transport, alongside electron-ion interactions, as well as the optimization strategies, remains elusive. This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses, emphasizing advancements in device physics and optimization approaches. We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications, as well as the impact of materials, morphology, device structure strategies on optimizing transient responses. This paper not only offers a detailed overview of the current state of the art, but also identifies promising avenues for future research, aiming to drive future performance advancements in diversified applications.
Collapse
Affiliation(s)
- Chao Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jintao Yang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
14
|
Liu H, Song J, Zhao Z, Zhao S, Tian Z, Yan F. Organic Electrochemical Transistors for Biomarker Detections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305347. [PMID: 38263718 PMCID: PMC11251571 DOI: 10.1002/advs.202305347] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Indexed: 01/25/2024]
Abstract
The improvement of living standards and the advancement of medical technology have led to an increased focus on health among individuals. Detections of biomarkers are feasible approaches to obtaining information about health status, disease progression, and response to treatment of an individual. In recent years, organic electrochemical transistors (OECTs) have demonstrated high electrical performances and effectiveness in detecting various types of biomarkers. This review provides an overview of the working principles of OECTs and their performance in detecting multiple types of biomarkers, with a focus on the recent advances and representative applications of OECTs in wearable and implantable biomarker detections, and provides a perspective for the future development of OECT-based biomarker sensors.
Collapse
Affiliation(s)
- Hong Liu
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Jiajun Song
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Zeyu Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Sanqing Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Zhiyuan Tian
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Feng Yan
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
- Research Institute of Intelligent Wearable SystemsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| |
Collapse
|
15
|
Kim H, Won Y, Song HW, Kwon Y, Jun M, Oh JH. Organic Mixed Ionic-Electronic Conductors for Bioelectronic Sensors: Materials and Operation Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306191. [PMID: 38148583 PMCID: PMC11251567 DOI: 10.1002/advs.202306191] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/18/2023] [Indexed: 12/28/2023]
Abstract
The field of organic mixed ionic-electronic conductors (OMIECs) has gained significant attention due to their ability to transport both electrons and ions, making them promising candidates for various applications. Initially focused on inorganic materials, the exploration of mixed conduction has expanded to organic materials, especially polymers, owing to their advantages such as solution processability, flexibility, and property tunability. OMIECs, particularly in the form of polymers, possess both electronic and ionic transport functionalities. This review provides an overview of OMIECs in various aspects covering mechanisms of charge transport including electronic transport, ionic transport, and ionic-electronic coupling, as well as conducting/semiconducting conjugated polymers and their applications in organic bioelectronics, including (multi)sensors, neuromorphic devices, and electrochromic devices. OMIECs show promise in organic bioelectronics due to their compatibility with biological systems and the ability to modulate electronic conduction and ionic transport, resembling the principles of biological systems. Organic electrochemical transistors (OECTs) based on OMIECs offer significant potential for bioelectronic applications, responding to external stimuli through modulation of ionic transport. An in-depth review of recent research achievements in organic bioelectronic applications using OMIECs, categorized based on physical and chemical stimuli as well as neuromorphic devices and circuit applications, is presented.
Collapse
Affiliation(s)
- Hyunwook Kim
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Yousang Won
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Hyun Woo Song
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Yejin Kwon
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Minsang Jun
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| |
Collapse
|
16
|
Guo K, Grünberg R, Ren Y, Chang T, Wustoni S, Strnad O, Koklu A, Díaz‐Galicia E, Agudelo JP, Druet V, Castillo TCH, Moser M, Ohayon D, Hama A, Dada A, McCulloch I, Viola I, Arold ST, Inal S. SpyDirect: A Novel Biofunctionalization Method for High Stability and Longevity of Electronic Biosensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306716. [PMID: 38161228 PMCID: PMC11251562 DOI: 10.1002/advs.202306716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Electronic immunosensors are indispensable tools for diagnostics, particularly in scenarios demanding immediate results. Conventionally, these sensors rely on the chemical immobilization of antibodies onto electrodes. However, globular proteins tend to adsorb and unfold on these surfaces. Therefore, self-assembled monolayers (SAMs) of thiolated alkyl molecules are commonly used for indirect gold-antibody coupling. Here, a limitation associated with SAMs is revealed, wherein they curtail the longevity of protein sensors, particularly when integrated into the state-of-the-art transducer of organic bioelectronics-the organic electrochemical transistor. The SpyDirect method is introduced, generating an ultrahigh-density array of oriented nanobody receptors stably linked to the gold electrode without any SAMs. It is accomplished by directly coupling cysteine-terminated and orientation-optimized spyTag peptides, onto which nanobody-spyCatcher fusion proteins are autocatalytically attached, yielding a dense and uniform biorecognition layer. The structure-guided design optimizes the conformation and packing of flexibly tethered nanobodies. This biolayer enhances shelf-life and reduces background noise in various complex media. SpyDirect functionalization is faster and easier than SAM-based methods and does not necessitate organic solvents, rendering the sensors eco-friendly, accessible, and amenable to scalability. SpyDirect represents a broadly applicable biofunctionalization method for enhancing the cost-effectiveness, sustainability, and longevity of electronic biosensors, all without compromising sensitivity.
