1
|
Tang B, Ji Q, Zhang X, Shi R, Ma J, Zhuang Z, Sun M, Wang H, Liu R, Liu H, Wang C, Guo Z, Lu L, Jiang P, Wang D, Yan W. Symmetry Breaking of FeN 4 Moiety via Edge Defects for Acidic Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2025; 64:e202424135. [PMID: 39776237 DOI: 10.1002/anie.202424135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Fe-N-C catalysts, with a planar D4h symmetric FeN4 structure, show promising as noble metal-free oxygen reduction reaction catalysts. Nonetheless, the highly symmetric structure restricts the effective manipulation of its geometric and electronic structures, impeding further enhancements in oxygen reduction reaction performance. Here, a high proportion of asymmetric edge-carbon was successfully introduced into Fe-N-C catalysts through morphology engineering, enabling the precise modulation of the FeN4 active site. Electrochemical experimental results demonstrate that FeN4@porous carbon (FeN4@PC), featuring enriched asymmetric edge-FeN4 active sites, exhibits higher acidic oxygen reduction reaction catalytic activity compared to FeN4@flaky carbon (FeN4@FC), where symmetric FeN4 is primarily distributed within the basal-plane. Synchrotron X-ray absorption spectra, X-ray emission spectra, and theoretical calculations indicate that the enhanced oxygen reduction reaction catalytic activity of FeN4@PC is attributed to the higher oxidation state of Fe species in the edge structure of FeN4@PC. This finding paves the way for controlling the local geometric and electronic structures of single-atom active sites, leading to the development of novel and efficient Fe-N-C catalysts.
Collapse
Affiliation(s)
- Bing Tang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qianqian Ji
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xilin Zhang
- School of Physics, Henan Normal University, Xinxiang, 453007, China
| | - Runchuan Shi
- School of Physics, Henan Normal University, Xinxiang, 453007, China
| | - Jin Ma
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mei Sun
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Huijuan Wang
- Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei, 230026, China
| | - Ruiqi Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hengjie Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhiying Guo
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanlu Lu
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Peng Jiang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
2
|
Dang Y, Liu Y, Xiang P, Tan Z, Tian Z, Greiner M, Heumann S, Ding Y, Qiao ZA. Carbon Surface Chemistry: Benchmark for the Analysis of Oxygen Functionalities on Carbon Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418239. [PMID: 39916535 DOI: 10.1002/adma.202418239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Indexed: 03/21/2025]
Abstract
The explicit roles of the hardly avoidable oxygen species on carbon materials in various fields remain contentious due to the limitations of characterization techniques, which lead to a lack of fundamental understanding of carbon surface chemistry. This study delves exhaustively into the comprehension of the features of different oxygen-modified carbons through the dynamic evolution of surficial oxygen functional groups. Significant differences of thermal stability and electronic properties among various oxygen species are elucidated via in situ characterizations and theoretical calculations, providing a reliable benchmark for identifying oxygen functional groups on carbon materials. The chemical properties of the carbon materials are simultaneously investigated to show the influence of the oxygen functional groups on carbon structures, redox stability, and scalable metal adsorption. These findings not only consider the common misconception that oxygen species produced under various conditions possess identical properties but also raise awareness of understanding carbon surface chemistry in the atomic level.
Collapse
Affiliation(s)
- Yuying Dang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18 Tianshui Middle Road, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yumeng Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun, 130012, China
| | - Pan Xiang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Road, Ningbo, 315201, China
| | - Zhengwen Tan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun, 130012, China
| | - Ziqi Tian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Road, Ningbo, 315201, China
| | - Mark Greiner
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Saskia Heumann
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Yuxiao Ding
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18 Tianshui Middle Road, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun, 130012, China
| |
Collapse
|
3
|
Liu Z, Rhimi B, Liu Z, Mao L, Zhou M, Jiang Z, Jiang Z. Modulating Defect Concentration of Boron Nitride Flowers for CO 2 Photoreduction. Inorg Chem 2025; 64:3445-3453. [PMID: 39933151 DOI: 10.1021/acs.inorgchem.4c05019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The efficient conversion of carbon dioxide into high-value chemicals presents a promising strategy for achieving carbon neutrality. Defects play a critical role in numerous catalytic reactions. However, an excessive number of defects can lead to electron trapping, deactivating the catalyst surface. Optimizing the defect concentration is crucial for significantly enhancing catalytic performance. In this work, two types of flower-like BN-based photocatalysts composed of nanofibers were synthesized by in situ self-assembly and high-temperature calcination. The BN-based photocatalyst with fewer defects (Vpoor-BNF) achieved a CO2 reduction rate 2 times higher than that of the BN-based photocatalyst with more defects (Vrich-BNF), with a CO yield of 32 μmol g-1 h-1 with 86.9% selectivity. Importantly, the mechanism of enhanced CO2 reduction activity over BN-like photocatalysts was investigated in combination with various advanced characterization. The results show that excessive C doping causes carbon deposition, creating more defects that trap photogenerated electrons and affect the photocatalytic activity. In contrast, the Vpoor-BNF has longer photogenerated carrier lifetime and better photoelectric properties, which are beneficial for the CO2 photoreduction reaction. In addition, the good stability of the catalyst was confirmed by the cyclic experiment. This study presents an effective approach for synthesizing defect-controlled catalysts, which is beneficial for the development of advanced photocatalysts.
Collapse
Affiliation(s)
- Zhehao Liu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Baker Rhimi
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Zheyang Liu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Liang Mao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Min Zhou
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Zhaochen Jiang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Zhifeng Jiang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| |
Collapse
|
4
|
Pino Rios R. Exploring Local Reactivity of Large Systems through Combining Conceptual DFT and the GFN2-xTB Method. J Phys Chem A 2025; 129:1542-1548. [PMID: 39901586 DOI: 10.1021/acs.jpca.4c05879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
This study evaluates the ability of the GFN2-xTB method and Conceptual Density Functional Theory-derived tools to predict local reactivity in large systems. Carbon-based systems such as C60, C70, Li+@C70, C240, C360, C648, and C720 have been used as test sets, and the orbital-weighted dual descriptor was employed to identify nucleophilic and electrophilic regions, providing a comprehensive analysis of their reactivity patterns. The results confirm that the GFN2-xTB method accurately reproduces reactivity profiles observed experimentally and at the DFT level, particularly in well-known fullerenes like C60 and C70. The addition of an endohedral Li+ cation to C70 demonstrated enhanced electrophilicity and reduced unfavorable nucleophilic regions, consistent with previous studies. For larger and less-studied systems, such as C240, C360, C648, and C720, the analysis revealed distinct reactivity features, including the localization of nucleophilic regions in -C≡C- units of C240/C648, the nucleophilic regions at the ends of the C360 nanoparticle model, and the emergence of electrophilic zones due to the reduction in aromaticity of the benzenoid rings in C720. These findings validate the GFN2-xTB method as a computationally efficient alternative for exploring the reactivity of large structures and contribute valuable insights into their potential applications in molecular design for material science and nanotechnology.
