1
|
Lyu M, Zhang T, Bao Z, Li P, Chen M, Quan H, Wang C, Xia L, Li Y, Tang B. In situ forming AIEgen-alginate hydrogel for remodeling tumor microenvironment to boost FLASH immunoradiotherapy. Biomaterials 2025; 320:123281. [PMID: 40138965 DOI: 10.1016/j.biomaterials.2025.123281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/16/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
FLASH radiotherapy, which involves the delivery of an ultra-high radiation dose rate exceeding 40 Gy/s, has emerged as a promising tumor ablation strategy. While this approach generally spares normal tissues, the incomplete killing of tumors may sometimes lead to recurrence due to the immunosuppressive tumor microenvironment (TME). Herein, an aggregation-induced-emission luminogen (AIEgen)-alginate hydrogel was used to sensitize colon cancer via photodynamic therapy (PDT). Flower-like calcium carbonate nanoparticles, doped with an AIEgen termed CQu, were designed and applied as a cocktail with sodium alginate. When exposed to the acidic TME, Ca2+ is released from this structure, resulting in sodium alginate termed FA forming a hydrogel in situ within the TME. This hydrogel also captures high concentrations of CQu in the local TME. Under laser irradiation, the CQu can generate sustained reactive oxygen species (ROS) production, thereby facilitating Ca2+ influx and causing mitochondrial damage. Through a single injection of established FA hydrogel, followed by PDT and FLASH radiotherapy, immunogenic tumor cell death was induced which promoted antitumor immunity, thereby protecting against tumor recurrence while realizing abscopal effect. The results highlight the potential to improve the sensitivity of tumor cells to FLASH radiotherapy through sustained ROS production and Ca2+ overload, thereby yielding optimal immunotherapy outcomes.
Collapse
Affiliation(s)
- Meng Lyu
- Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Tianfu Zhang
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhirong Bao
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Pei Li
- Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Mingzhu Chen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, China
| | - Hong Quan
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, China
| | - Cunchuan Wang
- Clinical Medicine Research Institute, Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China.
| | - Ligang Xia
- Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China.
| | - Yang Li
- Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China.
| | - Benzhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
2
|
Xiang C, Ding Q, Jiang T, Liu Y, Li C, Yang X, Jia J, Xiang J, Wang Y, Zhou H, Lu Z, Gong P, Kim JS. Reprogrammed glycolysis-induced augmentation of NIR-II excited photodynamic/photothermal therapy. Biomaterials 2025; 320:123235. [PMID: 40056609 DOI: 10.1016/j.biomaterials.2025.123235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/18/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
Small molecule-based multifunctional optical diagnostic materials have garnered considerable interest due to their highly customizable structures, tunable excited-state properties, and remarkable biocompatibility. We herein report the synthesis of a multifaceted photosensitizer, PPQ-CTPA, which exhibits exceptional efficacy in generating Type I reactive oxygen species (ROS) and thermal energy under near-infrared-II (NIR-II, >1000 nm) laser excitation at 1064 nm, thereby combining photodynamic therapy (PDT) and photothermal therapy (PTT) functionalities. To enhance therapeutic efficacy, we engineered lonidamine (LND) by conjugating it with triphenylphosphonium (TPP) cations, producing LND-TPP. This compound inhibits mitochondrial glycolysis and downregulates heat shock protein 90 (HSP 90) levels in a breast cancer mouse model, potentiating both PDT and PTT. For in vivo applications, PPQ-CTPA and LND-TPP are encapsulated within the amphiphilic polymer DSPE-SS-PEG to obtain PPQ-CTPAL NPs. In breast cancer cell lines, PPQ-CTPAL NPs are decomposed by cellular GSH, simultaneously releasing the dual-functioning photosensitizer PPQ-CTPL and the mitochondria-disrupting agent LND-TPP. Upon 1064 nm laser irradiation, we found that tumor growth in breast cancer mice is effectively restrained by PPQ-CTPAL NPs. This work highlights the synergistic integration of PDT, PTT, and chemotherapy facilitated by NIR-II fluorescence, photoacoustic, and photothermal imaging under 1064 nm irradiation, underscoring the clinical potential of multifunctional phototherapeutic agents.
Collapse
Affiliation(s)
- Chunbai Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University Cheng Du 610064 China
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Ting Jiang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xing Yang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jia Jia
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jingjing Xiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yue Wang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hui Zhou
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Zhiyun Lu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University Cheng Du 610064 China.
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| |
Collapse
|
3
|
Jiang P, Li J. Recent advances in biomimetic nanodelivery systems for the treatment of depression. Mater Today Bio 2025; 32:101781. [PMID: 40290890 PMCID: PMC12033927 DOI: 10.1016/j.mtbio.2025.101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/12/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
Depression and cognitive disorders remain major challenges in healthcare, with conventional treatments often facing limitations such as slow onset, side effects, and poor drug delivery to the brain. Biomimetic nanodelivery systems, including nanozymes, cell membrane-based systems, and exosomes, have emerged as promising solutions to these issues. These systems leverage natural biological processes to enhance drug targeting, improve bioavailability, and regulate complex biological pathways. Nanoenzymes, with their catalytic properties, offer antioxidant and anti-inflammatory benefits, while cell membranes and exosomes provide efficient targeting and immune evasion. However, challenges remain, including the immaturity of large-scale production techniques, stability concerns, and incomplete understanding of their mechanisms of action. Moreover, the long-term safety, pharmacokinetics, and toxicity of these systems require further investigation. Despite these obstacles, the potential of biomimetic nanodelivery systems to revolutionize depression treatment is significant. Future research should focus on optimizing their preparation, improving drug targeting and release, and ensuring clinical safety. Multidisciplinary collaboration will be essential for advancing these systems from the laboratory to clinical practice, offering new therapeutic avenues for depression and other neurological disorders.
Collapse
Affiliation(s)
- Ping Jiang
- General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Jian Li
- General Hospital of Northern Theater Command, Shenyang, 110016, China
| |
Collapse
|
4
|
Ma Q, Zhu Y, Zhang D, Su X, Jiang C, Zhang Y, Zhang X, Han N, Shu G, Yin G, Wang M. Reprogramming and targeting of cholesterol metabolism in tumor-associated macrophages. J Mater Chem B 2025; 13:5494-5520. [PMID: 40266660 DOI: 10.1039/d5tb00236b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Cholesterol, as a major component of cell membranes, is closely related to the metabolic regulation of cells and organisms; tumor-associated macrophages play an important push role in tumor progression. We know that tumor-associated macrophages are polarized from macrophages, and the abnormalities of cholesterol metabolism that may be induced during their polarization are worth discussing. This manuscript focuses on metabolic abnormalities in tumor-associated macrophages, and first provides a basic summary of the regulatory mechanisms of abnormal macrophage polarization. Subsequently, it comprehensively describes the features of abnormal glucose, lipid and cholesterol metabolism in TAMs as well as the different regulatory pathways. Then, the paper also discusses the link between abnormal cholesterol metabolism in TAMs and tumors, chronic diseases and aging. Finally, the paper summarizes cancer therapeutic strategies targeting cholesterol metabolism that are already in clinical trials, as well as nanomaterials capable of targeting cholesterol metabolism that are in the research stage, in the hope of providing value for the design of targeting materials. Overall, elucidating metabolic abnormalities in tumor-associated macrophages, particularly cholesterol metabolism, could provide assistance in tumor therapy and the design of targeted drugs.
Collapse
Affiliation(s)
- Qiaoluo Ma
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Ying Zhu
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Dongya Zhang
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Xiaohan Su
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Can Jiang
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Yuzhu Zhang
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Xingting Zhang
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Na Han
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Guang Shu
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Maonan Wang
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| |
Collapse
|
5
|
Yuan M, Yan R, Zhao Z, Wen Q, Xie X, Adeli M, Li S, Cheng C. Vanadium single-atoms coordinated artificial peroxidases as biocatalyst-linked immunosorbent assay for highly-sensitive carcinoembryonic antigen immunoassay. Biomaterials 2025; 316:123008. [PMID: 39708776 DOI: 10.1016/j.biomaterials.2024.123008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
In medical and biomedical fields, enzyme-mimetic nanomaterials have garnered significant interest as efficacious signal enhancers for biocatalyst-linked immunosorbent assays (BLISA). Despite the burgeoning enthusiasm, engineering artificial biocatalysts that exhibit both exceptional catalytic proficiency and pronounced colorimetric signal output remains a formidable challenge. Inspired by the heme structures and biocatalytic activities of horseradish peroxidase, we introduce the synthesis of vanadium single-atoms (SAV) coordinated artificial peroxidases as BLISA for highly sensitive and selective carcinoembryonic antigen (CEA) immunoassay. Our synthesized SAV exhibits peroxidase (POD)-like activity that is both efficacious and highly specific, surpassing the performance of many other single-atom-structured materials. The SAV-linked immunoassay demonstrates an ultrasensitive response to the target antigen (CEA), with a linear detection range spanning 0.03-10 ng/mL and an impressively low detection limit of 0.335 ng/mL. This straightforward and robust immunoassay technique not only achieves superior signal amplification compared to traditional natural enzymes but also boasts high precision, commendable reproducibility, and remarkable specificity, aligning closely with conventional enzyme-linked immunosorbent assay for CEA detection in serum samples. This study offers a blueprint for designing artificial peroxidase-based colorimetric nanosystems, promoting the evolution of ultrasensitive BLISA applications for the early diagnosis and intervention of cancer.
Collapse
Affiliation(s)
- Minjia Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qinlong Wen
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaodong Xie
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Mohsen Adeli
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, 68137-17133, Iran; Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, 14195, Germany
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China; Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Qin Y, Lu H, Shu Y, Wang JH. Atovaquone-Coordinated Copper-Polyphenol Nanoplatform Orchestrates Dual Metabolic Interference for Synergistic Cuproptosis and Apoptosis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21001-21012. [PMID: 40148125 DOI: 10.1021/acsami.5c05104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Cuproptosis, a copper-dependent cell death mechanism, is hindered by tumor microenvironment (TME)-driven resistance including glutathione (GSH)-mediated copper detoxification and hypoxia-induced metabolic adaptation. We propose a "dual metabolic interference" strategy to amplify cuproptosis by synergistically targeting iron-sulfur (Fe-S) cluster proteins and suppressing oxidative phosphorylation (OXPHOS). A TME-responsive nanoplatform (ACH NPs) was constructed based on a copper-shikonin coordination network (CuSK), the OXPHOS inhibitor atovaquone (ATO), and hyaluronic acid (HA). Upon GSH/acid-triggered release, Cu+/Cu2+ and ATO/SK synergistically induced irreversible damage: (1) Copper overload induces dihydrolipoamide transacetylase (DLAT) aggregation and irreversible Fe-S cluster loss, directly disrupting mitochondrial complexes I-III functions; (2) ATO further suppresses complex III activity, reducing oxygen consumption and blocking ATP synthesis to exacerbate metabolic crisis; (3) Concurrently, Cu+-catalyzed Fenton-like reactions synergize with SK-driven oxidative stress to generate •OH radicals, activating Caspase-3-dependent apoptosis. In vivo experiments verified that this dual metabolic interference strategy effectively inhibited tumor growth (86.8% tumor suppression). These findings not only expand the theoretical boundaries of cuproptosis but also establish a promising paradigm for cancer therapy through coordinated targeting of metal homeostasis and metabolic vulnerabilities.
Collapse
Affiliation(s)
- Yuxin Qin
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Huiying Lu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
7
|
Qi Q, Zhang Z, Wang D. GSH-responsive paclitaxel prodrug used in chemotherapy in combination with photodynamic therapy. Bioorg Chem 2025; 157:108289. [PMID: 40007348 DOI: 10.1016/j.bioorg.2025.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/05/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025]
Abstract
The lack of targeting and poor solubility of anti-tumor drugs are two major limitations to the outcome of tumor therapy. To address the inherent drawbacks, we designed a novel prodrug of paclitaxel (PTX), HP-PTX. This HP-PTX prodrug contains a PEGylated heptamethylene cyanine dye (PEG-IR808-1) that was conjugated to PTX via a redox-sensitive disulfide bond. The moiety of IR808-1 acts as a tumor-targeting ligand, enabling HP-PTX not only to target tumor cells, but also to localize to mitochondria and generate ROS under 808 nm laser irradiation to wound cellular mitochondria thus exerting cytotoxic effect. Meanwhile, in vitro cellular uptake assays showed that HP-PTX possesses MCF-7 cell tumor targeting specificity which was attributed to the preferential uptake of heptamethine cyanine dye mediated by the overexpressed organic anion-transporting polypeptides (OATP) on MCF-7 cell membrane. Near-infrared in vivo imaging showed that incorporation of polyethylene glycol effectively prolonged prodrug's half-life in vivo. In addition, in vivo experiments showed that with combinational therapy strategy HP-PTX was able to kill cancer cells with high efficiency (69.52 %) without notable toxic side effects compared to PTX. These results are evidence of the potential of the tumor-targeting prodrug HP-PTX for the treatment of breast cancer.
