1
|
Li Y, Zhang F. Nanocubic mixed-halide perovskite superlattices for bright red light-emitting diodes. Chem Commun (Camb) 2025. [PMID: 40395033 DOI: 10.1039/d5cc02187a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
By controlling the elemental composition, nucleation time, and surface ligands of mixed-halide perovskites, a nanocubic superlattice was achieved. The nanocubic superlattice-based bright red light-emitting diodes demonstrated an exceptional maximum external quantum efficiency of 10.75% and improved operational lifetime.
Collapse
Affiliation(s)
- Yi Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Fei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
2
|
Li D, Lyu B, Long Z, Xiao X, Zhang D, Sun J, Xiong Q, Jiang Z, Wang Y, Choy WC. Efficient White Electroluminescence from Cu-based Perovskite Achieved by High Hole Injection Core/Shell Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417678. [PMID: 40166819 PMCID: PMC12087732 DOI: 10.1002/adma.202417678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/24/2025] [Indexed: 04/02/2025]
Abstract
The copper-based (Cu-based) halide perovskite possesses eco-friendly features, bright self-trapped-exciton (broadband) emission, and a high color-rendering index (CRI) for achieving white emission. However, the limited hole injection (HI) of Cu-based perovskites has been bottle-necking the efficiency of white electroluminescence and thus their application in white perovskite light-emitting diodes (W-PeLEDs). In this study, we demonstrate a p-type cuprous sulfide (Cu2S) lattice-connectedly capping over Cs3Cu2I5 to form lattice-matched core/shell nanocrystals (NCs) by controlling the reactivity of sulfur (S) precursor in the synthesis. Interestingly, the resultant Cs3Cu2I5/Cu2S NCs significantly enhance the hole mobility compared to Cs3Cu2I5 NCs. Besides, the photoluminescence quantum yield of Cs3Cu2I5 NCs increases from 26.8% to 70.6% after the Cu2S lattice-connected capping. Consequently, by establishing the structure of CsCu2I3/Cs3Cu2I5/Cu2S in W-PeLEDs, an external quantum efficiency of 3.45% and a CRI of 91 is realized, representing the highest reported electroluminescent performance in lead-free Cu-based W-PeLEDs. These findings contribute to establishing guidelines and effective strategies for designing broadband electroluminescent materials and device structures of PeLEDs.
Collapse
Affiliation(s)
- Dongyu Li
- Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulam RoadHong Kong999077P. R. China
| | - Benzheng Lyu
- Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulam RoadHong Kong999077P. R. China
| | - Zhiwei Long
- Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulam RoadHong Kong999077P. R. China
| | - Xiangtian Xiao
- School of Physics and Optoelectronic EngineeringGuangdong University of TechnologyGuangzhou510006P. R. China
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration ApplicationsGuangdong University of TechnologyGuangzhou510006P. R. China
| | - Dongwei Zhang
- Department of ChemistryThe University of Hong KongPokfulam RoadHong Kong999077P. R. China
| | - Jiayun Sun
- Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulam RoadHong Kong999077P. R. China
- Department of Electronic and Electrical EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Qi Xiong
- Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulam RoadHong Kong999077P. R. China
| | - Zhengyan Jiang
- Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulam RoadHong Kong999077P. R. China
- Department of Electronic and Electrical EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Yufeng Wang
- Department of ChemistryThe University of Hong KongPokfulam RoadHong Kong999077P. R. China
| | - Wallace C.H. Choy
- Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulam RoadHong Kong999077P. R. China
- Materials Innovation Institute for Life Sciences and Energy (MILES)HKU‐SIRIShenzhen518057P.R. China
| |
Collapse
|
3
|
Xie G, Li H, Fang J, Wang X, Peng H, Lin D, Huang N, Gan L, Li W, Jiang R, Bu T, Huang F, He S, Qiu L. Crystallization Thermodynamics Regulation of 1.85 eV Wide-Bandgap Perovskite for Efficient and Stable Perovskite-Organic Tandem Photovoltaics. Angew Chem Int Ed Engl 2025; 64:e202501764. [PMID: 39927523 DOI: 10.1002/anie.202501764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/11/2025]
Abstract
Wide-band gap perovskite with adjustable band gaps can be integrated with organic solar cells to form tandem solar cells (TSCs), thereby surpassing the Shockley-Queisser limit. However, increasing Br content to elevate the band gap above 1.8 eV complicates crystallization, leading to inferior film quality and defects due to the unmanageable evolution of intermediate phases. Surface passivation improves crystallization but hard to moderate the inhomogeneous component distributions and defects in the bulk phase. Here, we introduce a diammonium salt as an additive to regulate the homogeneity and crystallization of perovskite film, eliminating the low-dimensional intermediate phase for orientated crystallization of 1.85 eV perovskite, resulting in efficient wide-band gap perovskite solar cells with an impressive open-circuit voltage (Voc) of 1.379 V and operational stability remaining 85 % of their initial efficiency after illumination for 1200 h. Furthermore, perovskite-organic TSCs achieve a champion power conversion efficiency of 24.03 % and a high Voc of 2.108 V, one of the highest Voc for perovskite-organic TSCs.