Collapse
Affiliation(s)
- Ricardo Pino Rios
- Instituto de Ciencias Exactas y Naturales (ICEN), Universidad Arturo Prat, Playa Brava 3256, Iquique 1111346, Chile
| |
Collapse
|
5
|
Liu Y, Zhang L, Tan Z, Sun W, Zhang L, Qiao ZA. Molecular-level Modulation of N, S-Co-Doped Mesoporous Carbon Nanospheres for Selective Aqueous Catalytic Oxidation of Ethylbenzene. Angew Chem Int Ed Engl 2025; 64:e202419438. [PMID: 39592406 DOI: 10.1002/anie.202419438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 11/28/2024]
Abstract
Selective oxidation of aromatic alkanes into high value-added products through benzylic C-H bond activation is one of the main reactions in chemical industry. On account of the constantly increasing demand for mass production, efficient, eco-friendly and sustainable catalysts are urgently needed. Herein, we describe a facile and versatile emulsion-assisted interface self-assembly strategy towards molecular-level fabrication of co-doped mesoporous carbon nanospheres with controllable active N and S species. The method enables a high degree of control over nanoparticle sizes, mesoporous nanostructures, contents of heteroatoms and the chemical composition. The optimized catalyst exhibits high catalytic performance of 97 % ethylbenzene conversion and 98 % selectivity to acetophenone. Density functional theory simulations reveal that N, S-co-doping leads to the redistribution of charge and spin densities, introducing more active carbon atoms and realizing aerobic oxidation of ethylbenzene efficiently. This work presents a general strategy for molecular-level design of carbon-based catalysts, and also provides new insight into the influence of heteroatom-doping on catalytic properties.
Collapse
Affiliation(s)
- Yumeng Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Liangliang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Zhengwen Tan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Wenyue Sun
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Ling Zhang
- State Key Laboratory of Supramolecular Structure and Materials, C, ollege of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
6
|
Sun J, Dang Y, Sun X, Heumann S, Ding Y. Can Carbon be Used as an Anode for Water Splitting? CHEMSUSCHEM 2025; 18:e202401340. [PMID: 39476257 PMCID: PMC11789973 DOI: 10.1002/cssc.202401340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/04/2024] [Indexed: 02/04/2025]
Abstract
Carbon materials, whose structural and electronic properties can be fine-tuned, are promising material solutions for many energy-related systems. However, due to the lack of fundamental understanding of the carbon surface chemistry, especially when they are used in electrolytes, the rapid development of carbon as electrodes has led to many widely accepted misunderstandings. Focusing on the case of carbon-based electrode for water splitting, this Viewpoint tries to highlight the main problems of the area and demonstrates/presents the dynamic carbon surface chemistry in the application. The role of carbon as an anode for water splitting is revealed and if it can be practically used in water splitting is discussed.
Collapse
Affiliation(s)
- Jiali Sun
- Institution: Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesMiddle Road 18Tianshui, Lanzhou730000China
| | - Yuying Dang
- Institution: Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesMiddle Road 18Tianshui, Lanzhou730000China
| | - Xiaoyan Sun
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
- Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesSongling Road 189, Laoshan DistrictQingdao266101China
| | - Saskia Heumann
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Yuxiao Ding
- Institution: Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesMiddle Road 18Tianshui, Lanzhou730000China
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| |
Collapse
|
7
|
Cheng J, Lu Y, Sun Y, Deng S, Yang H, Zhang M, Wang C, Yan J. Impact of Activation Conditions on the Electrochemical Performance of Rice Straw Biochar for Supercapacitor Electrodes. Molecules 2025; 30:632. [PMID: 39942734 PMCID: PMC11820247 DOI: 10.3390/molecules30030632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Biochar, derived from agricultural waste, has gained significant attention as a sustainable material for energy storage applications due to its high surface area, tunable porosity, and environmental benefits. This study investigates the electrochemical performance of rice straw biochar (RSBC) as an electrode material, with a focus on the effects of activation temperature, activation ratio, and activation time. Among the prepared samples, RSBC-2, activated at 800 °C with a 1:2 KOH ratio for 0.5 h, exhibited the best electrochemical performance. Characterization of RSBC and RSBC-2 showed significant improvements in surface area and pore structure. Specifically, the BET surface area of RSBC-2 increased to 939.40 m2 g-1, with a reduced average pore size of 2.27 nm. Electrochemical testing revealed that RSBC-2 achieved specific capacitances of 296, 281, 272, 260, and 240 F g-1 at current densities of 0.2, 0.5, 1, 2, and 5 A g-1, respectively, with a capacity retention rate of 81%. The improved electrochemical performance of RSBC-2 is attributed to its larger surface area and enhanced pore structure, which facilitate better charge storage and overall electrochemical behavior, making it a promising candidate for energy storage applications.
Collapse
Affiliation(s)
- Jialuo Cheng
- Key Laboratory of Agricultural Waste Resource Utilization in Hubei Province, College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.C.); (H.Y.); (M.Z.); (C.W.)
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yumeng Lu
- School of Nursing and Health Management, Wuhan Donghu University, Wuhan 430212, China;
| | - Ya Sun
- Key Laboratory of Agricultural Waste Resource Utilization in Hubei Province, College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.C.); (H.Y.); (M.Z.); (C.W.)
| | - Sunhua Deng
- College of Construction Engineering, Jilin University, Changchun 130021, China;
| | - Heng Yang
- Key Laboratory of Agricultural Waste Resource Utilization in Hubei Province, College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.C.); (H.Y.); (M.Z.); (C.W.)
| | - Manman Zhang
- Key Laboratory of Agricultural Waste Resource Utilization in Hubei Province, College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.C.); (H.Y.); (M.Z.); (C.W.)
| | - Chunlei Wang
- Key Laboratory of Agricultural Waste Resource Utilization in Hubei Province, College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.C.); (H.Y.); (M.Z.); (C.W.)
| | - Juntao Yan
- Key Laboratory of Agricultural Waste Resource Utilization in Hubei Province, College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.C.); (H.Y.); (M.Z.); (C.W.)
| |
Collapse
|
8
|
Feng X, Wu F, Fu Y, Li Y, Gong Y, Ma X, Zhang P, Wu C, Bai Y. Revealing the Effect of Curvature Structure in Hard Carbon Anodes for Lithium/Sodium Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409120. [PMID: 39558691 DOI: 10.1002/smll.202409120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/25/2024] [Indexed: 11/20/2024]
Abstract
Heteroatom doping is the most common means to enhance the Li+/Na+ ions storage of hard carbon (HC). The explanation of the storage mechanism of heteroatom-doped HC is to increase the active site or widen the layer spacing while ignoring the effect of local bending structure induced by it. Meanwhile, the storage mechanism by the localized bending structure also lacks in-depth study. Herein, a locally curved configuration and an amorphous structure are designed by introducing different heteroatoms, respectively, and the mechanism of the two types of structures on the Li+/Na+ ions storage is explored. The density functional theory (DFT) calculation shows that the adsorption energy of Li+/Na+ ions is optimal at the appropriate curvature of 27.72 m-1. Serving as anode for lithium/sodium ion batteries in ester electrolytes, the optimized HCs demonstrate satisfied specific capacity and high-rate capability, respectively. Furthermore, the charging capacity below 1.0 V of HC with suitable curvature microstructure reaches 84.8% and 90.1% of the total charge capacity, confirming that the curvature defects can better control the delithiation/desodiation process, and provide a higher energy density. This study enlightens new insights into the storage mechanisms of Li+/Na+ ions and provides guidance for better design of heteroatom-doped carbon anodes with superior performance.