Collapse
Affiliation(s)
- Qianqian Qi
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhanyu Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
8
|
Yang M, Yu Y, Ge T, Zhu Q, Zhuang A, Wang W, Fan X. Unlocking the Promise of Antitumor Hyperthermia-Immunotherapy with Spiky Surface Topology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415868. [PMID: 39965085 PMCID: PMC11984835 DOI: 10.1002/advs.202415868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/03/2025] [Indexed: 02/20/2025]
Abstract
Uveal melanoma (UM) is the most prevalent primary intraocular malignant tumor in adults with high mortality rate. Recently, immunotherapy has shown great success in other tumors, however, its therapeutic effect in UM is unsatisfactory, possibly due to the insufficient immune cell infiltration and low immunogenicity of UM. Thus, an efficient therapeutic strategy to reverse the immunosuppressive tumor microenvironment is required. Herein, a PD-L1 modified hierarchical structure consisting of a magnetic Fe3O4 core and spiky silica shell (MNP@Spiky/PD-L1) is developed to reverse the immunosuppressive tumor microenvironment and trigger powerful antitumor immune responses. The MNP@Spiky can induce enhanced immunogenic cell death as well as physical activation of innate immunity. First, tumor cells are disrupted directly by magnetic hyperthermia effect and released tumor-associated antigens to initiate anti-tumor immune responses. Meanwhile, the spiky surface of MNP@Spiky augmented tumor antigen uptake as well as maturation of dendritic cells through inflammasome activation. By further associating with PD-L1-targeting antibody, MNP@Spiky/PD-L1 reversed the immunosuppressive tumor microenvironment and triggered powerful antitumor immune responses. Overall, this synergistic therapeutic strategy effectively reprogramed tumor microenvironment and achieved tumor eradication, which sheds light on clinical UM immunotherapy.
Collapse
Affiliation(s)
- Muyue Yang
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- State Key Laboratory of Eye HealthShanghai Jiao Tong UniversityShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011China
| | - Yan Yu
- Department of ChemistryState Key Laboratory of Molecular Engineering of PolymersLaboratory of Advanced MaterialsFudan UniversityShanghai200433China
| | - Tongxin Ge
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- State Key Laboratory of Eye HealthShanghai Jiao Tong UniversityShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011China
| | - Qiuyi Zhu
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- State Key Laboratory of Eye HealthShanghai Jiao Tong UniversityShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011China
| | - Ai Zhuang
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- State Key Laboratory of Eye HealthShanghai Jiao Tong UniversityShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011China
| | - Wenxing Wang
- Department of ChemistryState Key Laboratory of Molecular Engineering of PolymersLaboratory of Advanced MaterialsFudan UniversityShanghai200433China
| | - Xianqun Fan
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- State Key Laboratory of Eye HealthShanghai Jiao Tong UniversityShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011China
| |
Collapse
|
9
|
Song Y, Cui L, Liu Z, Tang Z, Chen X. Multivalent RGD Peptide-Mediated Nanochimera for Lysosomal Degradation of PDL1 Protein. NANO LETTERS 2025; 25:4078-4086. [PMID: 40012503 DOI: 10.1021/acs.nanolett.5c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The development of immune checkpoint inhibitors, especially PDL1 antibodies, has revolutionized cancer therapy, but the posttherapy recycling of PDL1 proteins poses a significant challenge by inducing resistance and reducing treatment efficacy. To address this, we introduce an integrin-driven, lysosome-targeted nanochimera, composed of poly(glutamic acid), RGD peptides, and PDL1 antibodies, is designed to engage the target PDL1 protein, with the αvβ3 integrin binding to the multivalent RGD peptides to direct the complex through the endocytosomal pathway to the lysosome, ensuring PDL1 degradation and blocking its recycling. Our in vitro and in vivo experiments demonstrate that these nanochimeras potently activate T-cell antitumor immunity by downregulating PDL1 expression within tumor cells and tissues, significantly enhancing the efficacy of PDL1 antibodies. A key discovery of our study is the pivotal role of multivalent RGD peptides in facilitating target protein degradation, providing valuable insights for the development of more efficacious and sophisticated immunotherapies.
Collapse
Affiliation(s)
- Yanfei Song
- State Key Laboratory of Polymer Science and Technology, Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Linjie Cui
- State Key Laboratory of Polymer Science and Technology, Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhilin Liu
- State Key Laboratory of Polymer Science and Technology, Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhaohui Tang
- State Key Laboratory of Polymer Science and Technology, Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xuesi Chen
- State Key Laboratory of Polymer Science and Technology, Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Wahnou H, Limami Y, Duval RE, Ismail B, Léger DY, Sol V, Liagre B. Photodynamic anti-cancer therapy and arachidonic acid metabolism: State of the art in 2024. ANNALES PHARMACEUTIQUES FRANÇAISES 2025:S0003-4509(25)00042-2. [PMID: 40020873 DOI: 10.1016/j.pharma.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Photodynamic therapy (PDT) has emerged as a promising and evolving modality in cancer treatment leveraging light-sensitive compounds known as photosensitizers to selectively induce cell death in malignant tissues through the generation of reactive oxygen species (ROS). This review delves into the intricate mechanisms of PDT highlighting the pivotal role of photosensitizers and the resultant oxidative stress that damages cancer cells. It explores the versatile applications of PDT across various cancer types alongside the advantages and limitations inherent to this therapy. Recent technological advancements including improved photosensitizers and novel light delivery systems are also discussed. Additionally the review examines the critical role of arachidonic acid (AA) metabolism in cancer progression detailing the cyclooxygenase, lipoxygenase and cytochrome P450 pathways and their contributions to tumor biology. By elucidating the interplay between PDT and AA metabolism the review underscores the potential of targeting AA metabolic pathways to enhance PDT efficacy. Finally it provides clinical and translational perspectives highlighting ongoing research and future directions aimed at optimizing PDT for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, BP2693 Maarif, Casablanca, Morocco.
| | - Youness Limami
- Institute of Health Sciences, Hassan First University, Settat, Morocco.
| | | | - Bassel Ismail
- College of Health and Medical Technology, Medical Laboratories Technology Department, Alayen Iraqi University, Thi-Qar 64001, Iraq.
| | - David Yannick Léger
- Université de Limoges, LABCiS UR 22722, faculté de Pharmacie, 87000 Limoges, France.
| | - Vincent Sol
- Université de Limoges, LABCiS UR 22722, faculté de Pharmacie, 87000 Limoges, France.
| | - Bertrand Liagre
- Université de Limoges, LABCiS UR 22722, faculté de Pharmacie, 87000 Limoges, France.
| |
Collapse
|
11
|
Cheng Q, Chen Y, Zou D, Li Q, Shi X, Qin Q, Liu M, Wang L, Wang Z. Targeting Metabolic Adaptation of Colorectal Cancer with Vanadium-Doped Nanosystem to Enhance Chemotherapy and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409329. [PMID: 39739629 PMCID: PMC11831457 DOI: 10.1002/advs.202409329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/16/2024] [Indexed: 01/02/2025]
Abstract
The anti-tumor efficacy of current pharmacotherapy is severely hampered due to the adaptive evolution of tumors, urgently needing effective therapeutic strategies capable of breaking such adaptability. Metabolic reprogramming, as an adaptive survival mechanism, is closely related to therapy resistance of tumors. Colorectal cancer (CRC) cells exhibit a high energy dependency that is sustained by an adaptive metabolic conversion between glucose and glutamine, helping tumor cells to withstand nutrient-deficient microenvironments and various treatments. We discover that transition metal vanadium (V) effectively inhibits glucose metabolism in CRC and synergizes with glutaminase inhibitors (BPTES) to disrupt CRC's energy dependency. Thus, a dual energy metabolism suppression nanosystem (VSi-BP@HA) is engineered by loading BPTES into V-doped hollow mesoporous silica nanoparticles. This nanosystem effectively dampens CRC energy metabolism, eradicating 33% of tumors in mice. Strikingly, the cell biological and preclinical model datasets provide compelling evidence showing that VSi-BP@HA not only reverses CRC cells chemo-resistance but also drastically potentiates anti-PD1 immunotherapy. Therefore, this nanosystem provides not only a promising approach to suppress CRC, but also a potential adjunct tool for enhancing chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Qian Cheng
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
| | - Yuzhe Chen
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
| | - Danyi Zou
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
| | - Qilin Li
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
| | - Xiaolei Shi
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
| | - Qushuhua Qin
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Miaodeng Liu
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
12
|
Song M, Yuan J, Zhang G, Sun M, Zhang Y, Su X, Lv R, Zhao Y, Shi Y, Zhao L. Mitochondrial transfer of drug-loaded artificial mitochondria for enhanced anti-Glioma therapy through synergistic apoptosis/ferroptosis/immunogenic cell death. Acta Biomater 2025; 193:514-530. [PMID: 39674237 DOI: 10.1016/j.actbio.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/20/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Mitochondrial targeting in gliomas represents a novel therapeutic strategy with significant potential to enhance drug sensitivity by effectively killing glioma cells at the mitochondrial level. In this study, we developed artificial mitochondria derived from mitochondrial membrane-based nanovesicles, enabling precise mitochondrial targeting of doxorubicin (Dox) to selectively eradicate cancer cells by amplifying multiple cell death pathways. It was found that Dox-encapsulating mitochondria-based nanovesicles (DOX-MitoNVs) exhibited an extraordinary ability to penetrate the blood-brain barrier (BBB), specifically targeting gliomas. By targeting mitochondria instead of locating at the nucleus, DOX-MitoNVs not only amplified Dox mediated apoptosis effects through the overloading of intracellular Ca2+ but also intensified ferroptosis by generating reactive oxygen species (ROS). Furthermore, DOX-MitoNVs demonstrated a significant ability to modulate the tumor immune microenvironment, thereby inducing pronounced immunogenic cell death (ICD) effects. In summary, it presents a novel therapeutic strategy utilizing DOX-MitoNVs for precise mitochondrial targeting in gliomas, enhancing drug sensitivity, inducing multiple cell death pathways, and modulating the tumor immune microenvironment to promote immunogenic cell death. STATEMENT OF SIGNIFICANCE: Mitochondrial targeting in gliomas is a promising therapeutic strategy that enhances drug sensitivity by exploiting glioma cells' mitochondrial vulnerabilities. We engineered mitochondrial membrane-based nanovesicles as artificial mitochondria for precise mitochondrial targeting of Dox. This approach facilitates selective cancer cell eradication and amplifies multiple cell death pathways alongside immunogenic chemotherapy. Notably, DOX-MitoNVs effectively cross the BBB and specifically target gliomas. By focusing on mitochondria, Dox induces apoptosis and intensifies ferroptosis through ROS generation. Additionally, DOX-MitoNVs can transform the tumor immune microenvironment, promoting ICD. Overall, DOX-MitoNVs offer a promising platform for enhanced glioma therapy.
Collapse
Affiliation(s)
- Mingzhu Song
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Jiayu Yuan
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Ge Zhang
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Mengdi Sun
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Yifei Zhang
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Xiangchen Su
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Ruizhen Lv
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Yuting Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China; Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, China; Collaborative Innovation Center for Age-related Disease, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China; Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, China; Collaborative Innovation Center for Age-related Disease, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
13
|
Ma M, Zhang Y, Pu K, Tang W. Nanomaterial-enabled metabolic reprogramming strategies for boosting antitumor immunity. Chem Soc Rev 2025; 54:653-714. [PMID: 39620588 DOI: 10.1039/d4cs00679h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Immunotherapy has become a crucial strategy in cancer treatment, but its effectiveness is often constrained. Most cancer immunotherapies focus on stimulating T-cell-mediated immunity by driving the cancer-immunity cycle, which includes tumor antigen release, antigen presentation, T cell activation, infiltration, and tumor cell killing. However, metabolism reprogramming in the tumor microenvironment (TME) supports the viability of cancer cells and inhibits the function of immune cells within this cycle, presenting clinical challenges. The distinct metabolic needs of tumor cells and immune cells require precise and selective metabolic interventions to maximize therapeutic outcomes while minimizing adverse effects. Recent advances in nanotherapeutics offer a promising approach to target tumor metabolism reprogramming and enhance the cancer-immunity cycle through tailored metabolic modulation. In this review, we explore cutting-edge nanomaterial strategies for modulating tumor metabolism to improve therapeutic outcomes. We review the design principles of nanoplatforms for immunometabolic modulation, key metabolic pathways and their regulation, recent advances in targeting these pathways for the cancer-immunity cycle enhancement, and future prospects for next-generation metabolic nanomodulators in cancer immunotherapy. We expect that emerging immunometabolic modulatory nanotechnology will establish a new frontier in cancer immunotherapy in the near future.
