1
|
Zhu G, Zhao S, Yu Y, Fan X, Liu K, Quan X, Liu Y. Tuning Local Proton Concentration and *OOH Intermediate Generation for Efficient Acidic H 2O 2 Electrosynthesis at Ampere-Level Current Density. Angew Chem Int Ed Engl 2025:e202503626. [PMID: 40338624 DOI: 10.1002/anie.202503626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/25/2025] [Accepted: 05/07/2025] [Indexed: 05/09/2025]
Abstract
Electrocatalytic oxygen reduction is a sustainable method for on-site H2O2 synthesis. The H2O2 in acidic media has wide downstream applications, but acidic H2O2 electrosynthesis suffers from poor efficiency due to high proton concentration and unfavourable *OOH (key intermediate) generation. Herein, acidic H2O2 electrosynthesis was enhanced by regulating local proton availability and *OOH generation via fluorine-doped on inner and outer walls of carbon nanotubes (F-CNTs). It was efficient and stable for H2O2 electrosynthesis with Faradaic efficiency of 95.6% and H2O2 yield of 606.6 mg cm-2 h-1 at 1.0 A cm-2 and 0.05 M H2SO4, outperforming the state-of-the-art electrocatalysts. The F-doping regulated the electronic structure of CNTs with elevated p-band center, and F-doping on its inner and outer walls also enhanced nanoconfinement effect and superhydrophobicity, respectively. As a result, a local alkaline microenvironment was created on F-CNTs surface during acidic H2O2 electrosynthesis. The energy barrier for *OOH generation was significantly reduced and oxygen mass transfer was boosted. Their synergistic effects promoted acidic H2O2 electrosynthesis. This work provides new insights into the mechanism for regulating H2O2 electrosynthesis.
Collapse
Affiliation(s)
- Genwang Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shuaijie Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yueling Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116024, China
| | - Kaiyuan Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yanming Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
2
|
Liu Y, Liu S, Jiang J, Wei X, Zhao K, Shen R, Wang X, Wei M, Wang Y, Pang H, Li B. Monomolecule Coupled to Oxygen-Doped Carbon for Efficient Electrocatalytic Hydrogen Peroxide Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2502197. [PMID: 39995369 DOI: 10.1002/adma.202502197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/17/2025] [Indexed: 02/26/2025]
Abstract
The electrocatalytic production of hydrogen peroxide (H2O2) is an ideal alternative for the industrial anthraquinone process because of environmental friendliness and energy efficiency, depending on the activity and selectivity of catalysts. Carbon-based materials possess prospects as candidate catalysts for the production of H2O2. Herein, cedar-derived monolithic carbon catalysts modified with coupling oxygen doping and phthalocyanine molecules are synthesized. Cobalt phthalocyanine (CoPc) molecules are introduced onto the carbon surface to construct monomolecular active sites via π-π stacking. The electronic structure of CoPc is modulated by oxygen doping on carbon substrates, mediated by monomolecular π-π stacking. A synergistic effect optimally modulated the interaction between CoPc and key intermediate to H2O2. The energy barrier for oxygen reduction is reduced to optimize the selectivity to H2O2. CoPc@OCW provided up to 99% selectivity to H2O2 at 0.7 V versus RHE. In a three-phase flow cell, CoPc@OCW achieved an H2O2 yield up to 10.4 mol·g-1·h-1 at 0.2 V versus RHE with stable running for 24 h. The advantages of carbon-based catalysts including the adjustable chemical structure depending on π-π stacking and electronic structure of carbon atoms through oxygen doping improved the catalytic performances in the production of H2O2. This proof-to-concept research demonstrates the potential application of carbon-based molecular catalysts for electrochemical synthesis.
Collapse
Affiliation(s)
- Yanyan Liu
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Institute of Chemistry Industry of Forest Productsversity, CAF, National Engineering Lab for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jianchun Jiang
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
- Institute of Chemistry Industry of Forest Productsversity, CAF, National Engineering Lab for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Xinao Wei
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Keke Zhao
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Ruofan Shen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiaopeng Wang
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Min Wei
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Yongfeng Wang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing, 100871, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
3
|
Liu Y, Lei F, Li T, Wang S, Li Y. Noble-Metal-Free Electrocatalysts for Selective Hydrogen Peroxide Generation via Oxygen Reduction Reaction. Chemistry 2025; 31:e202404164. [PMID: 39833120 DOI: 10.1002/chem.202404164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/26/2024] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Hydrogen peroxide (H2O2) is a versatile chemical widely used in various industries. The traditional anthraquinone method for H2O2 synthesis has environmental and safety concerns due to the use of organic solvents and hazardous by-products. The direct synthesis of H2O2 from H2 and O2 poses risks of flammability and explosion. Recently, the 2-electron oxygen reduction reaction (2e- ORR) method has emerged as a promising alternative, offering safety, environmental friendliness, and cost-effectiveness. This method utilizes gas diffusion electrodes to efficiently generate H2O2 without the need for additional dilution. In this review, we focus on the recent advancements in noble-metal-free materials for 2e- ORR electrocatalysis, which play a crucial role in the efficient production of H2O2. These materials, including transition metal compounds, macrocyclic complexes, carbon-based catalysts, framework materials, and MXenes catalysts, demonstrate significant advantages in enhancing H2O2 yield. The development of these non-precious metal catalysts can reduce costs and improve sustainability and promote the commercialization of related technologies. The review concludes with an outlook on the future trends of 2e- ORR electrocatalysts.
Collapse
Affiliation(s)
- Yuepeng Liu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Fang Lei
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300203, P. R. China
| | - Tingting Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Siyu Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yi Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P R China
| |
Collapse
|
4
|
Bao T, Wu Y, Tang C, Xi Y, Zou Y, Shan P, Zhang C, Drożd W, Stefankiewicz AR, Yuan P, Yu C, Liu C. Highly Ordered Conductive Metal-Organic Frameworks with Chemically Confined Polyoxometalate Clusters: A Dual-Functional Electrocatalyst for Efficient H 2O 2 Synthesis and Biomass Valorization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500399. [PMID: 40099650 DOI: 10.1002/adma.202500399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/08/2025] [Indexed: 03/20/2025]
Abstract
The design of bifunctional and high-performance electrocatalysts that can be used as both cathodes and anodes for the two-electron oxygen reduction reaction (2e- ORR) and biomass valorization is attracting increasing attention. Herein, a conserved ligand replacement strategy is developed for the synthesis of highly ordered conductive metal-organic frameworks (Ni-HITP, HITP = 2, 3, 6, 7, 10, 11-hexaiminotriphenylene) with chemically confined phosphotungstic acid (PW12) nanoclusters in the nanopores. The newly formed Ni-O-W bonds in the resultant Ni-HITP/PW12 electrocatalysts modulate the electronic structures of both Ni and W sites, which are favorable for cathodic 2e- ORR to H2O2 production and anodic 5-hydroxymethylfurfural oxidation reaction (HMFOR) to 2, 5-furandicarboxylic acid (FDCA), respectively. In combination with the deliberately retained conductive frameworks and ordered pores, the dual-functional Ni-HITP/PW12 composites enable a H2O2 production rate of 9.51 mol gcat -1 h-1 and an FDCA yield of 96.8% at a current density of 100 mA cm-2/cell voltage of 1.38 V in an integrated 2e- ORR/HMFOR system, significantly improved than the traditional 2e- ORR/oxygen evolution reaction system. This work has provided new insights into the rational design of advanced electrocatalysts and electrocatalytic systems for the green synthesis of valuable chemicals.