Collapse
Affiliation(s)
- Xin Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
| | - Feng Wu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
| | - Yanke Fu
- Materials Science and Engineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Ying Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yuteng Gong
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiaoyue Ma
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
| | - Ping Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
| | - Chuan Wu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
| | - Ying Bai
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
| |
Collapse
|
9
|
Zhang D, Ma W, Luo J. Surface Oxygen Engineering Catalytic Pore Tailoring of Coal-Based Needle Coke toward Capacitive Porous Carbon. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26723-26734. [PMID: 39644260 DOI: 10.1021/acs.langmuir.4c03890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Coal-based needle coke (CNC) is an ideal carbon precursor for capacitive materials due to its layered graphitic structure and high electrical conductivity. However, the pore-rich engineering and graphitic structural inheriting of CNC-derived carbon during the conventional activation process present challenges. Herein, a surface oxygen engineering catalytic pore tailoring strategy is developed to manipulate the porous structures of CNC-derived porous carbon. This synthesis uses air oxidation to form oxygen-rich microregions on the CNC surface, which can effectively tear the graphite protective shell, accelerate the bonding of KOH with oxygen groups, and catalyze the etching reaction between potassium compounds and carbon atoms. Thanks to the low activation temperature of 600 °C and alkali-to-carbon ratio of 1:1, the obtained porous carbon (PC) inherits the long-range graphitic structure from CNC, and its specific surface areas can be adjusted from 182.6 to 855.4 m2 g-1 by adjusting the oxidation temperature, which is far more than that of PC (7.6 m2 g-1) derived from CNC direct activation. The optimized PC shows a high specific capacitance of 308.3 F g-1 at 0.5 A g-1 and a capacitive retention of 212.2 F g-1 at 20 A g-1 with a capacitive retention of 68.8%. The assembled supercapacitor delivers an energy density of 8.12 Wh kg-1 at a power density of 50.0 W kg-1 and ultralong cycle stability with capacitance retention of 99% and Coulombic efficiency of 100% after 50,000 cycles. This study validates the feasibility of pore tailoring by surface oxygen engineering catalysis in soft carbon for enhancing capacitance.
Collapse
Affiliation(s)
- Dongdong Zhang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Weijun Ma
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jie Luo
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
10
|
Huang Y, Zhou W, Xie L, Meng X, Li J, Gao J, Zhao G, Qin Y. Self-sacrificing and self-supporting biomass carbon anode-assisted water electrolysis for low-cost hydrogen production. Proc Natl Acad Sci U S A 2024; 121:e2316352121. [PMID: 39541345 PMCID: PMC11588069 DOI: 10.1073/pnas.2316352121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/04/2024] [Indexed: 11/16/2024] Open
Abstract
Electrooxidation of renewable and CO2-neutral biomass for low-cost hydrogen production is a promising and green technology. Various biomass platform molecules (BPMs) oxidation assisted hydrogen production technologies have obtained noticeable progress. However, BPMs anodic oxidation is highly dependent on electrocatalysts, and the oxidation mechanism is ambiguous. Meanwhile, the complexity and insolubility of natural biomass severely constrain the efficient utilization of biomass resources. Here, we develop a self-sacrificing and self-supporting carbon anode (SSCA) using waste corncobs. The combined results from multiple characterizations reveal that the structure-property-activity relationship of SSCA in carbon oxidation reaction (COR). Theoretical calculations demonstrate that carbon atoms with a high spin density play a pivotal role in reducing the adsorption energy of the reactive oxygen intermediate (*OH) during the transition from OH- to *OH, thereby promoting COR. Additionally, the HER||COR system allows driving a current density of 400 [Formula: see text] at 1.24 V at 80 °C, with a hydrogen production electric consumption of 2.96 kWh Nm-3 (H2). The strategy provides a ground-breaking perspective on the large-scale utilization of biomass and low-energy water electrolysis for hydrogen production.
Collapse
Affiliation(s)
- Yuming Huang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Wei Zhou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Liang Xie
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Xiaoxiao Meng
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Junfeng Li
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Jihui Gao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Guangbo Zhao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Yukun Qin
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| |
Collapse
|
11
|
Kong Y, Takaya Y, Córdova-Udaeta M, Tokoro C. A comprehensive approach for the recycling of anode materials from spent lithium-ion batteries: Separation, lithium recovery, and graphite reutilization as environmental catalyst. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 188:60-71. [PMID: 39116657 DOI: 10.1016/j.wasman.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
The effective recovery of valuables from anodes coming from spent lithium-ion batteries (LIBs) is of great importance to ensure resource supply and reduce the environmental burden for recycling. In this work, a simple and low energy consumption roasting method was proposed by employing low-temperature eutectic NaOH-KOH as reaction medium, in order to simultaneously separate graphite from Cu foils, extract lithium from it and set it up for reuse as environmental catalyst through one-step water washing process. Our results show that polyvinylidene difluoride (PVDF) was effectively deactivated due to dehydrofluorination/carbonization at a relatively low temperature and short time (150 °C, 20 min) when a mass ratio of 1:1 for eutectic NaOH-KOH to spent LIBs anodes was used, yielding 97.3 % of graphite detached. Moreover, a remarkable lithium extraction efficiency of 93.2 % was simultaneously obtained. Afterwards, the reusability of the recycled graphite was tested by employing it as a catalyst for the treatment of a contaminant organic dye (Rhodamine B) in the presence of NaClO. Our results show that a superior NaClO activation was obtained with the addition of recycled graphite, being this fact closely associated to the abundant active sites formed during the long-term charging/discharging cycles in the original battery. The alkaline-mediated roasting process presented in this work presents an energy-saving scheme to efficiently recover useful components from spent anodes, whereas the reusability example highlighted a useful option for repurposing the severely damaged graphite as an environmental catalyst rather than disposing it in landfills, turning waste into a valuable material.
Collapse
Affiliation(s)
- Yanhui Kong
- Graduate School of Creative Science and Engineering, Waseda University, Okubo 3-4-1, Shinju-ku, Tokyo 169-8555, Japan
| | - Yutaro Takaya
- Faculty of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan; Faculty of Science and Engineering, Waseda University, Okubo 3-4-1, Shinju-ku, Tokyo 169-8555, Japan
| | - Mauricio Córdova-Udaeta
- Research Institute for Science and Engineering, Waseda University, Okubo 3-4-1, Shinju-ku, Tokyo 169-8555, Japan
| | - Chiharu Tokoro
- Faculty of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan; Faculty of Science and Engineering, Waseda University, Okubo 3-4-1, Shinju-ku, Tokyo 169-8555, Japan.
| |
Collapse
|
12
|
Chen H, Wang Y, Meng D, Zhu Y, He YS, Ma ZF, Li L. Minimizing Undesired Side Reactions Induced by Nanoscale Conductive Carbon Enables Stable Cycling of Semi-Solid Li-Ion Full Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403674. [PMID: 39072991 DOI: 10.1002/smll.202403674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Semi-solid lithium-ion batteries (SSLIBs) based on "slurry-like" electrodes hold great promise to enable low-cost and sustainable energy storage. However, the development of the SSLIBs has long been hindered by the lack of high-performance anodes. Here the origin of low initial Coulombic efficiency (iCE, typically <60%) is elucidated in the graphite-based semi-solid anodes (in the non-flowing mode) and develop rational strategies to minimize the irreversible capacity loss. It is discovered that Ketjen black (KB), a nanoscale conductive additive widely used in SSLIB research, induces severe electrolyte decomposition during battery charge due to its large surface area and abundant surface defects. High iCEs up to 92% are achieved for the semi-solid graphite anodes by replacing KB with other low surface-area, low-defect conductive additives. A semi-solid full battery (LiFePO4 vs graphite, in the non-flowing mode) is further demonstrated with stable cycle performance over 100 cycles at a large areal capacity of 6 mAh cm-2 and a pouch-type semi-solid full cell that remains functional even when it is mechanically abused. This work demystifies the SSLIBs and provides useful physical insights to further improve their performance and durability.
