1
|
Huang Q, Shi T, Qin Y, Jin Y, Huang L, Sun Y, Hu C, Song Z, Xie F. Fast and stable NH 4+ storage in multielectron H-bonding-acceptor organic molecules for aqueous zinc batteries. MATERIALS HORIZONS 2025; 12:3505-3514. [PMID: 39991823 DOI: 10.1039/d4mh01809e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
High-capacity small organic compounds are easily dissolved in aqueous electrolytes, resulting in limited cycling stability of Zn-organic batteries (ZOBs). To address this issue, we proposed constructing superstable lock-and-key hydrogen-bonding networks between the 2,7-dinitrophenanthraquinone (DNPQ) cathode and NH4+ charge carriers to achieve ultrastable ZOBs. DNPQ, with its sextuple-active carbonyl/nitro motifs (H-bonding acceptors), was found to be uniquely prone to redox-coupling with tetrahedral NH4+ ions (H-bonding donors) while excluding sluggish Zn2+ ions, owing to a lower activation energy (0.32 vs. 0.43 eV). NH4+-coordinated H-bonding electrochemistry overcame the instability of the DNPQ cathode in aqueous electrolytes and enabled rapid redox kinetics of non-metal NH4+ charge carriers. As a result, a three-step 3e- NH4+ coordination with the DNPQ cathode achieved large-current survivability (50 A g-1) and long-lasting cyclability (80 000 cycles) for ZOBs. This work broadens the potential for developing high-performance H-bonding-stabilized organics for advanced ZOBs.
Collapse
Affiliation(s)
- Qi Huang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438, P. R. China.
| | - Ting Shi
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | - Yang Qin
- Department of Mechanical Engineering, College of Engineering and Applied Science, University of Wisconsin Milwaukee, Milwaukee, WI, 53211, USA
| | - Yaowei Jin
- Lingang Laboratory, Shanghai, 200031, P. R. China
| | - Lu Huang
- Department of Stomatology, Hangzhou Ninth People's Hospital, Hangzhou, 311225, P. R. China
| | - Yaojie Sun
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438, P. R. China.
- Shanghai Engineering Research Center for Artificial Intelligence and Integrated Energy System, Fudan University, Shanghai, 200433, P. R. China
| | - Chengmin Hu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China.
| | - Ziyang Song
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | - Fengxian Xie
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438, P. R. China.
- Shanghai Engineering Research Center for Artificial Intelligence and Integrated Energy System, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
2
|
Huang J, Li M, Li Z, Han C, Li Y. Stable Triphenolamine Radical Cathode with High Electron Conductivity for High-Rate Aqueous Zinc-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40373234 DOI: 10.1021/acsami.5c01552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Compared with conventional lithium-ion batteries with organic electrolytes, aqueous zinc-ion batteries with low cost, sustainable, and environmentally friendly organic cathodes exhibit promising potential to meet the continuously increasing demand of safe and large-scale energy storage. The representative organic cathodes, including quinoidal polycyclic aromatic hydrocarbons (PAHs) and 2,2,6,6-tetramethylpiperidinyl-N-oxyl (TEMPO) polymers, suffer from challenging synthesis and limited theoretical specific capacity. Herein, different from PAHs and TEMPO polymers, stable 4,4',4″-nitrilotriphenol [TPA-(OH)3] is explored as the organic radical cathode material by extremely low-cost raw materials and two simple reactions. Further, an open-shell TPA-O3 radical is obtained by facile oxidation with air. Interestingly, TPA-O3 showed unexpected higher electron conductivity of 3.35 × 10-4 S cm-1 than the precursor [2.73 × 10-6 S cm-1 for TPA-(OMe)3]. The nitro-like nitroxide resonance structures of TPA-O3 contribute to its high electrochemical stability during the 200-cycle cyclic voltammetry test in air and thus exhibit good reversibility when used as a cathode material. Moreover, TPA-O3 exhibits a reduction voltage of ∼ 1.0 V vs Zn/Zn2+ at 0.5 mV s-1, which is higher than those of most quinone-based cathodes and comparable to TEMPO-type radical cathodes. It also demonstrates a stable capacity of 123.7 mA h g-1 and a high-capacity retention of 95.87% after 2000 stable cycles at 5 A g-1, marking its superiority to those of previously reported organic radical cathodes.
Collapse
Affiliation(s)
- Jiaxing Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P.R. China
| | - Meilin Li
- Faculty of Materials Science and Energy Engineering Shenzhen University of Advanced Technology Shenzhen 518055, P.R. China
| | - Zhenfei Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P.R. China
- School of Materials Science and Engineering, National Industry-Education Platform for Energy Storage, Tianjin University, Tianjin300000, P.R. China
| | - Cuiping Han
- Faculty of Materials Science and Energy Engineering Shenzhen University of Advanced Technology Shenzhen 518055, P.R. China
| | - Yuan Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P.R. China
| |
Collapse
|
3
|
Ye C, Zhou X, Tang S. An Azo Polymer with Abundant Active Sites and Extended Conjugation as a Stable Cathode for High-Performance Zinc-Organic Batteries. Angew Chem Int Ed Engl 2025; 64:e202501743. [PMID: 39953932 DOI: 10.1002/anie.202501743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/17/2025]
Abstract
Developing stable cathodes with high capacity and rapid redox kinetics is pivotal for aqueous zinc-organic batteries (ZOBs). A huge challenge lies in balancing the density of active sites and electronic conductivity of organic cathodes. Herein, an azo polymer from 4,5,9,10-pyrene-tetraone (PTAP) possessing high active components and extended conjugated structure was achieved. The extended conjugated system linked by the azo groups facilitates extensive electron delocalization and a low band gap, which endows the PTAP with enhanced electronic conductivity reaching 4.26×10-3 S m-1. The azo groups themselves serve as active centers for two-electron transfer, leading to a significant increase in the density of redox-active sites and charge storage efficiency. Moreover, strong intramolecular interactions and unique solvation structure bolster the anti-solubility of PTAP. Consequently, PTAP-based ZOBs exhibited high reversible capacities and rate performance, delivering 442.45 mAh g-1 at 0.2 A g-1 and maintaining 248.61 mAh g-1 even at 10 A g-1. Additionally, a ZOB showed remarkable long-term stability after cycling over 900 hours at 5 A g-1. Mechanistic studies further revealed that multi-step coupling of carbonyl and azo groups accompanied by the Zn2+/H+ dual-ion insertion is responsible for rapid 12-electron transfer in PTAP. This work provides new insight into the rational design of advanced organic cathodes for high capacity and long life ZOBs.
Collapse
Affiliation(s)
- Chengwei Ye
- Key National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Modern Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - XiaoYa Zhou
- Key National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Modern Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - Shaochun Tang
- Key National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Modern Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
4
|
Hua K, Ma Q, Liu Y, Xiong P, Wang R, Yuan L, Hao J, Zhang L, Zhang C. High-Performance Bipolar Small-Molecule Organic Cathode for Wide-Temperature-Range Aqueous Zinc-Ion Batteries. ACS NANO 2025; 19:14249-14261. [PMID: 40179152 DOI: 10.1021/acsnano.5c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Organic small-molecules with redox activity are promising cathode candidates for aqueous zinc-ion batteries (AZIBs) due to their low cost, high safety and high theoretical capacity. However, their severe dissolution leads to unsatisfactory electrochemical performance. Here, a dihydro-octaaza-pentacene (DOP) compound is synthesized as a cathode for AZIBs by extending its N heterocyclic molecular structure. The extended N heterocyclic structure provides dual active sites of n-type (C═N) and p-type (-NH-) redox reactions while reducing dissolution through enhanced π-conjugation. Hence, the Zn//DOP battery demonstrates improved performance, e.g., an enhanced capacity of 360 mAh g-1 at 0.05 A g-1. Even under extended temperature conditions of - 50 and 50 °C, the batteries still maintain the capacities of 172 and 312 mAh g-1, respectively. In/ex-situ spectroscopy provide a thorough understanding of the storage mechanisms of cations and anions (Zn2+/H+ and ClO4-) through multielectron transfer process occurring at dual electroactive sites. This strategy offers a promising approach to designing high-performance zinc-organic batteries for sustainable energy storage.
Collapse
Affiliation(s)
- Kang Hua
- Institutes of Physical Science and Information Technology, Leibniz Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei 230601, China
| | - Quanwei Ma
- Institutes of Physical Science and Information Technology, Leibniz Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei 230601, China
| | - Yangyang Liu
- Institutes of Physical Science and Information Technology, Leibniz Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei 230601, China
| | - Peng Xiong
- Institutes of Physical Science and Information Technology, Leibniz Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei 230601, China
| | - Rui Wang
- Institutes of Physical Science and Information Technology, Leibniz Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei 230601, China
| | - Libei Yuan
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Junnan Hao
- School of Chemical Engineering, The University of Adelaide, Adelaide 5005, Australia
| | - Longhai Zhang
- Institutes of Physical Science and Information Technology, Leibniz Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei 230601, China
| | - Chaofeng Zhang
- Institutes of Physical Science and Information Technology, Leibniz Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei 230601, China
| |
Collapse
|
5
|
Yu X, Zhou K, Liu C, Li J, Ma J, Yan L, Guo Z, Wang Y. Activating Organic Electrode for Zinc Batteries via Adjusting Solvation Structure of Zn Ions. Angew Chem Int Ed Engl 2025; 64:e202501359. [PMID: 39907621 DOI: 10.1002/anie.202501359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
Zinc-organic batteries, combining the low cost and high capacity of Zn anodes with the tunable and sustainable properties of organic cathodes, have garnered significant attention. Herein, we present a zinc-organic battery featuring a poly(benzoquinonyl sulfide) (PBQS) cathode, a Zn anode, and an N,N-dimethylformamide (DMF)-based electrolyte, which delivers a high capacity (200 mAh g-1), excellent rate capability, and an ultra-long cycle life (10,000 cycles) when tested with a low PBQS loading (2 mg cm-2). The charge storage mechanism in the PBQS cathode involves solvated Zn2+ adsorption and consequent Zn2+ coordination with PBQS companied by de-solvation process, as confirmed by in situ FT-IR analysis. However, sluggish Zn2+ de-solvation leads to a loss of Zn2+ coordination capacity when tested with higher PBQS loading (8 mg cm-2) even at a low current density of 0.2 A g-1. Remarkably, the addition of 2 % H2O to the DMF electrolyte incorporates 0.24 H2O into the primary solvation sheath of Zn2+, significantly facilitating the de-solvation process. As a result, the PBQS cathode (8 mg cm-2) retains its Zn2+ storage capacity when using the modified electrolyte. This approach offers a new strategy for improving the rate performance of organic electrodes, complementing existing conductivity enhancements.