Collapse
Affiliation(s)
- Muye Ma
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Dr 2, Singapore, 117545, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, 28 Medical Dr, Singapore, 117597, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Wei Tang
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
- Department of Pharmacy and Pharmaceutic Sciences, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
14
|
Rataan AO, Xu Y, Geary SM, Zakharia Y, Kamel ES, Rustum YM, Salem AK. Targeting transforming growth factor-β1 by methylseleninic acid/seleno-L-methionine in clear cell renal cell carcinoma: Mechanisms and therapeutic potential. Cancer Treat Res Commun 2025; 42:100864. [PMID: 39813754 PMCID: PMC11846624 DOI: 10.1016/j.ctarc.2025.100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC) poses a significant global health challenge as its incidence continues to rise, resulting in a substantial annual mortality rate. Major clinical challenges to current ccRCC treatments include high drug-resistance rates as well as dose-limiting adverse events; underlining the need to identify additional 'druggable' targets. TGF-β1, VEGF, and PD-L1 are potential therapeutic targets in ccRCC. This study analyzed their expression in human ccRCC cell lines and patient tumor biopsies. Data obtained from western blotting demonstrated higher levels of TGF-β1 and PD-L1 and lower levels of VEGF in sarcomatoid ccRCC cell lines compared to non-sarcomatoid ccRCC cell lines. In patient samples, TGF-β1 was significantly upregulated in both non-sarcomatoid and sarcomatoid ccRCC tumors. It was demonstrated through two assays (cellular thermal shift assay and a size exclusion assay) that methylseleninic acid (MSA) binds specifically and directly to TGF-β1. MSA treatment significantly downregulated TGF-β1, PD-L1, and VEGF in a dose- and time-dependent manner in both non-sarcomatoid and sarcomatoid ccRCC cell lines. Seleno-L-methionine (SLM) treatment in a nude mouse xenograft model showed a significant tumor growth inhibition and TGF-β1 downregulation at non-toxic doses. These findings suggest that selenium-mediated downregulation of TGF-β1, PD-L1, and VEGF could be a viable therapeutic strategy for ccRCC.
Collapse
Affiliation(s)
- Aseel O Rataan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Yan Xu
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Yousef Zakharia
- Department of Internal Medicine, Division of Hematology and Oncology, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Eman S Kamel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Youcef M Rustum
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Roswell Park Comprehensive Cancer Center, Department of Pharmacology & Therapeutics, Buffalo, NY 14203, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
15
|
Li J, Chen ZS, Pan Y, Zeng L. The important role of lactylation in regulating DNA damage repair and tumor chemotherapy resistance. Drug Resist Updat 2025; 78:101148. [PMID: 39271382 DOI: 10.1016/j.drup.2024.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Affiliation(s)
- Jia Li
- The Biobank, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, PR China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Yihang Pan
- The Biobank, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, PR China.
| | - Leli Zeng
- The Biobank, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, PR China.
| |
Collapse
|
16
|
Zhang H, Ji M, Wang Y, Jiang M, Lv Z, Li G, Wang L, Zheng Z. Intrinsic PD-L1 Degradation Induced by a Novel Self-Assembling Hexapeptide for Enhanced Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410145. [PMID: 39530653 PMCID: PMC11727121 DOI: 10.1002/advs.202410145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Programmed death-ligand 1 (PD-L1) is a critical immune checkpoint protein that facilitates tumor immune evasion. While antibody-based PD-1/PD-L1 inhibitors have shown promise, their limitations necessitate the development of alternative therapeutic strategies. This work addresses these challenges by developing a hexapeptide, KFM (Lys-Phe-Met-Phe-Met-Lys), capable of both directly downregulating PD-L1 and self-assembling into a ROS-responsive supramolecular hydrogel. This dual functionality allows Gel KFM to function as a localized drug delivery system and a PD-L1 inhibitor. Loading the hydrogel with mitoxantrone (MTX) and metformin (MET) further enhances the therapeutic effect by combining chemotherapy with PD-L1 downregulation. In vitro and in vivo studies demonstrate significant tumor growth inhibition, increased CD8+ T cell infiltration, and reduced intratumoral PD-L1 expression following peritumoral administration. Mechanistically, KFM promotes PD-L1 degradation via a ubiquitin-dependent pathway. This "carrier-free" delivery system expands the role of supramolecular hydrogels beyond passive carriers to active immunotherapeutic agents, offering a promising new strategy for cancer therapy.
Collapse
Affiliation(s)
- Hongxia Zhang
- The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
| | - Ming Ji
- The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
| | - Yamei Wang
- Tianjin Key Laboratory of Biosensing and Molecular RecognitionResearch Center for Analytical ScienceFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071China
| | - Mengmeng Jiang
- The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
| | - Zongyu Lv
- The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
| | - Gongyu Li
- Tianjin Key Laboratory of Biosensing and Molecular RecognitionResearch Center for Analytical ScienceFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071China
| | - Lulu Wang
- The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
| | - Zhen Zheng
- The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
| |
Collapse
|
17
|
Chen Y, Guo Y, Cheng W, Fan J, Li J, Song J, Yang X, Wang K, Huang J. Sequentially Activated Smart DNA Nanospheres for Photoimmunotherapy and Immune Checkpoint Blockade. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410632. [PMID: 39588591 PMCID: PMC11744728 DOI: 10.1002/advs.202410632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/09/2024] [Indexed: 11/27/2024]
Abstract
Due to the inherent immunosuppression and immune evasion of cancer cells, combining photoimmunotherapy with immune checkpoint blockade leverages phototherapy and immune enhancement, overcoming mutual limitations and demonstrating significant anticancer potential. The main challenges include nonspecific accumulation of agents, uncontrolled activation, and drug carrier safety. Smart DNA nanospheres (NS) is developed with targeted delivery and controllable release of photosensitizers and immune agents to achieve effective synergistic therapy and minimize side effects. The multifunctional NS incorporate a targeting module for programming aptamers, a response module for programming i-motif and DNA/RNA hybrid sequences, and a therapeutic module for packaging photosensitizers and PD-L1 siRNA. NS navigate to the tumor site and are sequentially activated by intracellular acid and enzymes to release photosensitizers and programmed death ligand 1 (PD-L1) small interfering RNA (siRNA)a. Besides tumor killing and immune promotion, activated NS downregulate PD-L1 expression, alleviating immune tolerance and evasion, thus enhancing the immune response. These results indicate that NS significantly enhance antitumor immune responses, synergistically improve antitumor efficacy, and reduce systemic toxicity. This study broadens the application of DNA nanomaterials in precision drug delivery and tumor therapy.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringKey Laboratory for Bio‐Nanotechnology and Molecular Engineering of Hunan ProvinceHunan UniversityChangsha410082P. R. China
| | - Yu Guo
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringKey Laboratory for Bio‐Nanotechnology and Molecular Engineering of Hunan ProvinceHunan UniversityChangsha410082P. R. China
| | - Wen Cheng
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringKey Laboratory for Bio‐Nanotechnology and Molecular Engineering of Hunan ProvinceHunan UniversityChangsha410082P. R. China
| | - Jiahao Fan
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringKey Laboratory for Bio‐Nanotechnology and Molecular Engineering of Hunan ProvinceHunan UniversityChangsha410082P. R. China
| | - Jiacheng Li
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringKey Laboratory for Bio‐Nanotechnology and Molecular Engineering of Hunan ProvinceHunan UniversityChangsha410082P. R. China
| | - Jiajia Song
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringKey Laboratory for Bio‐Nanotechnology and Molecular Engineering of Hunan ProvinceHunan UniversityChangsha410082P. R. China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringKey Laboratory for Bio‐Nanotechnology and Molecular Engineering of Hunan ProvinceHunan UniversityChangsha410082P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringKey Laboratory for Bio‐Nanotechnology and Molecular Engineering of Hunan ProvinceHunan UniversityChangsha410082P. R. China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringKey Laboratory for Bio‐Nanotechnology and Molecular Engineering of Hunan ProvinceHunan UniversityChangsha410082P. R. China
| |
Collapse
|
18
|
Zuo K, Liu N, Zhou P, Zheng M, Wang L, Tang T, Yang Z, Chen L, Zhu X. Human serum albumin promotes interactions between HSA-IL-2 fusion protein and CD122 for enhancing immunotherapy. Biomed Pharmacother 2024; 181:117664. [PMID: 39522264 DOI: 10.1016/j.biopha.2024.117664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Interleukin 2 (IL-2) is a multifunctional cytokine that is crucial for T-lymphocytes proliferation and differentiation. However, IL-2 binds to IL-2Rα (CD25) subunit preferentially and tends to stimulate regulatory T cells (Tregs), which express high-affinity trimeric receptors (IL-2Rαβγ), resulting in immunosuppressive effects. Therefore, development of methods that enhance IL-2/CD122 interactions and activate immune responses without affecting therapeutic efficacy of IL-2 may be desirable. In this work, we constructed a recombinant IL-2 fusion protein (HSA-IL-2), comprising human serum albumin (HSA) and IL-2, there was a new interaction interface between HSA domain and CD122 in HSA-IL-2 fusion protein predicted by AlphaFold2, and followed by determining binding affinity between HSA-IL-2 and CD122 through ForteBio's Bio-Layer Interferometry technology. Strikingly, HSA did promoted interactions between HSA-IL-2 fusion protein and CD122 compared with wild-type IL-2. In vivo experiments, HSA-IL-2 fusion protein had capacity to promote CD8+ T cells infiltration while reducing Treg cells infiltration for boosting immunotherapeutic efficacy. Furthermore, it facilitated synergistic therapeutic effect with α-PD-L1 to inhibit tumor growth. Overall, our research unveiled an enhanced binding affinity method underlying interactions between IL-2 and CD122 via fusing albumin, and propose a promising therapeutic strategy to facilitate IL-2 administration and broaden its clinical use.
Collapse
Affiliation(s)
- Kaiyue Zuo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; Li Song's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Hainan University, Sanya 572000, China
| | - Naiyu Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; Li Song's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Hainan University, Sanya 572000, China
| | - Peng Zhou
- School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Mengzhu Zheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Lingjuan Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; Li Song's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Hainan University, Sanya 572000, China
| | - Tingting Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; Li Song's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Hainan University, Sanya 572000, China
| | - Zhanqun Yang
- Department of Pharmacy, Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Long Chen
- Department of Pharmacy, Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing 100191, China.
| | - Xinjie Zhu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; Li Song's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Hainan University, Sanya 572000, China.
| |
Collapse
|
19
|
Wang R, Zhang Y, Yu Z, Wang C, Zhu F, Lai Y, Chen J, Tian W. Alginate-based functionalized, remote, light-responsive hydrogel transducer for synergistic mild photo thermoelectric stimulation for tumor therapy. Int J Biol Macromol 2024; 282:136955. [PMID: 39481699 DOI: 10.1016/j.ijbiomac.2024.136955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/10/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Photothermal therapy (PTT) is an effective cancer treatment that circumvents the resistance caused by chemotherapy drugs. Conventional PTT has a relatively high temperature, which is better able to kill tumor tissues, but it is also more damaging to normal tissues. Mild PTT avoids these high temperatures, but its corresponding killing ability becomes lower and enhances the heat resistance of cancer cells, causing tumor self-protection and reducing the therapeutic effect of PTT. Here, we reported a new, remotely stimulable, mild-temperature PTT combined with electrical stimulation-induced ionic interference therapy. We introduced MXenes into alginate based thermoresponsive PVA/P(NIPAm-co-SA) hydrogel (PPS) to formulate mechanically reliable hydrogel electrolyte-based supercapacitors as an ion homeostasis perturbator. The artificially controlled duration of near-infrared radiation modulates the PTT cycle temperature, which is controllably maintained at a little under 45 °C to reduce Hsp90 overexpression. Light-induced phase transitions in the hydrogel produce voltages that resemble low-intensity, alternating electric fields. Moreover, chronic piezoelectric stimulation can inhibit cancer cell proliferation by upregulating the expression of genes encoding Kir3.2 inwardly rectifying potassium channels, by interfering with Ca2+ homeostasis, and by affecting mitotic spindle organization during mitosis. In vivo and in vitro antitumor studies on the 4T1 model suggest that this functionalized, remote, light-responsive transducer is an effective and promising tool for the treatment of tumors.