Collapse
Affiliation(s)
- Guanshui Xie
- Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huan Li
- Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jun Fang
- Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Wang
- Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haichen Peng
- Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dongxu Lin
- Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Nuanshan Huang
- Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lin Gan
- Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenjia Li
- Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ruixuan Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Tongle Bu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Fuzhi Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Sisi He
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen, Guangdong, 518055, China
| | - Longbin Qiu
- Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
4
|
Liu W, Qi Z, Liu T, Zhang Y. Fluoride Ion Passivation of CsPbBr 3 Nanocrystals at Room Temperature for Highly Efficient and Stable White Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17143-17152. [PMID: 40108757 DOI: 10.1021/acsami.5c01999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Inorganic halide perovskite nanocrystals (NCs) are regarded as promising emitters for light-emitting diodes due to their bright and narrow emission. However, surface defects often result in trap states and ion migration, which remains a huge challenge for high-quality perovskite NCs. Herein, fluoride ions are introduced into CsPbBr3 perovskite NCs at room temperature through the chelation of ligands. Experimental results demonstrate that these fluoride ions from inorganic salts can improve the average lifetime and crystallinity of CsPbBr3 NCs. Meanwhile, the resulting photoluminescence quantum yield is optimized up to 99.02%, and it has high stability to water, heat, and ultraviolet light. Density functional theory calculations show that fluoride ions have a higher binding energy compared to other ligands, which not only removes the electron trapping center but also increases the halogen ion migration energy. By mixing green-emission CsPbBr3 NCs and red-emission K2SiF6:Mn4+ phosphors on a blue chip, the fabricated white light emitting diode shows a high luminous efficiency of 147.8 lm/W, a wide color gamut (129% for NTSC), and CIE coordinates of (0.3160, 0.3051). Furthermore, the photoluminescence intensity decreased by only 2.9% after 48 h of continuous operation.
Collapse
Affiliation(s)
- Wenqiang Liu
- School of Electronic and Electrical Engineering, Henan Key Laboratory of Optoelectronic Sensing Integrated Application, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zitong Qi
- School of Electronic and Electrical Engineering, Henan Key Laboratory of Optoelectronic Sensing Integrated Application, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tuanning Liu
- School of Electronic and Electrical Engineering, Henan Key Laboratory of Optoelectronic Sensing Integrated Application, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yang Zhang
- School of Physics and Electronics, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
5
|
Wu Y, Chen D, Zou G, Liu H, Zhu Z, Rogach AL, Yip HL. Strategies for Stabilizing Metal Halide Perovskite Light-Emitting Diodes: Bulk and Surface Reconstruction of Perovskite Nanocrystals. ACS NANO 2025; 19:9740-9759. [PMID: 40053394 DOI: 10.1021/acsnano.5c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Light-emitting colloidal lead halide perovskite nanocrystals (PeNCs) are considered promising candidates for next-generation vivid displays. However, the operational stability of light-emitting diodes (LEDs) based on PeNCs is still lower than those based on polycrystalline perovskite films, which requires an understanding of defect formation in PeNCs, both inside the crystal lattice ("bulk") and at the surface. Meanwhile, uncontrollable ion redistribution and electrochemical reactions under LED operation can be severe, which is also related to the bulk and surface quality of PeNCs, and a well-designed device architecture can boost carrier injection and balance radiative recombination. In this review, we consider bulk and surface reconstruction of PeNCs by enhancing the crystal lattice rigidity and rationally selecting the surface ligands. Degradation pathways of PeNCs under applied voltage are discussed, and strategies are considered to avoid both undesirable ion migration and electrochemical reactions in the PeNC films. Subsequently, other critical issues hindering the commercial application of PeNC LEDs are discussed, including the toxicity of Pb in lead halide perovskites, scale-up deposition of PeNC films, and design of active-matrix prototypes for high-resolution LED modules.
Collapse
Affiliation(s)
- Ye Wu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Desui Chen
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Guangruixing Zou
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Haochen Liu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Zhaohua Zhu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Hin-Lap Yip
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- School of Energy and Environmental Science, City University of Hong Kong, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| |
Collapse
|
6
|
Su Y, Lin Q, Lv X, Li Y, Zhang K, Wu X, Zhou Y, Guo Y, Sandzhieva MA, Makarov SV, Xiang H, Zeng H. Controllable Transition Metal Cations Doping Enable Efficient and Spectral Stable Pure-Red Perovskite QLED. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412227. [PMID: 39955749 DOI: 10.1002/smll.202412227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/06/2025] [Indexed: 02/17/2025]
Abstract
Mixed-halide perovskite plays important role in wide-color gamut displays as a vital material for three primary colors. However, halide segregation and caused unstable spectra are the intrinsic problem in mixed-halide perovskite light-emitting diodes (PeLEDs) originating from the lattice strain and the resulting defects in perovskite quantum dots (PQDs). Here, smaller transition metal cations are applied to replace Pb2+ and release lattice strain, which avoids halogen escaping/halide vacancies forming to ensure high photoluminescence quantum yield (PLQY) and stable spectra. However, the actual doping amount is limited by ionic size and chemical environment, which will affect the improvement of optoelectronic performance. Thus, this study proposes a strategy by introducing tri-n-octylphosphine to coordinate strongly with metal cations and catch them to participate the nucleation-growth process. Through doping transition metal cations effectively, the CsPb(BrI)3 PQDs show high PLQY (92%) and long lifetime (107.83 ns). Further, highly efficient pure-red PeLEDs with highest external quantum efficiency of 16.86% is fabricated and the spectrum can be stabilized at 630 nm with only 1 nm red-shift under bias, showing the promising potential of PQDs for next-generation display.