Collapse
Affiliation(s)
- Keying Guo
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Raik Grünberg
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Yuxiang Ren
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Tianrui Chang
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Shofarul Wustoni
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Ondrej Strnad
- Computer, Electrical and Mathematical Science and EngineeringKAUSTThuwal23955‐6900Saudi Arabia
| | - Anil Koklu
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Escarlet Díaz‐Galicia
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Jessica Parrado Agudelo
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Victor Druet
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Tania Cecilia Hidalgo Castillo
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | | | - David Ohayon
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Adel Hama
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Ashraf Dada
- King Faisal Specialist Hospital & Research Centre (KFSH‐RC)Jeddah21499Saudi Arabia
| | - Iain McCulloch
- Department of ChemistryUniversity of OxfordOxfordOX1 3TAUK
| | - Ivan Viola
- Computer, Electrical and Mathematical Science and EngineeringKAUSTThuwal23955‐6900Saudi Arabia
| | - Stefan T. Arold
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
- Centre de Biologie Structurale (CBS), INSERM, CNRSUniversité de MontpellierMontpellierF‐34090France
| | - Sahika Inal
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| |
Collapse
|
17
|
Almulla L, Druet V, E Petoukhoff C, Shan W, Alshehri N, Griggs S, Wang Y, Alsufyani M, Yue W, McCulloch I, Laquai F, Inal S. N-Type polymeric mixed conductors for all-in-one aqueous electrolyte gated photoelectrochemical transistors. MATERIALS HORIZONS 2024; 11:2937-2949. [PMID: 38572753 DOI: 10.1039/d4mh00267a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
An organic photoelectrochemical transistor (OPECT) is an organic electrochemical transistor (OECT) that utilizes light to toggle between ON and OFF states. The current response to light and voltage fluxes in aqueous media renders the OPECT ideal for the development of next-generation bioelectronic devices, including light-assisted biosensors, light-controlled logic gates, and artificial photoreceptors. However, existing OPECT architectures are complex, often requiring photoactive nanostructures prepared through labor-intensive synthetic methods, and despite this complexity, their performance remains limited. In this study, we develop aqueous electrolyte-compatible optoelectronic transistors using a single n-type semiconducting polymer. The n-type film performs multiple tasks: (1) gating the channel, (2) generating a photovoltage in response to light, and (3) coupling and transporting cations and electrons in the channel. We systematically investigate the photoelectrochemical properties of a range of n-type polymeric mixed conductors to understand the material requirements for maximizing phototransistor performance. Our findings contribute to the identification of crucial material and device properties necessary for constructing high-performance OPECTs with simplified design features and a direct interface with biological systems.
Collapse
Affiliation(s)
- Latifah Almulla
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Victor Druet
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Christopher E Petoukhoff
- KAUST Solar Center, Physical Science and Engineering Division, Materials Science and Engineering Program, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Wentao Shan
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Nisreen Alshehri
- KAUST Solar Center, Physical Science and Engineering Division, Materials Science and Engineering Program, KAUST, Thuwal 23955-6900, Saudi Arabia
- Physics and Astronomy Department, College of Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Sophie Griggs
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Yazhou Wang
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Maryam Alsufyani
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Wan Yue
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Iain McCulloch
- KAUST Solar Center, Physical Science and Engineering Division, Materials Science and Engineering Program, KAUST, Thuwal 23955-6900, Saudi Arabia
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Frédéric Laquai
- KAUST Solar Center, Physical Science and Engineering Division, Materials Science and Engineering Program, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
18
|
Song J, Liu H, Zhao Z, Lin P, Yan F. Flexible Organic Transistors for Biosensing: Devices and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300034. [PMID: 36853083 DOI: 10.1002/adma.202300034] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable biosensors can offer seamless and conformable biological-electronic interfaces for continuously acquiring high-fidelity signals, permitting numerous emerging applications. Organic thin film transistors (OTFTs) are ideal transducers for flexible and stretchable biosensing due to their soft nature, inherent amplification function, biocompatibility, ease of functionalization, low cost, and device diversity. In consideration of the rapid advances in flexible-OTFT-based biosensors and their broad applications, herein, a timely and comprehensive review is provided. It starts with a detailed introduction to the features of various OTFTs including organic field-effect transistors and organic electrochemical transistors, and the functionalization strategies for biosensing, with a highlight on the seminal work and up-to-date achievements. Then, the applications of flexible-OTFT-based biosensors in wearable, implantable, and portable electronics, as well as neuromorphic biointerfaces are detailed. Subsequently, special attention is paid to emerging stretchable organic transistors including planar and fibrous devices. The routes to impart stretchability, including structural engineering and material engineering, are discussed, and the implementations of stretchable organic transistors in e-skin and smart textiles are included. Finally, the remaining challenges and the future opportunities in this field are summarized.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials and Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
19
|
Uguz I, Ohayon D, Yilmaz S, Griggs S, Sheelamanthula R, Fabbri JD, McCulloch I, Inal S, Shepard KL. Complementary integration of organic electrochemical transistors for front-end amplifier circuits of flexible neural implants. SCIENCE ADVANCES 2024; 10:eadi9710. [PMID: 38517957 PMCID: PMC10959418 DOI: 10.1126/sciadv.adi9710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/14/2024] [Indexed: 03/24/2024]
Abstract
The ability to amplify, translate, and process small ionic potential fluctuations of neural processes directly at the recording site is essential to improve the performance of neural implants. Organic front-end analog electronics are ideal for this application, allowing for minimally invasive amplifiers owing to their tissue-like mechanical properties. Here, we demonstrate fully organic complementary circuits by pairing depletion- and enhancement-mode p- and n-type organic electrochemical transistors (OECTs). With precise geometry tuning and a vertical device architecture, we achieve overlapping output characteristics and integrate them into amplifiers with single neuronal dimensions (20 micrometers). Amplifiers with combined p- and n-OECTs result in voltage-to-voltage amplification with a gain of >30 decibels. We also leverage depletion and enhancement-mode p-OECTs with matching characteristics to demonstrate a differential recording capability with high common mode rejection rate (>60 decibels). Integrating OECT-based front-end amplifiers into a flexible shank form factor enables single-neuron recording in the mouse cortex with on-site filtering and amplification.