Collapse
Affiliation(s)
- Hongli Chen
- Department of Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center (SEED), School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Wang
- Department of Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center (SEED), School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dechao Meng
- Department of Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center (SEED), School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yingying Zhu
- Department of Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center (SEED), School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu-Shi He
- Department of Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center (SEED), School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zi-Feng Ma
- Department of Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center (SEED), School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linsen Li
- Department of Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center (SEED), School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, China
| |
Collapse
|
13
|
Zhong H, Gong Z, Yu J, Hou Y, Tao Y, Fu Q, Yang H, Xiao X, Cao X, Wang J, Ouyang G. Remarkable Active Site Utilization in Edge-Hosted-N Doped Carbocatalysts for Fenton-Like Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404958. [PMID: 39258821 PMCID: PMC11538648 DOI: 10.1002/advs.202404958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Indexed: 09/12/2024]
Abstract
Improving the utilization of active sites in carbon catalysts is significant for various catalytic reactions, but still challenging, mainly due to the lack of strategies for controllable introduction of active dopants. Herein, a novel "Ar plasma etching-NH3 annealing" strategy is developed to regulate the position of active N sites, while maintaining the same nitrogen species and contents. Theoretical and experimental results reveal that the edge-hosted-N doped carbon nanotubes (E-N-CNT), with only 0.29 at.% N content, show great affinity to peroxymonosulfate (PMS), and exhibit excellent Fenton-like activity by generating singlet oxygen (1O2), which can reach as high as 410 times higher than the pristine CNT. The remarkable utilization of edge-hosted nitrogen atom is further verified by the edge-hosted-N enriched carbocatalyst, which shows superior capability for 4-chlorophenol degradation with a turnover frequency (TOF) value as high as 3.82 min-1, and the impressive TOF value can even surpass those of single-atom catalysts. This work proposes a controllable position regulation of active sites to improve atom utilization, which provides a new insight into the design of excellent Fenton-like catalysts with remarkable atom utilization efficiency.
Collapse
Affiliation(s)
- Huajie Zhong
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
| | - Zeyu Gong
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
| | - Jiaxing Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Yu Hou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Yuan Tao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Qi Fu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Huangsheng Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Xinzhe Xiao
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
| | - Xingzhong Cao
- Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049P. R. China
| | - Junhui Wang
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
| | - Gangfeng Ouyang
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
- College of Chemistry & Molecular EngineeringCenter of Advanced Analysis and Computational ScienceZhengzhou UniversityZhengzhou450001P. R. China
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous ChemicalsGuangdong Institute of Analysis (China National Analytical Center Guangzhou)Guangdong Academy of Science100 Xianlie Middle RoadGuangzhou510070P. R. China
| |
Collapse
|
14
|
Vidal M, Pandey J, Navarro-Ruiz J, Langlois J, Tison Y, Yoshii T, Wakabayashi K, Nishihara H, Frenkel AI, Stavitski E, Urrutigoïty M, Campos CH, Godard C, Placke T, Del Rosal I, Gerber IC, Petkov V, Serp P. Probing Basal and Prismatic Planes of Graphitic Materials for Metal Single Atom and Subnanometer Cluster Stabilization. Chemistry 2024; 30:e202400669. [PMID: 38924194 DOI: 10.1002/chem.202400669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Supported metal single atom catalysis is a dynamic research area in catalysis science combining the advantages of homogeneous and heterogeneous catalysis. Understanding the interactions between metal single atoms and the support constitutes a challenge facing the development of such catalysts, since these interactions are essential in optimizing the catalytic performance. For conventional carbon supports, two types of surfaces can contribute to single atom stabilization: the basal planes and the prismatic surface; both of which can be decorated by defects and surface oxygen groups. To date, most studies on carbon-supported single atom catalysts focused on nitrogen-doped carbons, which, unlike classic carbon materials, have a fairly well-defined chemical environment. Herein we report the synthesis, characterization and modeling of rhodium single atom catalysts supported on carbon materials presenting distinct concentrations of surface oxygen groups and basal/prismatic surface area. The influence of these parameters on the speciation of the Rh species, their coordination and ultimately on their catalytic performance in hydrogenation and hydroformylation reactions is analyzed. The results obtained show that catalysis itself is an interesting tool for the fine characterization of these materials, for which the detection of small quantities of metal clusters remains a challenge, even when combining several cutting-edge analytical methods.
Collapse
Affiliation(s)
- Mathieu Vidal
- Laboratoire de Chimie de Coordination (LCC) UPR 8241 CNRS, Toulouse INP Université de Toulouse LCC, composante ENSIACET, 4 allée Emile Monso, F-31030, Toulouse, France
| | - Jyoti Pandey
- Department of Physics, Central Michigan University, Dow Hall 203, MI 48859, Mount Pleasant, USA
| | - Javier Navarro-Ruiz
- LPCNO, INSA-CNRS-UPS Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Joris Langlois
- Laboratoire de Chimie de Coordination (LCC) UPR 8241 CNRS, Toulouse INP Université de Toulouse LCC, composante ENSIACET, 4 allée Emile Monso, F-31030, Toulouse, France
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Carrer de Marcel⋅lí Domingo 1, 43007, Tarragona, Spain
| | - Yann Tison
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64000, Pau, France
| | - Takeharu Yoshii
- Advanced Institute for Materials Research/Institute of Multidisciplinary Research for Advanced Materials Tohoku University, 2-1-1 Katahira, Aoba Ward, 980-8577, Sendai Miyagi, Japan
| | - Keigo Wakabayashi
- Advanced Institute for Materials Research/Institute of Multidisciplinary Research for Advanced Materials Tohoku University, 2-1-1 Katahira, Aoba Ward, 980-8577, Sendai Miyagi, Japan
| | - Hirotomo Nishihara
- Advanced Institute for Materials Research/Institute of Multidisciplinary Research for Advanced Materials Tohoku University, 2-1-1 Katahira, Aoba Ward, 980-8577, Sendai Miyagi, Japan
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering Stony Brook, University Stony Brook, 11794, New York, USA
- National Synchrotron Light Source (E. Stavitski) and Chemistry Division (A. I. Frenkel), Brookhaven National Laboratory, 11973, New York, USA
| | - Eli Stavitski
- National Synchrotron Light Source (E. Stavitski) and Chemistry Division (A. I. Frenkel), Brookhaven National Laboratory, 11973, New York, USA
| | - Martine Urrutigoïty
- Laboratoire de Chimie de Coordination (LCC) UPR 8241 CNRS, Toulouse INP Université de Toulouse LCC, composante ENSIACET, 4 allée Emile Monso, F-31030, Toulouse, France
| | - Cristian H Campos
- Departamento de Físico-Química Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción, Chile
| | - Cyril Godard
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Carrer de Marcel⋅lí Domingo 1, 43007, Tarragona, Spain
| | - Tobias Placke
- MEET Battery Research Center, University of Münster, Corrensstraße 46, 48149, Münster, Germany
| | - Iker Del Rosal
- LPCNO, INSA-CNRS-UPS Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Iann C Gerber
- LPCNO, INSA-CNRS-UPS Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Valeri Petkov
- Department of Physics, Central Michigan University, Dow Hall 203, MI 48859, Mount Pleasant, USA
| | - Philippe Serp
- Laboratoire de Chimie de Coordination (LCC) UPR 8241 CNRS, Toulouse INP Université de Toulouse LCC, composante ENSIACET, 4 allée Emile Monso, F-31030, Toulouse, France
| |
Collapse
|
15
|
Zhao Y, Zheng J, Zhao Y, Zhang K, Fu W, Wang G, Wang H, Hao Y, Lin Z, Cao X, Liu J, Zhang M, Shen Z. Designing hard carbon microsphere structure via halogenation amination and oxidative polymerization reactions for sodium ion insertion mechanism investigation. J Colloid Interface Sci 2024; 668:202-212. [PMID: 38677209 DOI: 10.1016/j.jcis.2024.04.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Hard carbon as a negative electrode material for sodium-ion batteries (SIBs) has great commercial potential and has been widely studied. The sodium-ion intercalation in graphite domains and the filling of closed pores in the low voltage platform region still remain a subject of controversy. We have successfully constructed hard carbon materials with a pseudo-graphitic structure by using polymerizable p-phenylenediamine and dichloromethane as carbon sources. This was achieved by a halogenated amination reaction and oxidative polymerization. It was found that the capacity of hard carbon materials mainly originates from intercalation into graphite domains. The study found that the prepared hard carbon could store 339.33 mAh g-1 of sodium in a reversible way at a current density of 25 mA g-1, and it had an initial coulomb efficiency of 80.23%. It even maintained a reversible sodium storage capacity of 125.53 mAh g-1 at a high current density of 12.8 A g-1. Based on the analysis of hard carbon structure and electrochemical performance, it was shown that the materials conform with an "adsorption-intercalation" mechanism for sodium storage.
