1
|
Liu H, Lei S, Li H, Wu J, He T, Lin J, Huang P. Refining Single-Atom Catalytic Kinetics for Tumor Homologous-Targeted Catalytic Therapy. NANO-MICRO LETTERS 2025; 17:253. [PMID: 40353985 PMCID: PMC12069810 DOI: 10.1007/s40820-025-01735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/16/2025] [Indexed: 05/14/2025]
Abstract
Single-atom nanozymes (SAzymes) hold significant potential for tumor catalytic therapy, but their effectiveness is often compromised by low catalytic efficiency within tumor microenvironment. This efficiency is mainly influenced by key factors including hydrogen peroxide (H2O2) availability, acidity, and temperature. Simultaneous optimization of these key factors presents a significant challenge for tumor catalytic therapy. In this study, we developed a comprehensive strategy to refine single-atom catalytic kinetics for enhancing tumor catalytic therapy through dual-enzyme-driven cascade reactions. Iridium (Ir) SAzymes with high catalytic activity and natural enzyme glucose oxidase (GOx) were utilized to construct the cascade reaction system. GOx was loaded by Ir SAzymes due to its large surface area. Then, the dual-enzyme-driven cascade reaction system was modified by cancer cell membranes for improving biocompatibility and achieving tumor homologous targeting ability. GOx catalysis reaction could produce abundant H2O2 and lower the local pH, thereby optimizing key reaction-limiting factors. Additionally, upon laser irradiation, Ir SAzymes could raise local temperature, further enhancing the catalytic efficiency of dual-enzyme system. This comprehensive optimization maximized the performance of Ir SAzymes, significantly improving the efficiency of catalytic therapy. Our findings present a strategy of refining single-atom catalytic kinetics for tumor homologous-targeted catalytic therapy.
Collapse
Affiliation(s)
- Hengke Liu
- Marshall Laboratory of Biomedical Engineering, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), International Cancer Center, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Shan Lei
- Marshall Laboratory of Biomedical Engineering, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), International Cancer Center, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Hongyu Li
- Marshall Laboratory of Biomedical Engineering, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), International Cancer Center, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Jiayingzi Wu
- Marshall Laboratory of Biomedical Engineering, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), International Cancer Center, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Ting He
- Marshall Laboratory of Biomedical Engineering, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), International Cancer Center, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), International Cancer Center, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), International Cancer Center, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
2
|
Li Z, Shen M, Meng F, Zhang Y, Duan W, Hou C, Zhang M. Engineering Oxidase-Based Cascade Nanoreactors Design, Catalytic Efficiency, and Applications in Disease Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501976. [PMID: 40351055 DOI: 10.1002/smll.202501976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/14/2025] [Indexed: 05/14/2025]
Abstract
Inspired by the advantages of biological cascade catalytic systems, it has been devoted to the discovery of novel oxidase-based cascade catalytic systems for disease monitoring. However, the low stability, easy inactivation, and poor reproducibility of oxidase significantly limit their practical applications. Immobilization of the oxidase can be enabled to protect them from external mediators and improve catalytic efficiency and reproducibility. Notably, the substrate channels and spatial confinement play an essential role in the construction of immobilized cascade nanoreactors to enhance the overall activity. Moreover, nanozymes, a class of enzyme mimics, have not only enzyme-like activity but also high stability and tunable catalytic properties, which bolster the development of cascade nanoreactors. Herein, recent advances in the assembly of cascade reactors involving enzymes/nanozymes are described. The importance of substrate channeling and spatial distribution in regulating the catalytic efficiency of the nanoreactor is highlighted. Then, along with an in-depth discussion of the cascade biosensors for disease monitoring, the design and application of innovative devices based on these sensing principles are also summarized, including microfluidic systems, hydrogel-based platforms, and test paper technologies. Finally, challenges and prospects for cascade nanoreactors are briefly discussed and prospected.
Collapse
Affiliation(s)
- Zongda Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, P. R. China
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, P. R. China
| | - Mingping Shen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, P. R. China
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, P. R. China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Fanxing Meng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, P. R. China
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, P. R. China
| | - Youning Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, P. R. China
- School of Intelligent Agriculture and Technology, Xinjiang University, Urumqi, 830046, P. R. China
| | - Weiwei Duan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, P. R. China
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, P. R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, P. R. China
- School of Intelligent Agriculture and Technology, Xinjiang University, Urumqi, 830046, P. R. China
| |
Collapse
|
3
|
Bai H, Ding S, Dai Y, Liu J, Chen H, Feng W, Yu D, Chen Y, Ni X. Cobalt Single-Atom Intercalation in Molybdenum Disulfide Enhances Piezocatalytic and Enzyodynamic Activities for Advanced Cancer Therapeutics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415485. [PMID: 39951249 PMCID: PMC11984846 DOI: 10.1002/advs.202415485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/01/2025] [Indexed: 04/12/2025]
Abstract
Piezoelectric semiconductor nanomaterials have attracted considerable interest in piezocatalytic tumor treatment. However, piezocatalytic therapy encounters obstacles such as suboptimal piezoelectric responses, rapid electron-hole recombination, inefficient energy harvesting, and the complexities of the tumor microenvironment. In this study, sulfur vacancy-engineered cobalt (Co) single-atom doped molybdenum disulfide (SA-Co@MoS2) nanoflowers are strategically designed, which exhibit enhanced piezoelectric effects. Specifically, the introduction of Co single atom not only induces lattice distortion and out-of-plane polarization but also leads to the formation of numerous sulfur vacancies. These changes collectively narrow the intrinsic bandgap of the material, facilitating effective separation and migration of charge carriers, and enabling efficient production of reactive oxygen species under ultrasound stimulation. Additionally, the SA-Co@MoS2 nanoflowers demonstrate improved enzymatic activity and exhibit glutathione depletion capabilities attributed to the mixed valence states of Co, intensifying oxidative stress in tumor cells, and leading to cell cycle arrest and apoptosis, while the inactivation of glutathione peroxidase 4 induces ferroptosis. Both in vitro and in vivo results indicate that SA-Co@MoS2 nanoflowers can significantly eliminate tumor cells. This study offers valuable insights into the exploration of single-atom doping-enhanced piezoelectric sonosensitizers for cancer treatment, potentially paving the way for advancements in the field of piezocatalytic synergistic enzyodynamic therapy.
Collapse
Affiliation(s)
- Haomiao Bai
- Department of Medical UltrasoundAffiliated Hospital of Nantong UniversityNantong226001P. R. China
| | - Sujun Ding
- Department of Medical UltrasoundAffiliated Hospital of Nantong UniversityNantong226001P. R. China
| | - Yanfei Dai
- Radiology DepartmentBranch of Affiliated Hospital of Nantong UniversityNantong226001P. R. China
| | - Jiefu Liu
- Department of Medical UltrasoundAffiliated Hospital of Nantong UniversityNantong226001P. R. China
| | - Huangjing Chen
- Department of Medical UltrasoundAffiliated Hospital of Nantong UniversityNantong226001P. R. China
| | - Wei Feng
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Dehong Yu
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
- Shanghai Institute of MaterdicineShanghai200051P. R. China
| | - Xuejun Ni
- Department of Medical UltrasoundAffiliated Hospital of Nantong UniversityNantong226001P. R. China
| |
Collapse
|
4
|
Liu M, Xu W, Tang Y, Wu Y, Gu W, Du D, Lin Y, Zhu C. Tuning Atomically Dispersed Metal Sites in Nanozymes for Sensing Applications. Angew Chem Int Ed Engl 2025; 64:e202424070. [PMID: 39937141 DOI: 10.1002/anie.202424070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Indexed: 02/13/2025]
Abstract
Nanozymes with atomically dispersed metal sites (ADzymes), especially single-atom nanozymes, have attracted widespread attention in recent years due to their unique advantages in mimicking the active sites of natural enzymes. These nanozymes not only maximize exposure of catalytic sites but also possess superior catalytic activity performance, achieving challenging catalytic reactions. These advantages position ADzymes as highly promising candidates in the field of sensing and biosensing. This review summarizes the classification and properties of ADzymes, systematically highlighting some typical regulation strategies involving central metal, coordination environment, etc., to achieve their catalytical activity, specificity, and multifunctionality. Then, we present the recent advances of ADzymes in different sensing fields, including colorimetry, fluorescence, electrochemistry, chemiluminescence, photoelectrochemistry, and electrochemiluminescence. Taking advantage of their unique catalytic performance, the resultant ADzymes show great potential in achieving the goal of sensitivity, selectivity and accuracy for the detection of various targets. Specifically, the underlying mechanisms in terms of signal amplification were discussed in detail. Finally, the current challenges and perspectives on the development of advanced ADzymes are discussed.
Collapse
Affiliation(s)
- Mingwang Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Weiqing Xu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yinjun Tang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yu Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
5
|
Vu TH, An HR, Nguyen PT, Seo J, Kim CY, Park JI, Son B, Kim H, Lee HU, Kim MI. Large-sized and highly crystalline ceria nanorods with abundant Ce 3+ species achieve efficient intracellular ROS scavenging. NANOSCALE HORIZONS 2025; 10:791-802. [PMID: 39949300 DOI: 10.1039/d4nh00639a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Intracellular reactive oxygen species (ROS) are associated with various inflammatory physiological processes and diseases, highlighting the need for their regulation to mitigate the detrimental effects of oxidative stress and to reduce cellular damage and disease progression. Here, we demonstrate cerium oxide (ceria) nanorods synthesized using a sol-gel method followed by heat treatment, called "AHT-CeNRs", as an efficient intracellular ROS scavenger. The synthesized AHT-CeNRs exhibited exceptional superoxide dismutase (SOD) and catalase (CAT)-like activities, both of which are crucial for converting ROS into harmless products. This was attributed to their high crystallinity, large surface area, numerous defects including oxygen vacancies, and abundant Ce3+ species. AHT-CeNRs exhibited higher CAT-like activities than natural CAT and conventional nanozymes, with a more than five-fold lower Km. When tested on HaCaT human keratinocyte cells, AHT-CeNRs primarily localized to the membrane but effectively scavenged intracellular ROS, potentially through their transmembrane catalytic action without disrupting the membrane. This contrasts with conventional antioxidant nanoparticles that act within the cytosol after penetrating the plasma membrane. AHT-CeNRs maintained cell viability by efficiently scavenging ROS, resulting in approximately 4-fold and 2-fold lower levels of inducible nitric oxide synthase (iNOS) and lactate dehydrogenase (LDH) compared to those in ROS-induced inflammation-stimulator lipopolysaccharide (LPS)-treated control groups, respectively. This simple yet effective method for intracellular ROS scavenging using AHT-CeNRs holds great potential for applications in cell and in vivo therapeutics to regulate intracellular ROS levels.
Collapse
Affiliation(s)
- Trung Hieu Vu
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea.
| | - Ha-Rim An
- Division of Material Analysis and Research, Korea Basic Science Institute, Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea.
| | - Phuong Thy Nguyen
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea.
| | - Jiwon Seo
- Division of Material Analysis and Research, Korea Basic Science Institute, Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea.
| | - Chang Yeon Kim
- Division of Material Analysis and Research, Korea Basic Science Institute, Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea.
| | - Ji-In Park
- Division of Material Analysis and Research, Korea Basic Science Institute, Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea.
| | - Byoungchul Son
- Division of Material Analysis and Research, Korea Basic Science Institute, Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea.
| | - Hyeran Kim
- Division of Material Analysis and Research, Korea Basic Science Institute, Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea.
| | - Hyun Uk Lee
- Division of Material Analysis and Research, Korea Basic Science Institute, Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea.