Collapse
Affiliation(s)
- Ilke Uguz
- Columbia University, New York, NY, USA
| | - David Ohayon
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Institute of Functional Intelligent Materials (IFIM), National University of Singapore, 117544, Singapore
| | | | - Sophie Griggs
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Rajendar Sheelamanthula
- Physical Science and Engineering Division, KAUST Solar Center, KAUST, Thuwal 23955-6900, Saudi Arabia
| | | | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
- Physical Science and Engineering Division, KAUST Solar Center, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | | |
Collapse
|
20
|
Tseng HS, Chen YL, Zhang PY, Hsiao YS. Additive Blending Effects on PEDOT:PSS Composite Films for Wearable Organic Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13384-13398. [PMID: 38454789 PMCID: PMC10958448 DOI: 10.1021/acsami.3c14961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Organic electrochemical transistors (OECTs) employing conductive polymers (CPs) have gained remarkable prominence and have undergone extensive advancements in wearable and implantable bioelectronic applications in recent years. Among the diverse arrays of CPs, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a common choice for the active-layer channel in p-type OECTs, showing a remarkably high transconductance for the high amplification of signals in biosensing applications. This investigation focuses on the novel engineering of PEDOT:PSS composite materials by seamlessly integrating several additives, namely, dimethyl sulfoxide (DMSO), (3-glycidyloxypropyl)trimethoxysilane (GOPS), and a nonionic fluorosurfactant (NIFS), to fine-tune their electrical conductivity, self-healing capability, and stretchability. To elucidate the intricate influences of the DMSO, GOPS, and NIFS additives on the formation of PEDOT:PSS composite films, theoretical calculations were performed, encompassing the solubility parameters and surface energies of the constituent components of the NIFS, PEDOT, PSS, and PSS-GOPS polymers. Furthermore, we conducted a comprehensive array of material analyses, which reveal the intricacies of the phase separation phenomenon and its interaction with the materials' characteristics. Our research identified the optimal composition for the PEDOT:PSS composite films, characterized by outstanding self-healing and stretchable capabilities. This composition has proven to be highly effective for constructing an active-layer channel in the form of OECT-based biosensors fabricated onto polydimethylsiloxane substrates for detecting dopamine. Overall, these findings represent significant progress in the application of PEDOT:PSS composite films in wearable bioelectronics and pave the way for the development of state-of-the-art biosensing technologies.
Collapse
Affiliation(s)
- Hsueh-Sheng Tseng
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Ying-Lin Chen
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Pin-Yu Zhang
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Yu-Sheng Hsiao
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
21
|
Park KS, Park TI, Lee JE, Hwang SY, Choi A, Pack SP. Aptamers and Nanobodies as New Bioprobes for SARS-CoV-2 Diagnostic and Therapeutic System Applications. BIOSENSORS 2024; 14:146. [PMID: 38534253 PMCID: PMC10968798 DOI: 10.3390/bios14030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
The global challenges posed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have underscored the critical importance of innovative and efficient control systems for addressing future pandemics. The most effective way to control the pandemic is to rapidly suppress the spread of the virus through early detection using a rapid, accurate, and easy-to-use diagnostic platform. In biosensors that use bioprobes, the binding affinity of molecular recognition elements (MREs) is the primary factor determining the dynamic range of the sensing platform. Furthermore, the sensitivity relies mainly on bioprobe quality with sufficient functionality. This comprehensive review investigates aptamers and nanobodies recently developed as advanced MREs for SARS-CoV-2 diagnostic and therapeutic applications. These bioprobes might be integrated into organic bioelectronic materials and devices, with promising enhanced sensitivity and specificity. This review offers valuable insights into advancing biosensing technologies for infectious disease diagnosis and treatment using aptamers and nanobodies as new bioprobes.
Collapse
Affiliation(s)
| | | | | | | | | | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (K.S.P.); (T.-I.P.); (J.E.L.); (S.-Y.H.); (A.C.)
| |
Collapse
|
22
|
Zhong Y, Lopez-Larrea N, Alvarez-Tirado M, Casado N, Koklu A, Marks A, Moser M, McCulloch I, Mecerreyes D, Inal S. Eutectogels as a Semisolid Electrolyte for Organic Electrochemical Transistors. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1841-1854. [PMID: 38435047 PMCID: PMC10902863 DOI: 10.1021/acs.chemmater.3c02385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 03/05/2024]
Abstract
Organic electrochemical transistors (OECTs) are signal transducers offering high amplification, which makes them particularly advantageous for detecting weak biological signals. While OECTs typically operate with aqueous electrolytes, those employing solid-like gels as the dielectric layer can be excellent candidates for constructing wearable electrophysiology probes. Despite their potential, the impact of the gel electrolyte type and composition on the operation of the OECT and the associated device design considerations for optimal performance with a chosen electrolyte have remained ambiguous. In this work, we investigate the influence of three types of gel electrolytes-hydrogels, eutectogels, and iongels, each with varying compositions on the performance of OECTs. Our findings highlight the superiority of the eutectogel electrolyte, which comprises poly(glycerol 1,3-diglycerolate diacrylate) as the polymer matrix and choline chloride in combination with 1,3-propanediol deep eutectic solvent as the ionic component. This eutectogel electrolyte outperforms hydrogel and iongel counterparts of equivalent dimensions, yielding the most favorable transient and steady-state performance for both p-type depletion and p-type/n-type enhancement mode transistors gated with silver/silver chloride (Ag/AgCl). Furthermore, the eutectogel-integrated enhancement mode OECTs exhibit exceptional operational stability, reflected in the absence of signal-to-noise ratio (SNR) variation in the simulated electrocardiogram (ECG) recordings conducted continuously over a period of 5 h, as well as daily measurements spanning 30 days. Eutectogel-based OECTs also exhibit higher ECG signal amplitudes and SNR than their counterparts, utilizing the commercially available hydrogel, which is the most common electrolyte for cutaneous electrodes. These findings underscore the potential of eutectogels as a semisolid electrolyte for OECTs, particularly in applications demanding robust and prolonged physiological signal monitoring.