Collapse
Affiliation(s)
- Ruiqi Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, People's Republic of China
| | - Yijian Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, People's Republic of China
| | - Zhenqiang Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, People's Republic of China
| | - Cao Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, People's Republic of China
| | - Fuxing Zhu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, People's Republic of China
| | - Yifan Lai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, People's Republic of China
| | - Jingwei Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, People's Republic of China
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
20
|
Zhou Z, Luo W, Zheng C, Wang H, Hu R, Deng H, Shen J. Mitochondrial metabolism blockade nanoadjuvant reversed immune-resistance microenvironment to sensitize albumin-bound paclitaxel-based chemo-immunotherapy. Acta Pharm Sin B 2024; 14:4087-4101. [PMID: 39309498 PMCID: PMC11413680 DOI: 10.1016/j.apsb.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 09/25/2024] Open
Abstract
Currently, the efficacy of albumin-bound paclitaxel (PTX@Alb) is still limited due to the impaired PTX@Alb accumulation in tumors partly mediated by the dense collagen distribution. Meanwhile, acquired immune resistance always occurs due to the enhanced programmed cell death-ligand 1 (PD-L1) expression after PTX@Alb treatment, which then leads to immune tolerance. To fill these gaps, we newly revealed that tamoxifen (TAM), a clinically widely used adjuvant therapy for breast cancer with mitochondrial metabolism blockade capacity, could also be used as a novel effective PD-L1 and TGF-β dual-inhibitor via inducing the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK) protein. Following this, to obtain a more significant effect, TPP-TAM was prepared by conjugating mitochondria-targeted triphenylphosphine (TPP) with TAM, which then further self-assembled with albumin (Alb) to form TPP-TAM@Alb nanoparticles. By doing this, TPP-TAM@Alb nanoparticles effectively decreased the expression of collagen in vitro, which then led to the enhanced accumulation of PTX@Alb in 4T1 tumors. Besides, TPP-TAM@Alb also effectively decreased the expression of PD-L1 and TGF-β in tumors to better sensitize PTX@Alb-mediated chemo-immunotherapy by enhancing T cell infiltration. All in all, we newly put forward a novel mitochondrial metabolism blockade strategy to inhibit PTX@Alb-resistant tumors, further supporting its better clinical application.
Collapse
Affiliation(s)
- Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenjuan Luo
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Chunjuan Zheng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Haoxiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Rui Hu
- Department of the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hui Deng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
21
|
Guo J, Zhao W, Xiao X, Liu S, Liu L, Zhang L, Li L, Li Z, Li Z, Xu M, Peng Q, Wang J, Wei Y, Jiang N. Reprogramming exosomes for immunity-remodeled photodynamic therapy against non-small cell lung cancer. Bioact Mater 2024; 39:206-223. [PMID: 38827172 PMCID: PMC11141154 DOI: 10.1016/j.bioactmat.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024] Open
Abstract
Traditional treatments against advanced non-small cell lung cancer (NSCLC) with high morbidity and mortality continue to be dissatisfactory. Given this situation, there is an urgent requirement for alternative modalities that provide lower invasiveness, superior clinical effectiveness, and minimal adverse effects. The combination of photodynamic therapy (PDT) and immunotherapy gradually become a promising approach for high-grade malignant NSCLC. Nevertheless, owing to the absence of precise drug delivery techniques as well as the hypoxic and immunosuppressive characteristics of the tumor microenvironment (TME), the efficacy of this combination therapy approach is less than ideal. In this study, we construct a novel nanoplatform that indocyanine green (ICG), a photosensitizer, loads into hollow manganese dioxide (MnO2) nanospheres (NPs) (ICG@MnO2), and then encapsulated in PD-L1 monoclonal antibodies (anti-PD-L1) reprogrammed exosomes (named ICG@MnO2@Exo-anti-PD-L1), to effectively modulate the TME to oppose NSCLC by the synergy of PDT and immunotherapy modalities. The ICG@MnO2@Exo-anti-PD-L1 NPs are precisely delivered to the tumor sites by targeting specially PD-L1 highly expressed cancer cells to controllably release anti-PD-L1 in the acidic TME, thereby activating T cell response. Subsequently, upon endocytic uptake by cancer cells, MnO2 catalyzes the conversion of H2O2 to O2, thereby alleviating tumor hypoxia. Meanwhile, ICG further utilizes O2 to produce singlet oxygen (1O2) to kill tumor cells under 808 nm near-infrared (NIR) irradiation. Furthermore, a high level of intratumoral H2O2 reduces MnO2 to Mn2+, which remodels the immune microenvironment by polarizing macrophages from M2 to M1, further driving T cells. Taken together, the current study suggests that the ICG@MnO2@Exo-anti-PD-L1 NPs could act as a novel drug delivery platform for achieving multimodal therapy in treating NSCLC.
Collapse
Affiliation(s)
- Jiao Guo
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Zhao
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyu Xiao
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Shanshan Liu
- Department of Plastic and Maxillofacial Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Liang Liu
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - La Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lu Li
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Zhenghang Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhi Li
- Traditional Chinese Medicine Hospital of Bijie City, Guizhou province, 551700, China
| | - Mengxia Xu
- Traditional Chinese Medicine Hospital of Bijie City, Guizhou province, 551700, China
| | - Qiling Peng
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
- Bijie Municipal Health Bureau, Guizhou province, 551700, China
- Health Management Center, the Affiliated Hospital of Guizhou Medical University
| | - Jianwei Wang
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Yuxian Wei
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ning Jiang
- Department of Pathology, School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
22
|
Kejík Z, Hajduch J, Abramenko N, Vellieux F, Veselá K, Fialová JL, Petrláková K, Kučnirová K, Kaplánek R, Tatar A, Skaličková M, Masařík M, Babula P, Dytrych P, Hoskovec D, Martásek P, Jakubek M. Cyanine dyes in the mitochondria-targeting photodynamic and photothermal therapy. Commun Chem 2024; 7:180. [PMID: 39138299 PMCID: PMC11322665 DOI: 10.1038/s42004-024-01256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Mitochondrial dysregulation plays a significant role in the carcinogenesis. On the other hand, its destabilization strongly represses the viability and metastatic potential of cancer cells. Photodynamic and photothermal therapies (PDT and PTT) target mitochondria effectively, providing innovative and non-invasive anticancer therapeutic modalities. Cyanine dyes, with strong mitochondrial selectivity, show significant potential in enhancing PDT and PTT. The potential and limitations of cyanine dyes for mitochondrial PDT and PTT are discussed, along with their applications in combination therapies, theranostic techniques, and optimal delivery systems. Additionally, novel approaches for sonodynamic therapy using photoactive cyanine dyes are presented, highlighting advances in cancer treatment.
Collapse
Affiliation(s)
- Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Frédéric Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | | | - Kateřina Petrláková
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Ameneh Tatar
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| |
Collapse
|
23
|
Xu H, Kim D, Zhao YY, Kim C, Song G, Hu Q, Kang H, Yoon J. Remote Control of Energy Transformation-Based Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402806. [PMID: 38552256 DOI: 10.1002/adma.202402806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Cancer treatment requires precise tumor-specific targeting at specific sites that allows for high-resolution diagnostic imaging and long-term patient-tailorable cancer therapy; while, minimizing side effects largely arising from non-targetability. This can be realized by harnessing exogenous remote stimuli, such as tissue-penetrative ultrasound, magnetic field, light, and radiation, that enable local activation for cancer imaging and therapy in deep tumors. A myriad of nanomedicines can be efficiently activated when the energy of such remote stimuli can be transformed into another type of energy. This review discusses the remote control of energy transformation for targetable, efficient, and long-term cancer imaging and therapy. Such ultrasonic, magnetic, photonic, radiative, and radioactive energy can be transformed into mechanical, thermal, chemical, and radiative energy to enable a variety of cancer imaging and treatment modalities. The current review article describes multimodal energy transformation where a serial cascade or multiple types of energy transformation occur. This review includes not only mechanical, chemical, hyperthermia, and radiation therapy but also emerging thermoelectric, pyroelectric, and piezoelectric therapies for cancer treatment. It also illustrates ultrasound, magnetic resonance, fluorescence, computed tomography, photoluminescence, and photoacoustic imaging-guided cancer therapies. It highlights afterglow imaging that can eliminate autofluorescence for sustained signal emission after the excitation.
Collapse
Affiliation(s)
- Hai Xu
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Dahee Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yuan-Yuan Zhao
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Chowon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
24
|
Zhou Z, Li C, Li C, Zhou L, Tan S, Hou W, Xie C, Wang L, Shen J, Xiong W. Mitochondria-Targeted Nanoadjuvants Induced Multi-Functional Immune-Microenvironment Remodeling to Sensitize Tumor Radio-Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400297. [PMID: 38704675 PMCID: PMC11234464 DOI: 10.1002/advs.202400297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/25/2024] [Indexed: 05/06/2024]
Abstract
It is newly revealed that collagen works as a physical barrier to tumor immune infiltration, oxygen perfusion, and immune depressor in solid tumors. Meanwhile, after radiotherapy (RT), the programmed death ligand-1 (PD-L1) overexpression and transforming growth factor-β (TGF-β) excessive secretion would accelerate DNA damage repair and trigger T cell exclusion to limit RT efficacy. However, existing drugs or nanoparticles can hardly address these obstacles of highly effective RT simultaneously, effectively, and easily. In this study, it is revealed that inducing mitochondria dysfunction by using oxidative phosphorylation inhibitors like Lonidamine (LND) can serve as a highly effective multi-immune pathway regulation strategy through PD-L1, collagen, and TGF-β co-depression. Then, IR-LND is prepared by combining the mitochondria-targeted molecule IR-68 with LND, which then is loaded with liposomes (Lip) to create IR-LND@Lip nanoadjuvants. By doing this, IR-LND@Lip more effectively sensitizes RT by generating more DNA damage and transforming cold tumors into hot ones through immune activation by PD-L1, collagen, and TGF-β co-inhibition. In conclusion, the combined treatment of RT and IR-LND@Lip ultimately almost completely suppressed the growth of bladder tumors and breast tumors.
Collapse
Affiliation(s)
- Zaigang Zhou
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Cheng Li
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Chao Li
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Lei Zhou
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Shuo Tan
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Weibin Hou
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Congying Xie
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy TechnologyZhejiang‐Hong Kong Precision Theranostics of Thoracic Tumors Joint LaboratoryWenzhou key Laboratory of Basic Science and Translational Research of Radiation OncologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Long Wang
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhouZhejiang325027China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001China
| | - Wei Xiong
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| |
Collapse
|
25
|
Zhou Z, Jiang X, Yi L, Li C, Wang H, Xiong W, Li Z, Shen J. Mitochondria Energy Metabolism Depression as Novel Adjuvant to Sensitize Radiotherapy and Inhibit Radiation Induced-Pulmonary Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401394. [PMID: 38715382 PMCID: PMC11234447 DOI: 10.1002/advs.202401394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 07/11/2024]
Abstract
Currently, the typical combination therapy of programmed death ligand-1 (PD-L1) antibodies with radiotherapy (RT) still exhibits impaired immunogenic antitumor response in clinical due to lessened DNA damage and acquired immune tolerance via the upregulation of some other immune checkpoint inhibitors. Apart from this, such combination therapy may raise the occurrence rate of radiation-induced lung fibrosis (RIPF) due to enhanced systemic inflammation, leading to the ultimate death of cancer patients (average survival time of about 3 years). Therefore, it is newly revealed that mitochondria energy metabolism regulation can be used as a novel effective PD-L1 and transforming growth factor-β (TGF-β) dual-downregulation method. Following this, IR-TAM is prepared by conjugating mitochondria-targeted heptamethine cyanine dye IR-68 with oxidative phosphorylation (OXPHOS) inhibitor Tamoxifen (TAM), which then self-assembled with albumin (Alb) to form IR-TAM@Alb nanoparticles. By doing this, tumor-targeting IR-TAM@Alb nanoparticle effectively reversed tumor hypoxia and depressed PD-L1 and TGF-β expression to sensitize RT. Meanwhile, due to the capacity of heptamethine cyanine dye in targeting RIPF and the function of TAM in depressing TGF-β, IR-TAM@Alb also ameliorated fibrosis development induced by RT.
Collapse
Affiliation(s)
- Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xin Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lei Yi
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Cheng Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Haoxiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wei Xiong
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Zhipeng Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| |
Collapse
|
26
|
Lin P, Lu Y, Zheng J, Lin Y, Zhao X, Cui L. Strategic disruption of cancer's powerhouse: precise nanomedicine targeting of mitochondrial metabolism. J Nanobiotechnology 2024; 22:318. [PMID: 38849914 PMCID: PMC11162068 DOI: 10.1186/s12951-024-02585-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/26/2024] [Indexed: 06/09/2024] Open
Abstract
Mitochondria occupy a central role in the biology of most eukaryotic cells, functioning as the hub of oxidative metabolism where sugars, fats, and amino acids are ultimately oxidized to release energy. This crucial function fuels a variety of cellular activities. Disruption in mitochondrial metabolism is a common feature in many diseases, including cancer, neurodegenerative conditions and cardiovascular diseases. Targeting tumor cell mitochondrial metabolism with multifunctional nanosystems emerges as a promising strategy for enhancing therapeutic efficacy against cancer. This review comprehensively outlines the pathways of mitochondrial metabolism, emphasizing their critical roles in cellular energy production and metabolic regulation. The associations between aberrant mitochondrial metabolism and the initiation and progression of cancer are highlighted, illustrating how these metabolic disruptions contribute to oncogenesis and tumor sustainability. More importantly, innovative strategies employing nanomedicines to precisely target mitochondrial metabolic pathways in cancer therapy are fully explored. Furthermore, key challenges and future directions in this field are identified and discussed. Collectively, this review provides a comprehensive understanding of the current state and future potential of nanomedicine in targeting mitochondrial metabolism, offering insights for developing more effective cancer therapies.