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea.
| |
Collapse
|
6
|
Jia X, Wang E, Wang J. Rational Design of Nanozymes for Engineered Cascade Catalytic Cancer Therapy. Chem Rev 2025; 125:2908-2952. [PMID: 39869790 DOI: 10.1021/acs.chemrev.4c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Nanozymes have shown significant potential in cancer catalytic therapy by strategically catalyzing tumor-associated substances and metabolites into toxic reactive oxygen species (ROS) in situ, thereby inducing oxidative stress and promoting cancer cell death. However, within the complex tumor microenvironment (TME), the rational design of nanozymes and factors like activity, reaction substrates, and the TME itself significantly influence the efficiency of ROS generation. To address these limitations, recent research has focused on exploring the factors that affect activity and developing nanozyme-based cascade catalytic systems, which can trigger two or more cascade catalytic processes within tumors, thereby producing more therapeutic substances and achieving efficient and stable cancer therapy with minimal side effects. This area has shown remarkable progress. This Perspective provides a comprehensive overview of nanozymes, covering their classification and fundamentals. The regulation of nanozyme activity and efficient strategies of rational design are discussed in detail. Furthermore, representative paradigms for the successful construction of cascade catalytic systems for cancer treatment are summarized with a focus on revealing the underlying catalytic mechanisms. Finally, we address the current challenges and future prospects for the development of nanozyme-based cascade catalytic systems in biomedical applications.
Collapse
Affiliation(s)
- Xiuna Jia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jin Wang
- Center for Theoretical Interdisciplinary Sciences Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, P. R. China
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
7
|
Qu S, Zheng S, Muhammad S, Huang L, Guo B. An exploration of the ocular mysteries linking nanoparticles to the patho-therapeutic effects against keratitis. J Nanobiotechnology 2025; 23:184. [PMID: 40050881 PMCID: PMC11887204 DOI: 10.1186/s12951-025-03230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
Microbial keratitis, a sight-threatening corneal infection, remains a significant global health concern. Conventional therapies using antimicrobial agents often suffers from limitations such as poor drug penetration, side effects, and occurrence of drug resistance, with poor prognosis. Novel treatment techniques, with their unique properties and targeted delivery capabilities, offers a promising solution to overcome these challenges. This review delves into timely update of the state-of-the-art advance therapeutics for keratitis treatment. The diverse microbial origins of keratitis, including viral, bacterial, and fungal infections, exploring their complex pathogenic mechanisms, followed by the drug resistance mechanisms in keratitis pathogens are reviewed briefly. Importantly, the emerging therapeutic techniques for keratitis treatment including piezodynamic therapy, photothermal therapy, photodynamic therapy, nanoenzyme therapy, and metal ion therapy are summarized in this review showcasing their potential to overcome the limitations of traditional treatments. The challenges and future directions for advance therapies and nanotechnology-based approaches are discussed, focusing on safety, targeting strategies, drug resistance, and combination therapies. This review aims to inspire researchers to revolutionize and accelerate the development of functional materials using different therapies for keratitis treatment.
Collapse
Affiliation(s)
- Siying Qu
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province, 519000, China
| | - Shuihua Zheng
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province, 519000, China
| | - Sibtain Muhammad
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Liang Huang
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province, 519000, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Fan L, Shen Y, Lou D, Gu N. Progress in the Computer-Aided Analysis in Multiple Aspects of Nanocatalysis Research. Adv Healthc Mater 2025; 14:e2401576. [PMID: 38936401 DOI: 10.1002/adhm.202401576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/08/2024] [Indexed: 06/29/2024]
Abstract
Making the utmost of the differences and advantages of multiple disciplines, interdisciplinary integration breaks the science boundaries and accelerates the progress in mutual quests. As an organic connection of material science, enzymology, and biomedicine, nanozyme-related research is further supported by computer technology, which injects in new vitality, and contributes to in-depth understanding, unprecedented insights, and broadened application possibilities. Utilizing computer-aided first-principles method, high-speed and high-throughput mathematic, physic, and chemic models are introduced to perform atomic-level kinetic analysis for nanocatalytic reaction process, and theoretically illustrate the underlying nanozymetic mechanism and structure-function relationship. On this basis, nanozymes with desirable properties can be designed and demand-oriented synthesized without repeated trial-and-error experiments. Besides that, computational analysis and device also play an indispensable role in nanozyme-based detecting methods to realize automatic readouts with improved accuracy and reproducibility. Here, this work focuses on the crossing of nanocatalysis research and computational technology, to inspire the research in computer-aided analysis in nanozyme field to a greater extent.
Collapse
Affiliation(s)
- Lin Fan
- Medical School of Nanjing University, Nanjing, 210093, P. R. China
- School of Integrated Circuit Science and Engineering (Industry-Education Integration School), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Yilei Shen
- School of Integrated Circuit Science and Engineering (Industry-Education Integration School), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Doudou Lou
- Nanjing Institute for Food and Drug Control, Nanjing, 211198, P. R. China
| | - Ning Gu
- Medical School of Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
9
|
Choi D, Boo Y, Park S, Xu L, Kim S, Yi SY, Lee S, Wu R, Kim WJ, Lee J. Ultrasmall High-Entropy-Alloy Nanozyme Catalyzed In Vivo ROS and NO Scavenging for Anti-Inflammatory Therapy. Adv Healthc Mater 2025; 14:e2402005. [PMID: 39641188 DOI: 10.1002/adhm.202402005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/07/2024] [Indexed: 12/07/2024]
Abstract
High-entropy alloy (HEA) nanoparticles possess finely tunable and multifunctional catalytic activity due to their extremely diverse adsorption sites. Their unique properties enable HEA nanoparticles to mimic the complex interactions of the redox homeostasis system, which is composed of cascade and multiple enzymatic reactions. The application of HEAs in mimicking complex enzymatic systems remains relatively unexplored, despite the importance of regulating biological redox reactions. Here, it is reported that ultra-small (<10 nm in a diameter) HEA nanozymes consisting of five platinum-group metals with tunable morphologies from planar to dendritic structures are synthesized. The synthesized HEA nanozymes exhibited higher peroxidase-like activity compared to monometallic platinum-group nanoparticles. Additionally, HEA nanoparticles effectively mimicked RONS-regulation metabolism in cascade reactions involving superoxide dismutase and catalase, as well as in multiple reactions including HORAC and NO scavenging. As a result, the HEA nanozyme exhibited superior anti-inflammatory efficacy both in vitro and in vivo. The findings underscore the effectiveness of the high-entropy alloy structure in restoring in vivo enzymatic systems through intrinsic activity enhancements and cascade reaction mechanisms.
Collapse
Affiliation(s)
- Daeeun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeonju Boo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Gyeongbuk, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Seonhye Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Liangliang Xu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seongbeen Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seung Yeop Yi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sangmin Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Gyeongbuk, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Ruopeng Wu
- Department of Mathematics, College of Literature, Science, and the Arts (LSA), University of Michigan, Ann Arbor, East Hall, 530 Church Street, Ann Arbor, MI, 48109, USA
| | - Won Jong Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Gyeongbuk, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Jinwoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
10
|
Zhang N, Ping W, Xiang J, Chu S, Li D, Ning S, Zhu D, Zeng W, Xu Q. Biomimetic Single-Atom Nanozyme for Dual Starvation-Enhanced Breast Cancer Immunotherapy. Adv Healthc Mater 2025; 14:e2401362. [PMID: 39363640 DOI: 10.1002/adhm.202401362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/08/2024] [Indexed: 10/05/2024]
Abstract
Cold exposure (CE) therapy is an innovative and cost-efficient cancer treatment that activates brown adipose tissue to compete for glucose uptake, leading to metabolic starvation in tumors. Exploring the combined antitumor mechanisms of CE and traditional therapies (such as nanocatalysis) is exciting and promising. In this study, a platelet membrane biomimetic single-atom nanozyme (SAEs) nanodrug (PFB) carrying bis-2-(5-phenylacetamido-1, 2, 4-thiadiazol-2-yl) ethyl sulfide (BPTES) is developed for use in cancer CE therapy. Owing to the platelet membrane modification, PFB can effectively target tumors. Upon entering cancer cells, the dual starvation effect induced by CE treatment and BPTES can significantly diminish intracellular glucose and ATP levels, resulting in a substantial reduction in cellular (glutathione) GSH, which can enhance the cytotoxic efficacy of reactive oxygen species generated by SAEs. This strategy not only boosts ROS production in tumors, but also strengthens immune responses, particularly by increasing memory T-cell abundance and suppressing distant tumor growth and tumor metastasis. Compared with SAEs therapy alone, this combined approach offers superior benefits for tumor immunotherapy. This study achieves a combination of CE and nanomedicines for the first time, providing new ideas for future nanomedicine combination therapy modalities.
Collapse
Affiliation(s)
- Ni Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Wei Ping
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jingfeng Xiang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Sitong Chu
- Department of Breast Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Dan Li
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530003, China
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530003, China
| | - Daoming Zhu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wen Zeng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qingyong Xu
- Department of Breast Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| |
Collapse
|
11
|
Zong X, Xu X, Pang DW, Huang X, Liu AA. Fine-Tuning Electron Transfer for Nanozyme Design. Adv Healthc Mater 2025; 14:e2401836. [PMID: 39015050 DOI: 10.1002/adhm.202401836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/22/2024] [Indexed: 07/18/2024]
Abstract
Nanozymes, with their versatile composition and structural adaptability, present distinct advantages over natural enzymes including heightened stability, customizable catalytic activity, cost-effectiveness, and simplified synthesis process, making them as promising alternatives in various applications. Recent advancements in nanozyme research have shifted focus from serendipitous discovery toward a more systematic approach, leveraging machine learning, theoretical calculations, and mechanistic explorations to engineer nanomaterial structures with tailored catalytic functions. Despite its pivotal role, electron transfer, a fundamental process in catalysis, has often been overlooked in previous reviews. This review comprehensively summarizes recent strategies for modulating electron transfer processes to fine-tune the catalytic activity and specificity of nanozymes, including electron-hole separation and carrier transfer. Furthermore, the bioapplications of these engineered nanozymes, including antimicrobial treatments, cancer therapy, and biosensing are also introduced. Ultimately, this review aims to offer invaluable insights for the design and synthesis of nanozymes with enhanced performance, thereby advancing the field of nanozyme research.
Collapse
Affiliation(s)
- Xia Zong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xinran Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
12
|
Ye J, Wang H, Zheng J, Ning S, Zhu D, Shi J, Shi R. Cold Exposure Therapy Enhances Single-Atom Nanozyme-Mediated Cancer Vaccine Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11752-11763. [PMID: 39945542 DOI: 10.1021/acsami.4c20487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Single-atom nanozymes are highly effective in the preparation of tumor vaccines (TV) due to their superior peroxidase (POD) activity and excellent biocompatibility. However, the immunosuppressive environment within tumors can diminish the efficacy of these vaccines. Cold exposure (CE) therapy, a noninvasive and straightforward antitumor method, not only suppresses tumor metabolism but also ameliorates the immunosuppressive tumor milieu. In this study, we developed personalized TV using copper single-atom nanozyme (Cu SAZ) and enhanced their long-term antitumor efficacy by introducing CE. We initially synthesized the Cu SAZ via high-temperature carbonization, which demonstrated robust POD activity and photothermal characteristics. Upon exposure to 808 nm laser irradiation, the nanozyme generated reactive oxygen species (ROS) and heat, inducing immunogenic cell death in 4T1 breast cancer cells or CT26 colon cancer cells and facilitating TV production. In our in vivo tumor prevention and treatment model, we noted that CE significantly boosted the efficacy of the TV. The primary mechanism involves CE's ability to lower the ratio of myeloid-derived suppressor cells (MDSCs), decrease glucose metabolism in tumor cells, and increase the proportions of CD8+ T cells and memory T cells. Collectively, our findings offer promising avenues for designing innovative TV systems.