Collapse
Affiliation(s)
- Yafang Zhao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jun Zheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yanmei Zhao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kai Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Wenwu Fu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Gang Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Haodong Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yaowei Hao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhiguang Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaocao Cao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jiayi Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ming Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhongrong Shen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
16
|
Zhang Y, Yang SH, Xin Y, Cai B, Hu PF, Dai HY, Liang CM, Meng YT, Su JH, Zhang XJ, Lu M, Wang GS. Designing Symmetric Gradient Honeycomb Structures with Carbon-Coated Iron-Based Composites for High-Efficiency Microwave Absorption. NANO-MICRO LETTERS 2024; 16:234. [PMID: 38954048 PMCID: PMC11219676 DOI: 10.1007/s40820-024-01435-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/30/2024] [Indexed: 07/04/2024]
Abstract
The impedance matching of absorbers is a vital factor affecting their microwave absorption (MA) properties. In this work, we controllably synthesized Material of Institute Lavoisier 88C (MIL-88C) with varying aspect ratios (AR) as a precursor by regulating oil bath conditions, followed by one-step thermal decomposition to obtain carbon-coated iron-based composites. Modifying the precursor MIL-88C (Fe) preparation conditions, such as the molar ratio between metal ions and organic ligands (M/O), oil bath temperature, and oil bath time, influenced the phases, graphitization degree, and AR of the derivatives, enabling low filler loading, achieving well-matched impedance, and ensuring outstanding MA properties. The MOF-derivatives 2 (MD2)/polyvinylidene Difluoride (PVDF), MD3/PVDF, and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt% and as low as 5 wt%. The MD2/PVDF (5 wt%) achieved a maximum effective absorption bandwidth (EAB) of 5.52 GHz (1.90 mm). The MD3/PVDF (10 wt%) possessed a minimum reflection loss (RLmin) value of - 67.4 at 12.56 GHz (2.13 mm). A symmetric gradient honeycomb structure (SGHS) was constructed utilizing the high-frequency structure simulator (HFSS) to further extend the EAB, achieving an EAB of 14.6 GHz and a RLmin of - 59.0 dB. This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties.
Collapse
Affiliation(s)
- Yu Zhang
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Shu-Hao Yang
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Yue Xin
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Bo Cai
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Peng-Fei Hu
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Hai-Yang Dai
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, 450002, People's Republic of China
| | - Chen-Ming Liang
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132000, People's Republic of China
| | - Yun-Tong Meng
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132000, People's Republic of China
| | - Ji-Hao Su
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132000, People's Republic of China
| | - Xiao-Juan Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China.
| | - Min Lu
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132000, People's Republic of China.
| | - Guang-Sheng Wang
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
17
|
Liu K, You Q, Jawed R, Han D, Miao Y, Gu X, Dong J, Butch CJ, Wang Y. Purine-Doped g-C 3N 4-Modified Fabrics for Personal Protective Masks with Rapid and Sustained Antibacterial Activity. ACS APPLIED BIO MATERIALS 2024; 7:2911-2923. [PMID: 38619913 DOI: 10.1021/acsabm.3c01288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Protective masks are critical to impeding microorganism transmission but can propagate infection via pathogen buildup and face touching. To reduce this liability, we integrated electrospun photocatalytic graphitic carbon nitride (g-C3N4) nanoflakes into standard surgical masks to confer a self-sanitization capacity. By optimizing the purine/melamine precursor ratio during synthesis, we reduced the g-C3N4 band gap from 2.92 to 2.05 eV, eliciting a 4× increase in sterilizing hydrogen peroxide production under visible light. This narrower band gap enables robust photocatalytic generation of reactive oxygen species from environmental and breath humidity to swiftly eliminate accumulated microbes. Under ambient sunlight, the g-C3N4 nanocomposite mask layer achieved a 97% reduction in the bacterial viability during typical use. Because the optimized band gap also allows photocatalytic activity under shadowless lamp illumination, the self-cleaning functionality could mitigate infection risk from residual pathogens in routine hospital settings. Both g-C3N4 and polycaprolactone demonstrate favorable biocompatibility and biodegradability, making this approach preferable over current commercially available metal-based options. Given the abundance and low cost of these components, this scalable approach could expand global access to reusable self-sanitizing protective masks, serving as a sustainable public health preparedness measure against future pandemics, especially in resource-limited settings.
Collapse
Affiliation(s)
- Kai Liu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Qi You
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Rohil Jawed
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Dong Han
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yufei Miao
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Xiang Gu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Junming Dong
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Christopher J Butch
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
18
|
Wang W, Wang B, Li Y, Wang N, Xu Y, Wang C, Sun Y, Hu H. Hard Carbon Derived From Different Precursors for Sodium Storage. Chem Asian J 2024; 19:e202301146. [PMID: 38445813 DOI: 10.1002/asia.202301146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
Due to the almost unlimited resource and acceptable performance, Sodium-ion batteries (SIBs) have been regarded as a promising alternative for lithium-ion batteries (LIBs) for grid-scale energy storage. As the key material of SIBs, hard carbon (HC) plays a decisive role in determining the batteries' performance. Nevertheless, the micro-structure of HCs is quite complex and the random organization of turbostratically stacked graphene layers, closed pores, and defects make the structure-performance relationship insufficiently revealed. On the other hand, the impending large-scale deployment of SIBs leads to producing HCs with low-cost and abundant precursors actively pursued. In this work, the recent progress of preparing HCs from different precursors including biomass, polymers, and fossil fuels is summarized with close attention to the influences of precursors on the structural evolution of HCs. After a brief introduction of the structural features of HCs, the recent understanding of the structure-performance relationship of HCs for sodium storage is summarized. Then, the main focus is concentrated on the progress of producing HCs from distinct precursors. After that, the pros and cons of HCs derived from different precursors are comprehensively compared to conclude the selection rules of precursors. Finally, the further directions of HCs are deeply discussed to end this review.