Collapse
Affiliation(s)
- Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
27
|
Ma B, Ren C, Yin Y, Zhao S, Li J, Yang H. Immune cell infiltration and prognostic index in cervical cancer: insights from metabolism-related differential genes. Front Immunol 2024; 15:1411132. [PMID: 38840928 PMCID: PMC11150690 DOI: 10.3389/fimmu.2024.1411132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
Background Cervical cancer remains a significant gynecologic malignancy in both China and the United States, posing a substantial threat to women's lives and health due to its high morbidity and mortality rates. Altered energy metabolism and dysregulated mitochondrial function play crucial roles in the development, growth, metastasis, and recurrence of malignant tumors. In this study, we aimed to predict prognosis and assess efficacy of anti-tumor therapy in cervical cancer patients based on differential genes associated with mitochondrial metabolism. Methods Transcriptomic data and clinical profiles of cervical cancer patients were retrieved from the TCGA and GEO databases. Differential gene-related cellular pathways were identified through GO, KEGG, and GSEA analyses. Prognostic indices were constructed using LASSO regression analysis. Immune cell infiltration was assessed using CIBERSORT and ssGSEA, and the correlation between immune checkpoint inhibitor genes and differential genes was examined. Tumor mutation load (TMB) and its association with prognostic indices were analyzed using nucleotide variant data from the TCGA database. Patient response to immunotherapy and sensitivity to antitumor drugs were determined using the TIDE algorithm and the oncoPredic algorithm, respectively. Results A prognostic index based on metabolism-related differential genes was developed to predict the clinical outcome of cervical cancer patients, enabling their classification into two distinct subtypes. The prognostic index emerged as an independent risk factor for unfavorable prognosis. The high-index group exhibited a significantly worse overall prognosis, along with elevated tumor mutation burden (TMB), increased immune cell infiltration, and lower TIDE scores, indicating a potential benefit from immunotherapy. Conversely, the low-index group demonstrated increased sensitivity to metabolism-related antitumor agents, specifically multikinase inhibitors. Conclusion The aim of this study was to develop a prognostic index based on differential genes associated with mitochondrial metabolism, which could be used to predict cervical cancer patients' prognoses. When combined with TIDE and TMB analyses, this prognostic index offers insights into the immune cell infiltration landscape, as well as the potential efficacy of immunotherapy and targeted therapy. Our analysis suggests that the Iron-Sulfur Cluster Assembly Enzyme (ISCU) gene holds promise as a biomarker for cervical cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Jia Li
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Force Medical University, Shaanxi, Xi’an, China
| | - Hong Yang
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Force Medical University, Shaanxi, Xi’an, China
| |
Collapse
|
28
|
Fan Z, Wu S, Deng H, Li G, Huang L, Liu H. Light-Triggered Nanozymes Remodel the Tumor Hypoxic and Immunosuppressive Microenvironment for Ferroptosis-Enhanced Antitumor Immunity. ACS NANO 2024; 18:12261-12275. [PMID: 38683132 DOI: 10.1021/acsnano.4c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Cancer immunotherapy holds significant promise for addressing diverse malignancies. Nevertheless, its efficacy remains constrained by the intricate tumor immunosuppressive microenvironment. Herein, a light-triggered nanozyme Fe-TCPP-R848-PEG (Fe-MOF-RP) was designed for remodeling the immunosuppressive microenvironment. The Fe-TCPP-MOFs were utilized not only as a core catalysis component against tumor destruction but also as a biocompatible delivery vector of an immunologic agonist, improving its long circulation and tumor enrichment. Concurrently, it catalyzes the decomposition of H2O2 within the tumor, yielding oxygen to augment photodynamic therapy. The induced ferroptosis, in synergy with photodynamic therapy, prompts the liberation of tumor-associated antigens from tumor cells inducing immunogenic cell death. Phototriggered on-demand release of R848 agonists stimulated the maturation of dendritic cells and reverted the tumor-promoting M2 phenotypes into adoptive M1 macrophages, which further reshaped the tumor immunosuppressive microenvironment. Notably, the nanozyme effectively restrains well-established tumors, such as B16F10 melanoma. Moreover, it demonstrates a distal tumor-inhibiting effect upon in situ light treatment. What is more, in a lung metastasis model, it elicits robust immune memory, conferring enduring protection against tumor rechallenge. Our study presents a straightforward and broadly applicable strategy for crafting nanozymes with the potential to effectively thwart cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Zhijin Fan
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Sicheng Wu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Huaping Deng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Guanlin Li
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Linghong Huang
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Hongxing Liu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
29
|
Aebisher D, Rogóż K, Myśliwiec A, Dynarowicz K, Wiench R, Cieślar G, Kawczyk-Krupka A, Bartusik-Aebisher D. The use of photodynamic therapy in medical practice. Front Oncol 2024; 14:1373263. [PMID: 38803535 PMCID: PMC11129581 DOI: 10.3389/fonc.2024.1373263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Cancer therapy, especially for tumors near sensitive areas, demands precise treatment. This review explores photodynamic therapy (PDT), a method leveraging photosensitizers (PS), specific wavelength light, and oxygen to target cancer effectively. Recent advancements affirm PDT's efficacy, utilizing ROS generation to induce cancer cell death. With a history spanning over decades, PDT's dynamic evolution has expanded its application across dermatology, oncology, and dentistry. This review aims to dissect PDT's principles, from its inception to contemporary medical applications, highlighting its role in modern cancer treatment strategies.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, Rzeszów, Poland
| | - Kacper Rogóż
- English Division Science Club, Medical College of The Rzeszów University, Rzeszów, Poland
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, Rzeszów, Poland
| | - Rafał Wiench
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Zabrze, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, Rzeszów, Poland
| |
Collapse
|
30
|
Cao J, Zhu C, Cao Z, Ke X. CPPs-modified chitosan as permeability-enhancing chemotherapeutic combined with gene therapy nanosystem by thermosensitive hydrogel for the treatment of osteosarcoma. Int J Biol Macromol 2024; 267:130915. [PMID: 38561118 DOI: 10.1016/j.ijbiomac.2024.130915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Chemotherapy resistance of osteosarcoma (OS) is still the crux of poor clinical curative effect.E3 ubiquitin-protein ligase Rad18 (Rad18) contributed to doxorubicin resistance in OS, which ultimately mediated DNA damage tolerance and led to a poor prognosis and chemotherapy response in patients. METHODS In this study, doxorubicin was loaded in the process of Fe2+ and siRad18 forming nanoparticles(FSD) through coordination, chitosan modified with cell penetrating peptide (H6R6) was synthesized and coated on the surface of the NPs(FSD-CHR). FSD-CHR was then dispersed in thermosensitive hydrogel(PPP) for peritumoral injection of osteosarcoma in situ. Subsequently, the physicochemical properties and molecular biological characteristics of the drug delivery system were characterized. Finally, an osteosarcoma model was established to study the anti-tumor effects of multifunctional nanoparticles and the immunotherapy effect combined with αPD-L1. RESULTS FSD-CHR has enhanced tumor tissue permeability, siRad18 can significantly reduce Dox-mediated DNA damage tolerance and enhance anti-tumor effects, and iron-based NPs show enhanced ROS upregulation. FSD-CHR@PPP showed significant inhibition of osteosarcoma growth in vivo and a reduced incidence of lung metastasis. In addition, siRad18 was unexpectedly found to enhance Dox-mediated immunogenic cell death (ICD).FSD-CHR@PPP combined with PD-L1 blocking significantly enhanced anti-tumor effects due to decreased PD-L1 enrichment. CONCLUSION Hydrogel encapsulation of permeable nanoparticles provides an effective strategy for doxorubicin-resistant OS, showing that gene therapy blocking DNA damage tolerance can enhance treatment response to chemotherapy and appears to enhance the effect of ICD inducers to activate the immune system.
Collapse
Affiliation(s)
- Jie Cao
- Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu province, China
| | - Chenghong Zhu
- Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu province, China
| | - Ziqi Cao
- Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu province, China
| | - Xue Ke
- Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu province, China.
| |
Collapse
|
31
|
Hu W, Ye B, Yu G, Yang H, Wu H, Ding Y, Huang F, Wang W, Mao Z. Dual-Responsive Supramolecular Polymeric Nanomedicine for Self-Cascade Amplified Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305382. [PMID: 38493499 PMCID: PMC11132052 DOI: 10.1002/advs.202305382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Insufficient tumor immunogenicity and immune escape from tumors remain common problems in all tumor immunotherapies. Recent studies have shown that pyroptosis, a form of programmed cell death that is accompanied by immune checkpoint inhibitors, can induce effective immunogenic cell death and long-term immune activation. Therapeutic strategies to jointly induce pyroptosis and reverse immunosuppressive tumor microenvironments are promising for cancer immunotherapy. In this regard, a dual-responsive supramolecular polymeric nanomedicine (NCSNPs) to self-cascade amplify the benefits of cancer immunotherapy is designed. The NCSNPs are formulated by β-cyclodextrin coupling nitric oxide (NO) donor, a pyroptosis activator, and NLG919, an indoleamine 2,3-dioxygenase (IDO) inhibitor, and self-assembled through host-guest molecular recognition and hydrophobic interaction to obtain nanoparticles. NCSNPs possess excellent tumor accumulation and bioavailability attributed to ingenious supramolecular engineering. The study not only confirms the occurrence of NO-triggered pyroptosis in tumors for the first time but also reverses the immunosuppressive microenvironment in tumor sites via an IDO inhibitor by enhancing the infiltration of cytotoxic T lymphocytes, to achieve remarkable inhibition of tumor proliferation. Thus, this study provides a novel strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Wenting Hu
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityResearch Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
| | - Binglin Ye
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityResearch Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityClinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang ProvinceHangzhouZhejiang310009China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic DiseaseZhejiang UniversityHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310009China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Hao Wu
- Department of GastroenterologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityResearch Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityClinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang ProvinceHangzhouZhejiang310009China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic DiseaseZhejiang UniversityHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310009China
| | - Feihe Huang
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhouZhejiang310027China
- Zhejiang‐Israel Joint Laboratory of Self‐Assembling Functional MaterialsZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhouZhejiang311215China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityResearch Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityClinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang ProvinceHangzhouZhejiang310009China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic DiseaseZhejiang UniversityHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310009China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| |
Collapse
|
32
|
Yu Q, Li X, Wang J, Guo L, Huang L, Gao W. Recent Advances in Reprogramming Strategy of Tumor Microenvironment for Rejuvenating Photosensitizers-Mediated Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305708. [PMID: 38018311 DOI: 10.1002/smll.202305708] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/08/2023] [Indexed: 11/30/2023]
Abstract
Photodynamic therapy (PDT) has recently been considered a potential tumor therapy due to its time-space specificity and non-invasive advantages. PDT can not only directly kill tumor cells by using cytotoxic reactive oxygen species but also induce an anti-tumor immune response by causing immunogenic cell death of tumor cells. Although it exhibits a promising prospect in treating tumors, there are still many problems to be solved in its practical application. Tumor hypoxia and immunosuppressive microenvironment seriously affect the efficacy of PDT. The hypoxic and immunosuppressive microenvironment is mainly due to the abnormal vascular matrix around the tumor, its abnormal metabolism, and the influence of various immunosuppressive-related cells and their expressed molecules. Thus, reprogramming the tumor microenvironment (TME) is of great significance for rejuvenating PDT. This article reviews the latest strategies for rejuvenating PDT, from regulating tumor vascular matrix, interfering with tumor cell metabolism, and reprogramming immunosuppressive related cells and factors to reverse tumor hypoxia and immunosuppressive microenvironment. These strategies provide valuable information for a better understanding of the significance of TME in PDT and also guide the development of the next-generation multifunctional nanoplatforms for PDT.