Collapse
Affiliation(s)
- Jinjun Ye
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Shenzhen 518100, China
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hongwei Wang
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Shenzhen 518100, China
| | - Jingzhi Zheng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Daoming Zhu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jing Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Runze Shi
- The Second Ward of Breast Surgery, Cancer Hospital Affiliated to Harbin Medical University, Harbin 150086, China
| |
Collapse
|
13
|
Tang Z, Ye F, Ni N, Fan X, Lu L, Gu P. Frontier applications of retinal nanomedicine: progress, challenges and perspectives. J Nanobiotechnology 2025; 23:143. [PMID: 40001147 PMCID: PMC11863789 DOI: 10.1186/s12951-025-03095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/04/2025] [Indexed: 02/27/2025] Open
Abstract
The human retina is a fragile and sophisticated light-sensitive tissue in the central nervous system. Unhealthy retinas can cause irreversible visual deterioration and permanent vision loss. Effective therapeutic strategies are restricted to the treatment or reversal of these conditions. In recent years, nanoscience and nanotechnology have revolutionized targeted management of retinal diseases. Pharmaceuticals, theranostics, regenerative medicine, gene therapy, and retinal prostheses are indispensable for retinal interventions and have been significantly advanced by nanomedical innovations. Hence, this review presents novel insights into the use of versatile nanomaterial-based nanocomposites for frontier retinal applications, including non-invasive drug delivery, theranostic contrast agents, therapeutic nanoagents, gene therapy, stem cell-based therapy, retinal optogenetics and retinal prostheses, which have mainly been reported within the last 5 years. Furthermore, recent progress, potential challenges, and future perspectives in this field are highlighted and discussed in detail, which may shed light on future clinical translations and ultimately, benefit patients with retinal disorders.
Collapse
Affiliation(s)
- Zhimin Tang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Fuxiang Ye
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Ni Ni
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Linna Lu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
14
|
Li Z, Jia G, Su Z, Zhu C. Nanozyme-Based Strategies against Bone Infection. RESEARCH (WASHINGTON, D.C.) 2025; 8:0605. [PMID: 39935691 PMCID: PMC11811343 DOI: 10.34133/research.0605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 02/13/2025]
Abstract
Nanozymes are a class of nanomaterials that exhibit catalytic functions analogous to those of natural enzymes. They demonstrate considerable promise in the biomedical field, particularly in the treatment of bone infections, due to their distinctive physicochemical properties and adjustable catalytic activities. Bone infections (e.g., periprosthetic infections and osteomyelitis) are infections that are challenging to treat clinically. Traditional treatments often encounter issues related to drug resistance and suboptimal anti-infection outcomes. The advent of nanozymes has brought with it a new avenue of hope for the treatment of bone infections.
Collapse
Affiliation(s)
| | | | - Zheng Su
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
15
|
Tang X, Zhang H, Chen J, Wu D, Wang Y, Sun J, Wang Z, Yang X. Ferrous Tungstate Nanomaterials with Excellent Enzyme-Mimicking Activity to Enhance Lateral Flow Immunoassay Sensitivity. Anal Chem 2025; 97:2714-2723. [PMID: 39884848 DOI: 10.1021/acs.analchem.4c04761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Lateral flow immunochromatography (LFIA) with gold nanoparticles (AuNPs) is widely used in the biomedical field as a rapid and simple in vitro detection technique. However, the conventional AuNP-LFIA has limitations in sensitivity and detection range. In this study, nonprecious metal iron-based bimetallic FeWO4 nanomaterials with convenient and excellent enzyme-mimetic catalytic activities were synthesized by a one-pot hydrothermal method. Here, FeWO4 nanomaterials were combined with C-reactive protein (CRP) detection antibodies to form a novel signal-enhancing probe for the analysis of CRP. The probe further achieves significant signal amplification by catalyzing the oxidation reaction of 3-amino-9-ethylcarbazole in the LFIA assay, thereby improving the sensitivity and accuracy of the assay. The application of FeWO4-based LFIA improved the limit of detection of CRP to 19.38 ng/mL after catalytic amplification, which is approximately 30-fold lower than that of the conventional AuNP-LFIA method. In addition, the method demonstrated good stability and reproducibility, providing a promising and prospective strategy for the early diagnosis of inflammatory diseases.
Collapse
Affiliation(s)
- Xianqing Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hua Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, China
| | - Jinghuang Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Donghui Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
16
|
Wan Z, Liu Q, Zhe Y, Li J, Ding D, Liu S, Wang H, Qiao H, Yang J, Zhang S, Mu X. Single-atom nanozymes with intelligent response to pathological microenvironments for bacterially infected wound healing. Biomater Sci 2025; 13:1033-1044. [PMID: 39821251 DOI: 10.1039/d4bm01371a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Wound healing is a complex and dynamic process often accompanied by bacterial infection, inflammation, and excessive oxidative stress. Single-atom nanozymes with multi-enzymatic activities show significant potential for promoting the healing of infected wounds by modulating their antibacterial and anti-inflammatory properties in response to the wound's physiological environment. In this study, we synthesized MN4 single-atom nanozymes with multi-enzymatic activities that intelligently respond to pH value changes in the wound healing process. In vitro experiments confirm their effectiveness against Gram-negative bacteria, attributed to elevated reactive oxygen species (ROS) accumulation within the bacterial cells. Moreover, a full-thickness skin wound-infected model demonstrates that MN4 single-atom nanozymes accelerate wound repair and skin regeneration by suppressing the expression of tumor necrosis factor-alpha (TNF-α), promoting angiogenesis, and enhancing collagen deposition. In vivo biocompatibility experiments further demonstrate the favorable biocompatibility of these nanozymes, highlighting their potential for clinical applications in infected wound healing. These nanozymes respond intelligently to different microenvironments and may be suitable for addressing further complex and variable diseases.
Collapse
Affiliation(s)
- Zhen Wan
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
- Haihe Hospital, Tianjin University, Tianjin 300350, China
| | - Qingshan Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Yadong Zhe
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Jiarong Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Danqi Ding
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Shuangjie Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Huanhuan Qiao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
17
|
Ye J, Li Y, Xu J, Li C, Qu J, Wang J, Chang Y, Lu Y, Cai Z, Wang C, Liang X, Li C, Cao J, Fu Y, Yang P. Seeding Janus Zn-Fe Diatomic Pairs on a Hollow Nanobox for Potent Catalytic Therapy. NANO LETTERS 2025; 25:1907-1916. [PMID: 39868470 DOI: 10.1021/acs.nanolett.4c05517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Dual atomic nanozymes (DAzymes) are promising for applications in the field of tumor catalytic therapy. Here, integrating with ultrasmall Fe5C2 nanoclusters, asymmetric coordination featuring Janus Zn-Fe dual-atom sites with an O2N2-Fe-Zn-N4 moiety embedded in a carbon vacancy-engineered hollow nanobox (Janus ZnFe DAs-Fe5C2) was elaborately developed. Theoretical calculation revealed that the synergistic effects of Zn centers acting as both adsorption and active sites, oxygen-heteroatom doping, carbon vacancy, and Fe5C2 nanoclusters jointly downshifted the d-band center of Fe 3d orbitals, optimizing the desorption behaviors of intermediates *OH, thereby significantly promoting catalytic activity. Upon 1064 nm laser irradiation, Janus ZnFe DAs-Fe5C2 with superior photothermal conversion efficiency (η = 62.5%) showed thermal-augmented catalytic therapy. Fascinatingly, Janus ZnFe DAs-Fe5C2 with multienzymatic properties can suppress the expression of glutathione peroxidase 4 and accelerate the accumulation of lipid peroxides, through which ferroptosis is triggered. Overall, tannin-involved asymmetric Janus ZnFe DAs-Fe5C2 will inspire more inventions of biodegradable DAzymes for tumor therapy application.
Collapse
Affiliation(s)
- Jin Ye
- Key Laboratory of Forest Plant Ecology, Ministry of Education College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yunlong Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150001, P. R. China
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Chunsheng Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Jiawei Qu
- Key Laboratory of Forest Plant Ecology, Ministry of Education College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Juan Wang
- School of Chemistry & Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Yuanhang Chang
- Key Laboratory of Forest Plant Ecology, Ministry of Education College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yong Lu
- Key Laboratory of Forest Plant Ecology, Ministry of Education College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Zhengmin Cai
- Guangxi University of Science and Technology, Liuzhou 545006, P. R. China
| | - Chen Wang
- Guangxi University of Science and Technology, Liuzhou 545006, P. R. China
| | - Xinqiang Liang
- Guangxi University of Science and Technology, Liuzhou 545006, P. R. China
| | - Chaorong Li
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Jun Cao
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
18
|
Chen Z, Zhao X, Lin L, Cui Y, Cao D, Chen XL, Wang X. CaGA nanozymes with multienzyme activity realize multifunctional repair of acute wounds by alleviating oxidative stress and inhibiting cell apoptosis. Biomater Sci 2025; 13:422-433. [PMID: 39412895 DOI: 10.1039/d4bm01155d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Acute wounds result from damage to the skin barrier, exposing underlying tissues and increasing susceptibility to bacterial and other pathogen infections. Improper wound care increases the risk of exposure and infection, often leading to chronic nonhealing wounds, which cause significant patient suffering. Early wound repair can effectively prevent the development of chronic nonhealing wounds. In this study, Ca-Gallic Acid (CaGA) nanozymes with multienzyme catalytic activity were constructed for treating acute wounds by coordinating Ca ions with gallic acid. CaGA nanozymes exhibit high superoxide dismutase/catalase (SOD/CAT) catalytic activity and good antioxidant performance in vitro. In vitro experiments demonstrated that CaGA nanozymes can effectively promote cell migration, efficiently scavenge ROS, maintain mitochondrial homeostasis, reduce inflammation, and decrease cell apoptosis. In vivo, CaGA nanozymes promoted granulation tissue formation, accelerated collagen fiber deposition, and reconstructed skin appendages, thereby accelerating acute wound healing. CaGA nanozymes have potential clinical application value in wound healing treatment.
Collapse
Affiliation(s)
- Zenghong Chen
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China.
| | - Xinyu Zhao
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China.
| | - Liting Lin
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
| | - Yuyu Cui
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China.
| | - Dongsheng Cao
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China.
| | - Xianwen Wang
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China.