Collapse
Affiliation(s)
- Tong Bao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yunuo Wu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chencheng Tang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yamin Xi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yingying Zou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Pengyue Shan
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Wojciech Drożd
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Artur R Stefankiewicz
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Pei Yuan
- College of Chemical Engineering, National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
5
|
Choi JW, Byeon A, Kim S, Hwang CK, Zhang W, Lee J, Yun WC, Paek SY, Kim JH, Jeong G, Lee SY, Moon J, Han SS, Lee JW, Kim JM. Mesoporous Boron-Doped Carbon with Curved B 4C Active Sites for Highly Efficient H 2O 2 Electrosynthesis in Neutral Media and Air-Supplied Environments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415712. [PMID: 39811989 DOI: 10.1002/adma.202415712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/26/2024] [Indexed: 01/16/2025]
Abstract
Hydrogen peroxide (H2O2) electrosynthesis via the 2e- oxygen reduction reaction (ORR) is considered as a cost-effective and safe alternative to the energy-intensive anthraquinone process. However, in more practical environments, namely, the use of neutral media and air-fed cathode environments, slow ORR kinetics and insufficient oxygen supply pose significant challenges to efficient H2O2 production at high current densities. In this work, mesoporous B-doped carbons with novel curved B4C active sites, synthesized via a carbon dioxide (CO2) reduction using a pore-former agent, to simultaneously achieve excellent 2e- ORR activity and improved mass transfer properties are introduced. Through a combination of experimental analysis and theoretical calculations, it is confirmed that the curved B4C configuration, formed by mesopores in the carbon, demonstrates superior selectivity and activity for 2e- ORR due to its weaker interaction with *OOH intermediates compared to planar B4C in neutral media. Moreover, the mesopores facilitate oxygen supply and suppress the hydrogen evolution reaction, achieving a Faradaic efficiency of 86.2% at 150 mA cm-2 under air-supplied conditions, along with an impressive O2 utilization efficiency of 93.6%. This approach will provide a route to catalyst design for efficient H2O2 electrosynthesis in a practical environment.
Collapse
Affiliation(s)
- Jae Won Choi
- Extreme Materials Research Center, Korea Institute of Science and Technology, 14-gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Ayeong Byeon
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sooyeon Kim
- Department of Chemistry, Myongji University, Yongin, 17058, Republic of Korea
- Computational Science Research Center, Korea Institute of Science and Technology, 14-gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Chang-Kyu Hwang
- Extreme Materials Research Center, Korea Institute of Science and Technology, 14-gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Wenjun Zhang
- Extreme Materials Research Center, Korea Institute of Science and Technology, 14-gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Nano & Information Technology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jimin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Won Chan Yun
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sae Yane Paek
- Extreme Materials Research Center, Korea Institute of Science and Technology, 14-gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jin Hyeung Kim
- Extreme Materials Research Center, Korea Institute of Science and Technology, 14-gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Giho Jeong
- Extreme Materials Research Center, Korea Institute of Science and Technology, 14-gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Seung Yong Lee
- Extreme Materials Research Center, Korea Institute of Science and Technology, 14-gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Joonhee Moon
- Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-gu, Daejeon, 34133, Republic of Korea
| | - Sang Soo Han
- Computational Science Research Center, Korea Institute of Science and Technology, 14-gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jae W Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jong Min Kim
- Extreme Materials Research Center, Korea Institute of Science and Technology, 14-gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Nano & Information Technology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
6
|
Wu M, Li J, Sun W, Yang Y. Comediating Adsorption and Electron Transfer via Dual-Active Site Catalyst Construction for Improving the Treatment of Extraction Wastewater. Angew Chem Int Ed Engl 2025; 64:e202418151. [PMID: 39501447 DOI: 10.1002/anie.202418151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Indexed: 11/20/2024]
Abstract
Solvent extraction is widely applied, while extraction wastewater treatment remains a huge challenge because of the stability of extractants. Heterogeneous Fenton-like catalysis is a promising method, but the short half-life of hydroxyl radicals (⋅OH) generated by hydrogen peroxide (H2O2) activation results in unsatisfactory ⋅OH utilization and organics removal. Herein, an efficient strategy for treating extraction wastewater based on comediating adsorption and electron transfer by fluorine and nitrogen co-doped carbon (FNC) catalyst with dual-active site was developed. Specially, N sites adsorb organics and F sites activate H2O2, shortening the migration distance of ⋅OH. Theoretical calculation and di(2-ethylhexyl) phosphoric acid (D2EHPA) extraction wastewater degradation experiment showed that F site with electron acquisition can transfer electrons provided by electron-rich D2EHPA enriched at N sites to H2O2, facilitating the continuous generation of ⋅OH through lowering the energy barrier for H2O2 activation. As a result, 96.49 % D2EHPA in simulated wastewater and 90.26 % total organic carbon in real extraction wastewater were removed. Moreover, FNC catalyst exhibited excellent reusability and ionic adaptability, and can be extended to the removal of various extractants. The proposed dual-active site catalyst provides an effective strategy for Fenton-like reaction to treat refractory extraction wastewater, promoting sustainable development of solvent extraction industry.
Collapse
Affiliation(s)
- Meirong Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Jiexiang Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Engineering Research Center of Ministry of Education for Carbon Emission Reduction in Metal Resource Exploitation and Utilization, Central South University, Changsha, 410083, China
| | - Yue Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Engineering Research Center of Ministry of Education for Carbon Emission Reduction in Metal Resource Exploitation and Utilization, Central South University, Changsha, 410083, China
| |
Collapse
|
7
|
Xu H, Jin M, Zhang S, Zhang X, Xu M, Zhang Y, Wang G, Zhang H. Ambient Synthesis of Cyclohexanone Oxime via In Situ Produced Hydrogen Peroxide over Cobalt-Based Electrocatalyst. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413475. [PMID: 39686758 PMCID: PMC11809397 DOI: 10.1002/advs.202413475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/03/2024] [Indexed: 12/18/2024]
Abstract
Cyclohexanone oxime, a critical precursor for nylon-6 production, is traditionally synthesized via the hydroxylamine method under industrial harsh conditions. Here is present a one-step electrochemical integrated approach for the efficient production of cyclohexanone oxime under ambient conditions. This approach employed the coupling of in situ electro-synthesized H2O2 over a cobalt (Co)-based electrocatalyst with the titanium silicate-1 (TS-1) heterogeneous catalyst to achieve the cyclohexanone ammoximation process. The cathode electrocatalyst is consisted of atomically dispersed Co sites and small Co nanoparticles co-anchored on carboxylic multi-walled carbon nanotubes (CoSAs/SNPs-OCNTs), which delivered superior electrocatalytic activity toward the two-electron oxygen reduction reaction (2e- ORR) with high-efficient H2O2 production in 0.1 m sodium phosphate (NaPi). Theoretical calculations revealed that the introduction of Co nanoparticles effectively optimized the binding strength of *OOH species on Co atomic sites, thus facilitating the 2e- ORR. The subsequent tandem catalytic system achieved a high cyclohexanone conversion of 71.7% ± 1.1% with a cyclohexanone oxime selectivity of 70.3% ± 0.6%. In this system, the TS-1 catalyst effectively captured the *OOH intermediate and activated the in situ generated H2O2 to form Ti-OOH species, which promoted the formation of hydroxylamine and thereby enhanced the oxime production performance.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Materials PhysicsCentre for Environmental and Energy NanomaterialsAnhui Key Laboratory of Nanomaterials and NanotechnologyInstitute of Solid State PhysicsHFIPSChinese Academy of SciencesHefei230031China
- University of Science and Technology of ChinaHefei230026China
| | - Meng Jin
- Key Laboratory of Materials PhysicsCentre for Environmental and Energy NanomaterialsAnhui Key Laboratory of Nanomaterials and NanotechnologyInstitute of Solid State PhysicsHFIPSChinese Academy of SciencesHefei230031China
- University of Science and Technology of ChinaHefei230026China
| | - Shengbo Zhang
- Key Laboratory of Materials PhysicsCentre for Environmental and Energy NanomaterialsAnhui Key Laboratory of Nanomaterials and NanotechnologyInstitute of Solid State PhysicsHFIPSChinese Academy of SciencesHefei230031China
- University of Science and Technology of ChinaHefei230026China
| | - Xinyuan Zhang
- Key Laboratory of Materials PhysicsCentre for Environmental and Energy NanomaterialsAnhui Key Laboratory of Nanomaterials and NanotechnologyInstitute of Solid State PhysicsHFIPSChinese Academy of SciencesHefei230031China
- University of Science and Technology of ChinaHefei230026China
| | - Min Xu
- Key Laboratory of Materials PhysicsCentre for Environmental and Energy NanomaterialsAnhui Key Laboratory of Nanomaterials and NanotechnologyInstitute of Solid State PhysicsHFIPSChinese Academy of SciencesHefei230031China
- University of Science and Technology of ChinaHefei230026China
| | - Yunxia Zhang
- Key Laboratory of Materials PhysicsCentre for Environmental and Energy NanomaterialsAnhui Key Laboratory of Nanomaterials and NanotechnologyInstitute of Solid State PhysicsHFIPSChinese Academy of SciencesHefei230031China
- University of Science and Technology of ChinaHefei230026China
| | - Guozhong Wang
- Key Laboratory of Materials PhysicsCentre for Environmental and Energy NanomaterialsAnhui Key Laboratory of Nanomaterials and NanotechnologyInstitute of Solid State PhysicsHFIPSChinese Academy of SciencesHefei230031China
- University of Science and Technology of ChinaHefei230026China
| | - Haimin Zhang
- Key Laboratory of Materials PhysicsCentre for Environmental and Energy NanomaterialsAnhui Key Laboratory of Nanomaterials and NanotechnologyInstitute of Solid State PhysicsHFIPSChinese Academy of SciencesHefei230031China
- University of Science and Technology of ChinaHefei230026China
| |
Collapse
|
8
|
Tian Q, Jing L, Wang W, Ye X, Chai X, Zhang X, Hu Q, Yang H, He C. Hydrogen Peroxide Electrosynthesis via Selective Oxygen Reduction Reactions Through Interfacial Reaction Microenvironment Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414490. [PMID: 39610213 DOI: 10.1002/adma.202414490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Indexed: 11/30/2024]
Abstract
The electrochemical two-electron oxygen reduction reaction (2e- ORR) offers a compelling alternative for decentralized and on-site H2O2 production compared to the conventional anthraquinone process. To advance this electrosynthesis system, there is growing interest in optimizing the interfacial reaction microenvironment to boost electrocatalytic performance. This review consolidates recent advancements in reaction microenvironment engineering for the selective electrocatalytic conversion of O2 to H2O2. Starting with fundamental insights into interfacial electrocatalytic mechanisms, an overview of various strategies for constructing the favorable local reaction environment, including adjusting electrode wettability, enhancing mesoscale mass transfer, elevating local pH, incorporating electrolyte additives, and employing pulsed electrocatalysis techniques is provided. Alongside these regulation strategies, the corresponding analyses and technical remarks are also presented. Finally, a summary and outlook on critical challenges, suggesting future research directions to inspire microenvironment engineering and accelerate the practical application of H2O2 electrosynthesis is delivered.