Collapse
Affiliation(s)
- Yuqin Su
- MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qunqing Lin
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xinyi Lv
- MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yan Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Kun Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiuting Wu
- MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ying Zhou
- MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yashuang Guo
- MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Maria A Sandzhieva
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Sergey V Makarov
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Hengyang Xiang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
7
|
Wang L, Ooi ZY, Jia FY, Sun Y, Liu Y, Dai L, Ye J, Zhang J, Un HI, Chiang YH, Han S, Mirabelli AJ, Anaya M, Zhang Z, Lu Y, Zou C, Zhao B, Di D, Yang X, Guo D, Tan Y, Dong H, Liu S, Liu T, Zhou H, Stranks SD, Sun LD, Yan CH, Friend RH. Efficient perovskite LEDs with tailored atomic layer number emission at fixed wavelengths. SCIENCE ADVANCES 2025; 11:eadp9595. [PMID: 39951530 PMCID: PMC11827643 DOI: 10.1126/sciadv.adp9595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025]
Abstract
Colloidal quantum dots (QDs) have illuminated computer monitors and television screens due to their fascinating color-tunable properties depending on the size. Here, the electroluminescence (EL) wavelength of perovskite LEDs was tuned via the atomic layer number (ALN) of nanoplates (NPs) instead of the "size" in conventional QDs. We demonstrated efficient LEDs with controllably tailored emission from n = 3, 4, 5, and ≥7 ALN perovskite NPs with specific and discrete major peaks at 607, 638, 669, and 728 nanometers. These LEDs demonstrated peak external quantum efficiency (EQE) of 26.8% and high wavelength reproducibility with less than 1 to 2 nm difference between batches. High color stability without observable EL spectral change and operating stability with the best T50 of 267 minutes at 1.0 milliampere per square centimeter was also achieved. This work demonstrates a concept of tailoring specific ALN emission with fixed wavelengths, shedding light on efficient, emission-discrete, and color-stable LEDs for next-generation display.
Collapse
Affiliation(s)
- Ligang Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Department of Applied Physics, Royal Institute of Technology, Albanova University Centre, 106 91 Stockholm, Sweden
| | - Zher Ying Ooi
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Feng-Yan Jia
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yuqi Sun
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Yun Liu
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Linjie Dai
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Junzhi Ye
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Jincan Zhang
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | - Hio-Ieng Un
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Yu-Hsien Chiang
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Sanyang Han
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | | | - Miguel Anaya
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Zhilong Zhang
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Yang Lu
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Chen Zou
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, P. R. China
| | - Baodan Zhao
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, P. R. China
| | - Dawei Di
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, P. R. China
| | - Xiaodong Yang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, Hubei, P. R. China
| | - Dengyang Guo
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Yu Tan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Hao Dong
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Shaocheng Liu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Tianjun Liu
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Huanping Zhou
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Samuel D. Stranks
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Ling-Dong Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Chun-Hua Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Richard H. Friend
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| |
Collapse
|
8
|
Li C, Li J, Teng Q, Li J, Yuan F. Single Solid-State Emissive Carbon Quantum Dots for Multicolor, Bright and Efficient Electroluminescent Light-Emitting Diodes. Angew Chem Int Ed Engl 2025; 64:e202419983. [PMID: 39651941 DOI: 10.1002/anie.202419983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Color-tunable electroluminescent light-emitting diodes (LEDs) based on quantum dots (QDs) are rapidly emerging as a key technology for next-generation full-color displays and solid-state lighting. However, achieving broad color tunability in LEDs that utilize a single QD emissive material continues to pose significant challenges. Here, we present the first example of bright, multicolor electroluminescent LEDs with tunable emission peaks spanning from 535 to 640 nm, utilizing a new type of single red solid-state emissive carbon quantum dots (R-SSCQDs). Unlike conventional CQDs, which often exhibit weak or negligible emission in solid-state form, R-SSCQDs demonstrate bright red emission in solid state and green emission in diluted state. Experimental investigations and theoretical calculations reveal that the unique non-planar spatial structure and significant steric hindrance of R-SSCQDs effectively suppress π-π stacking, resulting in efficient solid-state fluorescence emission. By adjusting the weight ratios of R-SSCQDs doped in host materials, we showcase bright, efficient and multicolor CQD-based LEDs that emit green, yellow, orange, and red light, achieving a record-high luminance of 15,834 cd m-2 and current efficiency of 10.3 cd A-1. This work presents a straightforward and universal strategy for creating efficient solid-state emissive CQDs, showcasing significant potential for color-tunable LED applications.