Collapse
Affiliation(s)
- Xiaomeng Yu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Kang Zhou
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Chang Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Junjie Li
- Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, 210023, China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, 210023, China
| | - Lei Yan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ziyang Guo
- College of Energy Material and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| |
Collapse
|
6
|
Yan L, Liu L, Qiu C, Xiang Y, Yu H, Zhang L, Yi TF, Wang Y, Shu J. Towards High-Performance Aqueous Zn-Organic Batteries via Using I --Based Active Electrolyte. Angew Chem Int Ed Engl 2025:e202506466. [PMID: 40194970 DOI: 10.1002/anie.202506466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/09/2025]
Abstract
Organic cathodes possess inherent structural diversity and fast redox kinetics, showing great application prospects in aqueous Zn batteries. Nevertheless, most of the reported organic cathodes display low average working voltage resulting in poor energy density. Herein, diquinoxalino [2,3-a:2',3'-c] phenazine (HATN)@CMK-3 composite is utilized as cathode for aqueous zinc battery, which combines the Zn2+ and H+ co-storage and I-/I0 conversion by introducing I--based active additive into 0.5 M Zn(OTf)2 electrolyte. The in situ/ex situ analyses and computational studies disclose that HATN@CMK-3 with C═N groups not only stores Zn2+ and H+ ions at low potential but also acts as a substrate to promote the conversion reaction of I-/I0 at high potential. Accordingly, the Zn//HATN@CMK-3 cell delivers a high average voltage of 0.75 V, prominent long-life (10 000 cycles) and, high energy density (198 Wh kg-1). Remarkably, under high mass loading (10 mg cm-2) or low-temperature conditions, the cell still achieves decent capacity and cycle stability.
Collapse
Affiliation(s)
- Lei Yan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Lei Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chaoyi Qiu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yutian Xiang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Haoxiang Yu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Liyuan Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ting-Feng Yi
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Jie Shu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
7
|
Zhang Y, Song Z, Huang Q, Lv Y, Gan L, Liu M. Multiple Protophilic Redox-Active Sites in Reticular Organic Skeletons for Superior Proton Storage. Angew Chem Int Ed Engl 2025; 64:e202423936. [PMID: 39875666 DOI: 10.1002/anie.202423936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/06/2025] [Accepted: 01/28/2025] [Indexed: 01/30/2025]
Abstract
Protons (H+) with the smallest size and fastest redox kinetics are regarded as competitive charge carriers in the booming Zn-organic batteries (ZOBs). Developing new H+-storage organic cathode materials with multiple ultralow-energy-barrier protophilic sites and super electron delocalization routes to propel superior ZOBs is crucial but still challenging. Here we design multiple protophilic redox-active reticular organic skeletons (ROSs) for activating better proton storage, triggered by intermolecular H-bonding and π-π stacking interactions between 2,6-diaminoanthraquinone and 2,4,6-triformylphloroglucinol nanofibrous polymer. ROSs expose reticular electron delocalization geometries to fully access build-in protophilic carbonyl sites and promote ultrarapid H+ migration with an ultralow activation energy (0.13 vs. 0.29 eV of Zn2+ ions), thus delivering high capacity (359 mAh g-1) and large-current survivability (100 A g-1). Moreover, the extended interconnected reticular structures strengthen the anti-dissolution of ROSs in aqueous electrolytes, affording long-lasting proton-storage activity in ZOBs to a superior level (60,000 cycles at 20 A g-1). Systematic studies identify the source of excellent charge storage as high-kinetics H+-coupled five-electron redox process of carbonyl motifs in superstable ROSs. These findings can be of importance for evoking superior proton activity in multiple redox organics to build advanced Zn-organic batteries.
Collapse
Affiliation(s)
- Yehui Zhang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Ziyang Song
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qi Huang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Yaokang Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Lihua Gan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
8
|
Ding C, Zhao Y, Yin W, Kang F, Huang W, Zhang Q. Regulating Intermolecular Hydrogen Bonds in Organic Cathode Materials to Realize Ultra-stable, Flexible and Low-temperature Aqueous Zinc-organic Batteries. Angew Chem Int Ed Engl 2025; 64:e202417988. [PMID: 39382562 DOI: 10.1002/anie.202417988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/10/2024]
Abstract
Rational design of molecular structures is one of the effective strategies to obtain high-performance organic cathode materials. However, besides the optimization of single-molecule structures, the influence of the "weak" interaction forces (e.g. hydrogen bonds) in organic cathode materials on the performance of batteries should be fully considered. Herein, three organic small molecules with different numbers of hydroxyl groups (namely nitrogen heterocyclic tetraketone (DAB), monohydroxyl nitrogen heterocyclic dione (HDA), dihydroxyl nitrogen heterocyclic dione (DHT)) were selected as the cathodes of aqueous zinc ion batteries (AZIBs), and the effect of the intermolecular hydrogen bonds on their electrochemical performance was studied for the first time. Clearly, the stable hydrogen-bond networks built through the hydroxyl groups significantly enhance the cycle stability of organic small-molecule cathodes and facilitate rapid proton conduction between the hydrogen-bond networks through the Grotthuss mechanism, thereby endowing them with excellent rate performance. In addition, a larger and more dense two-dimensional hydrogen-bond network can be constructed through multiple hydroxyl groups, further enhancing the structural stability of organic small-molecule cathodes, giving them better cycle tolerance, excellent rate performance, and extreme environmental tolerance.
Collapse
Affiliation(s)
- Chaojian Ding
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066000, China
| | - Yuxuan Zhao
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066000, China
| | - Weifeng Yin
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066000, China
| | - Fangyuan Kang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Weiwei Huang
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066000, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy (HKICE), City University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
9
|
Yang Y, Wang S, Duan Y, Wang T, Wang F, Zhu H, Wang Z, Zhang K, Cheng P, Zhang Z. Flux Synthesis of Robust Polyimide Covalent Organic Frameworks with High-Density Redox Sites for Efficient Proton Batteries. Angew Chem Int Ed Engl 2025; 64:e202418394. [PMID: 39585117 DOI: 10.1002/anie.202418394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/06/2024] [Accepted: 11/22/2024] [Indexed: 11/26/2024]
Abstract
Aqueous proton batteries are attracting increasing attention in the large-scale next-generation energy storage field. However, the electrode materials for proton batteries often suffer from low specific capacity and unsatisfactory cycle durability. Herein, we synthesize two highly crystalline and robust polyimide covalent organic frameworks (COFs) through a solvent-free flux synthesis approach with benzoic acid as a flux and catalyst. The as-synthesized COFs possess enriched redox-active sites for proton storage and intrinsic Grotthuss proton conduction, rendering them ideal candidates for proton electrode materials. The optimal COF electrodes achieve a high specific capacity of 180 mAh/g at 0.1 A/g, among the highest COF-based proton batteries, and exhibit an outstanding rate capability of up to 100 A/g and long-term cycling stability with capacity retention of 99 % after 5000 cycles at 5 A/g. The assembled full cells deliver a specific capacity of 150 mAh/g at 0.2 A/g with a maximum energy density of 72 Wh/kg and a maximum supercapacitor-level power density of 64 kW/kg, surpassing all reported COF-based systems. This work paves a new avenue for the design of electrode materials for aqueous proton batteries with high energy density, power density, rate capability and long-term cycling stability.
Collapse
Affiliation(s)
- Yi Yang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Sa Wang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yuqing Duan
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ting Wang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fengdong Wang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Haitao Zhu
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhifang Wang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kai Zhang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Peng Cheng
- College of Chemistry, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Medicine Chemistry Biology, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
- Frontiers Science Centre for New Organic Matter, Renewable Energy Conversion and Storage Centre, Nankai University, Tianjin, 300071, China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Medicine Chemistry Biology, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
- Frontiers Science Centre for New Organic Matter, Renewable Energy Conversion and Storage Centre, Nankai University, Tianjin, 300071, China
- Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, 300071, China
| |
Collapse
|
10
|
Song Z, Huang Q, Lv Y, Gan L, Liu M. Multi-N-Heterocycle Donor-Acceptor Conjugated Amphoteric Organic Superstructures for Superior Zinc Batteries. Angew Chem Int Ed Engl 2025; 64:e202418237. [PMID: 39496567 DOI: 10.1002/anie.202418237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/06/2024]
Abstract
Multiple redox-active amphoteric organics with more n-p fused electron transfer is an ongoing pursuit for superior zinc-organic batteries (ZOBs). Here we report multi-heterocycle-site donor-acceptor conjugated amphoteric organic superstructures (AOSs) by integrating three-electron-accepting n-type triazine motifs and dual-electron-donating p-type piperazine units via H-bonding and π-π stacking. AOSs expose flower-shaped N-heteromacrocyclic electron delocalization topologies to promise full accessibility of built-in n-p redox-active motifs with an ultralow activation energy, thus liberating superior capacity (465 mAh g-1) for Zn||AOSs battery. More importantly, the extended multiple donor-acceptor-fused conjugated AOSs feature satisfied discharge voltage and anti-dissolution in electrolytes, pushing both the energy density and cycle life of the ZOBs to a new level (412 Wh kg-1 and 70,000 cycles@10 A g-1). An anion-cation hybrid 18 e- charge storage mechanism is rationalized for heteromacrocyclic modules of AOSs cathode, entailing six tert-N motifs coupling with CF3SO3 - ions at high potential and twelve imine sites coordinating with Zn2+ ions at low potential. These findings constitute a major advance of amphoteric multielectron organic materials and stand for a good starting point for advanced ZOBs.
Collapse
Affiliation(s)
- Ziyang Song
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qi Huang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Yaokang Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Lihua Gan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
11
|
Wang X, Li J, Liu Y, Li D, Ma M, Xie Y, You W, Zheng A, Xiong L. Effect of Synthesis Temperature on Performance of Phenazine-Based Cathode for Sodium Dual-Ion Batteries. CHEMSUSCHEM 2025; 18:e202401841. [PMID: 39317988 DOI: 10.1002/cssc.202401841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Organic materials have attracted much attention in the field of electrochemical energy storage due to their ecological sustainability, abundant resources and structural designability. However, low electrical conductivity and severe agglomeration of organic materials lead to poor discharge capacity and reaction kinetics in batteries. Herein, the morphology of the phenazine-based organic polymer poly(5,10-diphenylphenazine) (PDPPZ) was modified by varying the synthesis temperature. PDPPZ-165 °C with an exceptional porous structure provides abundant reaction channels for rapid charge transfer and diffusion that improves the reaction kinetics in sodium dual-ion batteries. Therefore, PDPPZ-165 °C cathode possesses excellent rapid charge-discharge capability delivering a specific capacity of 119.2 mAh g-1 at 40 C. Furthermore, a high specific capacity of 124.7 mAh g-1 can be provided even at a high loading of 16 mg cm-2 at 0.5 C with a capacity retention of 86.4 % after 500 cycles. This work could afford new insights for optimizing the performance of organic cathode materials in sodium dual-ion batteries.