Collapse
Affiliation(s)
- Qiang Tian
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Lingyan Jing
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Wenyi Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xieshu Ye
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiaoyan Chai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xue Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
9
|
Qin M, Chen C, Zhang B, Yan J, Qiu J. Ultrahigh Pyridinic/Pyrrolic N Enabling N/S Co-Doped Holey Graphene with Accelerated Kinetics for Alkali-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407570. [PMID: 39224050 DOI: 10.1002/adma.202407570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Carbonaceous materials hold great promise for K-ion batteries due to their low cost, adjustable interlayer spacing, and high electronic conductivity. Nevertheless, the narrow interlayer spacing significantly restricts their potassium storage ability. Herein, hierarchical N, S co-doped exfoliated holey graphene (NSEHG) with ultrahigh pyridinic/pyrrolic N (90.6 at.%) and large interlayer spacing (0.423 nm) is prepared through micro-explosion assisted thermal exfoliation of graphene oxide (GO). The underlying mechanism of the micro-explosive exfoliation of GO is revealed. The NSEHG electrode delivers a remarkable reversible capacity (621 mAh g-1 at 0.05 A g-1), outstanding rate capability (155 mAh g-1 at 10 A g-1), and robust cyclic stability (0.005% decay per cycle after 4400 cycles at 5 A g-1), exceeding most of the previously reported graphene anodes in K-ion batteries. In addition, the NSEHG electrode exhibits encouraging performances as anodes for Li-/Na-ion batteries. Furthermore, the assembled activated carbon||NSEHG potassium-ion hybrid capacitor can deliver an impressive energy density of 141 Wh kg-1 and stable cycling performance with 96.1% capacitance retention after 4000 cycles at 1 A g-1. This work can offer helpful fundamental insights into design and scalable fabrication of high-performance graphene anodes for alkali metal ion batteries.
Collapse
Affiliation(s)
- Meng Qin
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Chi Chen
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, and Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Bohan Zhang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jun Yan
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 10029, P. R. China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
10
|
Zhao L, Yan R, Mao B, Paul R, Duan W, Dai L, Hu C. Advanced Nanocarbons Toward two-Electron Oxygen Electrode Reactions for H 2O 2 Production and Integrated Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403029. [PMID: 38966884 DOI: 10.1002/smll.202403029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/20/2024] [Indexed: 07/06/2024]
Abstract
Hydrogen peroxide (H2O2) plays a pivotal role in advancing sustainable technologies due to its eco-friendly oxidizing capability. The electrochemical two-electron (2e-) oxygen reduction reaction and water oxidation reaction present an environmentally green method for H2O2 production. Over the past three years, significant progress is made in the field of carbon-based metal-free electrochemical catalysts (C-MFECs) for low-cost and efficient production of H2O2 (H2O2EP). This article offers a focused and comprehensive review of designing C-MFECs for H2O2EP, exploring the construction of dual-doping configurations, heteroatom-defect coupling sites, and strategic dopant positioning to enhance H2O2EP efficiency; innovative structural tuning that improves interfacial reactant concentration and promote the timely release of H2O2; modulation of electrolyte and electrode interfaces to support the 2e- pathways; and the application of C-MFECs in reactors and integrated energy systems. Finally, the current challenges and future directions in this burgeoning field are discussed.
Collapse
Affiliation(s)
- Linjie Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Riqing Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Baoguang Mao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Rajib Paul
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA
| | - Wenjie Duan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chuangang Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
11
|
Zhai Q, Huang H, Lawson T, Xia Z, Giusto P, Antonietti M, Jaroniec M, Chhowalla M, Baek JB, Liu Y, Qiao S, Dai L. Recent Advances on Carbon-Based Metal-Free Electrocatalysts for Energy and Chemical Conversions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405664. [PMID: 39049808 DOI: 10.1002/adma.202405664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/04/2024] [Indexed: 07/27/2024]
Abstract
Over the last decade, carbon-based metal-free electrocatalysts (C-MFECs) have become important in electrocatalysis. This field is started thanks to the initial discovery that nitrogen atom doped carbon can function as a metal-free electrode in alkaline fuel cells. A wide variety of metal-free carbon nanomaterials, including 0D carbon dots, 1D carbon nanotubes, 2D graphene, and 3D porous carbons, has demonstrated high electrocatalytic performance across a variety of applications. These include clean energy generation and storage, green chemistry, and environmental remediation. The wide applicability of C-MFECs is facilitated by effective synthetic approaches, e.g., heteroatom doping, and physical/chemical modification. These methods enable the creation of catalysts with electrocatalytic properties useful for sustainable energy transformation and storage (e.g., fuel cells, Zn-air batteries, Li-O2 batteries, dye-sensitized solar cells), green chemical production (e.g., H2O2, NH3, and urea), and environmental remediation (e.g., wastewater treatment, and CO2 conversion). Furthermore, significant advances in the theoretical study of C-MFECs via advanced computational modeling and machine learning techniques have been achieved, revealing the charge transfer mechanism for rational design and development of highly efficient catalysts. This review offers a timely overview of recent progress in the development of C-MFECs, addressing material syntheses, theoretical advances, potential applications, challenges and future directions.