Collapse
Affiliation(s)
- Chenhao Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jinyang Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Qian Teng
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jinsui Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Fanglong Yuan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
9
|
Shao H, Wang W, Zhang Y, Gao B, Jiang C, Li Y, Xie P, Yan Y, Shen Y, Wu Z, Wang R, Ji Y, Ling H, Huang W, Ho JC. Adaptive In-Sensor Computing for Enhanced Feature Perception and Broadband Image Restoration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414261. [PMID: 39659128 DOI: 10.1002/adma.202414261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Indexed: 12/12/2024]
Abstract
Traditional imaging systems struggle in weak or complex lighting environments due to their fixed spectral responses, resulting in spectral mismatches and degraded image quality. To address these challenges, a bioinspired adaptive broadband image sensor is developed. This innovative sensor leverages a meticulously designed type-I heterojunction alignment of 0D perovskite quantum dots (PQDs) and 2D black phosphorus (BP). This configuration enables efficient carrier injection control and advanced computing capabilities within an integrated phototransistor array. The sensor's unique responses to both visible and infrared (IR) light facilitate selective enhancement and precise feature extraction under varying lighting conditions. Furthermore, it supports real-time convolution and image restoration within a convolutional autoencoder (CAE) network, effectively countering image degradation by capturing spectral features. Remarkably, the hardware responsivity weights perform comparably to software-trained weights, achieving an image restoration accuracy of over 85%. This approach offers a robust and versatile solution for machine vision applications that demand precise and adaptive imaging in dynamic lighting environments.
Collapse
Affiliation(s)
- He Shao
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Weijun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yuxuan Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Boxiang Gao
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chunsheng Jiang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yezhan Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Pengshan Xie
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yan Yan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yi Shen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zenghui Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Ruiheng Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Yu Ji
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Haifeng Ling
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong SAR, 999077, China
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 816-8580, Japan
| |
Collapse
|
10
|
Liu Y, Ma Z, Zhang J, He Y, Dai J, Li X, Shi Z, Manna L. Light-Emitting Diodes Based on Metal Halide Perovskite and Perovskite Related Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415606. [PMID: 39887795 DOI: 10.1002/adma.202415606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/18/2024] [Indexed: 02/01/2025]
Abstract
Light-emitting diodes (LEDs) based on halide perovskite nanocrystals have attracted extensive attention due to their considerable luminescence efficiency, wide color gamut, high color purity, and facile material synthesis. Since the first demonstration of LEDs based on MAPbBr3 nanocrystals was reported in 2014, the community has witnessed a rapid development in their performances. In this review, a historical perspective of the development of LEDs based on halide perovskite nanocrystals is provided and then a comprehensive survey of current strategies for high-efficiency lead-based perovskite nanocrystals LEDs, including synthesis optimization, ion doping/alloying, and shell coating is presented. Then the basic characteristics and emission mechanisms of lead-free perovskite and perovskite-related nanocrystals emitters in environmentally friendly LEDs, from the standpoint of different emission colors are reviewed. Finally, the progress in LED applications is covered and an outlook of the opportunities and challenges for future developments in this field is provided.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhuangzhuang Ma
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Jibin Zhang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yanni He
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jinfei Dai
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
| | - Xinjian Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Liberato Manna
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
11
|
Song YH, Tai XL, Ding GJ, Ma ZY, Hao JM, Song KH, Hu YL, Li S, Lin Y, Yao HB. Hetero-Nucleation Induced [111]-Oriented Mixed Halide Perovskite for Stable Pure Red Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411012. [PMID: 39402778 DOI: 10.1002/adma.202411012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/29/2024] [Indexed: 11/29/2024]
Abstract
Mixed halide 3D perovskites are promising for bright, efficient, and wide-color gamut light-emitting diodes (LEDs) due to their excellent carrier transport, high luminescence, and easily tunable bandgaps. However, serious halide ion migration inside mixed halide 3D perovskite results in poor operational and spectral stability of the as-fabricated LEDs. Here, a hetero-nucleation crystallization strategy is reported to grow [111]-orientation preferred mixed halide 3D perovskite CsPbI3-xBrx thin films for stable pure red LEDs. This hetero-nucleation crystallization is enabled by the addition of phosphoric acid (H3PO4) complexation, which promotes the growth of small perovskite grains into large grains with uniform [111]-orientation. The obtained [111]-orientation preferred film exhibits excellent stability under light or electric field stimulus as revealed by model analysis and experimental results compared to that of [001]-orientation preferred film. Thus, based on the [111]-orientation preferred film, the fabricated LED exhibits an external quantum efficiency of 22.8%, a maximum brightness of 12 000 cd m-2, and a half-life time of 4080 min under 1.5 mA cm-2. More importantly, the electroluminescence spectrum of the device remains stable during the continuous operation of 4080 min, showcasing the significant spectral stability improvement enabled by the hetero-nucleation induced [111]-orientation strategy.