Collapse
Affiliation(s)
- Xuan Wang
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jianlin Li
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yifan Liu
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Dong Li
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mingbo Ma
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuehong Xie
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenzhi You
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Aqun Zheng
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lilong Xiong
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
12
|
Li H, Zhang M, Zheng Z, Wu X, Xiao X, Piao Z, Li C, Jia Y, Yang J, Zhou G. High-Capacity and Long-Life Aqueous Zn-SPAN Batteries with Tandem Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2409771. [PMID: 39659126 DOI: 10.1002/adma.202409771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Aqueous zinc-sulfur batteries are a high-capacity and cost-effective energy storage technology. However, the performance is plagued by the dissolution of intermediate polysulfides formed during conversion. Here, this issue is addressed by developing aqueous rechargeable Zn-sulfurized polyacrylonitrile (SPAN) batteries using tandem catalytic systems, containing water and tetraglyme (G4) with iodine (I2) additives. Mechanistic study and experiments reveal that the fully conjugated molecular configurations circumvent the formation of soluble polysulfides and enable reversible co-storage of H+/Zn2+ with multiple redox-active centers. The reduced I2 by G4 activates I-/I3 - redox couple in SPAN, reducing activation energy, and accelerating Zn-ion transfer kinetics. Additionally, it stabilizes the Zn anode by forming an organic-inorganic interphase that induces the generation of the predominant (002) plane. The as-assembled Zn-SPAN batteries exhibit excellent performances, with a high capacity of 1260.4 mAh g-1 at 0.2 A g-1, a high-rate performance (409.3 mAh g-1 at 5 A g-1), and a long cycling stability (81.8% capacity remained over 800 cycles at 2 A g-1). This work takes a crucial step forward in organosulfur compounds accompanied by multi-electron transfer for the high-performance aqueous zinc-ion batteries.
Collapse
Affiliation(s)
- Hong Li
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Energy Electrocatalytic Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Mengtian Zhang
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhiyang Zheng
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xinru Wu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiao Xiao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhihong Piao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Chuang Li
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yeyang Jia
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jinlong Yang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Energy Electrocatalytic Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
13
|
Sun T, Zhang W, Shi M, Li D, Sun Q, Cheng M, Tao Z. Intramolecular Hydrogen Bonds Weaken Interaction Between Solvents and Small Organic Molecules Towards Superior Lithium-Organic Batteries. Angew Chem Int Ed Engl 2025; 64:e202416845. [PMID: 39655378 DOI: 10.1002/anie.202416845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
The strong interaction between organic electrode materials (OEMs) and electrolyte components induces a high solubility tendency of OEMs, thus hindering the practical application of lithium-organic batteries. Herein, we propose an efficient strategy for intramolecular hydrogen bonds (HBs) to redistribute the charge of OEMs to weaken the interaction with electrolyte components, thereby suppressing their dissolution. For the designed 2,2',2''-(2,4,6-trihydroxybenzene-1,3,5-triyl) tris (1H-naphtho[2,3-d]imidazole-4,9-dione) (TPNQ) molecule, the intramolecular HBs (O-H⋅⋅⋅N and N-H⋅⋅⋅O) reduce the charge density of active sites and alter the charge distribution on the molecular skeleton. As a result, TPNQ shows significantly reduced solubility in both ether- and ester-based solvents. In situ measurements and theoretical calculations indicate that the O-H⋅⋅⋅N dominated HB interaction strengthening during the discharging process, which can continuously suppress dissolution. Therefore, the TPNQ cathode displays high cycling stability (no capacity fading over 100 cycles at 0.1 A g-1; 88.4 % capacity retention over 1000 cycles at 1 A g-1), fast Li+-storage kinetics (211 mAh g-1 at 2 A g-1), and surprising low-temperature performances (stability cycles 500 times at -60 °C). Our results offer evidence that the intramolecular HBs strategy is promising in developing robust organic electrode materials for rechargeable batteries.
Collapse
Affiliation(s)
- Tianjiang Sun
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Weijia Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Mengyao Shi
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Diantao Li
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Qiong Sun
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Min Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhanliang Tao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
14
|
Wang S, Wei Z, Hong H, Guo X, Wang Y, Chen Z, Zhang D, Zhang X, Yang X, Zhi C. A tellurium iodide perovskite structure enabling eleven-electron transfer in zinc ion batteries. Nat Commun 2025; 16:511. [PMID: 39779662 PMCID: PMC11711384 DOI: 10.1038/s41467-024-55385-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The growing potential of low-dimensional metal-halide perovskites as conversion-type cathode materials is limited by electrochemically inert B-site cations, diminishing the battery capacity and energy density. Here, we design a benzyltriethylammonium tellurium iodide perovskite, (BzTEA)2TeI6, as the cathode material, enabling X- and B-site elements with highly reversible chalcogen- and halogen-related redox reactions, respectively. The engineered perovskite can confine active elements, alleviate the shuttle effect and promote the transfer of Cl- on its surface. This allows for the utilization of inert high-valent tellurium cations, eventually realizing a special eleven-electron transfer mode (Te6+/Te4+/Te2-, I+/I0/I-, and Cl0/Cl-) in suitable electrolytes. The Zn||(BzTEA)2TeI6 battery exhibited a high capacity of up to 473 mAh g-1Te/I and a large energy density of 577 Wh kg-1 Te/I at 0.5 A g-1, with capacity retention up to 82% after 500 cycles at 3 A g-1. The work sheds light on the design of high-energy batteries utilizing chalcogen-halide perovskite cathodes.
Collapse
Affiliation(s)
- Shixun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
| | - Zhiquan Wei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
| | - Hu Hong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
| | - Xun Guo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
| | - Yiqiao Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
| | - Ze Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
| | - Dechao Zhang
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong SAR, China
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun, China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education Shanghai University, Shanghai, China.
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong SAR, China.
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
15
|
Xiang T, Qu Z, Zhang D, Hu C, Chen Z, Wang Q. Triple-shelled Ni@MnO/C hollow spheres with enhanced performance for rechargeable zinc-ion capacitors. Dalton Trans 2024; 53:19314-19324. [PMID: 39508493 DOI: 10.1039/d4dt02303j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Electrochemical activation techniques and the use of multi-shell structured materials are effective strategies to enhance the electrochemical performance of rechargeable aqueous zinc-ion capacitors (ZICs). In this study, we successfully synthesized spherical Ni3Mn-MOFs via a solvothermal method and used them as templates to prepare Ni/MnO@C nanospheres with different core-shell structures by adjusting the heating rate under an Ar atmosphere. The multi-shelled structure provides more active sites and alleviates structural strain associated with repeated Zn2+ insertion/extraction processes. During the initial charge process, the Ni/MnO@C cathode undergoes electrochemical activation and generates oxygen vacancies, which can facilitate Zn2+ adsorption and promote ion diffusion, significantly enhancing its initial capacity and cycling stability. The activated Ni/MnO@C electrode exhibits an excellent capacity of 500 mA h g-1 at a current density of 0.3 A g-1, and the capacity retention rate remains as high as 90.9% even after 5200 cycles at 3 A g-1. The assembled AC//Ni/MnO@C (AC: active carbon) ZIC demonstrates an energy density of 90.14 W h kg-1 at a power density of 2750.17 W kg-1. At 3 A g-1, the capacity retention rate remains as high as 80.3% after 6000 cycles, indicating excellent long-term durability. This work provides a promising strategy for designing high-performance cathodes for the next generation of ZICs.
Collapse
Affiliation(s)
- Tao Xiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, China.
| | - Zaiting Qu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, China.
| | - Daohong Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
| | - Chenglong Hu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Zhen Chen
- College of Chemical and Environmental Engineering, Hanjiang Normal University, Shiyan 442000, China
| | - Qiufan Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
| |
Collapse
|
16
|
Zhang Y, Li M, Li Z, Lu Y, Li H, Liang J, Hu X, Zhang L, Ding K, Xu Q, Liu H, Wang Y. A High Capacity p-Type Organic Cathode Material for Aqueous Zinc Batteries. Angew Chem Int Ed Engl 2024; 63:e202410342. [PMID: 39223696 DOI: 10.1002/anie.202410342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/04/2024]
Abstract
P-type organic cathode materials typically exhibit high redox potentials and fast redox kinetics, presenting broad application prospects in aqueous zinc batteries (AZBs). However, most of the reported p-type organic cathode materials exhibit limited capacity (<100 mAh g-1), which is attributable to the low mass content ratio of oxidation-reduction active functional groups in these materials. Herein, we report a high-capacity p-type organic material, 5,12-dihydro-5,6,11,12-tetraazatetracene (DHTAT), for aqueous zinc batteries. Both experiments and calculation indicate the charge storage of DHTAT mainly involves the adsorption/desorption of ClO4 - on the -NH- group. Benefitting from the high mass content ratio of the -NH- group in DHATA molecule, the DHATA electrode demonstrates a remarkable capacity of 224 mAh g-1 at a current density of 50 mA g-1 with a stable voltage of 1.12 V. Notably, after 5000 cycles at a high current density of 5 A g-1, DHTAT retains 73 % of its initial capacity, showing a promising cycling stability. In addition, DHTAT also has good low-temperature performance and can stably cycle at -40 °C for 4000 cycles at 1 A g-1, making it a competitive candidates cathode material for low-temperature batteries.
Collapse
Affiliation(s)
- Yan Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, 200090, Shanghai, China
| | - Min Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, 200090, Shanghai, China
| | - Zongyang Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, 200090, Shanghai, China
| | - Yongyi Lu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, 200090, Shanghai, China
| | - Houmou Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, 200090, Shanghai, China
| | - Jiaxin Liang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, 200090, Shanghai, China
| | - Xinyu Hu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, 200090, Shanghai, China
| | - Libin Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, 200090, Shanghai, China
| | - Kun Ding
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, 200090, Shanghai, China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, 200090, Shanghai, China
| | - Haimei Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, 200090, Shanghai, China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, 200433, Shanghai, China
| |
Collapse
|
17
|
Geng C, Zhang P, Wu JM, Qin J, Wen W. Lattice Expanded Titania as an Excellent Anode for an Aqueous Zinc-Ion Battery Enabled by a Highly Reversible H +-Promoted Zn 2+ Intercalation. ACS NANO 2024. [PMID: 39556524 DOI: 10.1021/acsnano.4c09999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Aqueous Zn-ion batteries have garnered significant attention as promising and safe energy storage systems. Due to the inevitable dendrite and corrosion in metallic Zn anodes, alternative anodes of intercalation-type materials are desirable, but they still suffer from low energy efficiency, unsatisfactory capacity, and insufficient cycle life. Here, we develop a high-performance anode for aqueous Zn-ion batteries via a lattice expansion strategy in combination with a Zn2+/H+ synergistic mechanism. The anatase TiO2 with expanded lattice exhibits an appropriate deintercalation potential of 0.18 V vs Zn/Zn2+ and a high reversible capacity (227 mAh g-1 at 2.04 A g-1) with an outstanding rate capability and excellent cycle stability. The high electrochemical performance is attributed to a decrease in the Zn2+/H+ diffusion barriers, which results from lattice expansion and also a H+-promoted Zn2+ intercalation effect. The anode intercalates Zn2+/H+ via a solid-solution mechanism with a minor volume change, which contributes to the high reversibility and thus high energy efficiency. When paired with different types of cathodes, including NV, I2, and activated carbon, to construct corresponding full cells, high specific energy, high specific power, long cycle life, and extremely high energy efficiency can be achieved. This study provides a prospect for developing high-performance Zn-ion batteries.