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
| |
Collapse
|
19
|
Wang Z, Wen H, Zheng C, Wang X, Yin S, Song N, Liang M. Synergistic Co-Cu Dual-Atom Nanozyme with Promoted Catalase-like Activity for Parkinson's Disease Treatment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:583-593. [PMID: 39690140 DOI: 10.1021/acsami.4c17416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Neurodegenerative diseases like Parkinson's disease (PD) are intimately associated with oxidative stress due to the excessive highly reactive oxygen species (ROS), leading to the damage of dopaminergic neurons. Herein, we develop a Co-Cu dual-atom nanozyme (CoCu-DAzyme) by uniformly anchoring Co and Cu active sites onto an AlO(OH) substrate that exhibits remarkable catalase-like catalytic activity, far exceeding that of the Co or Cu single-atom counterparts. The following density functional theory calculations reveal that the Co sites efficiently enable H2O2 adsorption, while Cu sites promote charge transfer, synergistically promoting the catalytic decomposition of H2O2 into H2O and O2. Encouragingly, the developed CoCu-DAzyme notably ameliorates α-synuclein aggregation and alleviates the motor dysfunction inCaenorhabditis elegansPD models by substantively scavenging in vivo ROS. This research shows a novel therapeutic strategy for oxidative-stress-related neurodegenerative disorders by developing well-engineered nanozymes.
Collapse
Affiliation(s)
- Zhengdi Wang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hailong Wen
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ceping Zheng
- Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangming Wang
- Department of Cell Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Sijie Yin
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Ningning Song
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
20
|
Wang H, He W, Liao J, Wang S, Dai X, Yu M, Xie Y, Chen Y. Catalytic Biomaterials-Activated In Situ Chemical Reactions: Strategic Modulation and Enhanced Disease Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411967. [PMID: 39498674 DOI: 10.1002/adma.202411967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/19/2024] [Indexed: 11/07/2024]
Abstract
Chemical reactions underpin biological processes, and imbalances in critical biochemical pathways within organisms can lead to the onset of severe diseases. Within this context, the emerging field of "Nanocatalytic Medicine" leverages nanomaterials as catalysts to modulate fundamental chemical reactions specific to the microenvironments of diseases. This approach is designed to facilitate the targeted synthesis and localized accumulation of therapeutic agents, thus enhancing treatment efficacy and precision while simultaneously reducing systemic side effects. The effectiveness of these nanocatalytic strategies critically hinges on a profound understanding of chemical kinetics and the intricate interplay of reactions within particular pathological microenvironments to ensure targeted and effective catalytic actions. This review methodically explores in situ catalytic reactions and their associated biomaterials, emphasizing regulatory strategies that control therapeutic responses. Furthermore, the discussion encapsulates the crucial elements-reactants, catalysts, and reaction conditions/environments-necessary for optimizing the thermodynamics and kinetics of these reactions, while rigorously addressing both the biochemical and biophysical dimensions of the disease microenvironments to enhance therapeutic outcomes. It seeks to clarify the mechanisms underpinning catalytic biomaterials and evaluate their potential to revolutionize treatment strategies across various pathological conditions.
Collapse
Affiliation(s)
- Huijing Wang
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wenjin He
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Jing Liao
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Shuangshuang Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Shanghai Institute of Materdicine, Shanghai, 200051, P. R. China
| |
Collapse
|
21
|
Zhu CN, Chen X, Xu YQ, Wang F, Zheng DY, Liu C, Zhang XH, Yi Y, Cheng DB. Advanced Preparation Methods and Biomedical Applications of Single-Atom Nanozymes. ACS Biomater Sci Eng 2024; 10:7352-7371. [PMID: 39535074 DOI: 10.1021/acsbiomaterials.4c01530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Metal nanoparticles with inherent defects can harness biomolecules to catalyze reactions within living organisms, thereby accelerating the advancement of multifunctional diagnostic and therapeutic technologies. In the quest for superior catalytic efficiency and selectivity, atomically dispersed single-atom nanozymes (SANzymes) have garnered significant interest recently. This review concentrates on the development of SANzymes, addressing potential challenges such as fabrication strategies, surface engineering, and structural characteristics. Notably, we elucidate the catalytic mechanisms behind some key reactions to facilitate the biomedical application of SANzymes. The diverse biomedical uses of SANzymes including in cancer therapy, wound disinfection, biosensing, and oxidative stress cytoprotection are comprehensively summarized, revealing the link between material structure and catalytic performance. Lastly, we explore the future prospects of SANzymes in biomedical fields.
Collapse
Affiliation(s)
- Chun-Nan Zhu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Xin Chen
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Yong-Qiang Xu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Fei Wang
- Department of Biology and the School of Natural Sciences, Wentworth College, University of York, Wentworth Way, Heslington, York YO10 5DD, England
| | - Dong-Yun Zheng
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Chao Liu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Xue-Hao Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
22
|
Zhang S, Gao XJ, Ma Y, Song K, Ge M, Ma S, Zhang L, Yuan Y, Jiang W, Wu Z, Gao L, Yan X, Jiang B. A bioinspired sulfur-Fe-heme nanozyme with selective peroxidase-like activity for enhanced tumor chemotherapy. Nat Commun 2024; 15:10605. [PMID: 39638998 PMCID: PMC11621791 DOI: 10.1038/s41467-024-54868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Iron-based nanozymes, recognized for their biocompatibility and peroxidase-like activities, hold promise as catalysts in tumor therapy. However, their concurrent catalase-like activity undermines therapeutic efficacy by converting hydrogen peroxide in tumor tissues into oxygen, thus diminishing hydroxyl radical production. Addressing this challenge, this study introduces the hemin-cysteine-Fe (HCFe) nanozyme, which exhibits exclusive peroxidase-like activity. Constructed through a supramolecular assembly approach involving Fmoc-L-cysteine, heme, and Fe²⁺ coordination, HCFe distinctly incorporates heme and [Fe-S] within its active center. Sulfur coordination to the central Fe atom of Hemin is crucial in modulating the catalytic preference of the HCFe nanozyme towards peroxidase-like activity. This unique mechanism distinguishes HCFe from other bifunctional iron-based nanozymes, enhancing its catalytic selectivity even beyond that of natural peroxidases. This selective activity allows HCFe to significantly elevate ROS production and exert cytotoxic effects, especially against cisplatin-resistant esophageal squamous cell carcinoma (ESCC) cells and their xenografts in female mice when combined with cisplatin. These findings underscore HCFe's potential as a crucial component in multimodal cancer therapy, notably in augmenting chemotherapy efficacy.
Collapse
Affiliation(s)
- Shuaibing Zhang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Xuejiao J Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Yuanjie Ma
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Kexu Song
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mengyue Ge
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Saiyu Ma
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ye Yuan
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei Jiang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenzhen Wu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lizeng Gao
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Xiyun Yan
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Bing Jiang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
23
|
Lin CS, He MQ, An MY, Zhao QH, Zhang ZH, Deng KY, Ai Y, Xin HB. Ultra-Small Copper-Based Multienzyme-Like Nanoparticles Protect Against Hepatic Ischemia-Reperfusion Injury Through Scavenging Reactive Oxygen Species in Mice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403313. [PMID: 39377344 DOI: 10.1002/smll.202403313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/24/2024] [Indexed: 10/09/2024]
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a severe complication that occurs in the process of liver transplantation, hepatectomy, and other end-stage liver disease surgery, often resulting in the failure of surgery operation and even patient death. Currently, there is no effective way to prevent hepatic IRI clinically. Here, it is reported that the ultra-small copper-based multienzyme-like nanoparticles with catalase-like (CAT-like) and superoxide dismutase-like (SOD-like) catalytic activities significantly scavenge the surge-generated endogenous reactive oxygen species (ROS) and effectively protects hepatic IRI. Density functional theory calculations confirm that the nanoparticles efficiently scavenge ROS through their synergistic effects of the ultra-small copper SOD-like activity and manganese dioxides CAT-like activity. Furthermore, the results show that the biocompatible CMP NPs significantly protected hepatocytes from IRI in vitro and in vivo. Importantly, their therapeutic effect is much stronger than that of N-acetylcysteamine acid (NAC), an FDA-approved antioxidative drug. Finally, it is demonstrated that the protective effects of CMP NPs on hepatic IRI are related to suppressing inflammation and hepatocytic apoptosis and maintaining endothelial functions through scavenging ROS in liver tissues. The study can provide insight into the development of next-generation nanomedicines for scavenging ROS.
Collapse
Affiliation(s)
- Cai-Shi Lin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330088, P. R. China
| | - Meng-Qi He
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, P. R. China
| | - Meng-Ying An
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330088, P. R. China
| | - Qi-Hang Zhao
- School of Life Sciences, Nanchang University, Nanchang, 330088, P. R. China
| | - Zhou-Hang Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330088, P. R. China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330088, P. R. China
- School of Life Sciences, Nanchang University, Nanchang, 330088, P. R. China
| | - Yongjian Ai
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, P. R. China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330088, P. R. China
- School of Life Sciences, Nanchang University, Nanchang, 330088, P. R. China
| |
Collapse
|
24
|
Gao S, Lian K, Wang X, Liu X, Abdukayum A, Kong Q, Hu G. Recent Achievements in Heterogeneous Bimetallic Atomically Dispersed Catalysts for Zn-Air Batteries: A Minireview. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406776. [PMID: 39363812 DOI: 10.1002/smll.202406776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Rechargeable Zn-air batteries (ZABs) hold promise as the next-generation energy-storage devices owing to their affordability, environmental friendliness, and safety. However, cathodic catalysts are easily inactivated in prolonged redox potential environments, resulting in inadequate energy efficiency and poor cycle stability. To address these challenges, anodic active sites require multiple-atom combinations, that is, ensembles of metals. Heterogeneous bimetallic atomically dispersed catalysts (HBADCs), consisting of heterogeneous isolated single atoms and atomic pairs, are expected to synergistically boost the cyclic oxygen reduction and evolution reactions of ZABs owing to their tuneable microenvironments. This minireview revisits recent achievements in HBADCs for ZABs. Coordination environment engineering and catalytic substrate structure optimization strategies are summarized to predict the innovation direction for HBADCs in ZAB performance enhancement. These HBADCs are divided into ferrous and nonferrous dual sites with unique microenvironments, including synergistic effects, ion modulation, electronic coupling, and catalytic activity. Finally, conclusions and perspectives relating to future challenges and potential opportunities are provided to optimise the performance of ZABs.
Collapse
Affiliation(s)
- Sanshuang Gao
- Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Kang Lian
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Xinzhong Wang
- Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Abdukader Abdukayum
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, China
| | - Qingquan Kong
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| |
Collapse
|
25
|
Jiang Z, Li J, Liu G, Qiu Q, Zhang J, Hao M, Ren H, Zhang Y. A pH-Sensitive Glucose Oxidase and Hemin Coordination Micelle for Multi-Enzyme Cascade and Amplified Cancer Chemodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407674. [PMID: 39363789 DOI: 10.1002/smll.202407674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Indexed: 10/05/2024]
Abstract
Chemodynamic therapy (CDT) is an emerging therapeutic paradigm for cancer treatment that utilizes reactive oxygen species (ROS) to induce apoptosis of cancer cells but few biomaterials have been developed to differentiate the cancer cells and normal cells to achieve precise and targeted CDT. Herein, a simple cascade enzyme system is developed, termed hemin-micelles-GOx, based on hemin and glucose oxidase (GOx)-encapsulated Pluronic F127 (F127) micelles with pH-sensitive enzymatic activities. Histidine-tagged GOx can be easily chelated to hemin-F127 micelles via the coordination of histidine and ferrous ions in the center of hemin by simple admixture in an aqueous solution. In tumor microenvironment (TME), hemin-micelles-GOx exhibits enhanced peroxidase (POD)-like activities to generate toxic hydroxyl radicals due to the acidic condition, whereas in normal cells the catalase (CAT)-like, but not POD-like activity is amplified, resulting in the elimination of hydrogen peroxide to generate oxygen. In a murine melanoma model, hemin-micelles-GOx significantly suppresses tumor growth, demonstrating its great potential as a pH-mediated enzymatic switch for tumor management by CDT.