Collapse
Affiliation(s)
- Yong-Hui Song
- School of Materials Science and Engineering, Anhui university, Hefei, Anhui, 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiao-Lin Tai
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guan-Jie Ding
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhen-Yu Ma
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jing-Ming Hao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Kuang-Hui Song
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ya-Lan Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shikuo Li
- School of Materials Science and Engineering, Anhui university, Hefei, Anhui, 230026, China
| | - Yue Lin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hong-Bin Yao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
12
|
Alanazi M, Marshall AR, Liu Y, Kim J, Kar S, Snaith HJ, Taylor RA, Farrow T. Inhibiting the Appearance of Green Emission in Mixed Lead Halide Perovskite Nanocrystals for Pure Red Emission. NANO LETTERS 2024; 24:12045-12053. [PMID: 39311748 PMCID: PMC11450971 DOI: 10.1021/acs.nanolett.4c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024]
Abstract
Mixed halide perovskites exhibit promising optoelectronic properties for next-generation light-emitting diodes due to their tunable emission wavelength that covers the entire visible light spectrum. However, these materials suffer from severe phase segregation under continuous illumination, making long-term stability for pure red emission a significant challenge. In this study, we present a comprehensive analysis of the role of halide oxidation in unbalanced ion migration (I/Br) within CsPbI2Br nanocrystals and thin films. We also introduce a new approach using cyclic olefin copolymer (COC) to encapsulate CsPbI2Br perovskite nanocrystals (PNCs), effectively suppressing ion migration by increasing the corresponding activation energy. Compared with that of unencapsulated samples, we observe a substantial reduction in phase separation under intense illumination in PNCs with a COC coating. Our findings show that COC enhances phase stability by passivating uncoordinated surface defects (Pb2+ and I-), increasing the formation energy of halide vacancies, improving the charge carrier lifetime, and reducing the nonradiative recombination density.
Collapse
Affiliation(s)
- Mutibah Alanazi
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Ashley R. Marshall
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
- Helio
Display Materials Ltd., Wood Centre for Innovation, Oxford OX3 8SB, United Kingdom
| | - Yincheng Liu
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
- Institute
of Materials Research and Engineering, Agency for Science, Technology
and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
| | - Jinwoo Kim
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Shaoni Kar
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
- Helio
Display Materials Ltd., Wood Centre for Innovation, Oxford OX3 8SB, United Kingdom
| | - Henry J. Snaith
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Robert A. Taylor
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Tristan Farrow
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
- , NEOM U, and Education, Research and
Innovation Foundation, Tabuk 49643-9136, Saudi
Arabia
| |
Collapse
|
13
|
Liu Y, Ying Y, Xie Q, Gao Z, Shao X, Zhou M, Pei W, Tang X, Tu Y. Bifunctional Ligand Passivation Enables Stable Blue Mixed-Halide CsPb(Br/Cl) 3 Perovskite Quantum Dots toward Light-Emitting Diodes. Inorg Chem 2024; 63:16167-16176. [PMID: 39159335 DOI: 10.1021/acs.inorgchem.4c01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Mixed-halide CsPb(Br/Cl)3 perovskite quantum dots (PeQDs) have attracted extensive attention in light-emitting diodes (LEDs), but their low photoluminescent efficiency and especially poor stability impede their practical applications. Here, we employ bifunctional didodecyldimethylammonium thiocyanide (DDASCN) with a pseudohalogen SCN- and branched DDA+ to obtain blue-emitting CsPbBr2Cl PeQDs. DDASCN significantly boosts the photoluminescence quantum yield to 92% by inhibiting nonradiative recombination. Importantly, DDASCN PeQDs show excellent stabilities against air, UV light, heat, and polar solvents. These improved performances were explained by density functional theory calculation, which shows that SCN- fills the Cl- vacancy by simultaneously binding with undercoordinated Pb2+ and Cs+, while DDA+ connects undercoordinated Br- and lies parallel to the PeQD core, leading to efficient passivation and a strong binding capacity. Finally, we achieved high-performance white LEDs by integrating our PeQDs, resulting in a color-rendering index of 92.9, a color gamut of 119.61%, and chromaticity coordinates of (0.33, 0.33). This provides an effective method to obtain efficient and stable CsPb(Br/Cl)3 PeQDs for practical applications.