Collapse
Affiliation(s)
- Chao Geng
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa 999078, Macao SAR, China
- Collaborative Innovation of Ecological Civilization, School of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China
| | - Pengfei Zhang
- Collaborative Innovation of Ecological Civilization, School of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China
| | - Jin-Ming Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiayi Qin
- Collaborative Innovation of Ecological Civilization, School of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China
| | - Wei Wen
- Collaborative Innovation of Ecological Civilization, School of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
18
|
Hong H, Wang Y, Wei Z, Yang X, Wu Z, Guo X, Chen A, Zhang S, Wang S, Li Q, Li S, Zhang D, Xiong Q, Zhi C. Constructing a Janus Catholyte/Cathode Structure: A New Strategy for Stable Zn-Organic Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410209. [PMID: 39300868 DOI: 10.1002/adma.202410209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/01/2024] [Indexed: 09/22/2024]
Abstract
Organic materials are promising candidates for the electrodes of aqueous zinc-ion batteries due to their nonmetallic nature, environmental friendliness, and cost-effectiveness. However, they often suffer from significant dissolution during the charge-discharge process, which poses a major hurdle to their practical applications. Inspired by membrane-less organelles in cells, a simple and versatile strategy is proposed-constructing a Janus catholyte/cathode structured electrode based on liquid-liquid phase separation, in which redox-active organic molecules are confined in the liquid state within the activated carbon, thereby eliminating the volume effect and preventing their diffusion into the electrolyte. The customization of phase separation systems by leveraging the hydrophobicity/hydrophilicity differences of various anions is successfully demonstrated. This approach allows for precise regulation of ion cluster/coordination structures, enabling the confinement of active substances while ensuring efficient ion transport. Consequently, the as-constructed Zn||Janus catholyte/cathode cells exhibit superior reversible rate capacity (186 mA h g-1 at 5.0 A g-1) and remarkable cycling performance (retention of 72.5% after 12 000 cycles). The strategy in building Janus catholyte/cathode structured electrodes breaks free from the limitations imposed by traditional solid-state electrodes, offering tremendous opportunities for exploring diverse advanced battery systems.
Collapse
Affiliation(s)
- Hu Hong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yiqiao Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Zhiquan Wei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xinru Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Zhuoxi Wu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xun Guo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Ao Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Shaoce Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Shixun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Qing Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Shimei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong, 999077, China
| | - Dechao Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong, 999077, China
| | - Qi Xiong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong, 999077, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong, 999077, China
| |
Collapse
|
19
|
Qin S, Zhang J, Xu M, Xu P, Zou J, Li J, Luo D, Zhang Y, Dou H, Chen Z. Formulating Self-Repairing Solid Electrolyte Interface via Dynamic Electric Double Layer for Practical Zinc Ion Batteries. Angew Chem Int Ed Engl 2024; 63:e202410422. [PMID: 39039835 DOI: 10.1002/anie.202410422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/24/2024]
Abstract
Zinc ion batteries (ZIBs) encounter interface issues stemming from the water-rich electrical double layer (EDL) and unstable solid-electrolyte interphase (SEI). Herein, we propose the dynamic EDL and self-repairing hybrid SEI for practical ZIBs via incorporating the horizontally-oriented dual-site additive. The rearrangement of distribution and molecular configuration of additive constructs the robust dynamic EDL under different interface charges. And, a self-repairing organic-inorganic hybrid SEI is constructed via the electrochemical decomposition of additive. The dynamic EDL and self-repairing SEI accelerate interfacial kinetics, regulate deposition and suppress side reactions in the both stripping and plating during long-term cycles, which affords high reversibility for 500 h at 42.7 % depth of discharge or 50 mA ⋅ cm-1. Remarkably, Zn//NVO full cells deliver the impressive cycling stability for 10000 cycles with 100 % capacity retention at 3 A ⋅ g-1 and for over 3000 cycles even at lean electrolyte (7.5 μL ⋅ mAh-1) and high loading (15.26 mg ⋅ cm-2). Moreover, effectiveness of this strategy is further demonstrated in the low-temperature full cell (-30 °C).
Collapse
Affiliation(s)
- Siqi Qin
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Jie Zhang
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Mi Xu
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Peiwen Xu
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Jiabin Zou
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Jianhui Li
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Dan Luo
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Yongguang Zhang
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Haozhen Dou
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Zhongwei Chen
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| |
Collapse
|
20
|
Li S, Zhang G, Li Q, He T, Sun X. A facile self-saturation process enabling the stable cycling of a small molecule menaquinone cathode in aqueous zinc batteries. Chem Sci 2024:d4sc04685d. [PMID: 39397829 PMCID: PMC11467759 DOI: 10.1039/d4sc04685d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Small quinone molecules are promising cathode materials for aqueous zinc batteries. However, they experience fast capacity decay due to dissolution in electrolytes. Herein, we introduce a simple methyl group to a naphthoquinone (NQ) cathode and demonstrate a facile self-saturation strategy. The methyl group exhibits hydrophobic properties together with light weight and a weak electron-donation effect, which allows a good balance among cycling stability, capacity and voltage for cathode materials. The resulting menadione (Me-NQ) presents around one-third solubility of NQ. The former thus rapidly reaches saturation in the electrolyte during cycling, which suppresses subsequent dissolution. Thanks to this process, the Me-NQ cathode preserves 146 mA h g-1 capacity after 3500 cycles at 5 A g-1, far exceeding 88 mA h g-1 for NQ. Me-NQ also delivers a stabilized capacity of 316 mA h g-1 at 0.1 A g-1 with only 0.05 V lower average redox voltage than NQ. The co-storage of Zn2+ and H+ with the redox reactions on the carbonyl sites of Me-NQ is revealed.
Collapse
Affiliation(s)
- Shuo Li
- Department of Chemistry, Northeastern University Shenyang 110819 China
| | - Guoli Zhang
- Department of Chemistry, Northeastern University Shenyang 110819 China
| | - Qianrui Li
- Department of Chemistry, Northeastern University Shenyang 110819 China
| | - Tianshun He
- Department of Chemistry, Northeastern University Shenyang 110819 China
| | - Xiaoqi Sun
- Department of Chemistry, Northeastern University Shenyang 110819 China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University 3-11 Wenhua Road Shenyang 110819 China
| |
Collapse
|
21
|
Geng D, Zhang H, Fu Z, Liu Z, An Y, Yang J, Sha D, Pan L, Yan C, Sun Z. Regulating the Porosity and Bipolarity of Polyimide-Based Covalent Organic Framework for Advanced Aqueous Dual-Ion Symmetric Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407073. [PMID: 39159005 PMCID: PMC11496998 DOI: 10.1002/advs.202407073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 08/21/2024]
Abstract
The all-organic aqueous dual-ion batteries (ADIBs) have attracted increasing attention due to the low cost and high safety. However, the solubility and unstable activity of organic electrodes restrict the synergistic storage of anions and cations in the symmetric ADIBs. Herein, a novel polyimide-based covalent organic framework (labeled as NTPI-COF) is constructed, featured with the boosted structure stability and electronic conductivity. Through regulating the porosity and bipolarity integrally, the NTPI-COF possesses hierarchical porous structure (mesopore and micropore) and abundant bipolar active centers (C═O and C─N), which exhibits rapid dual-ion transport and storage effects. As a result, the NTPI-COF as the electrodes for ADIBs deliver a high reversible capacity of 109.7 mA h g-1 for Na+ storage and that of 74.8 mA h g-1 for Cl- storage at 1 A g-1, respectively, and with a capacity retention of 93.2% over 10 000 cycles at 10 A g-1. Additionally, the all-organic ADIBs with symmetric NTPI-COF electrodes achieve an impressive energy density of up to 148 W h kg-1 and a high power density of 2600 W kg-1. Coupling the bipolarity and porosity of the all-organic electrodes applied in ADIBs will further advance the development of low-cost and large-scale energy storage.
Collapse
Affiliation(s)
- Dongxiang Geng
- School of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiang212100P. R. China
| | - Heng Zhang
- School of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiang212100P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai UniversityTianjin300071P. R. China
| | - Zhijian Fu
- School of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiang212100P. R. China
| | - Ziming Liu
- School of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiang212100P. R. China
| | - Yafei An
- School of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiang212100P. R. China
| | - Jun Yang
- School of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiang212100P. R. China
| | - Dawei Sha
- Institute of Technology for Carbon NeutralizationYangzhou UniversityYangzhou225009P. R. China
| | - Long Pan
- School of Materials Science and EngineeringSoutheast UniversityNanjing210089P. R. China
| | - Chao Yan
- School of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiang212100P. R. China
| | - ZhengMing Sun
- School of Materials Science and EngineeringSoutheast UniversityNanjing210089P. R. China
| |
Collapse
|
22
|
Miao CL, Wang XX, Guan DH, Li JX, Li JY, Xu JJ. Spatially Confined Engineering Toward Deep Eutectic Electrolyte in Metal-Organic Framework Enabling Solid-State Zinc-Ion Batteries. Angew Chem Int Ed Engl 2024; 63:e202410208. [PMID: 38988225 DOI: 10.1002/anie.202410208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Uncontrollable interfacial side reactions generated from common aqueous electrolytes, just like the hydrogen evolution reaction (HER) and dendrite growth, have severely prevented the practical application of zinc-ion batteries (ZIBs). Solid-state ZIBs are considered to be an efficient strategy by adopting high-quality solid-state electrolytes (SSEs). Here, by confining deep eutectic electrolyte (DEE) into the nanochannels of metal-organic framework (MOF)-PCN-222, a stable DEE@PCN-222 SSE with internal Zn2+ transport channels was obtained. A distinctive ion-transport network composed of DEE and PCN-222 in the interior of DEE@PCN-222 realizes the efficient Zn2+ conduction, contributing to high ionic conductivity of 3.13×10-4 S cm-1 at room temperature, low activation energy of 0.12 eV, and a high Zn2+ transference number of 0.74. Furthermore, experimental and theoretical investigations demonstrate that DEE@PCN-222 with its unique channel structure could homogeneously regulate the Zn2+ distribution and effectively alleviate the side reactions. Highly reversible Zn plating/stripping performance of 2476 h can be realized by the SSE. The solid-state ZIBs show a specific capacity of 306 mAh g-1 and display cycling stability of 517 cycles. This unique design concept provides a new perspective in realizing the high-safety and high-performance ZIBs.