Collapse
Affiliation(s)
- Qing Yu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
33
|
Chen K, Ernst P, Kim S, Si Y, Varadkar T, Ringel MD, Liu X“M, Zhou L. An Innovative Mitochondrial-targeted Gene Therapy for Cancer Treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.24.584499. [PMID: 38585739 PMCID: PMC10996521 DOI: 10.1101/2024.03.24.584499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Targeting cancer cell mitochondria holds great therapeutic promise, yet current strategies to specifically and effectively destroy cancer mitochondria in vivo are limited. Here, we introduce mLumiOpto, an innovative mitochondrial-targeted luminoptogenetics gene therapy designed to directly disrupt the inner mitochondrial membrane (IMM) potential and induce cancer cell death. We synthesize a blue light-gated channelrhodopsin (CoChR) in the IMM and co-express a blue bioluminescence-emitting Nanoluciferase (NLuc) in the cytosol of the same cells. The mLumiOpto genes are selectively delivered to cancer cells in vivo by using adeno-associated virus (AAV) carrying a cancer-specific promoter or cancer-targeted monoclonal antibody-tagged exosome-associated AAV. Induction with NLuc luciferin elicits robust endogenous bioluminescence, which activates mitochondrial CoChR, triggering cancer cell IMM permeability disruption, mitochondrial damage, and subsequent cell death. Importantly, mLumiOpto demonstrates remarkable efficacy in reducing tumor burden and killing tumor cells in glioblastoma or triple-negative breast cancer xenografted mouse models. These findings establish mLumiOpto as a novel and promising therapeutic strategy by targeting cancer cell mitochondria in vivo.
Collapse
Affiliation(s)
- Kai Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Patrick Ernst
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Seulhee Kim
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Yingnan Si
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Tanvi Varadkar
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Matthew D. Ringel
- Department of Molecular Medicine and Therapeutics, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Xiaoguang “Margaret” Liu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Lufang Zhou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
34
|
He Z, Du J, Wang Q, Chen G, Li X, Zhang Z, Wang S, Jing W, Miao Q, Li Y, Miao Y, Wu J. Dye-augmented bandgap engineering of a degradable cascade nanoreactor for tumor immune microenvironment-enhanced dynamic phototherapy of breast cancer. Acta Biomater 2024; 176:390-404. [PMID: 38244657 DOI: 10.1016/j.actbio.2024.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Non-invasive precision tumor dynamic phototherapy has broad application prospects. Traditional semiconductor materials have low photocatalytic activity and low reactive oxygen species (ROS) production rate due to their wide band gap, resulting in unsatisfactory phototherapy efficacy for tumor treatment. Employing the dye-sensitization mechanism can significantly enhance the catalytic activity of the materials. We develop a multifunctional nanoplatform (BZP) by leveraging the benefits of bismuth-based semiconductor nanomaterials. BZP possesses robust ROS generation and remarkable near-infrared photothermal conversion capabilities for improving tumor immune microenvironment and achieving superior phototherapy sensitization. BZP produces highly cytotoxic ROS species via the photocatalytic process and cascade reaction, amplifying the photocatalytic therapy effect. Moreover, the simultaneous photothermal effect during the photocatalytic process facilitates the improvement of therapeutic efficacy. Additionally, BZP-mediated phototherapy can trigger the programmed death of tumor cells, stimulate dendritic cell maturation and T cell activation, modulate the tumor immune microenvironment, and augment the therapeutic effect. Hence, this study demonstrates a promising research paradigm for tumor immune microenvironment-improved phototherapy. STATEMENT OF SIGNIFICANCE: Through the utilization of dye sensitization and rare earth doping techniques, we have successfully developed a biodegradable bismuth-based semiconductor nanocatalyst (BZP). Upon optical excitation, the near-infrared dye incorporated within BZP promptly generates free electrons, which, under the influence of the Fermi energy level, undergo transfer to BiF3 within BZP, thereby facilitating the effective separation of electron-hole pairs and augmenting the catalytic capability for reactive oxygen species (ROS) generation. Furthermore, a cascade reaction mechanism generates highly cytotoxic ROS, which synergistically depletes intracellular glutathione, thereby intensifying oxidative stress. Ultimately, this dual activation strategy, combining oxidative and thermal damage, holds significant potential for tumor immunotherapy.
Collapse
Affiliation(s)
- Zongyan He
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Du
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qian Wang
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guobo Chen
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueyu Li
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zheng Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shanhou Wang
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenxuan Jing
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qing Miao
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Yuhao Li
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yuqing Miao
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
35
|
Lu Y, Fan X, Pan Q, He B, Pu Y. A mitochondria-targeted anticancer copper dithiocarbamate amplifies immunogenic cuproptosis and macrophage polarization. J Mater Chem B 2024; 12:2006-2014. [PMID: 38291990 DOI: 10.1039/d3tb02886k] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The way that cancer cells die inspires treatment regimens and cytolytic cuproptosis induced by copper complexes, like copper(II) bis(diethyldithiocarbamate) (CuET), has emerged as a novel therapeutic target. Herein, a triphenylphosphonium-modified CuET (TPP-CuET) is designed to target mitochondrial metabolism, triggering intense immunogenic cuproptosis in breast cancer cells and remodeling tumor-associated macrophages. TPP-CuET enables an enhanced mitochondrial copper accumulation in comparison to CuET (29.0% vs. 19.4%), and severely disrupts the morphology and functions of mitochondria, encompassing the tricarboxylic acid cycle, ATP synthesis, and electron transfer chain. Importantly, it triggers amplified immunogenic death of cancer cells, and the released damage-associated molecular patterns effectively induce M1 polarization and migration of macrophages. Transcriptome analysis further reveals that TPP-CuET promotes antigen processing and presentation in cancer cells through the MHC I pathway, activating the immune response of CD8 T cells and natural killer cells. To the best of our knowledge, TPP-CuET is the first mitochondrial targeted immunogenic cuproptosis inducer and is expected to flourish in antitumor immunotherapy.
Collapse
Affiliation(s)
- Yao Lu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China.
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
36
|
Zhang Z, Liang X, Yang X, Liu Y, Zhou X, Li C. Advances in Nanodelivery Systems Based on Metabolism Reprogramming Strategies for Enhanced Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6689-6708. [PMID: 38302434 DOI: 10.1021/acsami.3c15686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Tumor development and metastasis are closely related to the complexity of the metabolism network. Recently, metabolism reprogramming strategies have attracted much attention in tumor metabolism therapy. Although there is preliminary success of metabolism therapy agents, their therapeutic effects have been restricted by the effective reaching of the tumor sites of drugs. Nanodelivery systems with unique physical properties and elaborate designs can specifically deliver to the tumors. In this review, we first summarize the research progress of nanodelivery systems based on tumor metabolism reprogramming strategies to enhance therapies by depleting glucose, inhibiting glycolysis, depleting lactic acid, inhibiting lipid metabolism, depleting glutamine and glutathione, and disrupting metal metabolisms combined with other therapies, including chemotherapy, radiotherapy, photodynamic therapy, etc. We further discuss in detail the advantages of nanodelivery systems based on tumor metabolism reprogramming strategies for tumor therapy. As well as the opportunities and challenges for integrating nanodelivery systems into tumor metabolism therapy, we analyze the outlook for these emerging areas. This review is expected to improve our understanding of modulating tumor metabolisms for enhanced therapy.
Collapse
Affiliation(s)
- Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoya Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xi Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiangyu Zhou
- Department of Thyroid and Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Basic Medicine Research Innovation Center for Cardiometabolic Disease, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
37
|
Myung N, Kang HW. Local dose-dense chemotherapy for triple-negative breast cancer via minimally invasive implantation of 3D printed devices. Asian J Pharm Sci 2024; 19:100884. [PMID: 38357526 PMCID: PMC10861843 DOI: 10.1016/j.ajps.2024.100884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/18/2023] [Accepted: 11/18/2023] [Indexed: 02/16/2024] Open
Abstract
Dose-dense chemotherapy is the preferred first-line therapy for triple-negative breast cancer (TNBC), a highly aggressive disease with a poor prognosis. This treatment uses the same drug doses as conventional chemotherapy but with shorter dosing intervals, allowing for promising clinical outcomes with intensive treatment. However, the frequent systemic administration used for this treatment results in systemic toxicity and low patient compliance, limiting therapeutic efficacy and clinical benefit. Here, we report local dose-dense chemotherapy to treat TNBC by implanting 3D printed devices with time-programmed pulsatile release profiles. The implantable device can control the time between drug releases based on its internal microstructure design, which can be used to control dose density. The device is made of biodegradable materials for clinical convenience and designed for minimally invasive implantation via a trocar. Dose density variation of local chemotherapy using programmable release enhances anti-cancer effects in vitro and in vivo. Under the same dose density conditions, device-based chemotherapy shows a higher anti-cancer effect and less toxic response than intratumoral injection. We demonstrate local chemotherapy utilizing the implantable device that simulates the drug dose, number of releases, and treatment duration of the dose-dense AC (doxorubicin and cyclophosphamide) regimen preferred for TNBC treatment. Dose density modulation inhibits tumor growth, metastasis, and the expression of drug resistance-related proteins, including p-glycoprotein and breast cancer resistance protein. To the best of our knowledge, local dose-dense chemotherapy has not been reported, and our strategy can be expected to be utilized as a novel alternative to conventional therapies and improve anti-cancer efficiency.
Collapse
Affiliation(s)
- Noehyun Myung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulju-gun 44919, South Korea
| | - Hyun-Wook Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulju-gun 44919, South Korea
| |
Collapse
|
38
|
Jiang X, Yi L, Li C, Wang H, Xiong W, Li Y, Zhou Z, Shen J. Mitochondrial Disruption Nanosystem Simultaneously Depressed Programmed Death Ligand-1 and Transforming Growth Factor-β to Overcome Photodynamic Immunotherapy Resistance. ACS NANO 2024; 18:3331-3348. [PMID: 38227812 DOI: 10.1021/acsnano.3c10117] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Currently, limited photosensitizers possess the capacity to reverse tumor hypoxia and reduce programmed death ligand-1 (PD-L1) and transforming growth factor-β (TGF-β) expression simultaneously, hindering the perfect photodynamic therapy (PDT) effect due to acquired immune resistance and the tumor hypoxic microenvironment. To tackle these challenges, in this research, we demonstrated that mitochondrial energy metabolism depression can be utilized as an innovative and efficient approach for reducing the expression of PD-L1 and TGF-β simultaneously, which may offer a design strategy for a more ideal PDT nanosystem. Through proteomic analysis of 5637 cells, we revealed that tamoxifen (TMX) can incredibly regulate PD-L1 expression in tumor cells. Then, to selectively deliver clinically used mitochondrial energy metabolism depressant TMX to solid tumors as well as design an ideal PDT nanosystem, we synthesized MHI-TMX@ALB by combining a mitochondria-targeted heptamethine cyanine PDT-dye MHI with TMX through self-assembly with albumin (ALB). Interestingly enough, the MHI-TMX@ALB nanoparticle demonstrated effective reversion of tumor hypoxia and inhibition of PD-L1 protein expression at a lower dosage (7.5 times to TMX), which then enhanced the efficacy of photodynamic immunotherapy via enhancing T-cell infiltration. Apart from this, by leveraging the heptamethine dye's targeting capacity toward tumors and TMX's role in suppressing TGF-β, MHI-TMX@ALB also more effectively mitigated 4T1 tumor lung metastasis development. All in all, the MHI-TMX@ALB nanoparticle could be used as a multifunctional economical PD-L1 and TGF-β codepression immune-regulating strategy, broadening the potential clinical applications for a more ideal PDT nanosystem.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Lei Yi
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Cheng Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Haoxiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Xiong
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Yuan Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
39
|
Zhou Z, Wang H, Li J, Jiang X, Li Z, Shen J. Recent progress, perspectives, and issues of engineered PD-L1 regulation nano-system to better cure tumor: A review. Int J Biol Macromol 2024; 254:127911. [PMID: 37939766 DOI: 10.1016/j.ijbiomac.2023.127911] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Currently, immune checkpoint blockade (ICB) therapies that target the programmed cell death ligand-1 (PD-L1) have been used as revolutionary cancer treatments in the clinic. Apart from restoring the antitumor response of cytotoxic T cells by blocking the interaction between PD-L1 on tumor cells and programmed cell death-1 (PD-1) on T cells, PD-L1 proteins were also newly revealed to possess the capacity to accelerate DNA damage repair (DDR) and enhance tumor growth through multiple mechanisms, leading to the impaired efficacy of tumor therapies. Nevertheless, current free anti-PD-1/PD-L1 therapy still suffered from poor therapeutic outcomes in most solid tumors due to the non-selective tumor accumulation, ineludible severe cytotoxic effects, as well as the common occurrence of immune resistance. Recently, nanoparticles with efficient tumor-targeting capacity, tumor-responsive prosperity, and versatility for combination therapy were identified as new avenues for PD-L1 targeting cancer immunotherapies. In this review, we first summarized the multiple functions of PD-L1 protein in promoting tumor growth, accelerating DDR, as well as depressing immunotherapy efficacy. Following this, the effects and mechanisms of current clinically widespread tumor therapies on tumor PD-L1 expression were discussed. Then, we reviewed the recent advances in nanoparticles for anti-PD-L1 therapy via using PD-L1 antibodies, small interfering RNA (siRNA), microRNA (miRNA), clustered, regularly interspaced, short palindromic repeats (CRISPR), peptide, and small molecular drugs. At last, we discussed the challenges and perspectives to promote the clinical application of nanoparticles-based PD-L1-targeting therapy.