Collapse
Affiliation(s)
- Zhen Jiang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Jiexin Li
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Gengqi Liu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Qian Qiu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Jingyu Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Minchao Hao
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - He Ren
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
26
|
Zhu G, Xie Y, Wang J, Wang M, Qian Y, Sun Q, Dai Y, Li C. Multifunctional Copper-Phenolic Nanopills Achieve Comprehensive Polyamines Depletion to Provoke Enhanced Pyroptosis and Cuproptosis for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409066. [PMID: 39285820 DOI: 10.1002/adma.202409066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/08/2024] [Indexed: 11/08/2024]
Abstract
The overexpression of polyamines in tumor cells contributes to the establishment of immunosuppressive microenvironment and facilitates tumor growth. Here, it have ingeniously designed multifunctional copper-piceatannol/HA nanopills (Cu-Pic/HA NPs) that effectively cause total intracellular polyamines depletion by inhibiting polyamines synthesis, depleting intracellular polyamines, and impairing polyamines uptake, resulting in enhanced pyroptosis and cuproptosis, thus activating a powerful immune response to achieve anti-tumor therapy. Mitochondrial dysfunction resulting from overall intracellular polyamines depletion not only leads to the surge of copper ions in mitochondria, thereby causing the aggregation of toxic proteins to induce cuproptosis, but also triggers the accumulation of reactive oxygen species (ROS) within mitochondria, which further upregulates the expression of zDHHC5 and zDHHC9 to promote the palmitoylation of gasdermin D (GSDMD) and GSDMD-N, ultimately inducing enhanced pyroptosis. Then the occurrence of enhanced pyroptosis and cuproptosis is conductive to remodel the immunosuppressive tumor microenvironment, thus activating anti-tumor immune responses and ultimately effectively inhibiting tumor growth and metastasis. This therapeutic strategy of enhanced pyroptosis and cuproptosis through comprehensive polyamines depletion provides a novel template for cancer immunotherapy.
Collapse
Affiliation(s)
- Guoqing Zhu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Yulin Xie
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Junrong Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Man Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Yanrong Qian
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Qianqian Sun
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Yunlu Dai
- Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, P. R. China
| | - Chunxia Li
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
27
|
Cai Y, Wu Y, Tang Y, Xu W, Chen Y, Su R, Fan Y, Jiang W, Wen Y, Gu W, Sun H, Zhu C. In Situ Defect Engineering of Fe-MIL for Self-Enhanced Peroxidase-Like Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403354. [PMID: 39101616 DOI: 10.1002/smll.202403354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/07/2024] [Indexed: 08/06/2024]
Abstract
Defect engineering is an effective strategy to enhance the enzyme-like activity of nanozymes. However, previous efforts have primarily focused on introducing defects via de novo synthesis and post-synthetic treatment, overlooking the dynamic evolution of defects during the catalytic process involving highly reactive oxygen species. Herein, a defect-engineered metal-organic framework (MOF) nanozyme with mixed linkers is reported. Over twofold peroxidase (POD)-like activity enhancement compared with unmodified nanozyme highlights the critical role of in situ defect formation in enhancing the catalytic performance of nanozyme. Experimental results reveal that highly active hydroxyl radical (•OH) generated in the catalytic process etches the 2,5-dihydroxyterephthalic acid ligands, contributing to electronic structure modulation of metal sites and enlarged pore sizes in the framework. The self-enhanced POD-like activity induced by in situ defect engineering promotes the generation of •OH, holding promise in colorimetric sensing for detecting dichlorvos. Utilizing smartphone photography for RGB value extraction, the resultant sensing platform achieves the detection for dichlorvos ranging from 5 to 300 ng mL-1 with a low detection limit of 2.06 ng mL-1. This pioneering work in creating in situ defects in MOFs to improve catalytic activity offers a novel perspective on traditional defect engineering.
Collapse
Affiliation(s)
- Yujia Cai
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yu Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yinjun Tang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Weiqing Xu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yifei Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Rina Su
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yuexi Fan
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Wenxuan Jiang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yating Wen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hongcheng Sun
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
28
|
Liu J, Wang T, Liao C, Geng W, Yang J, Ma S, Tian W, Liao L, Cheng C. Constructing Electron-Rich Ru Clusters on Non-Stoichiometric Copper Hydroxide for Superior Biocatalytic ROS Scavenging to Treat Inflammatory Spinal Cord Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411618. [PMID: 39394880 DOI: 10.1002/adma.202411618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/27/2024] [Indexed: 10/14/2024]
Abstract
Traumatic spinal cord injury (SCI) represents a complex neuropathological challenge that significantly impacts the well-being of affected individuals. The quest for efficacious antioxidant and anti-inflammatory therapies is both a compelling necessity and a formidable challenge. Here, in this work, the innovative synthesis of electron-rich Ru clusters on non-stoichiometric copper hydroxide that contain oxygen vacancy defects (Ru/def-Cu(OH)2), which can function as a biocatalytic reactive oxygen species (ROS) scavenger for efficiently suppressing the inflammatory cascade reactions and modulating the endogenous microenvironments in SCI, is introduced. The studies reveal that the unique oxygen vacancies promote electron redistribution and amplify electron accumulation at Ru clusters, thus enhancing the catalytic activity of Ru/def-Cu(OH)2 in multielectron reactions involving oxygen-containing intermediates. These advancements endow the Ru/def-Cu(OH)2 with the capacity to mitigate ROS-mediated neuronal death and to foster a reparative microenvironment by dampening inflammatory macrophage responses, meanwhile concurrently stimulating the activity of neural stem cells, anti-inflammatory macrophages, and oligodendrocytes. Consequently, this results in a robust reparative effect on traumatic SCI. It is posited that the synthesized Ru/def-Cu(OH)2 exhibits unprecedented biocatalytic properties, offering a promising strategy to develop ROS-scavenging and anti-inflammatory materials for the management of traumatic SCI and a spectrum of other diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Jinglun Liu
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chengcheng Liao
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wei Geng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jian Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shixing Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310016, China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Li Liao
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
29
|
Liu Y, Liu Y, Shi P, Hu X, Fan X, Wu Y, Pan J, Bai Q, Li Q. Single-atom nanozyme liposome-integrated microneedles for in situ drug delivery and anti-inflammatory therapy in Parkinson's disease. J Nanobiotechnology 2024; 22:643. [PMID: 39427214 PMCID: PMC11490154 DOI: 10.1186/s12951-024-02924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Treatment for Parkinson's disease (PD) has been impeded by inefficient treatment results and multiple membrane barriers during drug delivery. This study reports the design, synthesis, and application of microneedles (MNs) loaded with mitochondrion-targeted liposome encapsulated iron (Fe)-isolated single-atom nanozymes (Mito@Fe-ISAzyme, MFeI), called MFeI MNs, for in situ drug delivery into the brain parenchyma and efficient enrichment of drugs in lesion sites. In in vitro experiments, MFeI can scavenge reactive oxygen species (ROS) and protect the neurons via mitochondrial targeting, guaranteeing the subsequent treatment of PD. Using PD mouse models, we compared the intravenous injection of MFeI with the brain in situ administration of MFeI MNs (in situ MFeI MNs). Results showed that in situ MFeI MNs significantly improved the deep penetration of the drug into brain parenchyma, especially in the vital pathological sites such as the substantia nigra pars compacta and striatum. Importantly, ROS elimination and neuroinflammatory remission in the lesion site were observed, thereby efficiently alleviating the behavioral disorders and pathological symptoms of PD mice. Therefore, the MNs system for in situ single-atom nanozyme liposome delivery exhibits great potential in PD treatment.
Collapse
Affiliation(s)
- Ying Liu
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Henan, 450000, China
- Henan Key Laboratory of Chronic Disease Management, Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Henan, 450000, China
| | - Ye Liu
- Department of Anaesthesiology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Peimiao Shi
- The Affiliated Tengzhou Central People's Hospital of Xuzhou Medical University, Shandong, 277500, China
| | - Xiaopeng Hu
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Henan, 450000, China
| | - Xiaowan Fan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Henan, 450000, China
| | - Yalong Wu
- Henan Key Laboratory of Chronic Disease Management, Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Henan, 450000, China
| | - Jiangpeng Pan
- Henan Key Laboratory of Chronic Disease Management, Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Henan, 450000, China
| | - Qian Bai
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Henan, 450000, China
| | - Qing Li
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Henan, 450000, China.
| |
Collapse
|
30
|
Feng L, Zhang M, Fan Z. Current trends in colorimetric biosensors using nanozymes for detecting biotoxins (bacterial food toxins, mycotoxins, and marine toxins). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6771-6792. [PMID: 39319401 DOI: 10.1039/d4ay01184h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Biotoxins, predominantly bacterial food toxins, mycotoxins, and marine toxins, have emerged as major threats in the fields of seafood, other foods, feeds, and medicine. They have potential teratogenic, mutagenic, and carcinogenic effects on humans, occasionally triggering high morbidity and mortality. One of the apparent concerns relates to the increasing consumption of fast food resulting in the demand for processed food without adequate consideration of the toxins they may contain. Therefore, developing improved methods for detecting biotoxins is of paramount significance. Nanozymes, a type of nanomaterials exhibiting enzyme-like activity, are increasingly being recognized as viable alternatives to natural enzymes owing to their benefits, such as customizable design, controlled catalytic performance, excellent biocompatibility, and superior stability. The remarkable catalytic activity of nanozymes has led to their broad utilization in the development of colorimetric biosensors. This has emerged as a potent and efficient approach for rapid detection, enabling the creation of innovative colorimetric sensing methodologies through the integration of nanozymes with colorimetric sensors. In this review, recent development in nanozyme research and their application in colorimetric biosensing of biotoxins are examined with an emphasis on their characteristics and performance. The study particularly focuses on the peroxidase (POD) activity, oxidase (OXD) activity, superoxide dismutase (SOD), and catalase (CAT) activity of nanozymes in colorimetric biosensors. Ultimately, the challenges and future prospects of these assays are explored.
Collapse
Affiliation(s)
- Li Feng
- Jiyang College, Zhejiang A&F University, Zhuji, Zhejiang 311800, China.
| | - Mingcheng Zhang
- Jiyang College, Zhejiang A&F University, Zhuji, Zhejiang 311800, China.
| | - Zhiyi Fan
- Jiyang College, Zhejiang A&F University, Zhuji, Zhejiang 311800, China.
| |
Collapse
|
31
|
Li L, Ding Y, Lei M, Xue Y, He X, Xue J, Bu H, Su Y, Ouyang X, Wan Y. DNA Framework-Templated Synthesis of Copper Cluster Nanozyme with Enhanced Activity and Specificity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54389-54400. [PMID: 39322981 DOI: 10.1021/acsami.4c09208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Nanozymes have been developed to overcome the inherent limitations of natural enzymes, such as their low stability and high cost. However, their efficacy has been hindered by their relatively low specificity and activity. Here, we demonstrate the self-assembly of individual copper nanoclusters (CuNCs) via a simple yet fast (10 min) DNA nanosheet (DNS)-templated method, enhancing the peroxidase-like activity and specificity of CuNCs. Furthermore, we demonstrate the successful assembly of CuNCs on different DNA nanostructures by atomic force microscopy (AFM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The resulting micron-scale ultrathin DNA nanosheet-templated CuNCs (DNS@CuNCs) exhibit exceptional catalytic activity, with a specific activity reaching 1.79 × 103 U mg-1. Investigation into the catalytic process reveals that the enhanced activity and specificity arise from disparities in active intermediate content before and after CuNCs assembly. Significantly, the DNS@CuNCs-based biosensor demonstrates remarkable anti-interference capabilities, enabling the detection of H2O2 in undiluted human serum for the first time with a detection limit of 0.99 μM.