Collapse
Affiliation(s)
- Cheng-Lin Miao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Xiao-Xue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - De-Hui Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jia-Xin Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jian-You Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Ji-Jing Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
23
|
Liu R, Xi P, Yang N, Cheng B. Multifunctional Janus Membrane for Diabetic Wound Healing and Intelligent Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41927-41938. [PMID: 39090773 DOI: 10.1021/acsami.4c09353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The complex microenvironment of diabetic wounds often hinders the healing process, ultimately leading to the formation of diabetic foot ulcers and even death. Dual monitoring and treatment of wounds can significantly reduce the incidence of such cases. Herein, a multifunctional Janus membrane (3D chitosan sponge-ZE/polycaprolactone nanofibers-ZP) was developed by incorporating the zinc metal-organic framework, europium metal-organic framework, and phenol red into nanofibers for diabetic wound monitoring and treatment. The directional water transport capacity of the resulting Janus membrane allows for unidirectional and irreversible drainage of wound exudate, and the multifunctional Janus membrane creates up to a 99% antibacterial environment, both of which can treat wounds. Moreover, the pH (5-8) and H2O2 (0.00-0.80 μM) levels of the wound can be monitored using the color-changing property of phenol red and the fluorescence characteristic of Eu-MOF on the obtained membrane, respectively. The healing stages of the wound can also be monitored by analyzing the RGB values of the targeted membrane images. This design can more accurately reflect the wound state and treat the wound to reduce bacterial infection and accelerate wound healing, which has been demonstrated in in vivo experiments. The results provide an important basis for early intervention in diabetic patients.
Collapse
Affiliation(s)
- Ru Liu
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Peng Xi
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
- State Key Laboratory of Separation Membranes & Membrane Process, Tiangong University, Tianjin 300387, PR China
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, Tiangong University, Tianjin 300387, PR China
| | - Ning Yang
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
- State Key Laboratory of Separation Membranes & Membrane Process, Tiangong University, Tianjin 300387, PR China
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes & Membrane Process, Tiangong University, Tianjin 300387, PR China
- School of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, PR China
| |
Collapse
|
24
|
Ma G, Yuan W, Li X, Bi T, Niu L, Wang Y, Liu M, Wang Y, Shen Z, Zhang N. Organic Cations Texture Zinc Metal Anodes for Deep Cycling Aqueous Zinc Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408287. [PMID: 38967293 DOI: 10.1002/adma.202408287] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Manipulating the crystallographic orientation of zinc (Zn) metal to expose more (002) planes is promising to stabilize Zn anodes in aqueous electrolytes. However, there remain challenges involving the non-epitaxial electrodeposition of highly (002) textured Zn metal and the maintenance of (002) texture under deep cycling conditions. Herein, a novel organic imidazolium cations-assisted non-epitaxial electrodeposition strategy to texture electrodeposited Zn metals is developed. Taking the 1-butyl-3-methylimidazolium cation (Bmim+) as a paradigm additive, the as-prepared Zn film ((002)-Zn) manifests a compact structure and a highly (002) texture without containing (100) signal. Mechanistic studies reveal that Bmim+ featuring oriented adsorption on the Zn-(002) plane can reduce the growth rate of (002) plane to render the final exposure of (002) texture, and homogenize Zn nucleation and suppress H2 evolution to enable the compact electrodeposition. In addition, the formulated Bmim+-containing ZnSO4 electrolyte effectively sustains the (002) texture even under deep cycling conditions. Consequently, the combination of (002) texture and Bmim+-containing electrolyte endows the (002)-Zn electrode with superior cycling stability over 350 h under 20 mAh cm-2 with 72.6% depth-of-discharge, and assures the stable operation of full Zn batteries with both coin-type and pouch-type configurations, significantly outperforming the (002)-Zn and commercial Zn-based batteries in Bmim+-free electrolytes.
Collapse
Affiliation(s)
- Guoqiang Ma
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Wentao Yuan
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Xiaotong Li
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Tongqiang Bi
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Linhuan Niu
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Yue Wang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Mengyu Liu
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Yuanyuan Wang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Zhaoxi Shen
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Ning Zhang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
- Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, 071002, P. R. China
| |
Collapse
|
25
|
Zhong L, Wang C, He J, Lin Z, Yang X, Li R, Zhan S, Zhao L, Wu D, Chen H, Tang Z, ZHi C, Lv Lyu H. Self-Charging Aqueous Zn//COF Battery with UltraHigh Self-Charging Efficiency and Rate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314050. [PMID: 38380790 DOI: 10.1002/adma.202314050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Self-charging zinc batteries that combine energy harvesting technology with batteries are candidates for reliable self-charging power systems. However, the lack of rational materials design results in unsatisfactory self-charging performance. Here, a covalent organic framework containing pyrene-4,5,9,10-tetraone groups (COF-PTO) is reported as a cathode material for aqueous self-charging zinc batteries. The ordered channel structure of the COF-PTO provides excellent capacity retention of 98% after 18 000 cycles at 10 A g-1 and ultra-fast ion transfer. To visually assess the self-charging performance, two parameters, namely self-charging efficiency (self-charging discharge capacity/galvanostatic discharge capacity, η) and average self-charging rate (total discharge capacity after cyclic self-charging/total cyclic self-charging time, ν), are proposed for performance evaluation. COF-PTO achieves an impressive η of 96.9% and an ν of 30 mAh g-1 self-charge capacity per hour in 100 self-charging cycles, surpassing the previous reports. Mechanism studies reveal the co-insertion of Zn2+ and H+ double ions in COF-PTO of self-charging zinc batteries. In addition, the C═N and C═O (on the benzene) in COF-PTO are ortho structures to each other, which can easily form metal heterocycles with Zn ions, thereby driving the forward progress of the self-charging reaction and enhancing the self-charging performance.
Collapse
Affiliation(s)
- Leheng Zhong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 51006, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Chunfang Wang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 51006, P. R. China
| | - Zhiqing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 51006, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Xiaodong Yang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, College of Chemistry and Chemical Engineering, Yan'an University Yan'an, Shaanxi, 716000, P. R. China
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Ran Li
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, College of Chemistry and Chemical Engineering, Yan'an University Yan'an, Shaanxi, 716000, P. R. China
| | - Shuai Zhan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Linwei Zhao
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Dan Wu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Hui Chen
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Zijie Tang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Chunyi ZHi
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Haiming Lv Lyu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
26
|
Lim WG, Li X, Reed D. Understanding the Role of Zinc Hydroxide Sulfate and its Analogues in Mildly Acidic Aqueous Zinc Batteries: A Review. SMALL METHODS 2024; 8:e2300965. [PMID: 37803913 DOI: 10.1002/smtd.202300965] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Indexed: 10/08/2023]
Abstract
Mildly acidic aqueous zinc batteries (AZBs) have attracted tremendous attention for grid storage applications with the expectation to tackle the issues of Li-ion batteries on high cost and poor safety. However, the performance, particularly energy density and cycle stability of AZBs are still unsatisfactory when compared with LIBs. To help the development of AZBs, a lot of effort have been made to understand the battery reaction mechanisms and precedent microscopic and spectroscopic analyses have shown flake-like large particles of zinc hydroxide sulfate (ZHS) and its analogues formed on the surfaces of cathodes and anodes in sulfate and other electrolyte systems during cycling. However, because of the complexity of the thermodynamics and kinetics of aqueous reactions to understand different battery conditions, controversies still exist. This article will review the roles of ZHS discussed in recent representative references aiming to shine light on the fundamental mechanisms of AZBs and pave ways to further improve the battery performance.
Collapse
Affiliation(s)
- Won-Gwang Lim
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Xiaolin Li
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - David Reed
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|
27
|
Li D, Guo Y, Zhang C, Chen X, Zhang W, Mei S, Yao CJ. Unveiling Organic Electrode Materials in Aqueous Zinc-Ion Batteries: From Structural Design to Electrochemical Performance. NANO-MICRO LETTERS 2024; 16:194. [PMID: 38743294 PMCID: PMC11093963 DOI: 10.1007/s40820-024-01404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/22/2024] [Indexed: 05/16/2024]
Abstract
Aqueous zinc-ion batteries (AZIBs) are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability. In response to the growing demand for green and sustainable energy storage solutions, organic electrodes with the scalability from inexpensive starting materials and potential for biodegradation after use have become a prominent choice for AZIBs. Despite gratifying progresses of organic molecules with electrochemical performance in AZIBs, the research is still in infancy and hampered by certain issues due to the underlying complex electrochemistry. Strategies for designing organic electrode materials for AZIBs with high specific capacity and long cycling life are discussed in detail in this review. Specifically, we put emphasis on the unique electrochemistry of different redox-active structures to provide in-depth understanding of their working mechanisms. In addition, we highlight the importance of molecular size/dimension regarding their profound impact on electrochemical performances. Finally, challenges and perspectives are discussed from the developing point of view for future AZIBs. We hope to provide a valuable evaluation on organic electrode materials for AZIBs in our context and give inspiration for the rational design of high-performance AZIBs.
Collapse
Affiliation(s)
- Dujuan Li
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yuxuan Guo
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Chenxing Zhang
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Xianhe Chen
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Weisheng Zhang
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Shilin Mei
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Chang-Jiang Yao
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
28
|
Wang Y, Zhu Y, Chen Z, Yang X, Zhang R, Wang H, Yang Y. Molecule and Microstructure Modulations of Cyano-Containing Electrodes for High-Performance Fully Organic Batteries. Angew Chem Int Ed Engl 2024; 63:e202401253. [PMID: 38491764 DOI: 10.1002/anie.202401253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/02/2024] [Accepted: 03/15/2024] [Indexed: 03/18/2024]
Abstract
Cyano-containing electrodes usually promise high theoretical potentials while suffering from uncontrollable self-dissolution and sluggish reaction kinetics. Herein, to remedy their limitations, an unprecedented core-shell heterostructured electrode of carbon nanotubes encapsulated in poly(1,4-dicyanoperfluorobenzene sulfide) (CNT@PFDCB) is rationally crafted via molecule and microstructure modulations. Specifically, the linkage of sulfide bridges of PFDCB prevents the active cyano groups from dissolving, resulting in a robust structure. The fluorinations modulate the electronic configurations in frontier orbitals, allowing higher electrical conductivity and elevated output voltage. Combined with the core-shell architecture to unlock the sluggish diffusion kinetics for both electrons and guest ions, the CNT@PFDCB exhibits an impressive capacity (203.5 mAh g-1), remarkable rate ability (127.6 mAh g-1 at 3.0 A g-1), and exceptional cycling stability (retaining 81.1 % capacity after 3000 cycles at 1.0 A g-1). Additionally, the Li-storage mechanisms regarding PFDCB are thoroughly revealed by in situ attenuated total reflection infrared spectroscopy, in situ Raman spectroscopy, and theoretical simulations, which involve the coordination interaction between Li ions and cyano groups and the electron delocalization along the conjugated skeleton. More importantly, a practical fully organic cell based on the CNT@PFDCB is well-validated that demonstrates a tremendous potential of cyanopolymer as the cathode to replace its inorganic counterparts.