Collapse
Affiliation(s)
- Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Haoxiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jie Li
- College of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China
| | - Xin Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhangping Li
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China.
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| |
Collapse
|
40
|
Ling H, Zhang Q, Luo Q, Ouyang D, He Z, Sun J, Sun M. Dynamic immuno-nanomedicines in oncology. J Control Release 2024; 365:668-687. [PMID: 38042376 DOI: 10.1016/j.jconrel.2023.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Anti-cancer therapeutics have achieved significant advances due to the emergence of immunotherapies that rely on the identification of tumors by the patients' immune system and subsequent tumor eradication. However, tumor cells often escape immunity, leading to poor responsiveness and easy tolerance to immunotherapy. Thus, the potentiated anti-tumor immunity in patients resistant to immunotherapies remains a challenge. Reactive oxygen species-based dynamic nanotherapeutics are not new in the anti-tumor field, but their potential as immunomodulators has only been demonstrated in recent years. Dynamic nanotherapeutics can distinctly enhance anti-tumor immune response, which derives the concept of the dynamic immuno-nanomedicines (DINMs). This review describes the pivotal role of DINMs in cancer immunotherapy and provides an overview of the clinical realities of DINMs. The preclinical development of emerging DINMs is also outlined. Moreover, strategies to synergize the antitumor immunity by DINMs in combination with other immunologic agents are summarized. Last but not least, the challenges and opportunities related to DINMs-mediated immune responses are also discussed.
Collapse
Affiliation(s)
- Hao Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qinyi Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Qiuhua Luo
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
| | - Defang Ouyang
- Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
41
|
Aebisher D, Woźnicki P, Dynarowicz K, Kawczyk-Krupka A, Cieślar G, Bartusik-Aebisher D. Photodynamic Therapy and Immunological View in Gastrointestinal Tumors. Cancers (Basel) 2023; 16:66. [PMID: 38201494 PMCID: PMC10777986 DOI: 10.3390/cancers16010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Gastrointestinal cancers are a specific group of oncological diseases in which the location and nature of growth are of key importance for clinical symptoms and prognosis. At the same time, as research shows, they pose a serious threat to a patient's life, especially at an advanced stage of development. The type of therapy used depends on the anatomical location of the cancer, its type, and the degree of progression. One of the modern forms of therapy used to treat gastrointestinal cancers is PDT, which has been approved for the treatment of esophageal cancer in the United States. Despite the increasingly rapid clinical use of this treatment method, the exact immunological mechanisms it induces in cancer cells has not yet been fully elucidated. This article presents a review of the current understanding of the mode of action of photodynamic therapy on cells of various gastrointestinal cancers with an emphasis on colorectal cancer. The types of cell death induced by PDT include apoptosis, necrosis, and pyroptosis. Anticancer effects are also a result of the destruction of tumor vasculature and activation of the immune system. Many reports exist that concern the mechanism of apoptosis induction, of which the mitochondrial pathway is most often emphasized. Photodynamic therapy may also have a beneficial effect on such aspects of cancer as the ability to develop metastases or contribute to reducing resistance to known pharmacological agents.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Paweł Woźnicki
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland; (A.K.-K.); (G.C.)
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland; (A.K.-K.); (G.C.)
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| |
Collapse
|
42
|
Villar-Alvarez E, Golán-Cancela I, Pardo A, Velasco B, Fernández-Vega J, Cambón A, Al-Modlej A, Topete A, Barbosa S, Costoya JA, Taboada P. Inhibiting HER3 Hyperphosphorylation in HER2-Overexpressing Breast Cancer through Multimodal Therapy with Branched Gold Nanoshells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303934. [PMID: 37632323 DOI: 10.1002/smll.202303934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Indexed: 08/27/2023]
Abstract
Treatment failure in breast cancers overexpressing human epidermal growth factor receptor 2 (HER2) is associated mainly to the upregulation of human epidermal growth factor receptor 3 (HER3) oncoprotein linked to chemoresitence. Therefore, to increase patient survival, here a multimodal theranostic nanoplatform targeting both HER2 and HER3 is developed. This consists of doxorubicin-loaded branched gold nanoshells functionalized with the near-infrared (NIR) fluorescent dye indocyanine green, a small interfering RNA (siRNA) against HER3, and the HER2-specific antibody Transtuzumab, able to provide a combined therapeutic outcome (chemo- and photothermal activities, RNA silencing, and immune response). In vitro assays in HER2+ /HER3+ SKBR-3 breast cancer cells have shown an effective silencing of HER3 by the released siRNA and an inhibition of HER2 oncoproteins provided by Trastuzumab, along with a decrease of the serine/threonine protein kinase Akt (p-AKT) typically associated with cell survival and proliferation, which helps to overcome doxorubicin chemoresistance. Conversely, adding the NIR light therapy, an increment in p-AKT concentration is observed, although HER2/HER3 inhibitions are maintained for 72 h. Finally, in vivo studies in a tumor-bearing mice model display a significant progressively decrease of the tumor volume after nanoparticle administration and subsequent NIR light irradiation, confirming the potential efficacy of the hybrid nanocarrier.
Collapse
Affiliation(s)
- Eva Villar-Alvarez
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, e Instituto de Materiales (IMATUS), Santiago de Compostela, 15782, Spain
| | - Irene Golán-Cancela
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS), Facultad de Medicina, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, Santiago de Compostela, 15782, Spain
| | - Alberto Pardo
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, e Instituto de Materiales (IMATUS), Santiago de Compostela, 15782, Spain
| | - Brenda Velasco
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, e Instituto de Materiales (IMATUS), Santiago de Compostela, 15782, Spain
| | - Javier Fernández-Vega
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, e Instituto de Materiales (IMATUS), Santiago de Compostela, 15782, Spain
| | - Adriana Cambón
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, e Instituto de Materiales (IMATUS), Santiago de Compostela, 15782, Spain
| | - Abeer Al-Modlej
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Antonio Topete
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, 44340, Mexico
| | - Silvia Barbosa
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, e Instituto de Materiales (IMATUS), Santiago de Compostela, 15782, Spain
| | - José A Costoya
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS), Facultad de Medicina, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, Santiago de Compostela, 15782, Spain
| | - Pablo Taboada
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, e Instituto de Materiales (IMATUS), Santiago de Compostela, 15782, Spain
| |
Collapse
|
43
|
Sun H, Yang W, Ong Y, Busch TM, Zhu TC. Fractionated Photofrin-Mediated Photodynamic Therapy Significantly Improves Long-Term Survival. Cancers (Basel) 2023; 15:5682. [PMID: 38067385 PMCID: PMC10705090 DOI: 10.3390/cancers15235682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 02/12/2024] Open
Abstract
This study investigates the effect of fractionated (two-part) PDT on the long-term local control rate (LCR) using the concentration of reactive oxygen species ([ROS]rx) as a dosimetry quantity. Groups with different fractionation schemes are examined, including a 2 h interval between light delivery sessions to cumulative fluences of 135, 180, and 225 J/cm2. While the total treatment time remains constant within each group, the division of treatment time between the first and second fractionations are explored to assess the impact on long-term survival at 90 days. In all preclinical studies, Photofrin is intravenously administered to mice at a concentration of 5 mg/kg, with an incubation period between 18 and 24 h before the first light delivery session. Fluence rate is fixed at 75 mW/cm2. Treatment ensues via a collimated laser beam, 1 cm in diameter, emitting light at 630 nm. Dosimetric quantities are assessed for all groups along with long-term (90 days) treatment outcomes. This study demonstrated a significant improvement in long-term survival after fractionated treatment schemes compared to single-fraction treatment, with the optimal 90-day survival increasing to 63%, 86%, and 100% vs. 20%, 25%, and 50%, respectively, for the three cumulative fluences. The threshold [ROS]rx for the optimal scheme of fractionated Photofrin-mediated PDT, set at 0.78 mM, is significantly lower than that for the single-fraction PDT, at 1.08 mM.
Collapse
Affiliation(s)
- Hongjing Sun
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.S.); (W.Y.); (T.M.B.)
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weibing Yang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.S.); (W.Y.); (T.M.B.)
| | - Yihong Ong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.S.); (W.Y.); (T.M.B.)
| | - Theresa M. Busch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.S.); (W.Y.); (T.M.B.)
| | - Timothy C. Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.S.); (W.Y.); (T.M.B.)
| |
Collapse
|
44
|
de Bree E, Michelakis D, Heretis I, Kontopodis N, Spanakis K, Lagoudaki E, Tolia M, Zografakis-Sfakianakis M, Ioannou C, Mavroudis D. Retroperitoneal Soft Tissue Sarcoma: Emerging Therapeutic Strategies. Cancers (Basel) 2023; 15:5469. [PMID: 38001729 PMCID: PMC10670057 DOI: 10.3390/cancers15225469] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Retroperitoneal soft tissue sarcoma (RPS) is a rare and heterogenous disease for which surgery is the cornerstone of treatment. However, the local recurrence rate is much higher than in soft tissue sarcoma of the extremities since wide resection is usually unfeasible in RPS due to its large size, indistinct tumour borders, anatomical constraints and the thinness of the overlying peritoneum. Local recurrence is the leading cause of death for low-grade RPS, whereas high-grade tumours are prone to distant metastases. In recent decades, the role of emerging therapeutic strategies, such as more extended surgery and (neo)adjuvant treatments to improve oncological outcome in primary localised RPS, has been extensively investigated. In this review, the recent data on the evolving multidisciplinary management of primary localised RPS are comprehensively discussed. The heterogeneity of RPS, with their different histological subtypes and biological behaviour, renders a standard therapeutic 'one-size-fits-all' approach inappropriate, and treatment should be modified according to histological type and malignancy grade. There is sufficient evidence that frontline extended surgery with compartmental resection including all ipsilateral retroperitoneal fat and liberal en bloc resection of adjacent organs and structures, even if they are not macroscopically involved, increases local tumour control in low-grade sarcoma and liposarcoma, but not in leiomyosarcoma for which complete macroscopic resection seems sufficient. Additionally, preoperative radiotherapy is not indicated for all RPSs, but seems to be beneficial in well-differentiated liposarcoma and grade I/II dedifferentiated liposarcoma, and probably in solitary fibrous tumour. Whether neoadjuvant chemotherapy is of benefit in high-grade RPS remains unclear from retrospective data and is subject of the ongoing randomised STRASS 2 trial, from which the results are eagerly awaited. Personalised, histology-tailored multimodality treatment is promising and will likely further evolve as our understanding of the molecular and genetic characteristics within RPS improves.
Collapse
Affiliation(s)
- Eelco de Bree
- Department of Surgical Oncology, Medical School of Crete University Hospital, 71110 Heraklion, Greece;
| | - Dimosthenis Michelakis
- Department of Surgical Oncology, Medical School of Crete University Hospital, 71110 Heraklion, Greece;
| | - Ioannis Heretis
- Department of Urology, Medical School of Crete University Hospital, 71110 Heraklion, Greece;
| | - Nikolaos Kontopodis
- Department of Vascular Surgery, Medical School of Crete University Hospital, 71110 Heraklion, Greece; (N.K.); (C.I.)
| | - Konstantinos Spanakis
- Department of Medical Imaging, Medical School of Crete University Hospital, 71110 Heraklion, Greece;
| | - Eleni Lagoudaki
- Department of Pathology, Medical School of Crete University Hospital, 71110 Heraklion, Greece;
| | - Maria Tolia
- Department of Radiation Oncology, Medical School of Crete University Hospital, 71110 Heraklion, Greece;
| | | | - Christos Ioannou
- Department of Vascular Surgery, Medical School of Crete University Hospital, 71110 Heraklion, Greece; (N.K.); (C.I.)
| | - Dimitrios Mavroudis
- Department of Medical Oncology, Medical School of Crete University Hospital, 71110 Heraklion, Greece;
| |
Collapse
|
45
|
Lepore Signorile M, Sanese P, Di Nicola E, Fasano C, Forte G, De Marco K, Disciglio V, Latrofa M, Pantaleo A, Varchi G, Del Rio A, Grossi V, Simone C. SMYD3 Modulates AMPK-mTOR Signaling Balance in Cancer Cell Response to DNA Damage. Cells 2023; 12:2644. [PMID: 37998381 PMCID: PMC10670288 DOI: 10.3390/cells12222644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Cells respond to DNA damage by activating a complex array of signaling networks, which include the AMPK and mTOR pathways. After DNA double-strand breakage, ATM, a core component of the DNA repair system, activates the AMPK-TSC2 pathway, leading to the inhibition of the mTOR cascade. Recently, we showed that both AMPK and mTOR interact with SMYD3, a methyltransferase involved in DNA damage response. In this study, through extensive molecular characterization of gastrointestinal and breast cancer cells, we found that SMYD3 is part of a multiprotein complex that is involved in DNA damage response and also comprises AMPK and mTOR. In particular, upon exposure to the double-strand break-inducing agent neocarzinostatin, SMYD3 pharmacological inhibition suppressed AMPK cascade activation and thereby promoted the mTOR pathway, which reveals the central role played by SMYD3 in the modulation of AMPK-mTOR signaling balance during cancer cell response to DNA double-strand breaks. Moreover, we found that SMYD3 can methylate AMPK at the evolutionarily conserved residues Lys411 and Lys424. Overall, our data revealed that SMYD3 can act as a bridge between the AMPK and mTOR pathways upon neocarzinostatin-induced DNA damage in gastrointestinal and breast cancer cells.