Collapse
Affiliation(s)
- Le Li
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P.R. China
| | - Yawen Ding
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P.R. China
| | - Mengyan Lei
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P.R. China
| | - Yumiao Xue
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P.R. China
| | - Xiaoqing He
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Jiangshan Xue
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Huaiyu Bu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yan Su
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Xiangyuan Ouyang
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P.R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| |
Collapse
|
32
|
Li L, Liu X, Liu G, Xu S, Hu G, Wang L. Valence-engineered catalysis-selectivity regulation of molybdenum oxide nanozyme for acute kidney injury therapy and post-cure assessment. Nat Commun 2024; 15:8720. [PMID: 39379388 PMCID: PMC11461881 DOI: 10.1038/s41467-024-53047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
The optimization of the enzyme-like catalytic selectivity of nanozymes for specific reactive oxygen species (ROS)-related applications is significant, and meanwhile the real-time monitoring of ROS is really crucial for tracking the therapeutic process. Herein, we present a mild oxidation valence-engineering strategy to modulate the valence states of Mo in Pluronic F127-coated MoO3-x nanozymes (denoted as MF-x, x: oxidation time) in a controlled manner aiming to improve their specificity of H2O2-associated catalytic reactions for specific therapy and monitoring of ROS-related diseases. Experimentally, MF-0 (Mo average valence 4.64) and MF-10 (Mo average valence 5.68) exhibit exclusively optimal catalase (CAT)- or peroxidase (POD)-like activity, respectively. Density functional theory (DFT) calculations verify the most favorable reaction path for both MF-0- and MF-10-catalyzed reaction processes based on free energy diagram and electronic structure analysis, disclosing the mechanism of the H2O2 activation pathway on the Mo-based nanozymes. Furthermore, MF-0 poses a strong potential in acute kidney injury (AKI) treatment, achieving excellent therapeutic outcomes in vitro and in vivo. Notably, the ROS-responsive photoacoustic imaging (PAI) signal of MF-0 during treatment guarantees real-time monitoring of the therapeutic effect and post-cure assessment in vivo, providing a highly desirable non-invasive diagnostic approach for ROS-related diseases.
Collapse
Affiliation(s)
- Liangyu Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Xiaotong Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Guanghe Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Gaofei Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China.
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China.
| |
Collapse
|
33
|
Zeng Q, Zhong H, Liao J, Huo Q, Miao B, Zeng L, Zhang B, Nie G. Antioxidant activities of metal single-atom nanozymes in biomedicine. Biomater Sci 2024; 12:5150-5163. [PMID: 39254215 DOI: 10.1039/d4bm00978a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Nanozymes are a class of nanomaterials with enzyme-like activity that can mimic the catalytic properties of natural enzymes. The small size, high catalytic activity, and strong stability of nanozymes compared to those of natural enzymes allow them to not only exist in a wide temperature and pH range but also maintain stability in complex environments. Recently developed single-atom nanozymes have metal active sites composed of a single metal atom fixed to a carrier. These metal atoms can act as independent catalytically active centers. Metal single-atom nanozymes have a homogeneous single-atom structure and a suitable coordination environment for stronger catalytic activity and specificity than traditional nanozymes. The antioxidant metal single-atom nanozymes with the ability of removing reactive oxygen species (ROS) can simulate superoxidase dismutase, catalase, and glutathione peroxidase to show different effects in vivo. Furthermore, due to the similar structure of antioxidant enzymes, a metal single-atom nanozyme often has multiple antioxidant activities, and this synergistic effect can more efficiently remove ROS related to oxidative stress. The versatility of single-atom nanozymes encompasses a broad spectrum of biomedical applications such as anti-oxidation, anti-infection, immunomodulatory, biosensing, bioimaging, and tumor therapy applications. Herein, the nervous, circulatory, digestive, motor, immune, and sensory systems are considered in order to demonstrate the role of metal single-atom nanozymes in biomedical antioxidants.
Collapse
Affiliation(s)
- Qingdong Zeng
- Graduate Collaborative Training Base of Shenzhen Second People's Hospital, Heng Yang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Huihai Zhong
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Jiahao Liao
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Qin Huo
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Beiping Miao
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Li Zeng
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Bin Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Guohui Nie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| |
Collapse
|
34
|
Yuan G, Yang B, Chen P, Bai L, Qiao G, Xu Z, Cao Z, Wang Q, Xie L, Lu Y, Pan Y. Regulating Manganese-Site Electronic Structure via Reconstituting Nitrogen Coordination for Efficient Non-Oxygen-Dependent Sonocatalytic Therapy against Orthotopic Breast Cancer. ACS NANO 2024; 18:27630-27641. [PMID: 39327724 DOI: 10.1021/acsnano.4c09052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Sonocatalytic therapy (SCT) has emerged as a promising noninvasive modality for tumor treatment but is hindered by the insufficient generation of ultrasound-induced reactive oxygen species (ROS) and the hypoxic tumor microenvironments. Herein, we fabricated a carbon nanoframe-confined N-coordinated manganese single-atom sonocatalyst with a five-coordinated structure (MnN5 SA/CNF) using a phthalocyanine-mediated pyrolysis strategy. The precise coordination structure was identified by synchrotron X-ray absorption fine structure analyses. The MnN5 SA/CNF exhibits superior and nonoxygen-dependent sonocatalytic activity owing to the optimized coordination structure and cavitation effect enhanced by defects. Additionally, density functional theory studies reveal that the five-coordination structure downshifts the d-band center of Mn from -0.547 to -0.829 eV and enhances the desorption capacity for oxygen-containing intermediates, thus accelerating the catalytic process. Finally, the as-synthesized MnN5 SA/CNF demonstrates a significantly enhanced antitumor effect through mitochondrial apoptosis in an orthotopic breast cancer mouse model. This work explores the potential of SAzymes-supported biomedical interventions by leveraging enzymatic activity with sonocatalytic properties.
Collapse
Affiliation(s)
- Guotao Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Otolaryngology, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T., Shenzhen 518116, China
| | - Bowen Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Pin Chen
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lu Bai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ge Qiao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zexin Xu
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhengyu Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qiwei Wang
- Jihua Institute of Biomedical Engineering Technology, Jihua Laboratory, Foshan 528200, China
| | - Lisi Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yutong Lu
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
35
|
Bu JW, Wang ZG, Liu HY, Liu SL. Metal nanozymes modulation of reactive oxygen species as promising strategies for cancer therapy. Int J Pharm 2024; 662:124453. [PMID: 39013531 DOI: 10.1016/j.ijpharm.2024.124453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/11/2024] [Accepted: 07/07/2024] [Indexed: 07/18/2024]
Abstract
Nanozymes, nanostructured materials emulating natural enzyme activities, exhibit potential in catalyzing reactive oxygen species (ROS) production for cancer treatment. By facilitating oxidative reactions, elevating ROS levels, and influencing the tumor microenvironment (TME), nanozymes foster the eradication of cancer cells. Noteworthy are their superior stability, ease of preservation, and cost-effectiveness compared to natural enzymes, rendering them invaluable for medical applications. This comprehensive review intricately explores the interplay between ROS and tumor therapy, with a focused examination of metal-based nanozyme strategies mitigating tumor hypoxia. It provides nuanced insights into diverse catalytic processes, mechanisms, and surface modifications of various metal nanozymes, shedding light on their role in intra-tumoral ROS generation and applications in antioxidant therapy. The review concludes by delineating specific potential prospects and challenges associated with the burgeoning use of metal nanozymes in future tumor therapies.
Collapse
Affiliation(s)
- Jin-Wei Bu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Zhi-Gang Wang
- College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Hao-Yang Liu
- College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China.
| | - Shu-Lin Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China; College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
36
|
Xu Y, Ma Y, Chen X, Wu K, Wang K, Shen Y, Liu S, Gao XJ, Zhang Y. Regulating Reactive Oxygen Intermediates of Fe-N-C SAzyme via Second-Shell Coordination for Selective Aerobic Oxidation Reactions. Angew Chem Int Ed Engl 2024; 63:e202408935. [PMID: 38895986 DOI: 10.1002/anie.202408935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
Reactive oxygen species (ROS) regulation for single-atom nanozymes (SAzymes), e.g., Fe-N-C, is a key scientific issue that determines the activity, selectivity, and stability of aerobic reaction. However, the poor understanding of ROS formation mechanism on SAzymes greatly hampers their wider deployment. Herein, inspired by cytochromes P450 affording bound ROS intermediates in O2 activation, we report Fe-N-C containing the same FeN4 but with tunable second-shell coordination can effectively regulate ROS production pathways. Remarkably, compared to the control Fe-N-C sample, the second-shell sulfur functionalized Fe-N-C delivered a 2.4-fold increase of oxidase-like activity via the bound Fe=O intermediate. Conversely, free ROS (⋅O2 -) release was significantly reduced after functionalization, down to only 17 % of that observed for Fe-N-C. The detailed characterizations and theoretical calculations revealed that the second-shell sulfur functionalization significantly altered the electronic structure of FeN4 sites, leading to an increase of electron density at Fermi level. It enhanced the electron transfer from active sites to the key intermediate *OOH, thereby ultimately determining the type of ROS in aerobic oxidation process. The proposed Fe-N-Cs with different second-shell anion were further applied to three aerobic oxidation reactions with enhanced activity, selectivity, and stability.
Collapse
Affiliation(s)
- Yuan Xu
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| | - Yuanjie Ma
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xinghua Chen
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| | - Kaiqing Wu
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| | - Kaiyuan Wang
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| | - Yanfei Shen
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| | - Songqin Liu
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| | - Xuejiao J Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Yuanjian Zhang
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| |
Collapse
|
37
|
Wang L, Liu Z, Yao L, Liu S, Wang Q, Qu H, Wu Y, Mao Y, Zheng L. A Bioinspired Single-Atom Fe Nanozyme with Excellent Laccase-Like Activity for Efficient Aflatoxin B 1 Removal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400629. [PMID: 38682737 DOI: 10.1002/smll.202400629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/10/2024] [Indexed: 05/01/2024]
Abstract
The applications of natural laccases are greatly restricted because of their drawbacks like poor biostability, high costs, and low recovery efficiency. M/NC single atom nanozymes (M/NC SAzymes) are presenting as great substitutes due to their superior enzyme-like activity, excellent selectivity and high stability. In this work, inspired by the catalytic active center of natural enzyme, a biomimetic Fe/NC SAzyme (Fe-SAzyme) with O2-Fe-N4 coordination is successfully developed, exhibiting excellent laccase-like activity. Compared with their natural counterpart, Fe-SAzyme has shown superior catalytic efficiency and excellent stability under a wide range of pH (3.0-9.0), temperature (4-80 °C) and NaCl strength (0-300 mm). Interestingly, density functional theory (DFT) calculations reveal that the high catalytic performance is attributed to the activation of O2 by O2-Fe-N4 sites, which weakened the O─O bonds in the oxygen-to-water oxidation pathway. Furthermore, Fe-SAzyme is successfully applied for efficient aflatoxin B1 removal based on its robust laccase-like catalytic activity. This work provides a strategy for the rational design of laccase-like SAzymes, and the proposed catalytic mechanism will help to understand the coordination environment effect of SAzymes on laccase-like catalytic processes.