Collapse
Affiliation(s)
- Qingfeng Zhai
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Hetaishan Huang
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Tom Lawson
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Zhenhai Xia
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Paolo Giusto
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, 44240, OH, USA
| | - Manish Chhowalla
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Jong-Beom Baek
- Ulsan National Institute of Science & Technology (UNIST), Ulsan, 44919, South Korea
| | - Yun Liu
- Research School of Chemistry, The Australian National University, Canberra, 2601, Australia
| | - Shizhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, 5005, SA, Australia
| | - Liming Dai
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, 2052, New South Wales, Australia
| |
Collapse
|
12
|
Xiang F, Li N, Burguete-Lopez A, He Z, Elizarov M, Fratalocchi A. Light-Induced Quantum Reconfiguration of Oxyhydroxides for Photoanodes with 4.24% Efficiency and Stability Beyond 250 Hours. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405478. [PMID: 39097948 DOI: 10.1002/adma.202405478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Indexed: 08/06/2024]
Abstract
Photoelectrochemical (PEC) water splitting is attracting significant research interest in addressing sustainable development goals in renewable energy. Current state-of-the-art, however, cannot provide photoanodes with simultaneously high efficiency and long-lasting lifetime. Here, large-scale NiFe oxyhydroxides-alloy hybridized co-catalyst layer that exhibits an applied bias photon-to-current efficiency (ABPE) of 4.24% in buried homojunction-free photoanodes and stability over 250 h is reported. These performances represent an increase over the present highest-performing technology by 408% in stability and the most stable competitor by over 330% in efficiency. These results originate from a previously unexplored mechanism of light-induced atomic reconfiguration, which rapidly self-generates a catalytic-protective amorphous/crystalline heterostructure at low biases. This mechanism provides active sites for reaction and insulates the photoanode from performance degradation. Photon-generated NiFe oxyhydroxides are more than 200% higher than the quantity that pure electrocatalysis would otherwise induce, overcoming the threshold for an efficient water oxidation reaction in the device. While of immediate interest in the industry of water splitting, the light-induced NiFe oxyhydroxides-alloy co-catalyst developed in this work provides a general strategy to enhance further the performances and stability of PEC devices for a vast panorama of chemical reactions, ranging from biomass valorization to organic waste degradation, and CO2-to-fuel conversion.
Collapse
Affiliation(s)
- Fei Xiang
- PRIMALIGHT, Faculty of Electrical and Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ning Li
- PRIMALIGHT, Faculty of Electrical and Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Arturo Burguete-Lopez
- PRIMALIGHT, Faculty of Electrical and Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Zhao He
- PRIMALIGHT, Faculty of Electrical and Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Maxim Elizarov
- PRIMALIGHT, Faculty of Electrical and Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Andrea Fratalocchi
- PRIMALIGHT, Faculty of Electrical and Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
13
|
Hao Z, Liu D, Zuo X, Yu H, Zhang Y. Unveiling the In Situ Evolution of Li 2O-Rich Solid Electrolyte Interface on CoO x Embedded Carbon Fibers as Li Anode Host. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404983. [PMID: 39011787 DOI: 10.1002/adma.202404983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/12/2024] [Indexed: 07/17/2024]
Abstract
Modification of three-dimensional (3D) carbon hosts with metal oxides has been considered as advantageous for the formation of Li2O-rich solid electrolyte interface (SEI), which can show fast Li+ diffusion, and meanwhile alleviate dendrite problems caused by fragility and nonuniformity of native SEIs. However, the lack of convincing experimental evidence has made it difficult to unveil the true origin of oxygen in Li2O-rich SEIs until now. Herein, CoOx embedded carbon nanofibers (CNF-CoOx) are successfully prepared as high-performance Li anode hosts. By employing 18O isotope labeling, the role of CoOx during SEI evolution is elucidated, revealing that CoOx contributes significantly to Li2O formation by delivering oxygen. Benefiting from the rich Li2O content, the as-formed SEIs greatly improve the Li+ migration kinetics, and therefore, the CNF-CoOx@Li anode can exhibit excellent cycling stability in half, symmetrical, and full cells.
Collapse
Affiliation(s)
- Zhimin Hao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Dapeng Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xintao Zuo
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Haohan Yu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yu Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
14
|
Qian Z, Liu D, Liu D, Luo Y, Ji W, Wang Y, Chen Y, Hu R, Pan H, Wu P, Duan Y. Scalable Cathodic H 2O 2 Electrosynthesis using Cobalt-Coordinated Nanocellulose Electrocatalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403947. [PMID: 38948958 DOI: 10.1002/smll.202403947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Indexed: 07/02/2024]
Abstract
Converting hierarchical biomass structure into cutting-edge architecture of electrocatalysts can effectively relieve the extreme dependency of nonrenewable fossil-fuel-resources typically suffering from low cost-effectiveness, scarce supplies, and adverse environmental impacts. A cost-effective cobalt-coordinated nanocellulose (CNF) strategy is reported for realizing a high-performance 2e-ORR electrocatalysts through molecular engineering of hybrid ZIFs-CNF architecture. By a coordination and pyrolysis process, it generates substantial oxygen-capturing active sites within the typically oxygen-insulating cellulose, promoting O2 mass and electron transfer efficiency along the nanostructured Co3O4 anchored with CNF-based biochar. The Co-CNF electrocatalyst exhibits an exceptional H2O2 electrosynthesis efficiency of ≈510.58 mg L-1 cm-2 h-1 with an exceptional superiority over the existing biochar-, or fossil-fuel-derived electrocatalysts. The combination of the electrocatalysts with stainless steel mesh serving as a dual cathode can strongly decompose regular organic pollutants (up to 99.43% removal efficiency by 30 min), showing to be a desirable approach for clean environmental remediation with sustainability, ecological safety, and high-performance.
Collapse
Affiliation(s)
- Zhiyun Qian
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Detao Liu
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Yao Luo
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Wenhao Ji
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Yan Wang
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Yonghao Chen
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Rui Hu
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Peilin Wu
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Yulong Duan
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
15
|
Zhang Q, Cao C, Zhou S, Wei W, Chen X, Xu R, Wu XT, Zhu QL. Bifunctional Oxygen-Defect Bismuth Catalyst toward Concerted Production of H 2O 2 with over 150% Cell Faradaic Efficiency in Continuously Flowing Paired-Electrosynthesis System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408341. [PMID: 39097953 DOI: 10.1002/adma.202408341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Indexed: 08/06/2024]
Abstract
The electrosynthesis of hydrogen peroxide (H2O2) from O2 or H2O via the two-electron (2e-) oxygen reduction (2e- ORR) or water oxidation (2e- WOR) reaction provides a green and sustainable alternative to the traditional anthraquinone process. Herein, a paired-electrosynthesis tactic is reported for concerted H2O2 production at a high rate by coupling the 2e- ORR and 2e- WOR, in which the bifunctional oxygen-vacancy-enriched Bi2O3 nanorods (Ov-Bi2O3-EO), obtained through electrochemically oxidative reconstruction of Bi-based metal-organic framework (Bi-MOF) nanorod precursor, are used as both efficient anodic and cathodic electrocatalysts, achieving concurrent H2O2 production at both electrodes with high Faradaic efficiencies. Specifically, the coupled 2e- ORR//2e- WOR electrolysis system based on such distinctive oxygen-defect Bi catalyst displays excellent performance for the paired-electrosynthesis of H2O2, delivering a remarkable cell Faradaic efficiency of 154.8% and an ultrahigh H2O2 production rate of 4.3 mmol h-1 cm-2. Experiments combined with theoretical analysis reveal the crucial role of oxygen vacancies in optimizing the adsorption of intermediates associated with the selective two-electron reaction pathways, thereby improving the activity and selectivity of the 2e- reaction processes at both electrodes. This work establishes a new paradigm for developing advanced electrocatalysts and designing novel paired-electrolysis systems for scalable and sustainable H2O2 electrosynthesis.