Collapse
Affiliation(s)
- Yizhou Zhong
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Naroa Lopez-Larrea
- POLYMAT,
University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San
Sebastian, Guipuzcoa 20018, Spain
| | - Marta Alvarez-Tirado
- POLYMAT,
University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San
Sebastian, Guipuzcoa 20018, Spain
| | - Nerea Casado
- POLYMAT,
University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San
Sebastian, Guipuzcoa 20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Anil Koklu
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Adam Marks
- Department
of Chemistry, University of Oxford, Oxford OX1 3TF, U.K.
| | - Maximilian Moser
- Department
of Chemistry, University of Oxford, Oxford OX1 3TF, U.K.
| | - Iain McCulloch
- Department
of Chemistry, University of Oxford, Oxford OX1 3TF, U.K.
| | - David Mecerreyes
- POLYMAT,
University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San
Sebastian, Guipuzcoa 20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Sahika Inal
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
23
|
Song Q, Liu H, Wang W, Chen C, Cao Y, Chen B, Cai B, He R. Carboxyl graphene modified PEDOT:PSS organic electrochemical transistor for in situ detection of cancer cell morphology. NANOSCALE 2024; 16:3631-3640. [PMID: 38276969 DOI: 10.1039/d3nr06190f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Circulating tumor cells in human peripheral blood play an important role in cancer metastasis. In addition to the size-based and antibody-based capture and separation of cancer cells, their electrical characterization is important for rare cell detection, which can prove fatal in point-of-care testing. Herein, an organic electrochemical transistor (OECT) biosensor made of solution-gated carboxyl graphene mixed with PEDOT:PSS for the detection of cancer cells in situ is reported. Carboxyl graphene was used in this work to modulate cancer cell morphology, which differs significantly from normal blood cells, to achieve rare cancer cell detection. When the concentration of carboxyl graphene mixed in PEDOT:PSS was increased from 0 to 5 mg mL-1, the cancer cell surface area increased from 218 μm2 to 530 μm2, respectively. A change in cell morphology was also detected by the OECT. Negative charges in the cancer cells induced a positive shift in gate voltage, which was approximately 40 mV for spherical-shaped cells. When the cell surface area increased, transfer curves of transistor revealed a negative shift in gate voltage. Therefore, the sensor can be used for in situ detection of cancer cell morphology during the cell capture process, which can be used to identify whether the captured cells are deformable.
Collapse
Affiliation(s)
- Qingyuan Song
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China.
| | - Hongni Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Weiyi Wang
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China.
| | - Chaohui Chen
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China.
| | - Yiping Cao
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China.
| | - Bolei Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, China.
| | - Bo Cai
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, China.
| | - Rongxiang He
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
24
|
Pang S, Yu H, Zhang Y, Jiao Y, Zheng Z, Wang M, Zhang H, Liu A. Bioscreening specific peptide-expressing phage and its application in sensitive dual-mode immunoassay of SARS-CoV-2 spike antigen. Talanta 2024; 266:125093. [PMID: 37611368 DOI: 10.1016/j.talanta.2023.125093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Biorecognition components with high affinity and selectivity are vital in bioassay to diagnose and treat epidemic disease. Herein a phage display strategy of combining single-amplification-panning with non-amplification-panning was developed, by which a phage displaying cyclic heptapeptide ACLDWLFNSC (peptide J4) with good affinity and specificity to SARS-CoV-2 spike protein (SP) was identified. Molecular docking suggests that peptide J4 binds to S2 subunit by hydrogen bonding and hydrophobic interaction. Then the J4-phage was used as the capture antibody to establish phage-based chemiluminescence immunoassay (CLIA) and electrochemical impedance spectroscopy (EIS) analytical systems. The as-proposed dual-modal immunoassay platform exhibited good sensitivity and reliability in SARS-CoV-2 SP and pseudovirus assay. The limit of detection for SARS-CoV-2 SP by EIS immunoassay is 0.152 pg/mL, which is dramatically lower than that of 42 pg/mL for J4-phage based CLIA. Further, low to 40 transducing units (TU)/mL, 10 TU/mL SARS-CoV-2 pseudoviruses can be detected by the proposed J4-phage based CLIA and electrochemical immunosensor, respectively. Therefore, the as-developed dual mode immunoassays are potential methods to detect SARS-CoV-2. It is also expected to explore various phages with specific peptides to different targets for bioanalysis.