Collapse
Affiliation(s)
- Wanli Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Bin Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuqi Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Ning Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yujie Xu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Chongze Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yi Sun
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Han Hu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
19
|
Wu C, Yang Y, Zhang Y, Xu H, He X, Wu X, Chou S. Hard carbon for sodium-ion batteries: progress, strategies and future perspective. Chem Sci 2024; 15:6244-6268. [PMID: 38699270 PMCID: PMC11062112 DOI: 10.1039/d4sc00734d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/12/2024] [Indexed: 05/05/2024] Open
Abstract
Because of its abundant resources, low cost and high reversible specific capacity, hard carbon (HC) is considered as the most likely commercial anode material for sodium-ion batteries (SIBs). Therefore, reasonable design and effective strategies to regulate the structure of HCs play a crucial role in promoting the development of SIBs. Herein, the progress in the preparation approaches for HC anode materials is systematically overviewed, with a special focus on the comparison between traditional fabrication methods and advanced strategies emerged in recent years in terms of their influence on performance, including preparation efficiency, initial coulombic efficiency (ICE), specific capacity and rate capability. Furthermore, the advanced strategies are categorized into two groups: those exhibiting potential for large-scale production to replace traditional methods and those presenting guidelines for achieving high-performance HC anodes from top-level design. Finally, challenges and future development prospects to achieve high-performance HC anodes are also proposed. We believe that this review will provide beneficial guidance to actualize the truly rational design of advanced HC anodes, facilitating the industrialization of SIBs and assisting in formulating design rules for developing high-end advanced electrode materials for energy storage devices.
Collapse
Affiliation(s)
- Chun Wu
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization Wenzhou Zhejiang 325035 China
- College of Materials Science and Engineering, Changsha University of Science and Technology Changsha 410114 China
| | - Yunrui Yang
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization Wenzhou Zhejiang 325035 China
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 China
| | - Yinghao Zhang
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization Wenzhou Zhejiang 325035 China
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 China
| | - Hui Xu
- College of Materials Science and Engineering, Changsha University of Science and Technology Changsha 410114 China
| | - Xiangxi He
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization Wenzhou Zhejiang 325035 China
| | - Xingqiao Wu
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization Wenzhou Zhejiang 325035 China
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 China
| | - Shulei Chou
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization Wenzhou Zhejiang 325035 China
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 China
| |
Collapse
|
20
|
Ding Y, Liu Y, Klyushin AY, Zhang L, Han G, Liu Z, Li J, Zhang B, Gao K, Li W, Eichel RA, Sun X, Qiao ZA, Heumann S. Ultrathin Two-dimensional Layered Composite Carbosilicates from in situ Unzipped Carbon Nanotubes and Exfoliated Bulk Silica. Angew Chem Int Ed Engl 2024; 63:e202318043. [PMID: 38135669 DOI: 10.1002/anie.202318043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/24/2023]
Abstract
A key task in today's inorganic synthetic chemistry is to develop effective reactions, routes, and associated techniques aiming to create new functional materials with specifically desired multilevel structures and properties. Herein, we report an ultrathin two-dimensional layered composite of graphene ribbon and silicate via a simple and scalable one-pot reaction, which leads to the creation of a novel carbon-metal-silicate hybrid family: carbosilicate. The graphene ribbon is in situ formed by unzipping carbon nanotubes, while the ultrathin silicate is in situ obtained from bulk silica or commercial glass; transition metals (Fe or Ni) oxidized by water act as bridging agent, covalently bonding the two structures. The unprecedented structure combines the superior properties of the silicate and the nanocarbon, which triggers some specific novel properties. All processes during synthesis are complementary to each other. The associated synergistic chemistry could stimulate the discovery of a large class of more interesting, functionalized structures and materials.
Collapse
Affiliation(s)
- Yuxiao Ding
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Middle Road 18, 730000, Lanzhou, China
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Yumeng Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Qianjin Street 2699, 130012, Changchun, China
| | - Alexander Y Klyushin
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
- Research Group Catalysis for Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489, Berlin, Germany
| | - Liyun Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, 110016, Shenyang, China
| | - Gengxu Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Qianjin Street 2699, 130012, Changchun, China
| | - Zigeng Liu
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
- Institut für Energie und Klimaforschung (IEK-9), Forschungszentrum Jülich GmbH, Leo-Brandt-Str., 52425, Jülich, Germany
| | - Jianying Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Laoshan District, 266101, Qingdao, China
| | - Bingsen Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, 110016, Shenyang, China
| | - Kang Gao
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Middle Road 18, 730000, Lanzhou, China
| | - Wei Li
- Laboratory of Advanced Materials Department of Chemistry, Fudan University, Songhu 2205, 200433, Shanghai, China
| | - Rüdiger-A Eichel
- Institut für Energie und Klimaforschung (IEK-9), Forschungszentrum Jülich GmbH, Leo-Brandt-Str., 52425, Jülich, Germany
| | - Xiaoyan Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Laoshan District, 266101, Qingdao, China
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Qianjin Street 2699, 130012, Changchun, China
| | - Saskia Heumann
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
21
|
Tian Q, Jing L, Du H, Yin Y, Cheng X, Xu J, Chen J, Liu Z, Wan J, Liu J, Yang J. Mesoporous carbon spheres with programmable interiors as efficient nanoreactors for H 2O 2 electrosynthesis. Nat Commun 2024; 15:983. [PMID: 38302469 PMCID: PMC10834542 DOI: 10.1038/s41467-024-45243-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
The nanoreactor holds great promise as it emulates the natural processes of living organisms to facilitate chemical reactions, offering immense potential in catalytic energy conversion owing to its unique structural functionality. Here, we propose the utilization of precisely engineered carbon spheres as building blocks, integrating micromechanics and controllable synthesis to explore their catalytic functionalities in two-electron oxygen reduction reactions. After conducting rigorous experiments and simulations, we present compelling evidence for the enhanced mass transfer and microenvironment modulation effects offered by these mesoporous hollow carbon spheres, particularly when possessing a suitably sized hollow architecture. Impressively, the pivotal achievement lies in the successful screening of a potent, selective, and durable two-electron oxygen reduction reaction catalyst for the direct synthesis of medical-grade hydrogen peroxide disinfectant. Serving as an exemplary demonstration of nanoreactor engineering in catalyst screening, this work highlights the immense potential of various well-designed carbon-based nanoreactors in extensive applications.