Collapse
Affiliation(s)
- Qiqi Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- College of Science, Northeast Agricultural University, Harbin, 150030, China
| | - Changsheng Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Shenghua Zhou
- Resource Environment & Clean energy Laboratory, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Wenbo Wei
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xin Chen
- School of Material Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Rongjie Xu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- University of Chinese Academy of Science, Beijing, 100049, China
| |
Collapse
|
16
|
Zhang H, Xu H, Yao C, Chen S, Li F, Zhao D. Metal Atom-Support Interaction in Single Atom Catalysts toward Hydrogen Peroxide Electrosynthesis. ACS NANO 2024; 18:21836-21854. [PMID: 39108203 DOI: 10.1021/acsnano.4c07916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Single metal atom catalysts (SACs) have garnered considerable attention as promising agents for catalyzing important industrial reactions, particularly the electrochemical synthesis of hydrogen peroxide (H2O2) through the two-electron oxygen reduction reaction (ORR). Within this field, the metal atom-support interaction (MASI) assumes a decisive role, profoundly influencing the catalytic activity and selectivity exhibited by SACs, and triggers a decade-long surge dedicated to unraveling the modulation of MASI as a means to enhance the catalytic performance of SACs. In this comprehensive review, we present a systematic summary and categorization of recent advancements pertaining to MASI modulation for achieving efficient electrochemical H2O2 synthesis. We start by introducing the fundamental concept of the MASI, followed by a detailed and comprehensive analysis of the correlation between the MASI and catalytic performance. We describe how this knowledge can be harnessed to design SACs with optimized MASI to increase the efficiency of H2O2 electrosynthesis. Finally, we distill the challenges that lay ahead in this field and provide a forward-looking perspective on the future research directions that can be pursued.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Haitao Xu
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Canglang Yao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Shanshan Chen
- MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Feng Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
17
|
Li Y, Chen C, Zhao G, Huang H, Ren Y, Zuo S, Wu ZP, Zheng L, Lai Z, Zhang J, Rueping M, Han Y, Zhang H. Unveiling the Activity Origin of Electrochemical Oxygen Evolution on Heteroatom-Decorated Carbon Matrix. Angew Chem Int Ed Engl 2024:e202411218. [PMID: 39137124 DOI: 10.1002/anie.202411218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Chemical modification via functional dopants in carbon materials holds great promise for elevating catalytic activity and stability. To gain comprehensive insights into the pivotal mechanisms and establish structure-performance relationships, especially concerning the roles of dopants, remains a pressing need. Herein, we employ computational simulations to unravel the catalytic function of heteroatoms in the acidic oxygen evolution reaction (OER), focusing on a physical model of high-electronegative F and N co-doped carbon matrix. Theoretical and experimental findings elucidate that the enhanced activity originates from the F and pyridinic-N (Py-N) species that achieve carbon activation. This activated carbon significantly lowers the conversion energy barrier from O* to OOH*, shifts the potential-limiting step from OOH* formation to O* generation, and ultimately optimizes the energy barrier of the potential-limiting step. This wok elucidates that the critical role of heteroatoms in catalyzing the reaction and unlocks the potential of carbon materials for acidic OER.
Collapse
Affiliation(s)
- Yang Li
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Cailing Chen
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Guoxiang Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, 350002, Fuzhou, P. R. China
| | - Huawei Huang
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Yuanfu Ren
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Shouwei Zuo
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Zhi-Peng Wu
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiping Lai
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, 350002, Fuzhou, P. R. China
| | - Magnus Rueping
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Yu Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, 350002, Fuzhou, P. R. China
| | - Huabin Zhang
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
18
|
Deng Z, Choi SJ, Li G, Wang X. Advancing H 2O 2 electrosynthesis: enhancing electrochemical systems, unveiling emerging applications, and seizing opportunities. Chem Soc Rev 2024; 53:8137-8181. [PMID: 39021095 DOI: 10.1039/d4cs00412d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hydrogen peroxide (H2O2) is a highly desired chemical with a wide range of applications. Recent advancements in H2O2 synthesis center on the electrochemical reduction of oxygen, an environmentally friendly approach that facilitates on-site production. To successfully implement practical-scale, highly efficient electrosynthesis of H2O2, it is critical to meticulously explore both the design of catalytic materials and the engineering of other components of the electrochemical system, as they hold equal importance in this process. Development of promising electrocatalysts with outstanding selectivity and activity is a prerequisite for efficient H2O2 electrosynthesis, while well-configured electrolyzers determine the practical implementation of large-scale H2O2 production. In this review, we systematically summarize fundamental mechanisms and recent achievements in H2O2 electrosynthesis, including electrocatalyst design, electrode optimization, electrolyte engineering, reactor exploration, potential applications, and integrated systems, with an emphasis on active site identification and microenvironment regulation. This review also proposes new insights into the existing challenges and opportunities within this rapidly evolving field, together with perspectives on future development of H2O2 electrosynthesis and its industrial-scale applications.
Collapse
Affiliation(s)
- Zhiping Deng
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Seung Joon Choi
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Ge Li
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
19
|
Qu J, Long G, Luo L, Yang Y, Fan W, Zhang F. Electrosynthesis of H 2O 2 Promoted by π-π Interaction on a Metal-Free Carbon Catalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400695. [PMID: 38456779 DOI: 10.1002/smll.202400695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/28/2024] [Indexed: 03/09/2024]
Abstract
The synthesis of hydrogen peroxide (H2O2) through electrocatalytic oxygen reduction reaction is an ideal alternative to the current energy-intensive anthraquinone process, but developing cost-effective and high-efficiency electrocatalysts is still challenging. Herein, a metal-free graphitic carbon nitride/carbon nanotube (g-C3N4/CNT) hybrid catalyst can enhance H2O2 production via π-π interaction is reported, achieving almost unity (97%) H2O2 production at 0.57 V with high selectivity of over 92% across the wide potential range from 0.6 to 0 V. Other carbon materials with weak interaction with g-C3N4, such as acetylene black and super P, show markedly weakened H2O2 production, indicating the importance of π-π interaction. Electron transfer kinetic analysis combined with density functional theory calculations indicates that the synergistic effect between g-C3N4 and CNT enhances electron transfer and O2 activation between g-C3N4 and CNT, leading to enhanced H2O2 production performance. This work provides a complementary approach for H2O2 production from oxygen reduction besides introducing oxygenated groups or heteroatom doping into carbon materials.
Collapse
Affiliation(s)
- Jiating Qu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guifa Long
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530008, China
| | - Lin Luo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
| | - Wenjun Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
| |
Collapse
|
20
|
Li S, Shi L, Guo Y, Wang J, Liu D, Zhao S. Selective oxygen reduction reaction: mechanism understanding, catalyst design and practical application. Chem Sci 2024; 15:11188-11228. [PMID: 39055002 PMCID: PMC11268513 DOI: 10.1039/d4sc02853h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
The oxygen reduction reaction (ORR) is a key component for many clean energy technologies and other industrial processes. However, the low selectivity and the sluggish reaction kinetics of ORR catalysts have hampered the energy conversion efficiency and real application of these new technologies mentioned before. Recently, tremendous efforts have been made in mechanism understanding, electrocatalyst development and system design. Here, a comprehensive and critical review is provided to present the recent advances in the field of the electrocatalytic ORR. The two-electron and four-electron transfer catalytic mechanisms and key evaluation parameters of the ORR are discussed first. Then, the up-to-date synthetic strategies and in situ characterization techniques for ORR electrocatalysts are systematically summarized. Lastly, a brief overview of various renewable energy conversion devices and systems involving the ORR, including fuel cells, metal-air batteries, production of hydrogen peroxide and other chemical synthesis processes, along with some challenges and opportunities, is presented.
Collapse
Affiliation(s)
- Shilong Li
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lei Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yingjie Guo
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jingyang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Di Liu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
| | - Shenlong Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
21
|
Deng M, Wang D, Li Y. General Design Concept of High-Performance Single-Atom-Site Catalysts for H 2O 2 Electrosynthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314340. [PMID: 38439595 DOI: 10.1002/adma.202314340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Indexed: 03/06/2024]
Abstract
Hydrogen peroxide (H2O2) as a green oxidizing agent is widely used in various fields. Electrosynthesis of H2O2 has gradually become a hotspot due to its convenient and environment-friendly features. Single-atom-site catalysts (SASCs) with uniform active sites are the ideal catalysts for the in-depth study of the reaction mechanism and structure-performance relationship. In this review, the outstanding achievements of SASCs in the electrosynthesis of H2O2 through 2e- oxygen reduction reaction (ORR) and 2e- water oxygen reaction (WOR) in recent years, are summarized. First, the elementary steps of the two pathways and the roles of key intermediates (*OOH and *OH) in the reactions are systematically discussed. Next, the influence of the size effect, electronic structure regulation, the support/interfacial effect, the optimization of coordination microenvironments, and the SASCs-derived catalysts applied in 2e- ORR are systematically analyzed. Besides, the developments of SASCs in 2e- WOR are also overviewed. Finally, the research progress of H2O2 electrosynthesis on SASCs is concluded, and an outlook on the rational design of SASCs is presented in conjunction with the design strategies and characterization techniques.