Collapse
Affiliation(s)
- Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Haipeng Yu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Yaru Zhang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Yiming Jiao
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Zongmei Zheng
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China; Qingdao Hightop Biotech Co., Ltd, 369 Hedong Road, Hi-tech Industrial Development Zone, Qingdao, 266112, China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Haohan Zhang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China.
| |
Collapse
|
25
|
Zhang Y, Chen D, He W, Chen N, Zhou L, Yu L, Yang Y, Yuan Q. Interface-Engineered Field-Effect Transistor Electronic Devices for Biosensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306252. [PMID: 38048547 DOI: 10.1002/adma.202306252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/17/2023] [Indexed: 12/06/2023]
Abstract
Promising advances in molecular medicine have promoted the urgent requirement for reliable and sensitive diagnostic tools. Electronic biosensing devices based on field-effect transistors (FETs) exhibit a wide range of benefits, including rapid and label-free detection, high sensitivity, easy operation, and capability of integration, possessing significant potential for application in disease screening and health monitoring. In this perspective, the tremendous efforts and achievements in the development of high-performance FET biosensors in the past decade are summarized, with emphasis on the interface engineering of FET-based electrical platforms for biomolecule identification. First, an overview of engineering strategies for interface modulation and recognition element design is discussed in detail. For a further step, the applications of FET-based electrical devices for in vitro detection and real-time monitoring in biological systems are comprehensively reviewed. Finally, the key opportunities and challenges of FET-based electronic devices in biosensing are discussed. It is anticipated that a comprehensive understanding of interface engineering strategies in FET biosensors will inspire additional techniques for developing highly sensitive, specific, and stable FET biosensors as well as emerging designs for next-generation biosensing electronics.
Collapse
Affiliation(s)
- Yun Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Duo Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Wang He
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Na Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Liping Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Lilei Yu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Quan Yuan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
26
|
Druet V, Ohayon D, Petoukhoff CE, Zhong Y, Alshehri N, Koklu A, Nayak PD, Salvigni L, Almulla L, Surgailis J, Griggs S, McCulloch I, Laquai F, Inal S. A single n-type semiconducting polymer-based photo-electrochemical transistor. Nat Commun 2023; 14:5481. [PMID: 37673950 PMCID: PMC10482932 DOI: 10.1038/s41467-023-41313-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
Conjugated polymer films, which can conduct both ionic and electronic charges, are central to building soft electronic sensors and actuators. Despite the possible interplay between light absorption and the mixed conductivity of these materials in aqueous biological media, no single polymer film has been utilized to create a solar-switchable organic bioelectronic circuit that relies on a fully reversible and redox reaction-free potentiometric photodetection and current modulation. Here we demonstrate that the absorption of light by an electron and cation-transporting polymer film reversibly modulates its electrochemical potential and conductivity in an aqueous electrolyte, which is harnessed to design an n-type photo-electrochemical transistor (n-OPECT). By controlling the intensity of light incident on the n-type polymeric gate electrode, we generate transistor output characteristics that mimic the modulation of the polymeric channel current achieved through gate voltage control. The micron-scale n-OPECT exhibits a high signal-to-noise ratio and an excellent sensitivity to low light intensities. We demonstrate three direct applications of the n-OPECT, i.e., a photoplethysmogram recorder, a light-controlled inverter circuit, and a light-gated artificial synapse, underscoring the suitability of this platform for a myriad of biomedical applications that involve light intensity changes.
Collapse
Affiliation(s)
- Victor Druet
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal, 23955-6900, Saudi Arabia
| | - David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal, 23955-6900, Saudi Arabia
| | - Christopher E Petoukhoff
- KAUST Solar Center, Physical Science and Engineering Division, Materials Science and Engineering Program, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Yizhou Zhong
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal, 23955-6900, Saudi Arabia
| | - Nisreen Alshehri
- KAUST Solar Center, Physical Science and Engineering Division, Materials Science and Engineering Program, KAUST, Thuwal, 23955-6900, Saudi Arabia
- Physics and Astronomy Department, College of Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Anil Koklu
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal, 23955-6900, Saudi Arabia
| | - Prem D Nayak
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal, 23955-6900, Saudi Arabia
| | - Luca Salvigni
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal, 23955-6900, Saudi Arabia
| | - Latifah Almulla
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal, 23955-6900, Saudi Arabia
| | - Jokubas Surgailis
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal, 23955-6900, Saudi Arabia
| | - Sophie Griggs
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Iain McCulloch
- KAUST Solar Center, Physical Science and Engineering Division, Materials Science and Engineering Program, KAUST, Thuwal, 23955-6900, Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Frédéric Laquai
- KAUST Solar Center, Physical Science and Engineering Division, Materials Science and Engineering Program, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
27
|
Ionescu RE. Ultrasensitive Electrochemical Immunosensors Using Nanobodies as Biocompatible Sniffer Tools of Agricultural Contaminants and Human Disease Biomarkers. MICROMACHINES 2023; 14:1486. [PMID: 37630022 PMCID: PMC10456424 DOI: 10.3390/mi14081486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Nanobodies (Nbs) are known as camelid single-domain fragments or variable heavy chain antibodies (VHH) that in vitro recognize the antigens (Ag) similar to full-size antibodies (Abs) and in vivo allow immunoreactions with biomolecule cavities inaccessible to conventional Abs. Currently, Nbs are widely used for clinical treatments due to their remarkably improved performance, ease of production, thermal robustness, superior physical and chemical properties. Interestingly, Nbs are also very promising bioreceptors for future rapid and portable immunoassays, compared to those using unstable full-size antibodies. For all these reasons, Nbs are excellent candidates in ecological risk assessments and advanced medicine, enabling the development of ultrasensitive biosensing platforms. In this review, immobilization strategies of Nbs on conductive supports for enhanced electrochemical immune detection of food contaminants (Fcont) and human biomarkers (Hbio) are discussed. In the case of Fcont, the direct competitive immunoassay detection using coating antigen solid surface is the most commonly used approach for efficient Nbs capture which was characterized with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) when the signal decays for increasing concentrations of free antigen prepared in aqueous solutions. In contrast, for the Hbio investigations on thiolated gold electrodes, increases in amperometric and electrochemical impedance spectroscopy (EIS) signals were recorded, with increases in the antigen concentrations prepared in PBS or spiked real human samples.