Collapse
Affiliation(s)
- Yongfeng Liu
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yupeng Ying
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Qingyu Xie
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Zhaoju Gao
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Xiuwen Shao
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Min Zhou
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Wei Pei
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Xiaosheng Tang
- College of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, Chongqing 400065, People's Republic of China
| | - Yusong Tu
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
14
|
Wei S, Hu J, Bi C, Ren K, Wang X, de de Leeuw NH, Lu Y, Sui M, Wang W. Strongly-Confined CsPbBr 3 Perovskite Quantum Dots with Ultralow Trap Density and Narrow Size Distribution for Efficient Pure-Blue Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400885. [PMID: 38616736 DOI: 10.1002/smll.202400885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/26/2024] [Indexed: 04/16/2024]
Abstract
The development of pure-blue perovskite light-emitting diodes (PeLEDs) faces challenges of spectral stability and low external quantum efficiency (EQE) due to phase separation in mixed halide compositions. Perovskite quantum dots (QDs) with strong confinement effects are promising alternatives to achieve high-quality pure-blue PeLEDs, yet their performance is often hindered by the poor size distribution and high trap density. A strategy combining thermodynamic control with a polishing-driven ligand exchange process to produce high-quality QDs is developed. The strongly-confined pure-blue (≈470 nm) CsPbBr3 QDs exhibit narrow size distribution (12% dispersion) and are achieved in Br-rich ion environment based on growth thermodynamic control. Subsequent polishing-driven ligand exchange process removes imperfect surface sites and replaces initial long-chain organic ligands with short-chain benzene ligands. The resulting QDs exhibit high photoluminescence quantum yield (PLQY) to near-unity. The resulting PeLEDs exhibit a pure-blue electroluminescence (EL) emission at 472 nm with narrow full-width at half-maximum (FWHM) of 25 nm, achieving a maximum EQE of 10.7% and a bright maximum luminance of 7697 cd m-2. The pure-blue PeLEDs show ultrahigh spectral stability under high voltage, a low roll-off of EQE, and an operational half-lifetime (T50) of 127 min at an initial luminance of 103 cd m-2 under continuous operation.
Collapse
Affiliation(s)
- Shibo Wei
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, 266000, China
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Jingcong Hu
- Beijing Key Lab of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Chenghao Bi
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, 266000, China
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, China
| | - Ke Ren
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, 266000, China
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xingyu Wang
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
- Department of Earth Sciences, Utrecht University, Utrecht, 3584 CB, The Netherlands
| | - Nora H de de Leeuw
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
- Department of Earth Sciences, Utrecht University, Utrecht, 3584 CB, The Netherlands
| | - Yue Lu
- Beijing Key Lab of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Manling Sui
- Beijing Key Lab of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Wenxin Wang
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, 266000, China
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| |
Collapse
|
15
|
Li X, Teng L, Ren Y, Liu R, Zhan X, Sun H, Zhang W, Ding J, Zhu H. Ultrafast Rejuvenation of Aged CsPbI 3 Quantum Dots and Efficiency Improvement by Sequential 1-Dodecanethiol Post-Treatment Strategy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43869-43879. [PMID: 39121335 DOI: 10.1021/acsami.4c10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Metal halide perovskite CsPbI3 quantum dots (QDs) have sparked widespread research due to their intriguing optoelectronic. However, the CsPbI3 QDs undergo inevitable aging and luminescence quenching caused by the weak binding ability of oleate (OA-)/oleylammonium (OAm+), hindering further practical application. Herein, we have realized ultrafast rejuvenation of the aged CsPbI3 QDs that have lost their photoluminescence performance based on a 1-dodecanethiol (DDT) surface ligand to restore the outstanding red light emission with a high photoluminescence quantum yield (PLQY) from 25 to 90%. Furthermore, CsPbI3 QDs with DDT surface treatment maintain a cubic phase and high PLQY value even after 35 days. The DDT ligands can form a strong bond with Pb2+ and passivate I- ion vacancies, enhancing radiative recombination efficiency and thereby improving the PLQY of the QDs. The stable yet easily accessible surface of the DDT-capped CsPbI3 QDs was successfully employed as white LEDs and exhibited considerable enhanced luminous performance, suggesting promising application in solid-state lighting fields.
Collapse
Affiliation(s)
- Xin Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Longxun Teng
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yening Ren
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Rui Liu
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaoyuan Zhan
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Haiqing Sun
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Weiwei Zhang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jianxu Ding
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Huiling Zhu
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
16
|
Li H, Zhu X, Zhang D, Gao Y, Feng Y, Ma Z, Huang J, He H, Ye Z, Dai X. Thermal management towards ultra-bright and stable perovskite nanocrystal-based pure red light-emitting diodes. Nat Commun 2024; 15:6561. [PMID: 39095426 PMCID: PMC11297279 DOI: 10.1038/s41467-024-50634-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Despite the promising candidacy of perovskite nanocrystals for light-emitting diodes, their pure red electroluminescence is hindered by low saturated luminance, severe external quantum efficiency roll-off, and inferior operational stability. Here, we report ultra-bright and stable pure red light-emitting diodes by manipulating Joule heat generation in the nanocrystal emissive layer and thermal management within the device. Diphenylphosphoryl azide-mediated regulation of the nanocrystal surface synergistically enhances the optical properties and carrier transport of the emissive layer, enabling reduced Joule heat generation and thus lowering the working temperature. These merits inhibit ion migration of the CsPb(Br/I)3 nanocrystal film, promising excellent spectra stability. Combined with the highly thermal-conductive sapphire substrates and implementation of pulse-driving mode, the pure red light-emitting diodes exhibit an ultra-bright luminance of 390,000 cd m-2, a peak external quantum efficiency of 25%, suppressed efficiency roll-off, an operational half-life of 20 hours, and superior spectral stability within 15 A cm-2.