Collapse
Affiliation(s)
- Mingyang Deng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
22
|
Zhang S, Tao Z, Xu M, Kan L, Guo C, Liu J, He L, Du M, Zhang Z. Single-Atom Co─O 4 Sites Embedded in a Defective-Rich Porous Carbon Layer for Efficient H 2O 2 Electrosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310468. [PMID: 38213023 DOI: 10.1002/smll.202310468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Indexed: 01/13/2024]
Abstract
The production of hydrogen peroxide (H2O2) via the two-electron electrochemical oxygen reduction reaction (2e- ORR) is an essential alteration in the current anthraquinone-based method. Herein, a single-atom Co─O4 electrocatalyst is embedded in a defective and porous graphene-like carbon layer (Co─O4@PC). The Co─O4@PC electrocatalyst shows promising potential in H2O2 electrosynthesis via 2e- ORR, providing a high H2O2 selectivity of 98.8% at 0.6 V and a low onset potential of 0.73 V for generating H2O2. In situ surface-sensitive attenuated total reflection Fourier transform infrared spectra and density functional theory calculations reveal that the electronic and geometric modification of Co─O4 induced by defective carbon sites result in decreased d-band center of Co atoms, providing the optimum adsorption energies of OOH* intermediate. The H-cell and flow cell assembled using Co─O4@PC as the cathode present long-term stability and high efficiency for H2O2 production. Particularly, a high H2O2 production rate of 0.25 mol g-1 cat h-1 at 0.6 V can be obtained by the flow cell. The in situ-generated H2O2 can promote the degradation of rhodamine B and sterilize Staphylococcus aureus via the Fenton process. This work can pave the way for the efficient production of H2O2 by using Co─O4 single atom electrocatalyst and unveil the electrocatalytic mechanism.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, P. R. China
| | - Zheng Tao
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, P. R. China
| | - Mingyang Xu
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, P. R. China
| | - Lun Kan
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, P. R. China
| | - Chuanpan Guo
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, P. R. China
| | - Jiameng Liu
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, P. R. China
| | - Linghao He
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, P. R. China
| | - Miao Du
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, P. R. China
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, P. R. China
| |
Collapse
|
23
|
Zhao G, Chen T, Tang A, Yang H. Roles of Oxygen-Containing Functional Groups in Carbon for Electrocatalytic Two-Electron Oxygen Reduction Reaction. Chemistry 2024; 30:e202304065. [PMID: 38487973 DOI: 10.1002/chem.202304065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 04/05/2024]
Abstract
Recent years have witnessed great research interests in developing high-performance electrocatalysts for the two-electron (2e-) oxygen reduction reaction (ORR) that enables the sustainable and flexible synthesis of H2O2. Carbon-based electrocatalysts exhibit attractive catalytic performance for the 2e- ORR, where oxygen-containing functional groups (OFGs) play a decisive role. However, current understanding is far from adequate, and the contribution of OFGs to the catalytic performance remains controversial. Therefore, a critical overview on OFGs in carbon-based electrocatalysts toward the 2e- ORR is highly desirable. Herein, we go over the methods for constructing OFGs in carbon including chemical oxidation, electrochemical oxidation, and precursor inheritance. Then we review the roles of OFGs in activating carbon toward the 2e- ORR, focusing on the intrinsic activity of different OFGs and the interplay between OFGs and metal species or defects. At last, we discuss the reasons for inconsistencies among different studies, and personal perspectives on the future development in this field are provided. The results provide insights into the origin of high catalytic activity and selectivity of carbon-based electrocatalysts toward the 2e- ORR and would provide theoretical foundations for the future development in this field.
Collapse
Affiliation(s)
- Guoqiang Zhao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
| | - Tianci Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Aidong Tang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| |
Collapse
|
24
|
Yin H, Pan R, Zou M, Ge X, Shi C, Yuan J, Huang C, Xie H. Recent Advances in Carbon-Based Single-Atom Catalysts for Electrochemical Oxygen Reduction to Hydrogen Peroxide in Acidic Media. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:835. [PMID: 38786791 PMCID: PMC11124143 DOI: 10.3390/nano14100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Electrochemical oxygen reduction reaction (ORR) via the 2e- pathway in an acidic media shows great techno-economic potential for the production of hydrogen peroxide. Currently, carbon-based single-atom catalysts (C-SACs) have attracted extensive attention due to their tunable electronic structures, low cost, and sufficient stability in acidic media. This review summarizes recent advances in metal centers and their coordination environment in C-SACs for 2e--ORR. Firstly, the reaction mechanism of 2e--ORR on the active sites of C-SACs is systematically presented. Secondly, the structural regulation strategies for the active sites of 2e--ORR are further summarized, including the metal active center, its species and configurations of nitrogen coordination or heteroatom coordination, and their near functional groups or substitute groups, which would provide available and proper ideas for developing superior acidic 2e--ORR electrocatalysts of C-SACs. Finally, we propose the current challenges and future opportunities regarding the acidic 2e--ORR pathway on C-SACs, which will eventually accelerate the development of the distributed H2O2 electrosynthesis process.
Collapse
Affiliation(s)
| | | | | | | | | | - Jili Yuan
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, China; (H.Y.); (R.P.); (M.Z.); (X.G.); (C.S.)
| | - Caijuan Huang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, China; (H.Y.); (R.P.); (M.Z.); (X.G.); (C.S.)
| | - Haibo Xie
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, China; (H.Y.); (R.P.); (M.Z.); (X.G.); (C.S.)
| |
Collapse
|
25
|
Wang Z, Sun Z, Li K, Fan K, Tian T, Jiang H, Jin H, Li A, Tang Y, Sun Y, Wan P, Chen Y. Enhanced electrocatalytic performance for H 2O 2 generation by boron-doped porous carbon hollow spheres. iScience 2024; 27:109553. [PMID: 38623338 PMCID: PMC11016794 DOI: 10.1016/j.isci.2024.109553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
Electrocatalytic generation of H2O2 via the 2-electron pathway of oxygen reduction reaction (2e-ORR) is an attractive technology compared to the anthraquinone process due to convenience and environmental friendliness. However, catalysts with excellent selectivity and high activity for 2e-ORR are necessary for practical applications. Reported here is a catalyst comprising boron-doped porous carbon hollow spheres (B-PCHSs) prepared using the hard template method coupled with borate transesterification. In an alkali electrolyte, the selectivity of B-PCHS for 2e-ORR above 90% in range of 0.4-0.7 VRHE and an onset potential of 0.833 V was obtained. Meanwhile, the generation rate of H2O2 reached 902.48 mmol h-1 gcat-1 at 0.4 VRHE under 59.13 mA cm-2 in batch electrolysis. The excellent catalytic selectivity of B-PCHS for 2e-ORR originates from the boron element, and the catalytic activity of B-PCHS for H2O2 generation is contributed to the morphology of porous hollow spheres, which facilitates mass transfer processes.
Collapse
Affiliation(s)
- Zhaohui Wang
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Zehan Sun
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China
| | - Kun Li
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Keyi Fan
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Tian Tian
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Haomin Jiang
- Center for Advanced Materials Research, College of Chemistry, Beijing Normal University, Zhuhai 519087, P.R. China
| | - Honglei Jin
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Ang Li
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yang Tang
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yanzhi Sun
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Pingyu Wan
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yongmei Chen
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
26
|
Zhang YL, Liu B, Dai YK, Shen LX, Guo P, Xia YF, Zhang Z, Kong F, Zhao L, Wang ZB. Engineering Co-N-Cr Cross-Interfacial Electron Bridges to Break Activity-Stability Trade-Off for Superdurable Bifunctional Single Atom Oxygen Electrocatalysts. Angew Chem Int Ed Engl 2024; 63:e202400577. [PMID: 38284909 DOI: 10.1002/anie.202400577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
Atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts have exhibited encouraging oxygen reduction reaction (ORR) activity. Nevertheless, the insufficient long-term stability remains a widespread concern owing to the inevitable 2-electron byproducts, H2O2. Here, we construct Co-N-Cr cross-interfacial electron bridges (CIEBs) via the interfacial electronic coupling between Cr2O3 and Co-N-C, breaking the activity-stability trade-off. The partially occupied Cr 3d-orbitals of Co-N-Cr CIEBs induce the electron rearrangement of CoN4 sites, lowering the Co-OOH* antibonding orbital occupancy and accelerating the adsorption of intermediates. Consequently, the Co-N-Cr CIEBs suppress the two-electron ORR process and approach the apex of Sabatier volcano plot for four-electron pathway simultaneously. As a proof-of-concept, the Co-N-Cr CIEBs is synthesized by the molten salt template method, exhibiting dominant 4-electron selectively and extremely low H2O2 yield confirmed by Damjanovic kinetic analysis. The Co-N-Cr CIEBs demonstrates impressive bifunctional oxygen catalytic activity (▵E=0.70 V) and breakthrough durability including 100 % current retention after 10 h continuous operation and cycling performance over 1500 h for Zn-air battery. The hybrid interfacial configuration and the understanding of the electronic coupling mechanism reported here could shed new light on the design of superdurable M-N-C catalysts.