Collapse
Affiliation(s)
- Rodica Elena Ionescu
- Light, Nanomaterials and Nanotechnology (L2n) Laboratory, CNRS EMR 7004, University of Technology of Troyes, 12 Rue Marie Curie CS 42060, 10004 Troyes, France
| |
Collapse
|
28
|
Liu J, Kong T, Xiao Y, Bai L, Chen N, Tang H. Organic electrochemical transistor-based immuno-sensor using platinum loaded CeO2 nanosphere-carbon nanotube and zeolitic imidazolate framework-enzyme-metal polyphenol network. Biosens Bioelectron 2023; 230:115236. [PMID: 36989662 DOI: 10.1016/j.bios.2023.115236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/04/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
This work demonstrates an organic electrochemical transistor (OECT) immuno-sensor with a detection limit down to fg mL-1. The OECT device transforms the antibody-antigen interaction signal by using the zeolitic imidazolate framework-enzyme-metal polyphenol network nanoprobe, which can produce electro-active substance (H2O2) through the enzyme-catalytic reaction. The produced H2O2 is subsequently electrochemically oxidized at the platinum loaded CeO2 nanosphere-carbon nanotube modified gate electrode, resulting in an amplified current response of the transistor device. This immuno-sensor realizes the selective determination of vascular endothelial growth factor 165 (VEGF165) down to the concentration of 13.6 fg mL-1. It also shows good applicable capacity for determining the VEGF165 that human brain microvascular endothelial cells and U251 human glioblastomas cells secreted in the cell culture medium. The ultrahigh sensitivity of the immuno-sensor is derived from excellent performances of the nanoprobe for enzyme loading and the OECT device for H2O2 detection. This work may provide a general way to fabricate the OECT immuno-sensing device with high performances.
Collapse
|
29
|
Sun C, Wang T. Organic thin-film transistors and related devices in life and health monitoring. NANO RESEARCH 2023:1-19. [PMID: 37359073 PMCID: PMC10102697 DOI: 10.1007/s12274-023-5606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/28/2023]
Abstract
The early determination of disease-related biomarkers can significantly improve the survival rate of patients. Thus, a series of explorations for new diagnosis technologies, such as optical and electrochemical methods, have been devoted to life and health monitoring. Organic thin-film transistor (OTFT), as a state-of-the-art nano-sensing technology, has attracted significant attention from construction to application owing to the merits of being label-free, low-cost, facial, and rapid detection with multi-parameter responses. Nevertheless, interference from non-specific adsorption is inevitable in complex biological samples such as body liquid and exhaled gas, so the reliability and accuracy of the biosensor need to be further improved while ensuring sensitivity, selectivity, and stability. Herein, we overviewed the composition, mechanism, and construction strategies of OTFTs for the practical determination of disease-related biomarkers in both body fluids and exhaled gas. The results show that the realization of bio-inspired applications will come true with the rapid development of high-effective OTFTs and related devices. Electronic Supplementary Material Supplementary material is available in the online version of this article at 10.1007/s12274-023-5606-1.
Collapse
Affiliation(s)
- Chenfang Sun
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384 China
| | - Tie Wang
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384 China
| |
Collapse
|
30
|
Jin BK, Odongo S, Radwanska M, Magez S. NANOBODIES®: A Review of Diagnostic and Therapeutic Applications. Int J Mol Sci 2023; 24:5994. [PMID: 36983063 PMCID: PMC10057852 DOI: 10.3390/ijms24065994] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
NANOBODY® (a registered trademark of Ablynx N.V) molecules (Nbs), also referred to as single domain-based VHHs, are antibody fragments derived from heavy-chain only IgG antibodies found in the Camelidae family. Due to their small size, simple structure, high antigen binding affinity, and remarkable stability in extreme conditions, nanobodies possess the potential to overcome several of the limitations of conventional monoclonal antibodies. For many years, nanobodies have been of great interest in a wide variety of research fields, particularly in the diagnosis and treatment of diseases. This culminated in the approval of the world's first nanobody based drug (Caplacizumab) in 2018 with others following soon thereafter. This review will provide an overview, with examples, of (i) the structure and advantages of nanobodies compared to conventional monoclonal antibodies, (ii) methods used to generate and produce antigen-specific nanobodies, (iii) applications for diagnostics, and (iv) ongoing clinical trials for nanobody therapeutics as well as promising candidates for clinical development.