Collapse
Affiliation(s)
- Yonglin Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Yunhai Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Zixuan Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Xu Yang
- College of Science, Shenyang Aerospace University, Shenyang, 110135, China
| | - Rongyu Zhang
- College of Science, Shenyang Aerospace University, Shenyang, 110135, China
| | - Hengguo Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yingkui Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| |
Collapse
|
29
|
Niu S, Wang Y, Zhang J, Wang Y, Tian Y, Ju N, Wang H, Zhao S, Zhang X, Zhang W, Li C, Sun HB. Engineering Low-Cost Organic Cathode for Aqueous Rechargeable Battery and Demonstrating the Proton Intercalation Mechanism for Pyrazine Energy Storage Unit. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309022. [PMID: 38084449 DOI: 10.1002/smll.202309022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/27/2023] [Indexed: 05/25/2024]
Abstract
Seeking organic cathode materials with low cost and long cycle life that can be employed for large-scale energy storage remains a significant challenge. This work has synthesized an organic compound, triphenazino[2,3-b](1,4,5,8,9,12-hexaazatriphenylene) (TPHATP), with as high as 87.16% yield. This compound has a highly π-conjugated and rigid molecular structure, which is synthesized by capping hexaketocyclohexane with three molecules of 2,3-diaminophenazine derived from low-cost o-phenylenediamine, and is used as a cathode material for assembling aqueous rechargeable zinc ion batteries. Both experiments and DFT calculations demonstrate that the redox mechanism of TPHATP is predominantly governed by H+ storage. The Zn-intercalation product of nitride-type compound, is too unstable to form in water. Moreover, the TPHATP cathode exhibits a capacity of as high as 318.3 mAh g-1 at 0.1 A g-1, and maintained a stable capacity of 111.9 mAh g-1 at a large current density of 10 A g-1 for 5000 cycles with only a decay of 0.000512% per cycle. This study provides new insights into understanding pyrazine as an active redox group and offers a potential affordable aqueous battery system for grid-scale energy storage.
Collapse
Affiliation(s)
- Suyan Niu
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| | - Yao Wang
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| | - Jianwen Zhang
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
- Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China
| | - Yiming Wang
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| | - Yaxiong Tian
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
- College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Na Ju
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| | - Haipeng Wang
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| | - Shuya Zhao
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| | - Xinyue Zhang
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
- Research Center for Environmental Materials and Technology, Foshan (Southern China) Institute for New Materials, Foshan, 528200, P. R. China
| | - Wenlong Zhang
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| | - Chengrui Li
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| | - Hong-Bin Sun
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| |
Collapse
|
30
|
Song Z, Miao L, Duan H, Lv Y, Gan L, Liu M. Multielectron Redox-Bipolar Tetranitroporphyrin Macrocycle Cathode for High-Performance Zinc-Organic Batteries. Angew Chem Int Ed Engl 2024; 63:e202401049. [PMID: 38372434 DOI: 10.1002/anie.202401049] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Bipolar organics fuse the merits of n/p-type redox reactions for better Zn-organic batteries (ZOBs), but face the capacity plafond due to low density of active units and single-electron reactions. Here we report multielectron redox-bipolar tetranitroporphyrin (TNP) with quadruple two-electron-accepting n-type nitro motifs and dual-electron-donating p-type amine moieties towards high-capacity-voltage ZOBs. TNP cathode initiates high-kinetics, hybrid anion-cation 10e- charge storage involving four nitro sites coordinating with Zn2+ ions at low potential and two amine species coupling with SO4 2- ions at high potential. Consequently, Zn||TNP battery harvests high capacity (338 mAh g-1), boosted average voltage (1.08 V), and outstanding energy density (365 Wh kg-1 TNP). Moreover, the extended π-conjugated TNP macrocycle achieves anti-dissolution in electrolytes, prolonging the battery life to 50,000 cycles at 10 A g-1 with 71.6 % capacity retention. This work expands the chemical landscape of multielectron redox-bipolar organics for state-of-the-art ZOBs.
Collapse
Affiliation(s)
- Ziyang Song
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 200092 Shanghai, P. R. China
| | - Ling Miao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 200092 Shanghai, P. R. China
| | - Hui Duan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 200092 Shanghai, P. R. China
| | - Yaokang Lv
- College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Lihua Gan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 200092 Shanghai, P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 200092 Shanghai, P. R. China
| |
Collapse
|
31
|
Wei Q, Meng C, Xiao LZ, He Y, Yin Q, Zhou Y, Song S, Qiang R, Yang Y, Li Z, Hu Z. Asymmetric Supercapacitors based on 1,10-phenanthroline-5,6-dione Molecular Electrodes Paired with MXene. CHEMSUSCHEM 2024; 17:e202301370. [PMID: 37962513 DOI: 10.1002/cssc.202301370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
An efficient approach to increase the energy density of supercapacitors is to prepare electrode materials with larger specific capacitance and increase the potential difference between the positive and negative electrodes in the device. Herein, an organic molecular electrode (OME) is prepared by anchoring 1,10-phenanthroline-5,6-dione (PD), which possesses two pyridine rings and an electron-deficient conjugated system, onto reduced graphene oxide (rGO). Because of the electron-deficient conjugated structure of PD molecule, PD/rGOs exhibit a more positive redox peak potential along with the advantages of high capacitance-controlled behaviour and fast reaction kinetics. Additionally, the small energy gap between the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) leads to increased conductivity in PD/rGO. To assemble the asymmetric supercapacitor (ASC), a two-dimensional metal carbide, as known as MXene, with a chemical composition of Ti3C2Tx is selected as the negative electrode due to its exceptional performance, and PD/rGO-0.5 is employed as the positive electrode. Consequently, the working voltage is expanded up to 1.8 V. Through further electrochemical measurements, the assembled ASC (PD/rGO-0.5//Ti3C2Tx) achieves a remarkable energy density of 36.8 Wh kg-1. Remarkably, connecting two ASCs in series can power 73 LEDs, showcasing its promising potential for energy storage applications.
Collapse
Affiliation(s)
- Qiaoqiao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Congcong Meng
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Liang Zhikun Xiao
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Yuanyuan He
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Qing Yin
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Yi Zhou
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Shengmiao Song
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Ruibing Qiang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Yuying Yang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Zhimin Li
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Zhongai Hu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| |
Collapse
|
32
|
Wei Y, Li Z, Liu Y, Ji Z, Zou S, Zhou Y, Yan S, Chen C, Wu M. The Compatibility of COFs Cathode and Optimized Electrolyte for Ultra-Long Lifetime Rechargeable Aqueous Zinc-Ion Battery. CHEMSUSCHEM 2024:e202301851. [PMID: 38438307 DOI: 10.1002/cssc.202301851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
Rechargeable aqueous zinc-ion batteries (RAZIBs) are attractive due to their affordability, safety, and eco-friendliness. However, their potential is limited by the lack of high-capacity cathodes and compatible electrolytes needed for reliable performance. Herein, we have presented a compatibility strategy for the development of a durable and long-lasting RAZIBs. The covalent organic frameworks (COFs) based on anthraquinone (DAAQ-COF) is created and utilized as the cathode, with zinc metal serving as the anode. The electrolyte is made up of an aqueous solution containing zinc salts at various concentrations. The COF cathode has been designed to be endowed with a rich array of redox-active groups, enhancing its electrochemical properties. Meanwhile, the electrolyte is formulated using triflate anions, which have exhibited superiority over sulfate anions. This strategy lead to the development of an optimized COF cathode with fast charging capability, high Coulombic efficiency (nearly 100 %) and long-term cyclability (retention rate of nearly 100 % at 1 A g-1 after 10000 cycles). Moreover, through experimental analysis, a co-insertion mechanism involving Zn2+ and H+ in this cathode is discovered for the first time. These findings represent a promising path for the advancement of organic cathode materials in high-performance and sustainable RAZIBs.
Collapse
Affiliation(s)
- Yifan Wei
- Department of Chemistry, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Zhonglin Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yongyao Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Zhenyu Ji
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Shuixiang Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yuzhe Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Shuai Yan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Cheng Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Mingyan Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
33
|
Sun QQ, Du JY, Sun T, Zhuang ZB, Xie ZL, Xie HM, Huang G, Zhang XB. Spatial Structure Design of Thioether-Linked Naphthoquinone Cathodes for High-Performance Aqueous Zinc-Organic Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313388. [PMID: 38350631 DOI: 10.1002/adma.202313388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/27/2024] [Indexed: 02/15/2024]
Abstract
Organic electrode materials (OEMs) have gathered extensive attention for aqueous zinc-ion batteries (AZIBs) due to their structural diversity and molecular designability. However, the reported research mainly focuses on the design of the planar configuration of OEMs and does not take into account the important influence of the spatial structure on the electrochemical properties, which seriously hamper the further performance liberation of OEMs. Herein, this work has designed a series of thioether-linked naphthoquinone-derived isomers with tunable spatial structures and applied them as the cathodes in AZIBs. The incomplete conjugated structure of the elaborately engineered isomers can guarantee the independence of the redox reaction of active groups, which contributes to the full utilization of active sites and high redox reversibility. In addition, the position isomerization of naphthoquinones on the benzene rings changes the zincophilic activity and redox kinetics of the isomers, signifying the importance of spatial structure on the electrochemical performance. As a result, the 2,2'-(1,4-phenylenedithio) bis(1,4-naphthoquinone) (p-PNQ) with the smallest steric hindrance and the most independent redox of active sites exhibits a high specific capacity (279 mAh g-1 ), an outstanding rate capability (167 mAh g-1 at 100 A g-1 ), and a long-term cycling lifetime (over 2800 h at 0.05 A g-1 ).
Collapse
Affiliation(s)
- Qi-Qi Sun
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jia-Yi Du
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Tao Sun
- Institute of Quantum and Sustainable Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhen-Bang Zhuang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zi-Long Xie
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hai-Ming Xie
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Gang Huang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xin-Bo Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
34
|
Zhang Y, Song Z, Miao L, Lv Y, Gan L, Liu M. Non-Metallic NH 4 + /H + Co-Storage in Organic Superstructures for Ultra-Fast and Long-Life Zinc-Organic Batteries. Angew Chem Int Ed Engl 2024; 63:e202316835. [PMID: 38010854 DOI: 10.1002/anie.202316835] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Compared with Zn2+ storage, non-metallic charge carrier with small hydrated size and light weight shows fast dehydration and diffusion kinetics for Zn-organic batteries. Here we first report NH4 + /H+ co-storage in self-assembled organic superstructures (OSs) by intermolecular interactions of p-benzoquinone (BQ) and 2, 6-diaminoanthraquinone (DQ) polymer through H-bonding and π-π stacking. BQ-DQ OSs exhibit exposed quadruple-active carbonyl motifs and super electron delocalization routes, which are redox-exclusively coupled with high-kinetics NH4 + /H+ but exclude sluggish and rigid Zn2+ ions. A unique 4e- NH4 + /H+ co-coordination mechanism is unravelled, giving BQ-DQ cathode high capacity (299 mAh g-1 at 1 A g-1 ), large-current tolerance (100 A g-1 ) and ultralong life (50,000 cycles). This strategy further boosts the capacity to 358 mAh g-1 by modulating redox-active building units, giving new insights into ultra-fast and stable NH4 + /H+ storage in organic materials for better Zn batteries.