Collapse
Affiliation(s)
- Hongjin Li
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Xiaofang Zhu
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Dingshuo Zhang
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Yun Gao
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Yifeng Feng
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Zichao Ma
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Jingyun Huang
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Haiping He
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030002, P. R. China
| | - Zhizhen Ye
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China.
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China.
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030002, P. R. China.
| | - Xingliang Dai
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China.
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China.
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030002, P. R. China.
| |
Collapse
|
17
|
Guo J, Xie M, Li H, Zhang L, Zhang L, Zhang X, Zheng W, Tian J. High Efficiency and Low Roll-Off Pure-Red Perovskite LED Enabled by Simultaneously Inhibiting Auger and Trap Recombination of Quantum Dots. NANO LETTERS 2024; 24:6410-6416. [PMID: 38767286 DOI: 10.1021/acs.nanolett.4c01441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
CsPbI3 perovskite quantum dots (QDs) could achieve pure-red emission by reducing their size, but the increased exciton binding energy (EB) and surface defects for the small-sized QDs (SQDs) cause severe Auger and trap recombinations, thus worsening their electroluminescence (EL) performance. Herein, we utilize the dangling bonds of the SQDs as a driving force to accelerate KI dissolution to solve its low solubility in nonpolar solvents, thereby allowing K+ and I- to bond to the surface of SQDs. The EB of the SQDs was decreased from 305 to 51 meV because of the attraction of K+ to electrons, meanwhile surface vacancies were passivated by K+ and I-. The Auger and trap recombinations were simultaneously suppressed by this difunctional ligand. The SQD-based light-emitting diode showed a stable pure-red EL peak of 639 nm, an external quantum efficiency of 25.1% with low roll-off, and a brightness of 5934 cd m-2.
Collapse
Affiliation(s)
- Jie Guo
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Mingyuan Xie
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 610054, China
| | - Hangren Li
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Lin Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Linxing Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Jianjun Tian
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
18
|
Xia Y, Song B, Zhang Z, Wang KL, Li YH, Li N, Chen CH, Chen J, Xing G, Wang ZK. Vertically Concentrated Quantum Wells Enabling Highly Efficient Deep-Blue Perovskite Light-Emitting Diodes. Angew Chem Int Ed Engl 2024; 63:e202403739. [PMID: 38565430 DOI: 10.1002/anie.202403739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Deep-blue perovskite light-emitting diodes (PeLEDs) based on quasi-two-dimensional (quasi-2D) systems exist heightened sensitivity to the domain distribution. The top-down crystallization mode will lead to a vertical gradient distribution of quantum well (QW) structure, which is unfavorable for deep-blue emission. Herein, a thermal gradient annealing treatment is proposed to address the polydispersity issue of vertical QWs in quasi-2D perovskites. The formation of large-n domains at the upper interface of the perovskite film can be effectively inhibited by introducing a low-temperature source in the annealing process. Combined with the utilization of NaBr to inhibit the undesirable n=1 domain, a vertically concentrated QW structure is ultimately attained. As a result, the fabricated device delivers a narrow and stable deep-blue emission at 458 nm with an impressive external quantum efficiency (EQE) of 5.82 %. Green and sky-blue PeLEDs with remarkable EQE of 21.83 % and 17.51 % are also successfully achieved, respectively, by using the same strategy. The findings provide a universal strategy across the entire quasi-2D perovskites, paving the way for future practical application of PeLEDs.
Collapse
Affiliation(s)
- Yu Xia
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Bin Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Zhipeng Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, 999078 Macao SAR, China
| | - Kai-Li Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yu-Han Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Nan Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Chun-Hao Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Jing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, 999078 Macao SAR, China
| | - Zhao-Kui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
19
|
Huang Q, Yin W, Gao B, Zeng Q, Yao D, Zhang H, Zhao Y, Zheng W, Zhang J, Yang X, Zhang X, Rogach AL. Enhancing crystal integrity and structural rigidity of CsPbBr 3 nanoplatelets to achieve a narrow color-saturated blue emission. LIGHT, SCIENCE & APPLICATIONS 2024; 13:111. [PMID: 38734686 PMCID: PMC11088658 DOI: 10.1038/s41377-024-01441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/13/2024]
Abstract
Quantum-confined CsPbBr3 perovskites are promising blue emitters for ultra-high-definition displays, but their soft lattice caused by highly ionic nature has a limited stability. Here, we endow CsPbBr3 nanoplatelets (NPLs) with atomic crystal-like structural rigidity through proper surface engineering, by using strongly bound N-dodecylbenzene sulfonic acid (DBSA). A stable, rigid crystal structure, as well as uniform, orderly-arranged surface of these NPLs is achieved by optimizing intermediate reaction stage, by switching from molecular clusters to mono-octahedra, while interaction with DBSA resulted in formation of a CsxO monolayer shell capping the NPL surface. As a result, both structural and optical stability of the CsPbBr3 NPLs is enhanced by strong covalent bonding of DBSA, which inhibits undesired phase transitions and decomposition of the perovskite phase potentially caused by ligand desorption. Moreover, rather small amount of DBSA ligands at the NPL surface results in a short inter-NPL spacing in their closely-packed films, which facilitates efficient charge injection and transport. Blue photoluminescence of the produced CsPbBr3 NPLs is bright (nearly unity emission quantum yield) and peaks at 457 nm with an extremely narrow bandwidth of 3.7 nm at 80 K, while the bandwidth of the electroluminescence (peaked at 460 nm) also reaches a record-narrow value of 15 nm at room temperature. This value corresponds to the CIE coordinates of (0.141, 0.062), which meets Rec. 2020 standards for ultra-high-definition displays.