Collapse
Affiliation(s)
- Bo-kyung Jin
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon 21985, Republic of Korea
| | - Steven Odongo
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon 21985, Republic of Korea
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda
- Center for Biosecurity and Global Health, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon 21985, Republic of Korea
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon 21985, Republic of Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
31
|
Wang W, Hu Y, Li B, Wang H, Shen J. Applications of nanobodies in the prevention, detection, and treatment of the evolving SARS-CoV-2. Biochem Pharmacol 2023; 208:115401. [PMID: 36592707 PMCID: PMC9801699 DOI: 10.1016/j.bcp.2022.115401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Global health and economy are deeply influenced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its newly emerging variants. Nanobodies with nanometer-scale size are promising for the detection and treatment of SARS-CoV-2 and its variants because they are superior to conventional antibodies in terms of cryptic epitope accessibility, tissue penetration, cost, formatting adaptability, and especially protein stability, which enables their aerosolized specific delivery to lung tissues. This review summarizes the progress in the prevention, detection, and treatment of SARS-CoV-2 using nanobodies, as well as strategies to combat the evolving SARS-CoV-2 variants. Generally, highly efficient generation of potent broad-spectrum nanobodies targeting conserved epitopes or further construction of multivalent formats targeting non-overlapping epitopes can promote neutralizing activity against SARS-CoV-2 variants and suppress immune escape.
Collapse
Affiliation(s)
- Wenyi Wang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China,Corresponding author
| | - Yue Hu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| | - Bohan Li
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| | - Huanan Wang
- Department of Respiratory Medicine, The 990th Hospital of Joint Logistics Support Force, Zhumadian, Henan 463000, PR China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| |
Collapse
|
32
|
Xu YT, Yuan C, Zhou BY, Li Z, Hu J, Lin P, Zhao WW, Chen HY, Xu JJ. Silicon solar cell-enabled organic photoelectrochemical transistor optoelectronics. SCIENCE CHINA MATERIALS 2023; 66:1861-1869. [PMID: 36685049 PMCID: PMC9838416 DOI: 10.1007/s40843-022-2295-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/21/2022] [Indexed: 05/20/2023]
Abstract
Organic electrochemical transistors (OECTs) have been increasingly explored for innovative electronic devices. However, they inherently demand two power suppliers, which is unfavorable for the utilization of portable and wearable systems with strict energy requirements. Herein, by assembling a monocrystalline silicon solar cell into the OECT circuit with light as fuel, we demonstrated the possibility of a self-powered and light-modulated operation of organic photoelectrochemical transistor (OPECT) optoelectronics. Exemplified by poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based depletion-mode and accumulation-mode OECTs, different light-addressable configurations were constructed, and the corresponding characteristics were systematically studied and compared. Different device behaviors with distinct characteristics could be achieved with the appropriate usage of light stimulation. Toward applications, optologics were designed with various parameters depending on the incident irradiance. Light-controlled OPECT unipolar inverters were further demonstrated and optimized with respect to the power source and resistance. This work features new OPECT optoelectronics combined with proper flexible substrates and solar cells for potential applications in portable and wearable devices. Electronic Supplementary Material Supplementary material is available in the online version of this article at 10.1007/s40843-022-2295-8.
Collapse
Affiliation(s)
- Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| | - Cheng Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| | - Bing-Yu Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| | - Jin Hu
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| |
Collapse
|
33
|
Barker M, Nicolini T, Yaman YA, Thuau D, Siscan O, Ramachandran S, Cloutet E, Brochon C, Richter LJ, Dautel OJ, Hadziioannou G, Stingelin N. Conjugated polymer blends for faster organic mixed conductors. MATERIALS HORIZONS 2023; 10:248-256. [PMID: 36408786 DOI: 10.1039/d2mh00861k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A model mixed-conducting polymer, blended with an amphiphilic block-copolymer, is shown to yield systems with drastically enhanced electro-chemical doping kinetics, leading to faster electrochemical transistors with a high transduction. Importantly, this approach is robust and reproducible, and should be readily adaptable to other mixed conductors without the need for exhaustive chemical modification.
Collapse
Affiliation(s)
- Micah Barker
- Université de Bordeaux, CNRS Bordeaux INP/ENSCBP, Laboratoire de Chimie des Polyméres Organiques, UMR 5629, Allée Geoffroy Saint-Hilaire, 33615, Pessac Cedex, France.
| | - Tommaso Nicolini
- Université de Bordeaux, CNRS Bordeaux INP/ENSCBP, Laboratoire de Chimie des Polyméres Organiques, UMR 5629, Allée Geoffroy Saint-Hilaire, 33615, Pessac Cedex, France.
| | - Yasmina Al Yaman
- Université de Bordeaux, CNRS Bordeaux INP/ENSCBP, Laboratoire de Chimie des Polyméres Organiques, UMR 5629, Allée Geoffroy Saint-Hilaire, 33615, Pessac Cedex, France.
| | - Damien Thuau
- Université de Bordeaux, CNRS Bordeaux INP/ENSCBP Laboratoire de l'Intégration du Matériau au Système UMR 5218, 16 Avenue Pey Berland, 33607, Pessac Cedex, France
| | - Olga Siscan
- Université de Bordeaux, CNRS Bordeaux INP/ENSCBP, Laboratoire de Chimie des Polyméres Organiques, UMR 5629, Allée Geoffroy Saint-Hilaire, 33615, Pessac Cedex, France.
| | - Sasikumar Ramachandran
- Université de Bordeaux, CNRS Bordeaux INP/ENSCBP, Laboratoire de Chimie des Polyméres Organiques, UMR 5629, Allée Geoffroy Saint-Hilaire, 33615, Pessac Cedex, France.
| | - Eric Cloutet
- Université de Bordeaux, CNRS Bordeaux INP/ENSCBP, Laboratoire de Chimie des Polyméres Organiques, UMR 5629, Allée Geoffroy Saint-Hilaire, 33615, Pessac Cedex, France.