Collapse
Affiliation(s)
- Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Zixuan Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Lili Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Shuai Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Qiuping Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yuen Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
38
|
Liu L, Sun X, Li Y, Zhang XD. Nonmetal Doping Modulates Fe Single-Atom Catalysts for Enhancement in Peroxidase Mimicking via Symmetry Disruption, Distortion, and Charge Transfer. ACS OMEGA 2024; 9:35144-35153. [PMID: 39157134 PMCID: PMC11325499 DOI: 10.1021/acsomega.4c04990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024]
Abstract
Developing biomimetic catalysts with excellent peroxidase (POD)-like activity has been a long-standing goal for researchers. Doping nonmetallic atoms with different electronegativity to boost the POD-like activity of Fe-N-C single-atom catalysts (SACs) has been successfully realized. However, the introduction of heteroatoms to regulate the coordination environment of the central Fe atom and thus influence the activation of the H2O2 molecule in the POD-like reaction has not been extensively explored. Herein, the effect of different doping sites and numbers of heteroatoms (P, S, B, and N) on the adsorption and activation of H2O2 molecules of Fe-N sites is thoroughly investigated by density functional theory (DFT) calculations. In general, alternation in the catalytic efficiency directly depends on the transfer of electrons and the geometrical shifts near the Fe-N site. First, the symmetry disruption of the Fe-N4 site by P, S, and B doping is beneficial to the activation of H2O2 due to a significant reduction in the adsorption energies. In some cases, without Fe-N4 site disruption, the configurations fail to modulate the adsorption behavior of H2O2. Second, Fe-N-P/S configurations exhibit a stronger affinity for H2O2 molecules due to the significant out-of-plane distortions induced by larger atomic radii of P and S. Moreover, the synergistic effects of Fe and doping atoms P, S, and B with weaker electronegativity than that of N atoms promote electron donation to generated oxygen-containing intermediates, thus facilitating subsequent electron transfer with other substrates. This work demonstrates the critical role of tuning the coordinating environment of Fe-N active centers by heteroatom doping and provides theoretical guidance for controlling the types by breaking the symmetry of SACs to achieve optimal POD-like catalytic activity and selectivity.
Collapse
Affiliation(s)
- Ling Liu
- Tianjin
Key Laboratory of Brain Science and Neural Engineering, Academy of
Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xin Sun
- Tianjin
Key Laboratory of Brain Science and Neural Engineering, Academy of
Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yonghui Li
- Department
of Physics and Tianjin Key Laboratory of Low Dimensional Materials
Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Xiao-Dong Zhang
- Tianjin
Key Laboratory of Brain Science and Neural Engineering, Academy of
Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department
of Physics and Tianjin Key Laboratory of Low Dimensional Materials
Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| |
Collapse
|
39
|
Feng K, Wang G, Wang S, Ma J, Wu H, Ma M, Zhang Y. Breaking the pH Limitation of Nanozymes: Mechanisms, Methods, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401619. [PMID: 38615261 DOI: 10.1002/adma.202401619] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Although nanozymes have drawn great attention over the past decade, the activities of peroxidase-like, oxidase-like, and catalase-like nanozymes are often pH dependent with elusive mechanism, which largely restricts their application. Therefore, a systematical discussion on the pH-related catalytic mechanisms of nanozymes together with the methods to overcome this limitation is in need. In this review, various nanozymes exhibiting pH-dependent catalytic activities are collected and the root causes for their pH dependence are comprehensively analyzed. Subsequently, regulatory concepts including catalytic environment reconstruction and direct catalytic activity improvement to break this pH restriction are summarized. Moreover, applications of pH-independent nanozymes in sensing, disease therapy, and pollutant degradation are overviewed. Finally, current challenges and future opportunities on the development of pH-independent nanozymes are suggested. It is anticipated that this review will promote the further design of pH-independent nanozymes and broaden their application range with higher efficiency.
Collapse
Affiliation(s)
- Kaizheng Feng
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Guancheng Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Shi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Jingyuan Ma
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Haoan Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Ming Ma
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| |
Collapse
|
40
|
Wang K, Hong Q, Zhu C, Xu Y, Li W, Wang Y, Chen W, Gu X, Chen X, Fang Y, Shen Y, Liu S, Zhang Y. Metal-ligand dual-site single-atom nanozyme mimicking urate oxidase with high substrates specificity. Nat Commun 2024; 15:5705. [PMID: 38977710 PMCID: PMC11231224 DOI: 10.1038/s41467-024-50123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an emerging type of non-protein artificial enzymes, are promising to simulate enzyme active centers, but owing to the lack of recognition sites, realizing substrate specificity is a formidable task. Here we report a metal-ligand dual-site SAzyme (Ni-DAB) that exhibited selectivity in uric acid (UA) oxidation. Ni-DAB mimics the dual-site catalytic mechanism of urate oxidase, in which the Ni metal center and the C atom in the ligand serve as the specific UA and O2 binding sites, respectively, characterized by synchrotron soft X-ray absorption spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, and isotope labeling. The theoretical calculations reveal the high catalytic specificity is derived from not only the delicate interaction between UA and the Ni center but also the complementary oxygen reduction at the beta C site in the ligand. As a potential application, a Ni-DAB-based biofuel cell using human urine is constructed. This work unlocks an approach of enzyme-like isolated dual sites in boosting the selectivity of non-protein artificial enzymes.
Collapse
Affiliation(s)
- Kaiyuan Wang
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Qing Hong
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Caixia Zhu
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Yuan Xu
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Wang Li
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Ying Wang
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Wenhao Chen
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Xiang Gu
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Xinghua Chen
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Yanfeng Fang
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Yanfei Shen
- Medical School, Southeast University, Nanjing, 210009, China.
| | - Songqin Liu
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China.
- Department of Oncology, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
41
|
Zhou Y, Xu M, Shen W, Xu Y, Shao A, Xu P, Yao K, Han H, Ye J. Recent Advances in Nanomedicine for Ocular Fundus Neovascularization Disease Management. Adv Healthc Mater 2024; 13:e2304626. [PMID: 38406994 PMCID: PMC11468720 DOI: 10.1002/adhm.202304626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Indexed: 02/27/2024]
Abstract
As an indispensable part of the human sensory system, visual acuity may be impaired and even develop into irreversible blindness due to various ocular pathologies. Among ocular diseases, fundus neovascularization diseases (FNDs) are prominent etiologies of visual impairment worldwide. Intravitreal injection of anti-vascular endothelial growth factor drugs remains the primary therapy but is hurdled by common complications and incomplete potency. To renovate the current therapeutic modalities, nanomedicine emerged as the times required, which is endowed with advanced capabilities, able to fulfill the effective ocular fundus drug delivery and achieve precise drug release control, thus further improving the therapeutic effect. This review provides a comprehensive summary of advances in nanomedicine for FND management from state-of-the-art studies. First, the current therapeutic modalities for FNDs are thoroughly introduced, focusing on the key challenges of ocular fundus drug delivery. Second, nanocarriers are comprehensively reviewed for ocular posterior drug delivery based on the nanostructures: polymer-based nanocarriers, lipid-based nanocarriers, and inorganic nanoparticles. Thirdly, the characteristics of the fundus microenvironment, their pathological changes during FNDs, and corresponding strategies for constructing smart nanocarriers are elaborated. Furthermore, the challenges and prospects of nanomedicine for FND management are thoroughly discussed.
Collapse
Affiliation(s)
- Yifan Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Wenyue Shen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Yufeng Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - An Shao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Peifang Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| |
Collapse
|
42
|
Pan H, Chen X, Xiao M, Xu H, Guo J, Lu Z, Cen D, Yu X, Shi S. Multifunctional RGD coated a single-atom iron nanozyme: A highly selective approach to inducing ferroptosis and enhancing immunotherapy for pancreatic cancer. NANO RESEARCH 2024; 17:5469-5478. [DOI: 10.1007/s12274-024-6492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2025]
|
43
|
Fu Z, Fan K, He X, Wang Q, Yuan J, Lim KS, Tang JN, Xie F, Cui X. Single-Atom-Based Nanoenzyme in Tissue Repair. ACS NANO 2024; 18:12639-12671. [PMID: 38718193 DOI: 10.1021/acsnano.4c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Since the discovery of ferromagnetic nanoparticles Fe3O4 that exhibit enzyme-like activity in 2007, the research on nanoenzymes has made significant progress. With the in-depth study of various nanoenzymes and the rapid development of related nanotechnology, nanoenzymes have emerged as a promising alternative to natural enzymes. Within nanozymes, there is a category of metal-based single-atom nanozymes that has been rapidly developed due to low cast, convenient preparation, long storage, less immunogenicity, and especially higher efficiency. More importantly, single-atom nanozymes possess the capacity to scavenge reactive oxygen species through various mechanisms, which is beneficial in the tissue repair process. Herein, this paper systemically highlights the types of metal single-atom nanozymes, their catalytic mechanisms, and their recent applications in tissue repair. The existing challenges are identified and the prospects of future research on nanozymes composed of metallic nanomaterials are proposed. We hope this review will illuminate the potential of single-atom nanozymes in tissue repair, encouraging their sequential clinical translation.
Collapse
Affiliation(s)
- Ziliang Fu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Kexin Fan
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xingjian He
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Yuan
- Department of Cardiology, Shenzhen People's Hospital, Shenzhen, Guangdong 518001, China
| | - Khoon S Lim
- School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Jun-Nan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Fangxi Xie
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, Guangdong 519082, China
| | - Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
44
|
Zhang W, Zhao M, Chu D, Chen H, Cui B, Ning Q, Wang X, Li Z, Cao S, Li J. Dual-ROS-scavenging and dual-lingering nanozyme-based eye drops alleviate dry eye disease. J Nanobiotechnology 2024; 22:229. [PMID: 38720321 PMCID: PMC11077849 DOI: 10.1186/s12951-024-02499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024] Open
Abstract
Efficiently removing excess reactive oxygen species (ROS) generated by various factors on the ocular surface is a promising strategy for preventing the development of dry eye disease (DED). The currently available eye drops for DED treatment are palliative, short-lived and frequently administered due to the short precorneal residence time. Here, we developed nanozyme-based eye drops for DED by exploiting borate-mediated dynamic covalent complexation between n-FeZIF-8 nanozymes (n-Z(Fe)) and poly(vinyl alcohol) (PVA) to overcome these problems. The resultant formulation (PBnZ), which has dual-ROS scavenging abilities and prolonged corneal retention can effectively reduce oxidative stress, thereby providing an excellent preventive effect to alleviate DED. In vitro and in vivo experiments revealed that PBnZ could eliminate excess ROS through both its multienzyme-like activity and the ROS-scavenging activity of borate bonds. The positively charged nanozyme-based eye drops displayed a longer precorneal residence time due to physical adhesion and the dynamic borate bonds between phenyboronic acid and PVA or o-diol with mucin. The in vivo results showed that eye drops could effectively alleviate DED. These dual-function PBnZ nanozyme-based eye drops can provide insights into the development of novel treatment strategies for DED and other ROS-mediated inflammatory diseases and a rationale for the application of nanomaterials in clinical settings.