Collapse
Affiliation(s)
- Qiang Tian
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Lingyan Jing
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China.
| | - Hongnan Du
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yunchao Yin
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Xiaolei Cheng
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jiaxin Xu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Junyu Chen
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Zhuoxin Liu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jiayu Wan
- Global Institute of Future Technology, Shanghai Jiaotong University, Shanghai, China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jinlong Yang
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China.
| |
Collapse
|
22
|
Dong Q, Li Y, Ji S, Wang H, Kan Z, Linkov V, Wang R. Directional manipulation of electron transfer in copper/nitrogen doped carbon by Schottky barrier for efficient anodic hydrazine oxidation and cathodic oxygen reduction. J Colloid Interface Sci 2023; 652:57-68. [PMID: 37591084 DOI: 10.1016/j.jcis.2023.08.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Development of bifunctional hydrazine oxidation and oxygen reduction electrocatalysts with high activity and stability is of great significance for the implementation of direct hydrazine fuel cells. Combining zero-dimensional metal nanoparticles with three-dimensional nitrogen-doped carbon nanosheets is an attractive strategy for balancing performance and cost. However, the precise construction of these composites remains a significant challenge, and thorough study of their interaction mechanisms is lacking. Herein, the CuNPs/CuSA-NPCF catalyst was constructed by anchoring copper nanoparticles on a three-dimensional nitrogen-doped porous carbon nanosheet framework through coordination of polyvinyl pyrrolidone and copper ions. The Schottky barrier of metal-semiconductor matched the Fermi level of the rectifying contact, thus enabling directional electron transfer. The resulting electron-deficient Cu nanoparticles surface exhibited Lewis acidity, which was beneficial to adsorption of hydrazine molecule. While the electron-enriched Cu-N4/carbon surface improved the adsorption of oxygen molecule, and accelerated electron supply from Cu-N4 active sites to various oxygen intermediates. The CuNPs/CuSA-NPCF Mott-Schottky catalyst exhibited excellent catalytic activity for hydrazine oxidation reaction and oxygen reduction reaction in an alkaline media. The directional manipulation of electron transfer in heterogeneous materials was an attractive universal synthesis method, providing new approach for the preparation of efficient and stable hydrazine fuel cell catalysts.
Collapse
Affiliation(s)
- Qing Dong
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao 266101, PR China
| | - Yue Li
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shan Ji
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Hui Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ze Kan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Vladmir Linkov
- South African Institute for Advanced Materials Chemistry, University of the Western Cape, Cape Town 7535, South Africa
| | - Rongfang Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Changshu Institute for Hydrogen Energy, Changshu 215505, China.
| |
Collapse
|
23
|
Zukalová M, Fabián M, Porodko O, Vinarčíková M, Pitňa Lásková B, Kavan L. High-entropy oxychloride increasing the stability of Li-sulfur batteries. RSC Adv 2023; 13:17008-17016. [PMID: 37293472 PMCID: PMC10245222 DOI: 10.1039/d3ra01496g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
A novel lithiated high-entropy oxychloride Li0.5(Zn0.25Mg0.25Co0.25Cu0.25)0.5Fe2O3.5Cl0.5 (LiHEOFeCl) with spinel structure belonging to the cubic Fd3̄m space group is synthesized by a mechanochemical-thermal route. Cyclic voltammetry measurement of the pristine LiHEOFeCl sample confirms its excellent electrochemical stability and the initial charge capacity of 648 mA h g-1. The reduction of LiHEOFeCl starts at ca. 1.5 V vs. Li+/Li, which is outside the electrochemical window of the Li-S batteries (1.7/2.9 V). The addition of the LiHEOFeCl material to the composite of carbon with sulfur results in improved long-term electrochemical cycling stability and increased charge capacity of this cathode material in Li-S batteries. The carbon/LiHEOFeCl/sulfur cathode provides a charge capacity of 530 mA h g-1 after 100 galvanostatic cycles, which represents ca. 33% increase as compared to the charge capacity of the blank carbon/sulfur composite cathode after 100 cycles. This considerable effect of the LiHEOFeCl material is assigned to its excellent structural and electrochemical stability within the potential window of 1.7 V/2.9 V vs. Li+/Li. In this potential region, our LiHEOFeCl has no inherent electrochemical activity. Hence, it acts solely as an electrocatalyst accelerating the redox reactions of polysulfides. This can be beneficial for the performance of Li-S batteries, as evidenced by reference experiments with TiO2 (P90).
Collapse
Affiliation(s)
- Markéta Zukalová
- J. Heyrovský Institute of Physical Chemistry, Czech Acad. Sci. Dolejškova 3, CZ-18223, Prague 8 Czech Republic
| | - Martin Fabián
- Institute of Geotechnics, Slovak Academy of Sciences Watsonova 45 040 01 Košice Slovak Republic
| | - Olena Porodko
- Institute of Geotechnics, Slovak Academy of Sciences Watsonova 45 040 01 Košice Slovak Republic
| | - Monika Vinarčíková
- J. Heyrovský Institute of Physical Chemistry, Czech Acad. Sci. Dolejškova 3, CZ-18223, Prague 8 Czech Republic
| | - Barbora Pitňa Lásková
- J. Heyrovský Institute of Physical Chemistry, Czech Acad. Sci. Dolejškova 3, CZ-18223, Prague 8 Czech Republic
| | - Ladislav Kavan
- J. Heyrovský Institute of Physical Chemistry, Czech Acad. Sci. Dolejškova 3, CZ-18223, Prague 8 Czech Republic
| |
Collapse
|
24
|
Yao N, Wang X, Yang Z, Zhao P, Meng X. Characterization of solid and liquid carbonization products of polyvinyl chloride (PVC) and investigation of the PVC-derived adsorbent for the removal of organic compounds from water. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131687. [PMID: 37236115 DOI: 10.1016/j.jhazmat.2023.131687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
The transformation of plastic wastes into value-added carbon materials is a promising strategy for the recycling of plastics. Commonly used polyvinyl chloride (PVC) plastics are converted into microporous carbonaceous materials using KOH as an activator via simultaneous carbonization and activation for the first time. The optimized spongy microporous carbon material has a surface area of 2093 m2 g-1 and a total pore volume of 1.12 cm3 g-1, and aliphatic hydrocarbons and alcohols are yielded as the carbonization by-products. The PVC-derived carbon materials exhibit outstanding adsorption performance for removing tetracycline from water, and the maximum adsorption capacity reaches 1480 mg g-1. The kinetic and isotherm patterns for tetracycline adsorption follow the pseudo-second-order and Freundlich models, respectively. Adsorption mechanism investigation indicates that pore filling and hydrogen bond interaction are mainly responsible for the adsorption. This study provides a facile and environmentally friendly approach for valorizing PVC into adsorbents for wastewater treatment.
Collapse
Affiliation(s)
- Nan Yao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaopei Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihan Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiqing Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xu Meng
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
25
|
Bai Z, Gao X, Liu Z, Chao D, Wang Y, Yin J, Jiang C, Yang W, Ma J, Chen Y. Direct Observation of the Anisotropic Transport Behavior of Li + in Graphite Anodes and Thermal Runaway Induced by the Interlayer Polarization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23623-23630. [PMID: 37133314 PMCID: PMC10198158 DOI: 10.1021/acsami.3c02214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 05/04/2023]
Abstract
Graphite is one of the major anode materials for commercial lithium-ion batteries. Li+ transport in a single graphite granule along intra and interlayer modes is a crucial factor for the battery performance. However, direct evidence and visualized details of the Li+ transports are hardly provided. Here, we report the direct observation of the anisotropic transport behavior of Li+ and investigate the electro-chemo-structure evolution during the lithiation of graphite through both the intra and interlayer pathways via in situ transmission electron microscopy. The in situ experiments of nano batteries give two extreme conditions, in which thermal runaway induced by polarization only occurs along the interlayer, not along the intralayer. The high diffusion energy barrier induced large polarization when the interlayer Li+ transport became dominant. The energy of the polarization electric field would be instantaneously released like a short electric pulse, which generated a substantial amount of joule heat and created an extremely high temperature, causing the melting of the tungsten tip. We provide another possible fundamental mechanism of thermal failure in graphite-based Li-ion batteries and hope this insightful work would help the safety management of graphite-based lithium-ion batteries.