Collapse
Affiliation(s)
- Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (E.D.N.); (C.F.); (G.F.); (K.D.M.); (V.D.); (M.L.); (A.P.); (V.G.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (E.D.N.); (C.F.); (G.F.); (K.D.M.); (V.D.); (M.L.); (A.P.); (V.G.)
| | - Elisabetta Di Nicola
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (E.D.N.); (C.F.); (G.F.); (K.D.M.); (V.D.); (M.L.); (A.P.); (V.G.)
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (E.D.N.); (C.F.); (G.F.); (K.D.M.); (V.D.); (M.L.); (A.P.); (V.G.)
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (E.D.N.); (C.F.); (G.F.); (K.D.M.); (V.D.); (M.L.); (A.P.); (V.G.)
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (E.D.N.); (C.F.); (G.F.); (K.D.M.); (V.D.); (M.L.); (A.P.); (V.G.)
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (E.D.N.); (C.F.); (G.F.); (K.D.M.); (V.D.); (M.L.); (A.P.); (V.G.)
| | - Marialaura Latrofa
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (E.D.N.); (C.F.); (G.F.); (K.D.M.); (V.D.); (M.L.); (A.P.); (V.G.)
| | - Antonino Pantaleo
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (E.D.N.); (C.F.); (G.F.); (K.D.M.); (V.D.); (M.L.); (A.P.); (V.G.)
| | - Greta Varchi
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), 40129 Bologna, Italy; (G.V.); (A.D.R.)
| | - Alberto Del Rio
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), 40129 Bologna, Italy; (G.V.); (A.D.R.)
- Innovamol Consulting Srl, 41126 Modena, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (E.D.N.); (C.F.); (G.F.); (K.D.M.); (V.D.); (M.L.); (A.P.); (V.G.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (E.D.N.); (C.F.); (G.F.); (K.D.M.); (V.D.); (M.L.); (A.P.); (V.G.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
46
|
Liu J, Qu H, Hang L, Sun Y, Li W, Chen Y, Li H, Wen W, Feng Y, Jiang G. Dual-targeting nanotheranostics for MRI-guided enhanced chemodynamic therapy of hepatoma via regulating the tumor microenvironment. Dalton Trans 2023; 52:16433-16441. [PMID: 37872809 DOI: 10.1039/d3dt02715e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chemodynamic therapy (CDT), as a reactive oxygen species (ROS)-based therapeutic modality, has attracted much attention in recent years. However, the insufficient therapeutic effect of CDT is due to the antioxidant system in the tumor microenvironment, such as high levels of glutathione (GSH). In this study, we developed a biological/physical dual-targeting nanotheranostic agent (relaxation rate, r1: 6.3 mM-1 s-1 and r2: 13.11 mM-1 s-1) for enhanced CDT of SMCC-7721 tumors. This nanotheranostic agent is composed of a homologous tumor cell membrane (TCM), magnetic ferric oxide, and manganese oxide and is denoted as FM@TCM nanoparticles (NPs). A favorable effect of in vitro CDT on SMCC-7721 cells (IC50: 20 μg mL-1) is demonstrated, attributed to the Fenton reaction and oxidative stress resulting from the reduction of the GSH level. In vivo T1/T2 magnetic resonance imaging (MRI) confirms that the tumor accumulation of FM@TCM NPs is promoted by concurrent bioactive targeting of the homologous TCM and physico-magnetic targeting of tumor tissues with an external magnetic field. Impressive chemodynamic therapeutic effects on SMCC-7721 tumors are demonstrated through the catalysis of endogenous hydrogen peroxide and depletion of GSH to generate high levels of ROS. Dual-targeting FM@TCM NPs inhibit SMCC-7721 tumor growth (∼90.9%) in vivo without any biotoxicity. This nanotheranostic agent has great potential for use in MRI-guided CDT.
Collapse
Affiliation(s)
- Jinwu Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510282, P. R. China.
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China.
| | - Hong Qu
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China.
- School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Lifeng Hang
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China.
| | - Yiqiang Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Wuming Li
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China.
| | - Yiyu Chen
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China.
| | - Hong Li
- School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Wei Wen
- College of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, P. R. China.
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510282, P. R. China.
| | - Guihua Jiang
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China.
- School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
47
|
Babu B, Stoltz SA, Mittal A, Pawar S, Kolanthai E, Coathup M, Seal S. Inorganic Nanoparticles as Radiosensitizers for Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2873. [PMID: 37947718 PMCID: PMC10647410 DOI: 10.3390/nano13212873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Nanotechnology has expanded what can be achieved in our approach to cancer treatment. The ability to produce and engineer functional nanoparticle formulations to elicit higher incidences of tumor cell radiolysis has resulted in substantial improvements in cancer cell eradication while also permitting multi-modal biomedical functionalities. These radiosensitive nanomaterials utilize material characteristics, such as radio-blocking/absorbing high-Z atomic number elements, to mediate localized effects from therapeutic irradiation. These materials thereby allow subsequent scattered or emitted radiation to produce direct (e.g., damage to genetic materials) or indirect (e.g., protein oxidation, reactive oxygen species formation) damage to tumor cells. Using nanomaterials that activate under certain physiologic conditions, such as the tumor microenvironment, can selectively target tumor cells. These characteristics, combined with biological interactions that can target the tumor environment, allow for localized radio-sensitization while mitigating damage to healthy cells. This review explores the various nanomaterial formulations utilized in cancer radiosensitivity research. Emphasis on inorganic nanomaterials showcases the specific material characteristics that enable higher incidences of radiation while ensuring localized cancer targeting based on tumor microenvironment activation. The aim of this review is to guide future research in cancer radiosensitization using nanomaterial formulations and to detail common approaches to its treatment, as well as their relations to commonly implemented radiotherapy techniques.
Collapse
Affiliation(s)
- Balaashwin Babu
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
| | - Samantha Archer Stoltz
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Agastya Mittal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Shreya Pawar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
| | - Melanie Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA;
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
48
|
Hong S, Kim S, Kim K, Lee H. Clinical Approaches for Mitochondrial Diseases. Cells 2023; 12:2494. [PMID: 37887337 PMCID: PMC10605124 DOI: 10.3390/cells12202494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Mitochondria are subcontractors dedicated to energy production within cells. In human mitochondria, almost all mitochondrial proteins originate from the nucleus, except for 13 subunit proteins that make up the crucial system required to perform 'oxidative phosphorylation (OX PHOS)', which are expressed by the mitochondria's self-contained DNA. Mitochondrial DNA (mtDNA) also encodes 2 rRNA and 22 tRNA species. Mitochondrial DNA replicates almost autonomously, independent of the nucleus, and its heredity follows a non-Mendelian pattern, exclusively passing from mother to children. Numerous studies have identified mtDNA mutation-related genetic diseases. The consequences of various types of mtDNA mutations, including insertions, deletions, and single base-pair mutations, are studied to reveal their relationship to mitochondrial diseases. Most mitochondrial diseases exhibit fatal symptoms, leading to ongoing therapeutic research with diverse approaches such as stimulating the defective OXPHOS system, mitochondrial replacement, and allotropic expression of defective enzymes. This review provides detailed information on two topics: (1) mitochondrial diseases caused by mtDNA mutations, and (2) the mechanisms of current treatments for mitochondrial diseases and clinical trials.
Collapse
Affiliation(s)
- Seongho Hong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea;
- Department of Medicine, Korea University College of Medicine, Seoul 02708, Republic of Korea
| | - Sanghun Kim
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea;
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyunji Lee
- Department of Medicine, Korea University College of Medicine, Seoul 02708, Republic of Korea
| |
Collapse
|
49
|
Ramadan WS, Alkarim S, Moulay M, Alrefeai G, Alkudsy F, Hakeem KR, Iskander A. Modulation of the Tumor Microenvironment by Ellagic Acid in Rat Model for Hepatocellular Carcinoma: A Potential Target against Hepatic Cancer Stem Cells. Cancers (Basel) 2023; 15:4891. [PMID: 37835585 PMCID: PMC10571579 DOI: 10.3390/cancers15194891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The resistance to therapy and relapse in hepatocellular carcinoma (HCC) is highly attributed to hepatic cancer stem cells (HCSCs). HCSCs are under microenvironment control. This work aimed to assess the systemic effect of ellagic acid (EA) on the HCC microenvironment to decline HCSCs. Fifty Wistar rats were divided into six groups: negative control (CON), groups 2 and 3 for solvents (DMSO), and (OVO). Group 4 was administered EA only. The (HCC-M) group, utilized as an HCC model, administered CCL4 (0.5 mL/kg in OVO) 1:1 v/v, i.p) for 16 weeks. HCC-M rats were treated orally with EA (EA + HCC) 50 mg/kg bw for five weeks. Biochemical, morphological, histopathological, and immunohistochemical studies, and gene analysis using qRT-PCR were applied. Results revealed elevated liver injury biomarkers ALT, AST, ALP, and tumor biomarkers AFP and GGT, and marked nodularity of livers of HCC-M. EA effectively reduced the biomarkers and restored the altered structure of the livers. At the mRNA level, EA downregulated the expression of TGF-α, TGF-β, and VEGF, and restored p53 expression. This induced an increase in apoptotic cells immunostained with caspase3 and decreased the CD44 immunostained HCSCs. EA could modulate the tumor microenvironment in the HCC rat model and ultimately target the HCSCs.
Collapse
Affiliation(s)
- Wafaa S. Ramadan
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 22384, Saudi Arabia;
- Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Embryonic and Cancer Stem Cell Research Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Saleh Alkarim
- Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Embryonic and Cancer Stem Cell Research Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Moulay
- Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Embryonic and Cancer Stem Cell Research Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Biology, Abdelhamid ibn Badis University, Mostaganem 27000, Algeria
| | - Ghadeer Alrefeai
- Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Embryonic and Cancer Stem Cell Research Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Biology, Faculty of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Fatma Alkudsy
- Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Embryonic and Cancer Stem Cell Research Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalid Rehman Hakeem
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Public Health, Daffodil International University, Dhaka 1341, Bangladesh
| | - Ashwaq Iskander
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
50
|
Rani B, Ignatz-Hoover JJ, Rana PS, Driscoll JJ. Current and Emerging Strategies to Treat Urothelial Carcinoma. Cancers (Basel) 2023; 15:4886. [PMID: 37835580 PMCID: PMC10571746 DOI: 10.3390/cancers15194886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Urothelial cell carcinoma (UCC, bladder cancer, BC) remains a difficult-to-treat malignancy with a rising incidence worldwide. In the U.S., UCC is the sixth most incident neoplasm and ~90% of diagnoses are made in those >55 years of age; it is ~four times more commonly observed in men than women. The most important risk factor for developing BC is tobacco smoking, which accounts for ~50% of cases, followed by occupational exposure to aromatic amines and ionizing radiation. The standard of care for advanced UCC includes platinum-based chemotherapy and programmed cell death (PD-1) or programmed cell death ligand 1 (PD-L1) inhibitors, administered as frontline, second-line, or maintenance therapy. UCC remains generally incurable and is associated with intrinsic and acquired drug and immune resistance. UCC is lethal in the metastatic state and characterized by genomic instability, high PD-L1 expression, DNA damage-response mutations, and a high tumor mutational burden. Although immune checkpoint inhibitors (ICIs) achieve long-term durable responses in other cancers, their ability to achieve similar results with metastatic UCC (mUCC) is not as well-defined. Here, we discuss therapies to improve UCC management and how comprehensive tumor profiling can identify actionable biomarkers and eventually fulfill the promise of precision medicine for UCC patients.
Collapse
Affiliation(s)
- Berkha Rani
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
| | - James J. Ignatz-Hoover
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Priyanka S. Rana
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - James J. Driscoll
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|