Collapse
Affiliation(s)
- Yun-Long Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Bo Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Yun-Kun Dai
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Li-Xiao Shen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, Guangdong, China
| | - Pan Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Yun-Fei Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Ziyu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Fantao Kong
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Lei Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Zhen-Bo Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, Guangdong, China
| |
Collapse
|
27
|
Sun L, Jin X, Su T, Fisher AC, Wang X. Conjugated Nickel Phthalocyanine Derivatives for Heterogeneous Electrocatalytic H 2O 2 Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306336. [PMID: 37560974 DOI: 10.1002/adma.202306336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Indexed: 08/11/2023]
Abstract
Electrocatalytic hydrogen peroxide (H2O2) production has emerged as a promising alternative to the chemical method currently used in industry, due to its environmentally friendly conditions and potential for higher activity and selectivity. Heterogeneous molecular catalysts are promising in this regard, as their active site configurations can be judiciously designed, modified, and tailored with diverse functional groups, thereby tuning the activity and selectivity of the active sites. In this work, nickel phthalocyanine derivatives with various conjugation degrees are synthesized and identified as effective pH-universal electrocatalysts for H2O2 production after heterogenized on nitrogen-decorated carbon, with increased conjugation degrees leading to boosted selectivity. This is explained by the regulated d-band center, which optimized the binding energy of the reaction intermediate, reducing the energy barrier for oxygen reduction and leading to optimized H2O2 selectivity. The best catalyst, NiPyCN/CN, exhibits a high H2O2 electrosynthesis activity with ≈95% of H2O2 faradic efficiency in an alkaline medium, demonstrating its potential for H2O2 production.
Collapse
Affiliation(s)
- Libo Sun
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Cambridge CARES, CREATE Tower, Singapore, 138602, Singapore
| | - Xindie Jin
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Tan Su
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Adrian C Fisher
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, UK
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
28
|
Jia X, Gao F, Yang G, Wang YY. Designing Different Heterometallic Organic Frameworks by Heteroatom and Second Metal Doping Strategies for the Electrocatalytic Oxygen Evolution Reaction. Inorg Chem 2024; 63:5664-5671. [PMID: 38484386 DOI: 10.1021/acs.inorgchem.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Metal-organic frameworks (MOFs) are considered one of the most significant electrocatalysts for the sluggish oxygen evolution reaction (OER). Hence, a series of novel N,S-codoped Ni-based heterometallic organic framework (HMOF) (NiM-bptz-HMOF, M = Co, Zn, and Mn; bptz = 2,5-bis((3-pyridyl)methylthio)thiadiazole) precatalysts are constructed by the heteroatom and second metal doping strategies. The effective combination of the two strategies promotes electronic conductivity and optimizes the electronic structure of the metal. By regulation of the type and proportion of metal ions, the electrochemical performance of the OER can be improved. Among them, the optimized Ni6Zn1-bptz-HMOF precatalyst exhibits the best performance with an overpotential of 268 mV at 10 mA cm-2 and a small Tafel slope of 72.5 mV dec-1. This work presents a novel strategy for the design of modest heteroatom-doped OER catalysts.
Collapse
Affiliation(s)
- Xiaoqing Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Fei Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| |
Collapse
|
29
|
Wang Y, Yang T, Fan X, Bao Z, Tayal A, Tan H, Shi M, Liang Z, Zhang W, Lin H, Cao R, Huang Z, Zheng H. Anchoring Fe Species on the Highly Curved Surface of S and N Co-Doped Carbonaceous Nanosprings for Oxygen Electrocatalysis and a Flexible Zinc-Air Battery. Angew Chem Int Ed Engl 2024; 63:e202313034. [PMID: 38097503 DOI: 10.1002/anie.202313034] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Indexed: 01/03/2024]
Abstract
Oxygen reduction reaction (ORR) is of critical significance in the advancement of fuel cells and zinc-air batteries. The iron-nitrogen (Fe-Nx ) sites exhibited exceptional reactivity towards ORR. However, the task of designing and controlling the local structure of Fe species for high ORR activity and stability remains a challenge. Herein, we have achieved successful immobilization of Fe species onto the highly curved surface of S, N co-doped carbonaceous nanosprings (denoted as FeNS/Fe3 C@CNS). The induction of this twisted configuration within FeNS/Fe3 C@CNS arose from the assembly of chiral templates. For electrocatalytic ORR tests, FeNS/Fe3 C@CNS exhibits a half-wave potential (E1/2 ) of 0.91 V in alkaline medium and a E1/2 of 0.78 V in acidic medium. The Fe single atoms and Fe3 C nanoparticles are coexistent and play as active centers within FeNS/Fe3 C@CNS. The highly curved surface, coupled with S substitution in the coordination layer, served to reduce the energy barrier for ORR, thereby enhancing the intrinsic catalytic activity of the Fe single-atom sites. We also assembled a wearable flexible Zn-air battery using FeNS/Fe3 C@CNS as electrocatalysts. This work provides new insights into the construction of highly curved surfaces within carbon materials, offering high electrocatalytic efficacy and remarkable performance for flexible energy conversion devices.
Collapse
Affiliation(s)
- Yanzhi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Taimin Yang
- Department of Materials and Environmental Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Xing Fan
- Research Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, 100871, Beijing, China
| | - Zijia Bao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Akhil Tayal
- Deutsches Elektronon Synchrotron, 85 Notkestrasse, 22607, Hamburg, Germany
| | - Huang Tan
- School of Physics and Information Technology, Shaanxi Normal University, 710119, Xi'an, China
| | - Mengke Shi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, 710119, Xi'an, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Zhehao Huang
- Department of Materials and Environmental Chemistry, Stockholm University, 10691, Stockholm, Sweden
- Electron Microscopy Center, School of Emergent Soft Matter, South China University of Technology, 510640, Guangzhou, China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| |
Collapse
|
30
|
Tian Q, Jing L, Yin Y, Liang Z, Du H, Yang L, Cheng X, Zuo D, Tang C, Liu Z, Liu J, Wan J, Yang J. Nanoengineering of Porous 2D Structures with Tunable Fluid Transport Behavior for Exceptional H 2O 2 Electrosynthesis. NANO LETTERS 2024; 24:1650-1659. [PMID: 38265360 DOI: 10.1021/acs.nanolett.3c04396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Precision nanoengineering of porous two-dimensional structures has emerged as a promising avenue for finely tuning catalytic reactions. However, understanding the pore-structure-dependent catalytic performance remains challenging, given the lack of comprehensive guidelines, appropriate material models, and precise synthesis strategies. Here, we propose the optimization of two-dimensional carbon materials through the utilization of mesopores with 5-10 nm diameter to facilitate fluid acceleration, guided by finite element simulations. As proof of concept, the optimized mesoporous carbon nanosheet sample exhibited exceptional electrocatalytic performance, demonstrating high selectivity (>95%) and a notable diffusion-limiting disk current density of -3.1 mA cm-2 for H2O2 production. Impressively, the electrolysis process in the flow cell achieved a production rate of 14.39 mol gcatalyst-1 h-1 to yield a medical-grade disinfectant-worthy H2O2 solution. Our pore engineering research focuses on modulating oxygen reduction reaction activity and selectivity by affecting local fluid transport behavior, providing insights into the mesoscale catalytic mechanism.
Collapse
Affiliation(s)
- Qiang Tian
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lingyan Jing
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yunchao Yin
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhenye Liang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongnan Du
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Lin Yang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaolei Cheng
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Daxian Zuo
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cheng Tang
- Beijing Key Laboratory of Green Chemical, Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhuoxin Liu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jiayu Wan
- Global Institute of Future Technology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Jinlong Yang
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
31
|
Zhao Y, Raj J, Xu X, Jiang J, Wu J, Fan M. Carbon Catalysts Empowering Sustainable Chemical Synthesis via Electrochemical CO 2 Conversion and Two-Electron Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2311163. [PMID: 38308114 DOI: 10.1002/smll.202311163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/01/2024] [Indexed: 02/04/2024]
Abstract
Carbon materials hold significant promise in electrocatalysis, particularly in electrochemical CO2 reduction reaction (eCO2 RR) and two-electron oxygen reduction reaction (2e- ORR). The pivotal factor in achieving exceptional overall catalytic performance in carbon catalysts is the strategic design of specific active sites and nanostructures. This work presents a comprehensive overview of recent developments in carbon electrocatalysts for eCO2 RR and 2e- ORR. The creation of active sites through single/dual heteroatom doping, functional group decoration, topological defect, and micro-nano structuring, along with their synergistic effects, is thoroughly examined. Elaboration on the catalytic mechanisms and structure-activity relationships of these active sites is provided. In addition to directly serving as electrocatalysts, this review explores the role of carbon matrix as a support in finely adjusting the reactivity of single-atom molecular catalysts. Finally, the work addresses the challenges and prospects associated with designing and fabricating carbon electrocatalysts, providing valuable insights into the future trajectory of this dynamic field.