| | - Cyril Brochon
- Université de Bordeaux, CNRS Bordeaux INP/ENSCBP, Laboratoire de Chimie des Polyméres Organiques, UMR 5629, Allée Geoffroy Saint-Hilaire, 33615, Pessac Cedex, France.
| | - Lee J Richter
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, USA
| | - Olivier J Dautel
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM. Campus CNRS-Bâtiment Balard, 1919, route de Mende, 34293, Montpellier Cedex 05, France
| | - Georges Hadziioannou
- Université de Bordeaux, CNRS Bordeaux INP/ENSCBP, Laboratoire de Chimie des Polyméres Organiques, UMR 5629, Allée Geoffroy Saint-Hilaire, 33615, Pessac Cedex, France.
| | - Natalie Stingelin
- Université de Bordeaux, CNRS Bordeaux INP/ENSCBP, Laboratoire de Chimie des Polyméres Organiques, UMR 5629, Allée Geoffroy Saint-Hilaire, 33615, Pessac Cedex, France.
- School of Materials Science & Engineering and School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
34
|
Liu J, Tang Y, Cheng Y, Huang W, Xiang L. Electrochemical biosensors based on saliva electrolytes for rapid detection and diagnosis. J Mater Chem B 2022; 11:33-54. [PMID: 36484271 DOI: 10.1039/d2tb02031a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, electrochemical biosensors (ECBSs) have shown significant potential for real-time disease diagnosis and in situ physical condition monitoring. As a multi-constituent oral fluid comprising various disease signaling biomarkers, saliva has drawn much attention in the field of point-of-care (POC) testing. In particular, during the outbreak of the COVID-19 pandemic, ECBSs which hold the simplicity of a single-step assay compared with the multi-step assay of traditional testing methods are expected to relieve the human and economic burden caused by the massive and long-term sample testing process. Noteworthily, ECBSs for the detection of SARS-CoV-2 in saliva have already been developed and may replace current testing methods. Furthermore, the detection scope has expanded from routine indices such as sugar and uric acid to abnormal biomarkers for early-stage disease detection and drug level monitoring, which further facilitated the evolution of ECBSs in the last 5 years. This review is divided into several main sections. First, we discussed the latest advancements and representative research on ECBSs for saliva testing. Then, we focused on a novel kind of ECBS, organic electrochemical transistors (OECTs), which hold great advantages of high sensitivity and signal-to-noise ratio and on-site detection. Finally, application of ECBSs with integrated portable platforms in oral cavities, which lead to powerful auxiliary testing means for telemedicine, has also been discussed.
Collapse
Affiliation(s)
- Jiayi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No 14th, 3rd section, Renmin South Road, Chengdu, 610041, China.
| | - Yufei Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No 14th, 3rd section, Renmin South Road, Chengdu, 610041, China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No 14th, 3rd section, Renmin South Road, Chengdu, 610041, China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No 14th, 3rd section, Renmin South Road, Chengdu, 610041, China. .,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, No 14th, 3rd section, Renmin South Road, Chengdu, 610041, China
| |
Collapse
|
35
|
Liquid Crystal Droplet-Based Biosensors: Promising for Point-of-Care Testing. BIOSENSORS 2022; 12:bios12090758. [PMID: 36140143 PMCID: PMC9496589 DOI: 10.3390/bios12090758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
The development of biosensing platforms has been impressively accelerated by advancements in liquid crystal (LC) technology. High response rate, easy operation, and good stability of the LC droplet-based biosensors are all benefits of the long-range order of LC molecules. Bioprobes emerged when LC droplets were combined with biotechnology, and these bioprobes are used extensively for disease diagnosis, food safety, and environmental monitoring. The LC droplet biosensors have high sensitivity and excellent selectivity, making them an attractive tool for the label-free, economical, and real-time detection of different targets. Portable devices work well as the accessory kits for LC droplet-based biosensors to make them easier to use by anyone for on-site monitoring of targets. Herein, we offer a review of the latest developments in the design of LC droplet-based biosensors for qualitative target monitoring and quantitative target analysis.
Collapse
|
36
|
Detection of 3,4-Methylene Dioxy Amphetamine in Urine by Magnetically Improved Surface-Enhanced Raman Scattering Sensing Strategy. BIOSENSORS 2022; 12:bios12090711. [PMID: 36140096 PMCID: PMC9496583 DOI: 10.3390/bios12090711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
Abstract
Abuse of illicit drugs has become a major issue of global concern. As a synthetic amphetamine analog, 3,4-Methylene Dioxy Amphetamine (MDA) causes serotonergic neurotoxicity, posing a serious risk to human health. In this work, a two-dimensional substrate of ITO/Au is fabricated by transferring Au nanoparticle film onto indium–tin oxide glass (ITO). By magnetic inducing assembly of Fe3O4@Au onto ITO/Au, a sandwich-based, surface-enhanced Raman scattering (SERS) detection strategy is designed. Through the use of an external magnet, the MDA is retained in the region of hot spots formed between Fe3O4@Au and ITO/Au; as a result, the SERS sensitivity for MDA is superior compared to other methods, lowering the limit of detection (LOD) to 0.0685 ng/mL and attaining a corresponding linear dynamic detection range of 5–105 ng/mL. As an actual application, this magnetically improved SERS sensing strategy is successfully applied to distinguish MDA in urine at trace level, which is beneficial to clinical and forensic monitors.
Collapse
|