Collapse
Affiliation(s)
- Yehui Zhang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Ziyang Song
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Ling Miao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Yaokang Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Lihua Gan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
35
|
Wang J, Huang L, Li J, Lv H, Chen L, Xie H, Wang G, Gu T. Design and synthesis of п-conjugated aromatic heterocyclic materials with dual active sites and ultra-high rate performance for aqueous zinc-organic batteries. J Colloid Interface Sci 2024; 653:1103-1111. [PMID: 37783010 DOI: 10.1016/j.jcis.2023.09.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/24/2023] [Indexed: 10/04/2023]
Abstract
Acid anhydride cathode materials garner considerable interest for aqueous zinc ion batteries (AZIBs) due to ideal specific capacity and structural diversity, however, serious solubility leads to capacity degradation. Herein, 1,4,5,8-naphthalene tetracarboxylic acid dianhydride - 2,3-diamino phenothiazine (NTDP) featuring multiple active sites (6 with CN and 2 with CO) and large π-conjugated backbone, was designed and synthesized utilizing solid-phase method. The smallest energy gap (ΔE) and the lowest LUMO levels (against monomers) induced by multiple active sites and п-conjugated backbone with high aromaticity, NTDP exhibited excellent specific capacity (307.5 mA h g-1 under 0.05 A/g), ultrahigh rate performance (194.9 mA h g-1 under 20 A/g) and impressive cycling stability (190.0 mA h g-1 over 9000 cycles with a capacity retention of 91.2 % at 15 A/g). The reversible Zn2+ insertion/removal mechanism on multiple active centers (CO and CN) was proposed through XPS, FT-IR, and Raman. The specific capacity of the NTDP//zinc flexible cell was 112.6 mA h g-1 at 3 A/g under various folding angles (45°, 90°, 135°, and 180° bends), suggesting its practical potential for flexible devices. This work will offer opportunities for the rational design of battery structures.
Collapse
Affiliation(s)
- Jiali Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Lulu Huang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Jiahao Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Heng Lv
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Long Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd. Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province 310003, China
| | - Gang Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Tiantian Gu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| |
Collapse
|
36
|
Bian S, Yang Y, Liu S, Ye F, Tang H, Wu Y, Hu L. Recent Progress of the Cathode Material Design for Aqueous Zn-Organic Batteries. Chemistry 2023:e202303917. [PMID: 38093171 DOI: 10.1002/chem.202303917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Indexed: 01/24/2024]
Abstract
Aqueous zinc-ion batteries (ZIBs) have emerged as the most promising candidate for large-scale energy storage due to their inherent safety, environmental friendliness, and cost-effectiveness. Simultaneously, the utilization of organic electrode materials with renewable resources, environmental compatibility, and diverse structures has sparked a surge in research and development of aqueous Zn-organic batteries (ZOBs). A comprehensive review is warranted to systematically present recent advancements in design principles, synthesis techniques, energy storage mechanisms, and zinc-ion storage performance of organic cathodes. In this review article, we comprehensively summarize the energy storage mechanisms employed by aqueous ZOBs. Subsequently, we categorize organic cathode materials into small-molecule compounds and high-molecular polymers respectively. Novel polymer materials such as conjugated polymers (CPs), conjugated microporous polymers (CMPs), and covalent organic frameworks (COFs) are highlighted with an overview of molecular design strategies and structural optimization based on organic cathode materials aimed at enhancing the performance of aqueous ZOBs. Finally, we discuss the challenges faced by aqueous ZOBs along with future prospects to offer insights into their practical applications.
Collapse
Affiliation(s)
- Shuyang Bian
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yunting Yang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Shuo Liu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Fei Ye
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Hongjian Tang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy & Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Yuping Wu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy & Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Linfeng Hu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
37
|
Sun T, Pan J, Zhang W, Jiang X, Cheng M, Zha Z, Fan HJ, Tao Z. Intramolecular Hydrogen Bond Improved Durability and Kinetics for Zinc-Organic Batteries. NANO-MICRO LETTERS 2023; 16:46. [PMID: 38064010 PMCID: PMC10709292 DOI: 10.1007/s40820-023-01263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/30/2023] [Indexed: 10/11/2024]
Abstract
Organic compounds have the advantages of green sustainability and high designability, but their high solubility leads to poor durability of zinc-organic batteries. Herein, a high-performance quinone-based polymer (H-PNADBQ) material is designed by introducing an intramolecular hydrogen bonding (HB) strategy. The intramolecular HB (C=O⋯N-H) is formed in the reaction of 1,4-benzoquinone and 1,5-naphthalene diamine, which efficiently reduces the H-PNADBQ solubility and enhances its charge transfer in theory. In situ ultraviolet-visible analysis further reveals the insolubility of H-PNADBQ during the electrochemical cycles, enabling high durability at different current densities. Specifically, the H-PNADBQ electrode with high loading (10 mg cm-2) performs a long cycling life at 125 mA g-1 (> 290 cycles). The H-PNADBQ also shows high rate capability (137.1 mAh g-1 at 25 A g-1) due to significantly improved kinetics inducted by intramolecular HB. This work provides an efficient approach toward insoluble organic electrode materials.
Collapse
Affiliation(s)
- Tianjiang Sun
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, People's Republic of China
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jun Pan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Weijia Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, People's Republic of China
| | - Xiaodi Jiang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Min Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, People's Republic of China
| | - Zhengtai Zha
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, People's Republic of China
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
| | - Zhanliang Tao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
38
|
Yang P, Wu Z, Wang S, Li M, Chen H, Qian S, Zheng M, Wang Y, Li S, Qiu J, Zhang S. Synergetic Coupling of Redox-Active Sites on Organic Electrode Material for Robust and High-Performance Sodium-Ion Storage. Angew Chem Int Ed Engl 2023; 62:e202311460. [PMID: 37707882 DOI: 10.1002/anie.202311460] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Organic electrode materials (OEMs), valued for their sustainability and structural tunability, have been attracting increasing attention for wide application in sodium-ion batteries (SIBs) and other rechargeable batteries. However, most OEMs are plagued with insufficient specific capacity or poor cycling stability. Therefore, it's imperative to enhance their specific capacity and cycling stability through molecular design. Herein, we designed and synthesized a heteroaromatic molecule 2,3,8,9,14,15-hexanol hexaazatrinaphthalene (HATN-6OH) by the synergetic coupling of catechol (the precursor of ortho-quinone)/ortho-quinone functional groups and HATN conjugated core structures. The abundance of catechol/ortho-quinone and imine redox-active moieties delivers a high specific capacity of nine-electron transfer for SIBs. Most notably, the π-π interactions and intermolecular hydrogen bond forces among HATN-6OH molecules secure the stable long-term cycling performance of SIBs. Consequently, the as-prepared HATN-6OH electrode exhibited a high specific capacity (554 mAh g-1 at 0.1 A g-1 ), excellent rate capability (202 mAh g-1 at 10 A g-1 ), and stable long-term cycling performance (73 % after 3000 cycles at 10 A g-1 ) in SIBs. Additionally, the nine-electron transfer mechanism is confirmed by systematic density functional theory (DFT) calculation, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and Raman analysis. The achievement of the synergetic coupling of the redox-active sites on OEMs could be an important key to the enhancement of SIBs and other metal-ion batteries.
Collapse
Affiliation(s)
- Pan Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast, 4222, Australia
| | - Zhenzhen Wu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast, 4222, Australia
| | - Shouyue Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Meng Li
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 51006, China
| | - Hao Chen
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 51006, China
| | - Shangshu Qian
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast, 4222, Australia
| | - Mengting Zheng
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast, 4222, Australia
| | - Yun Wang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast, 4222, Australia
| | - Sheng Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Jingxia Qiu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Shanqing Zhang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast, 4222, Australia
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 51006, China
| |
Collapse
|
39
|
Huang X, Qiu X, Wang W, Li J, Li Z, Yu X, Ma J, Wang Y. Activating Organic Electrode via Trace Dissolved Organic Molecules. J Am Chem Soc 2023; 145:25604-25613. [PMID: 37968563 DOI: 10.1021/jacs.3c06668] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Organic electrode materials have gained attention for their tunable structures and sustainability, but their low electronic conductivity requires the use of large amounts of carbon additives (30 wt %) and low mass loadings (<2 mg cm-2) in electrodes. Here, we synthesize dibenzo[b,i]phenazine-5,7,12,14-tetrone (DPT) as a cathode active material for an aqueous Zn battery and find that Zn2+ storage dominates the cathode reaction. This battery demonstrates high capacity (367 mAh g-1), high-rate performance, and superlong life (12000 cycles). Remarkably, despite DPT's insulative nature, even with a high mass loading (10 mg cm-2) and only 10 wt % carbon additives, the DPT-based cathode exhibits promising performance due to trace dissolved discharge product (DPTx-). During discharge, the DPT is reduced to trace amounts of dissolved DPTx- at the cathode surface, which in turn reduces the remaining solid DPT as a redox mediator. Furthermore, dissolution-redeposition results in the reduction of DPT size and the formation of pores, further activating the electrode.
Collapse
Affiliation(s)
- Xin Huang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Xuan Qiu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Wei Wang
- Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Junjie Li
- Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhi Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Xiaomeng Yu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| |
Collapse
|
40
|
Jiang W, Zhu K, Yang W. Critical Issues of Vanadium-Based Cathodes Towards Practical Aqueous Zn-Ion Batteries. Chemistry 2023; 29:e202301769. [PMID: 37409517 DOI: 10.1002/chem.202301769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/07/2023]
Abstract
Aqueous zinc-ion batteries (ZIBs) are gaining significant attention for their numerous advantages, including high safety, high energy density, affordability, and environmental friendliness. However, the development of ZIBs has been hampered by the lack of suitable cathode materials that can store Zn2+ with high capacity and reversibility. Currently, vanadium-based materials with tunnel or layered structures are widely researched owing to their high theoretical capacity and diversified structures. However, their long-term cycling stability is unsatisfactory because of material dissolution, phase transformation, and restrictive kinetics in aqueous electrolytes, which limits their practical applications. Different from previous reviews on ZIBs, this review specifically addresses the critical issues faced by vanadium-based cathodes for practical aqueous ZIBs and proposes potential solutions. Focusing on vanadium-based cathodes, their ion storage mechanisms, the critical parameters affecting their performance, and the progress made in addressing the aforementioned problems are also summarized. Finally, future directions for the development of practical aqueous ZIB are suggested.