Collapse
Affiliation(s)
- Yuying Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Key Lab of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, 210042, China
| | - Jithu Raj
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Xiang Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianchun Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Key Lab of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, 210042, China
| | - Jingjie Wu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Mengmeng Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Key Lab of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, 210042, China
| |
Collapse
|
32
|
Zhang K, Tian L, Yang J, Wu F, Wang L, Tang H, Liu ZQ. Pauling-Type Adsorption of O 2 Induced by Heteroatom Doped ZnIn 2 S 4 for Boosted Solar-Driven H 2 O 2 Production. Angew Chem Int Ed Engl 2023:e202317816. [PMID: 38082536 DOI: 10.1002/anie.202317816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 12/30/2023]
Abstract
Breaking the trade-off between activity and selectivity has perennially been a formidable endeavor in the field of hydrogen peroxide (H2 O2 ) photosynthesis, especially the side-on configuration of oxygen (O2 ) on the catalyst surface will cause the cleavage of O-O bonds, which drastically hinders the H2 O2 production performance. Herein, we present an atomically heteroatom P doped ZnIn2 S4 catalyst with tunable oxygen adsorption configuration to accelerate the ORR kinetics essential for solar-driven H2 O2 production. Indeed, the spectroscopy characterizations (such as EXAFS and in situ FTIR) and DFT calculations reveal that heteroatom P doped ZnIn2 S4 at substitutional and interstitial sites, which not only optimizes the coordination environment of Zn active sites, but also facilitates electron transfer to the Zn sites and improves charge density, avoiding the breakage of O-O bonds and reducing the energy barriers to H2 O2 production. As a result, the oxygen adsorption configuration is regulated from side-on (Yeager-type) to end-on (Pauling-type), resulting in the accelerated ORR kinetics from 874.94 to 2107.66 μmol g-1 h-1 . This finding offers a new avenue toward strategic tailoring oxygen adsorption configuration by the rational design of doped photocatalyst.
Collapse
Affiliation(s)
- Kailian Zhang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Lei Tian
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Jingfei Yang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Fengxiu Wu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Leigang Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Hua Tang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, Shandong, 266071, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
33
|
Long Y, Lin J, Ye F, Liu W, Wang D, Cheng Q, Paul R, Cheng D, Mao B, Yan R, Zhao L, Liu D, Liu F, Hu C. Tailoring the Atomic-Local Environment of Carbon Nanotube Tips for Selective H 2 O 2 Electrosynthesis at High Current Densities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303905. [PMID: 37535390 DOI: 10.1002/adma.202303905] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/01/2023] [Indexed: 08/04/2023]
Abstract
The atomic-local environment of catalytically active sites plays an important role in tuning the activity of carbon-based metal-free electrocatalysts (C-MFECs). However, the rational regulation of the environment is always impeded by synthetic limitations and insufficient understanding of the formation mechanism of the catalytic sites. Herein, the possible cleavage mechanism of carbon nanotubes (CNTs) through the crossing points during ball-milling is proposed, resulting in abundant CNT tips that are more susceptible to be modified by heteroatoms, achieving precise modulation of the atomic environment at the tips. The obtained CNTs with N,S-rich tips (N,S-TCNTs) exhibit a wide potential window of 0.59 V along with H2 O2 selectivity for over 90.0%. Even using air as the O2 source, the flow cell system with N,S-TCNTs catalyst attains high H2 O2 productivity up to 30.37 mol gcat. -1 h-1 @350 mA cm-2 , superior to most reported C-MFECs. From a practical point of view, a solid electrolyzer based on N,S-TCNTs is further employed to realize the in-situ continuous generation of pure H2 O2 solution with high productivity (up to 4.35 mmol cm-2 h-1 @300 mA cm-2 ; over 300 h). The CNTs with functionalized tips hold great promise for practical applications, even beyond H2 O2 generation.
Collapse
Affiliation(s)
- Yongde Long
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinguo Lin
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fenghui Ye
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Liu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingqing Cheng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Rajib Paul
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Baoguang Mao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Riqing Yan
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Linjie Zhao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dong Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Feng Liu
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chuangang Hu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
34
|
Zhang Q, Chen Y, Pan J, Daiyan R, Lovell EC, Yun J, Amal R, Lu X. Electrosynthesis of Hydrogen Peroxide through Selective Oxygen Reduction: A Carbon Innovation from Active Site Engineering to Device Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302338. [PMID: 37267930 DOI: 10.1002/smll.202302338] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Indexed: 06/04/2023]
Abstract
Electrochemical synthesis of hydrogen peroxide (H2 O2 ) through the selective oxygen reduction reaction (ORR) offers a promising alternative to the energy-intensive anthraquinone method, while its success relies largely on the development of efficient electrocatalyst. Currently, carbon-based materials (CMs) are the most widely studied electrocatalysts for electrosynthesis of H2 O2 via ORR due to their low cost, earth abundance, and tunable catalytic properties. To achieve a high 2e- ORR selectivity, great progress is made in promoting the performance of carbon-based electrocatalysts and unveiling their underlying catalytic mechanisms. Here, a comprehensive review in the field is presented by summarizing the recent advances in CMs for H2 O2 production, focusing on the design, fabrication, and mechanism investigations over the catalytic active moieties, where an enhancement effect of defect engineering or heteroatom doping on H2 O2 selectivity is discussed thoroughly. Particularly, the influence of functional groups on CMs for a 2e- -pathway is highlighted. Further, for commercial perspectives, the significance of reactor design for decentralized H2 O2 production is emphasized, bridging the gap between intrinsic catalytic properties and apparent productivity in electrochemical devices. Finally, major challenges and opportunities for the practical electrosynthesis of H2 O2 and future research directions are proposed.
Collapse
Affiliation(s)
- Qingran Zhang
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jian Pan
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rahman Daiyan
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Emma C Lovell
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jimmy Yun
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, P. R. China
- Qingdao International Academician Park Research Institute, Qingdao, Shandong, 266000, China
| | - Rose Amal
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xunyu Lu
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
35
|
Chen P, Liu W, Wang H, Jiang Y, Niu X, Wang L. Semi-Ionic C-F bond enabling fluorinated carbons rechargeable as Li-ion batteries cathodes. J Colloid Interface Sci 2023; 649:255-263. [PMID: 37348345 DOI: 10.1016/j.jcis.2023.06.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Fluorinated carbon (CFx) cathodes possess the highest theoretical energy density among lithium primary batteries. However, achieving reversibility in CFx remains a significant challenge. This work employs a high-voltage sulfolane electrolyte and achieves a highly reversible CFx cathodes in lithium-ion batteries (LIBs) via fine modification of the C-F bond character. The improved reversibility of CFx originates from the semi-ionic CFx phase, with a superior bond length and weaker bond energy than a covalent bond. This characteristic significantly mitigates the challenges encountered during the charging process. We screen and identify the fluorinated graphene CF1.12 as a suitable cathode, providing an appropriate fluorine content and sufficient semi-ionic C-F bonds for rechargeable LIBs. This fluorinated graphene CF1.12 exhibits an initial discharge specific capacity of 814 mAh g-1 and a reversible discharge specific capacity of 350 mAh g-1. This work provides a new clue for chemical bond regulation studies and provides insights into stimulating reversibility of primary-cell cathodes.
Collapse
Affiliation(s)
- Pengyu Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wei Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hao Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yao Jiang
- 21C Innovation Laboratory, Contemporary Amperex Technology Ltd. (21C LAB), Ningde 352100, Fujian, China
| | - Xiaobin Niu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Liping Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|