Collapse
Affiliation(s)
- Zhichuan Bai
- School
of Materials Science and Engineering, Sichuan
University of Science and Engineering, Zigong, Sichuan 643000, P. R. China
- Center
for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, P. R. China
| | - Xiang Gao
- Chongqing
Talent New Energy Co., Ltd., Chongqing 401133, P. R. China
| | - Zheng Liu
- School
of Applied Physics and Materials, Jiangmen Advanced Battery Material
Engineering and Technology Research Center, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Dongliang Chao
- Laboratory
of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis
and Innovative Materials, and School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yingying Wang
- Center
for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, P. R. China
| | - Jie Yin
- School of
Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, P. R. China
| | - Cairong Jiang
- School
of Materials Science and Engineering, Sichuan
University of Science and Engineering, Zigong, Sichuan 643000, P. R. China
| | - Wenge Yang
- Center
for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, P. R. China
| | - Jianjun Ma
- School
of Materials Science and Engineering, Sichuan
University of Science and Engineering, Zigong, Sichuan 643000, P. R. China
| | - Yongjin Chen
- Center
for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, P. R. China
- Chongqing
Talent New Energy Co., Ltd., Chongqing 401133, P. R. China
| |
Collapse
|
26
|
Chen R, Gong Y, Xie M, Rao C, Zhou L, Pang Y, Lou H, Yang D, Qiu X. Functionalized Regulation of Metal Defects in ln 2S 3 of p-n Homojunctions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5065-5077. [PMID: 36972499 DOI: 10.1021/acs.langmuir.3c00051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The introduction of metal vacancies into n-type semiconductors could efficiently construct intimate contact interface p-n homojunctions to accelerate the separation of photogenerated carriers. In this work, a cationic surfactant occupancy method was developed to synthesize an indium-vacancy (VIn)-enriched p-n amorphous/crystal homojunction of indium sulfide (A/C-IS) for sodium lignosulfonate (SL) degradation. The amount of VIn in the A/C-IS could be regulated by varying the content of added cetyltrimethylammonium bromide (CTAB). Meanwhile, the steric hindrance of CTAB produced mesopores and macropores, providing transfer channels for SL. The degradation rates of A/C-IS to SL were 8.3 and 20.9 times higher than those of crystalline In2S3 and commercial photocatalyst (P25), respectively. The presence of unsaturated dangling bonds formed by VIn reduced the formation energy of superoxide radicals (•O2-). In addition, the inner electric field between the intimate contact interface p-n A/C-IS promoted the migration of electron-hole pairs. A reasonable degradation pathway of SL by A/C-IS was proposed based on the above mechanism. Moreover, the proposed method could also be applicable for the preparation of p-n homojunctions with metal vacancies from other sulfides.
Collapse
Affiliation(s)
- Runlin Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yufeng Gong
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Maoliang Xie
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Cheng Rao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lan Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuxia Pang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
27
|
Gao F, Wang X, Cui WG, Liu Y, Yang Y, Sun W, Chen J, Liu P, Pan H. Topologically Porous Heterostructures for Photo/Photothermal Catalysis of Clean Energy Conversion. SMALL METHODS 2023; 7:e2201532. [PMID: 36813753 DOI: 10.1002/smtd.202201532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Indexed: 06/18/2023]
Abstract
As a straightforward way to fix solar energy, photo/photothermal catalysis with semiconductor provides a promising way to settle the energy shortage and environmental crisis in many fields, especially in clean energy conversion. Topologically porous heterostructures (TPHs), featured with well-defined pores and mainly composed by the derivatives of some precursors with specific morphology, are a major part of hierarchical materials in photo/photothermal catalysis and provide a versatile platform to construct efficient photocatalysts for their enhanced light absorption, accelerated charges transfer, improved stability, and promoted mass transportation. Therefore, a comprehensive and timely review on the advantages and recent applications of the TPHs is of great importance to forecast the potential applications and research trend in the future. This review initially demonstrates the advantages of TPHs in photo/photothermal catalysis. Then the universal classifications and design strategies of TPHs are emphasized. Besides, the applications and mechanisms of photo/photothermal catalysis in hydrogen evolution from water splitting and COx hydrogenation over TPHs are carefully reviewed and highlighted. Finally, the challenges and perspectives of TPHs in photo/photothermal catalysis are also critically discussed.
Collapse
Affiliation(s)
- Fan Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xinqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wen-Gang Cui
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yanxia Liu
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Ping Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
28
|
Román-Martínez M. Opportunities in the use of carbon materials to develop heterogenized metal complexes for catalytic applications. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
29
|
Li C, Fan S, Chen J, Chen Y, Yang M, Meng J, Qing H, Liu Y, Xiao Z. Enhanced Benzyl Alcohol Oxidation Coupled with Hydrogen Evolution by Co 3O 4@SS Electrocatalytic Membrane Structured Reactor via Flow-Through Operation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Chuang Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Senqing Fan
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jiaojiao Chen
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yu Chen
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Mingxia Yang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jiaxin Meng
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Haijie Qing
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yangchao Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zeyi Xiao
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
30
|
Tang J, Wang Y, Peng Y, Sun Z, Liu R, Ran F. Waste Adsorbent-Derived Interconnected Hierarchical Attapulgite@Carbon/NiCo Layered Double Hydroxide Nanocomposites for Advanced Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2739-2750. [PMID: 36762610 DOI: 10.1021/acs.langmuir.2c03219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The attapulgite@carbon/NiCo layered double hydroxide nanocomposites based on waste adsorbents are manufactured via simple and eco-friendly calcination and hydrothermal methods, by which they would be considerable electrode materials for advanced supercapacitors. To achieve sustainable development, the spent tetracycline-loaded attapulgite can act as a cost-effective available carbon source as well as a matrix material for carbon species and NiCo layered double hydroxide simultaneously. A controlled amount of attapulgite@carbon could be used to regulate the electrochemical properties of nanocomposites. The generated electrodes possess superior electrochemical properties with a specific capacitance of 2013.8 F g-1 at 0.5 A g-1, a retention rate of 87.7% at 5 A g-1, and a cyclic stability of 64.9% for 4000 cycles at 5 A g-1. Thus, the asymmetric supercapacitor device assembled with attapulgite@carbon/NiCo layered double hydroxide nanocomposites||active carbon shows a maximum capacitance of 231.3 F g-1 at 0.5 A g-1, with a preeminent energy density of 82.2 Wh kg-1 when its power density is 4318 W kg-1. This approach would contribute to the development of supercapacitors in an efficient and effective manner, as well as provide a feasible strategy for solving tetracycline pollution and recycling waste adsorbents to achieve sustainable development.
Collapse
Affiliation(s)
- Jie Tang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Yumeng Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Yuanyou Peng
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Zhijiang Sun
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Rui Liu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| |
Collapse
|
31
|
Shi W, Dong X, Luo Y, Wang R, Wang G, Chen J, Liu C, Zhang J. Regulation of the B Site at La(Ni 0.1)MnO 3 Perovskite Decorated with N-Doped Carbon for a Bifunctional Electrocatalyst in Zn–Air Batteries. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Weiyi Shi
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xinran Dong
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yan Luo
- Sichuan Honghua Industrial Co., Ltd., Leshan 614200, China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Can Liu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|