Collapse
Affiliation(s)
- Wei Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Mengyang Zhao
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Dandan Chu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Huiying Chen
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Bingbing Cui
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Qingyun Ning
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xing Wang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Shaokui Cao
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
45
|
Wang Y, He X, Huang K, Cheng N. Nanozyme as a rising star for metabolic disease management. J Nanobiotechnology 2024; 22:226. [PMID: 38711066 PMCID: PMC11071342 DOI: 10.1186/s12951-024-02478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Nanozyme, characterized by outstanding and inherent enzyme-mimicking properties, have emerged as highly promising alternatives to natural enzymes owning to their exceptional attributes such as regulation of oxidative stress, convenient storage, adjustable catalytic activities, remarkable stability, and effortless scalability for large-scale production. Given the potent regulatory function of nanozymes on oxidative stress and coupled with the fact that reactive oxygen species (ROS) play a vital role in the occurrence and exacerbation of metabolic diseases, nanozyme offer a unique perspective for therapy through multifunctional activities, achieving essential results in the treatment of metabolic diseases by directly scavenging excess ROS or regulating pathologically related molecules. The rational design strategies, nanozyme-enabled therapeutic mechanisms at the cellular level, and the therapies of nanozyme for several typical metabolic diseases and underlying mechanisms are discussed, mainly including obesity, diabetes, cardiovascular disease, diabetic wound healing, and others. Finally, the pharmacokinetics, safety analysis, challenges, and outlooks for the application of nanozyme are also presented. This review will provide some instructive perspectives on nanozyme and promote the development of enzyme-mimicking strategies in metabolic disease therapy.
Collapse
Affiliation(s)
- Yanan Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China
| | - Xiaoyun He
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China
| | - Kunlun Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China.
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China.
| |
Collapse
|
46
|
Liu S, Bai Q, Jiang Y, Gao Y, Chen Z, Shang L, Zhang S, Yu L, Yang D, Sui N, Zhu Z. Multienzyme-Like Nanozyme Encapsulated Ocular Microneedles for Keratitis Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308403. [PMID: 38098457 DOI: 10.1002/smll.202308403] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/12/2023] [Indexed: 05/25/2024]
Abstract
Keratitis, an inflammation of the cornea caused by bacterial or fungal infections, is one of the leading causes of severe visual disability and blindness. Keratitis treatment requires both the prevention of infection and the reduction of inflammation. However, owing to their limited therapeutic functions, in addition to the ocular barrier, existing conventional medications are characterized by poor efficacy and low bioavailability, requiring high dosages or frequent topical treatment, which represents a burden on patients and increases the risk of side effects. In this study, manganese oxide nanocluster-decorated graphdiyne nanosheets (MnOx/GDY) are developed as multienzyme-like nanozymes for the treatment of infectious keratitis and loaded into hyaluronic acid and polymethyl methacrylate-based ocular microneedles (MGMN). MGMN not only exhibits antimicrobial and anti-inflammatory effects owing to its multienzyme-like activities, including oxidase, peroxidase, catalase, and superoxide dismutase mimics but also crosses the ocular barrier and shows increased bioavailability via the microneedle system. Moreover, MGMN is demonstrated to eliminate pathogens, prevent biofilm formation, reduce inflammation, alleviate ocular hypoxia, and promote the repair of corneal epithelial damage in in vitro, ex vivo, and in vivo experiments, thus providing a better therapeutic effect than commercial ophthalmic voriconazole, with no obvious microbial resistance or cytotoxicity.
Collapse
Affiliation(s)
- Shen Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Qiang Bai
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Yujie Jiang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Yonghui Gao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Zhen Chen
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Limin Shang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Siying Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Linrong Yu
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Dongqin Yang
- Central Laboratory, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| |
Collapse
|
47
|
Shen J, Chen J, Qian Y, Wang X, Wang D, Pan H, Wang Y. Atomic Engineering of Single-Atom Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313406. [PMID: 38319004 DOI: 10.1002/adma.202313406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Single-atom nanozymes (SAzymes) showcase not only uniformly dispersed active sites but also meticulously engineered coordination structures. These intricate architectures bestow upon them an exceptional catalytic prowess, thereby captivating numerous minds and heralding a new era of possibilities in the biomedical landscape. Tuning the microstructure of SAzymes on the atomic scale is a key factor in designing targeted SAzymes with desirable functions. This review first discusses and summarizes three strategies for designing SAzymes and their impact on reactivity in biocatalysis. The effects of choices of carrier, different synthesis methods, coordination modulation of first/second shell, and the type and number of metal active centers on the enzyme-like catalytic activity are unraveled. Next, a first attempt is made to summarize the biological applications of SAzymes in tumor therapy, biosensing, antimicrobial, anti-inflammatory, and other biological applications from different mechanisms. Finally, how SAzymes are designed and regulated for further realization of diverse biological applications is reviewed and prospected. It is envisaged that the comprehensive review presented within this exegesis will furnish novel perspectives and profound revelations regarding the biomedical applications of SAzymes.
Collapse
Affiliation(s)
- Ji Shen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yuping Qian
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xinqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yuguang Wang
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
48
|
Yang Z, Yuan M, Cheng Z, Liu B, Ma Z, Ma J, Zhang J, Ma X, Ma P, Lin J. Defect-Repaired g-C 3N 4 Nanosheets: Elevating the Efficacy of Sonodynamic Cancer Therapy Through Enhanced Charge Carrier Migration. Angew Chem Int Ed Engl 2024; 63:e202401758. [PMID: 38320968 DOI: 10.1002/anie.202401758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
Sonodynamic therapy (SDT) has garnered growing interest owing to its high tissue penetration depth and minimal side effects. However, the lack of efficient sonosensitizers remains the primary limiting factor for the clinical application of this treatment method. Here, defect-repaired graphene phase carbon nitride (g-C3N4) nanosheets are prepared and utilized for enhanced SDT in anti-tumor treatment. After defect engineering optimization, the bulk defects of g-C3N4 are significantly reduced, resulting in higher crystallinity and exhibiting a polyheptazine imide (PHI) structure. Due to the more extended conjugated structure of PHI, facilitating faster charge transfer on the surface, it exhibits superior SDT performance for inducing apoptosis in tumor cells. This work focuses on introducing a novel carbon nitride nanomaterial as a sonosensitizer and a strategy for optimizing sonosensitizer performance by reducing bulk defects.
Collapse
Affiliation(s)
- Zhuang Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Ziyong Cheng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Zhizi Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Jie Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Jiashi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Xinyu Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| |
Collapse
|
49
|
Xing Y, Chen X, Zhao H. Hydroxylase-like Biomimetic Nanozyme Synthesized via a Urea-Mediated MOF Pyrolytic Reconstruction Strategy for Non-" o-Phenol hydroxyl"-Dependent Dopamine Electrochemical Sensing. Anal Chem 2024; 96:6037-6044. [PMID: 38560885 DOI: 10.1021/acs.analchem.4c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Dopamine (DA), an essential neurotransmitter, is closely associated with various neurological disorders, whose real-time dynamic monitoring is significant for evaluating the physiological activities of neurons. Electrochemical sensing methods are commonly used to determine DA, but they mostly rely on the redox reaction of its o-phenolic hydroxyl group, which makes it difficult to distinguish it from substances with this group. Here, we design a biomimetic nanozyme inspired by the coordination structure of the copper-based active site of dopamine β-hydroxylase, which was successfully synthesized via a urea-mediated MOF pyrolysis reconstruction strategy. Experimental studies and theoretical calculations revealed that the nanozyme with Cu-N3 coordination could hydroxylate the carbon atom of the DA β-site at a suitable potential and that the active sites of this Cu-N3 structure have the lowest binding energy for the DA β-site. With this property, the new oxidation peak achieves the specific detection of DA rather than the traditional electrochemical signal of o-phenol hydroxyl redox, which would effectively differentiate it from neurotransmitters, such as norepinephrine and epinephrine. The sensor exhibited good monitoring capability in DA concentrations from 0.05 to 16.7 μM, and its limit of detection was 0.03 μM. Finally, the sensor enables the monitoring of DA released from living cells and can be used to quantitatively analyze the effect of polystyrene microplastics on the amount of DA released. The research provides a method for highly specific monitoring of DA and technical support for initial screening for neurocytotoxicity of pollutants.
Collapse
Affiliation(s)
- Yifei Xing
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xinyu Chen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
50
|
Yu B, Sun W, Lin J, Fan C, Wang C, Zhang Z, Wang Y, Tang Y, Lin Y, Zhou D. Using Cu-Based Metal-Organic Framework as a Comprehensive and Powerful Antioxidant Nanozyme for Efficient Osteoarthritis Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307798. [PMID: 38279574 PMCID: PMC10987124 DOI: 10.1002/advs.202307798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/13/2023] [Indexed: 01/28/2024]
Abstract
Developing nanozymes with effective reactive oxygen species (ROS) scavenging ability is a promising approach for osteoarthritis (OA) treatment. Nonetheless, numerous nanozymes lie in their relatively low antioxidant activity. In certain circumstances, some of these nanozymes may even instigate ROS production to cause side effects. To address these challenges, a copper-based metal-organic framework (Cu MOF) nanozyme is designed and applied for OA treatment. Cu MOF exhibits comprehensive and powerful activities (i.e., SOD-like, CAT-like, and •OH scavenging activities) while negligible pro-oxidant activities (POD- and OXD-like activities). Collectively, Cu MOF nanozyme is more effective at scavenging various types of ROS than other Cu-based antioxidants, such as commercial CuO and Cu single-atom nanozyme. Density functional theory calculations also confirm the origin of its outstanding enzyme-like activities. In vitro and in vivo results demonstrate that Cu MOF nanozyme exhibits an excellent ability to decrease intracellular ROS levels and relieve hypoxic microenvironment of synovial macrophages. As a result, Cu MOF nanozyme can modulate the polarization of macrophages from pro-inflammatory M1 to anti-inflammatory M2 subtype, and inhibit the degradation of cartilage matrix for efficient OA treatment. The excellent biocompatibility and protective properties of Cu MOF nanozyme make it a valuable asset in treating ROS-related ailments beyond OA.
Collapse
Affiliation(s)
- Bo Yu
- Department of Orthopaedics and Traumatology & Department of Ultrasonic Diagnosis, Zhujiang HospitalKey Laboratory of Mental Health of the Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Wei Sun
- Department of Orthopaedics and Traumatology & Department of Ultrasonic Diagnosis, Zhujiang HospitalKey Laboratory of Mental Health of the Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Juntao Lin
- Department of Orthopaedics and Traumatology & Department of Ultrasonic Diagnosis, Zhujiang HospitalKey Laboratory of Mental Health of the Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Chaoyu Fan
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials ResearchXiamen UniversityXiamen361005P. R. China
| | - Chengxinqiao Wang
- Department of Orthopaedics and Traumatology & Department of Ultrasonic Diagnosis, Zhujiang HospitalKey Laboratory of Mental Health of the Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Zhisen Zhang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials ResearchXiamen UniversityXiamen361005P. R. China
| | - Yupeng Wang
- Department of Orthopaedics and Traumatology & Department of Ultrasonic Diagnosis, Zhujiang HospitalKey Laboratory of Mental Health of the Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Yonghua Tang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials ResearchXiamen UniversityXiamen361005P. R. China
| | - Youhui Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials ResearchXiamen UniversityXiamen361005P. R. China
| | - Dongfang Zhou
- Department of Orthopaedics and Traumatology & Department of Ultrasonic Diagnosis, Zhujiang HospitalKey Laboratory of Mental Health of the Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| |
Collapse
|