Collapse
Affiliation(s)
- Weikang Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
- Department of Chemical Physics, University of Science and Technology of China, Anhui, 230026, Hefei, P.R. China
| | - Kaiyue Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
- Department of Chemical Physics, University of Science and Technology of China, Anhui, 230026, Hefei, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
41
|
Wang W, Tang Y, Liu J, Li H, Wang R, Zhang L, Liang F, Bai W, Zhang L, Zhang C. Boosting the zinc storage of a small-molecule organic cathode by a desalinization strategy. Chem Sci 2023; 14:9033-9040. [PMID: 37655030 PMCID: PMC10466338 DOI: 10.1039/d3sc03435f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
Organic materials offer great potential as electrodes for batteries due to their high theoretical capacity, flexible structural design, and easily accessible materials. However, one significant drawback of organic electrode materials is their tendency to dissolve in the electrolyte. Resazurin sodium salt (RSS) has demonstrated remarkable charge/discharge performance characterized by a voltage plateau and high capacity when utilized as a cathode in aqueous zinc-ion batteries (AZIBs). Unfortunately, the solubility of RSS as a sodium salt continues to pose challenges in AZIBs. In this study, we introduce an RSS-containing organic compound, triresazurin-triazine (TRT), with a porous structure prepared by a desalinization method from the RSS and 2,4,6-trichloro-1,3,5-triazine (TCT). This process retained active groups (carbonyl and nitroxide radical) while generating a highly conjugated structure, which not only inhibits the dissolution in the electrolyte, but also improves the electrical conductivity, enabling TRT to have excellent electrochemical properties. When evaluated as a cathode for AZIBs, TRT exhibits a high reversible capacity of 180 mA h g-1, exceptional rate performance (78 mA h g-1 under 2 A g-1), and excellent cycling stability with 65 mA h g-1 at 500 mA g-1 after 1000 cycles.
Collapse
Affiliation(s)
- Wei Wang
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Ying Tang
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Jun Liu
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology Guangzhou 510640 China
| | - Hongbao Li
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Rui Wang
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Longhai Zhang
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Fei Liang
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Wei Bai
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Lin Zhang
- Institute for Solid State Physics Laboratory of Nano and Quantum Engineering, Leibniz University Hannover Appelstrasse 2 30167 Hannover Germany
| | - Chaofeng Zhang
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| |
Collapse
|
42
|
Chang J, Yang Y. Recent advances in zinc-air batteries: self-standing inorganic nanoporous metal films as air cathodes. Chem Commun (Camb) 2023; 59:5823-5838. [PMID: 37096450 DOI: 10.1039/d3cc00742a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Zinc-air batteries (ZABs) have promising prospects as next-generation electrochemical energy systems due to their high safety, high power density, environmental friendliness, and low cost. However, the air cathodes used in ZABs still face many challenges, such as the low catalytic activity and poor stability of carbon-based materials at high current density/voltage. To achieve high activity and stability of rechargeable ZABs, chemically and electrochemically stable air cathodes with bifunctional oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) activity, fast reaction rate with low platinum group metal (PGM) loading or PGM-free materials are required, which are difficult to achieve with common electrocatalysts. Meanwhile, inorganic nanoporous metal films (INMFs) have many advantages as self-standing air cathodes, such as high activity and stability for both the ORR/OER under highly alkaline conditions. The high surface area, three-dimensional channels, and porous structure with controllable crystal growth facet/direction make INMFs an ideal candidate as air cathodes for ZABs. In this review, we first revisit some critical descriptors to assess the performance of ZABs, and recommend the standard test and reported manner. We then summarize the recent progress of low-Pt, low-Pd, and PGM-free-based materials as air cathodes with low/non-PGM loading for rechargeable ZABs. The structure-composition-performance relationship between INMFs and ZABs is discussed in-depth. Finally, we provide our perspectives on the further development of INMFs towards rechargeable ZABs, as well as current issues that need to be addressed. This work will not only attract researchers' attention and guide them to assess and report the performance of ZABs more accurately, but also stimulate more innovative strategies to drive the practical application of INMFS for ZABs and other energy-related technologies.
Collapse
Affiliation(s)
- Jinfa Chang
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
| | - Yang Yang
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA
- Renewable Energy and Chemical Transformation Cluster, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
- The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, FL 32826, USA
| |
Collapse
|
43
|
Song Z, Miao L, Ruhlmann L, Lv Y, Li L, Gan L, Liu M. Proton-Conductive Supramolecular Hydrogen-Bonded Organic Superstructures for High-Performance Zinc-Organic Batteries. Angew Chem Int Ed Engl 2023; 62:e202219136. [PMID: 36695445 DOI: 10.1002/anie.202219136] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023]
Abstract
With fast (de)coordination kinetics, the smallest and the lightest proton stands out as the most ideal charge carrier for aqueous Zn-organic batteries (ZOBs). Hydrogen-bonding networks with rapid Grotthuss proton conduction is particularly suitable for organic cathodes, yet not reported. We report the supramolecular self-assembly of cyanuric acid and 1,3,5-triazine-2,4,6-triamine into organic superstructures through in-plane H-bonds and out-of-plane π-π interaction. The supramolecular superstructures exhibit highly stable lock-and-key H-bonding networks with an ultralow activation energy for protonation (0.09 eV vs. 0.25 eV of zincification). Then, high-kinetics H+ coordination is prior to Zn2+ into protophilic C=O sites via a two-step nine-electron reaction. The assembled ZOBs show high-rate capability (135 mAh g-1 at 150 A g-1 ), high energy density (267 Wh kg-1 cathode ) and ultra-long life (50 000 cycles at 10 A g-1 ), becoming the state-of-the-art ZOBs in comprehensive performances.
Collapse
Affiliation(s)
- Ziyang Song
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Ling Miao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Laurent Ruhlmann
- Institut de Chimie (UMR au CNRS n°7177), Université de Strasbourg, 4 rue Blaise Pascal CS 90032, 67081, Strasbourg Cedex, France
| | - Yaokang Lv
- Institut de Chimie (UMR au CNRS n°7177), Université de Strasbourg, 4 rue Blaise Pascal CS 90032, 67081, Strasbourg Cedex, France.,College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liangchun Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Lihua Gan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
44
|
Xu X, Xu Y, Zhang J, Zhong Y, Li Z, Qiu H, Wu HB, Wang J, Wang X, Gu C, Tu J. Quasi-Solid Electrolyte Interphase Boosting Charge and Mass Transfer for Dendrite-Free Zinc Battery. NANO-MICRO LETTERS 2023; 15:56. [PMID: 36853520 PMCID: PMC9975136 DOI: 10.1007/s40820-023-01031-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The practical applications of zinc metal batteries are plagued by the dendritic propagation of its metal anodes due to the limited transfer rate of charge and mass at the electrode/electrolyte interphase. To enhance the reversibility of Zn metal, a quasi-solid interphase composed by defective metal-organic framework (MOF) nanoparticles (D-UiO-66) and two kinds of zinc salts electrolytes is fabricated on the Zn surface served as a zinc ions reservoir. Particularly, anions in the aqueous electrolytes could be spontaneously anchored onto the Lewis acidic sites in defective MOF channels. With the synergistic effect between the MOF channels and the anchored anions, Zn2+ transport is prompted significantly. Simultaneously, such quasi-solid interphase boost charge and mass transfer of Zn2+, leading to a high zinc transference number, good ionic conductivity, and high Zn2+ concentration near the anode, which mitigates Zn dendrite growth obviously. Encouragingly, unprecedented average coulombic efficiency of 99.8% is achieved in the Zn||Cu cell with the proposed quasi-solid interphase. The cycling performance of D-UiO-66@Zn||MnO2 (~ 92.9% capacity retention after 2000 cycles) and D-UiO-66@Zn||NH4V4O10 (~ 84.0% capacity retention after 800 cycles) prove the feasibility of the quasi-solid interphase.
Collapse
Affiliation(s)
- Xueer Xu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yifei Xu
- Institute for Composites Science Innovation (InCSI) and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jingtong Zhang
- Zhejiang Laboratory, Hangzhou, 311100, People's Republic of China
| | - Yu Zhong
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zhongxu Li
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Huayu Qiu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
| | - Hao Bin Wu
- Institute for Composites Science Innovation (InCSI) and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jie Wang
- Zhejiang Laboratory, Hangzhou, 311100, People's Republic of China
- Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xiuli Wang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Changdong Gu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Jiangping Tu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| |
Collapse
|
45
|
Sun T, Zhang W, Nian Q, Tao Z. Molecular Engineering Design for High-Performance Aqueous Zinc-Organic Battery. NANO-MICRO LETTERS 2023; 15:36. [PMID: 36637697 PMCID: PMC9839927 DOI: 10.1007/s40820-022-01009-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/16/2022] [Indexed: 06/02/2023]
Abstract
Novel small sulfur heterocyclic quinones (6a,16a-dihydrobenzo[b]naphtho[2',3':5,6][1,4]dithiino[2,3-i]thianthrene-5,7,9,14,16,18-hexaone (4S6Q) and benzo[b]naphtho[2',3':5,6][1,4]dithiino[2,3-i]thianthrene-5,9,14,18-tetraone (4S4Q)) are developed by molecule structural design method and as cathode for aqueous zinc-organic batteries. The conjugated thioether (-S-) bonds as connected units not only improve the conductivity of compounds but also inhibit their dissolution by both extended π-conjugated plane and constructed flexible molecular skeleton. Hence, the Zn//4S6Q and Zn//4S4Q batteries exhibit satisfactory electrochemical performance based on 3.5 mol L-1 (M) Zn(ClO4)2 electrolyte. For instance, the Zn//4S6Q battery obtains 240 and 208.6 mAh g-1 of discharge capacity at 150 mA g-1 and 30 A g-1, respectively. The excellent rate capability is ascribed to the fast reaction kinetics. This system displays a superlong life of 20,000 cycles with no capacity fading at 3 A g-1. Additionally, the H+-storage mechanism of the 4S6Q compound is demonstrated by ex situ analyses and density functional theory calculations. Impressively, the battery can normally work at - 60 °C benefiting from the anti-freezing electrolyte and maintain a high discharge capacity of 201.7 mAh g-1, which is 86.2% of discharge capacity at 25 °C. The cutting-edge electrochemical performances of these novel compounds make them alternative electrode materials for Zn-organic batteries.
Collapse
Affiliation(s)
- Tianjiang Sun
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, People's Republic of China
| | - Weijia Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, People's Republic of China
| | - Qingshun Nian
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China Hefei, Hefei, 230026, Anhui, People's Republic of China
| | - Zhanliang Tao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|