Collapse
Affiliation(s)
- Qianqian Huang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, China
| | - Wenxu Yin
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, China
| | - Bo Gao
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, China
| | - Qingsen Zeng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Dong Yao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Yinghe Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weijia Zheng
- Department of Chemistry, University of Victoria, Victoria, BC, Canada.
| | - Jiaqi Zhang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, China
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, China.
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong S.A.R, China.
| |
Collapse
|
20
|
Chen Y, Yang X, Fan X, Kang A, Kong X, Chen G, Zhong C, Lu Y, Fan Y, Hou X, Wu T, Chen Z, Wang S, Lin Y. Electrohydrodynamic Inkjet Printing of Three-Dimensional Perovskite Nanocrystal Arrays for Full-Color Micro-LED Displays. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38706177 DOI: 10.1021/acsami.4c02594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Perovskite nanocrystal (PeNC) arrays are showing a promising future in the next generation of micro-light-emitting-diode (micro-LED) displays due to the narrow emission linewidth and adjustable peak wavelength. Electrohydrodynamic (EHD) inkjet printing, with merits of high resolution, uniformity, versatility, and cost-effectiveness, is among the competent candidates for constructing PeNC arrays. However, the fabrication of red light-emitting CsPbBrxI(3-x) nanocrystal arrays for micro-LED displays still faces challenges, such as low brightness and poor stability. This work proposes a design for a red PeNC colloidal ink that is specialized for the EHD inkjet printing of three-dimensional PeNC arrays with enhanced luminescence and stability as well as being adaptable to both rigid and flexible substrates. Made of a mixture of PeNCs, polymer polystyrene (PS), and a nonpolar xylene solvent, the PeNC colloidal ink enables precise control of array sizes and shapes, which facilitates on-demand micropillar construction. Additionally, the inclusion of PS significantly increases the brightness and environmental stability. By adopting this ink, the EHD printer successfully fabricated full-color 3D PeNC arrays with a spatial resolution over 2500 ppi. It shows the potential of the EHD inkjet printing strategy for high-resolution and robust PeNC color conversion layers for micro-LED displays.
Collapse
Affiliation(s)
- Yihang Chen
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, Fujian, China
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, Fujian, China
| | - Xiao Yang
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, Fujian, China
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, Fujian, China
- Institute of Electromagnetics and Acoustics, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Xiaotong Fan
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, Fujian, China
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, Fujian, China
| | - Ao Kang
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, Fujian, China
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, Fujian, China
| | - Xuemin Kong
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, Fujian, China
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, Fujian, China
| | - Guolong Chen
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, Fujian, China
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, Fujian, China
| | - Chenming Zhong
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, Fujian, China
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, Fujian, China
| | - Yijun Lu
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, Fujian, China
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, Fujian, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, Fujian, China
| | - Yi Fan
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, Fujian, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, Fujian, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, Fujian, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Tingzhu Wu
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, Fujian, China
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, Fujian, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, Fujian, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, Fujian, China
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, Fujian, China
- Institute of Electromagnetics and Acoustics, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, Fujian, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, Fujian, China
| | - Shuli Wang
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, Fujian, China
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, Fujian, China
| | - Yue Lin
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, Fujian, China
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, Fujian, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, Fujian, China
| |
Collapse
|
21
|
Jiang J, Shi M, Xia Z, Cheng Y, Chu Z, Zhang W, Li J, Yin Z, You J, Zhang X. Efficient pure-red perovskite light-emitting diodes with strong passivation via ultrasmall-sized molecules. SCIENCE ADVANCES 2024; 10:eadn5683. [PMID: 38701203 PMCID: PMC11067999 DOI: 10.1126/sciadv.adn5683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Perovskite light-emitting diodes (PeLEDs) have attracted great attention in recent years; however, the halogen vacancy defects in perovskite notably hamper the development of high-efficiency devices. Previously, large-sized passivation agents have been usually used, while the effect of defect passivation is limited due to the weak bonding or the large space steric hindrance. Here, we predict that the ultrasmall-sized formate (Fa) and acetate (Ac) have more efficient passivation ability because of the stronger binding with the perovskite, as demonstrated by density functional theory calculation. We introduce ultrasmall-sized cesium salts (CsFa/CsAc) into buried interface, which can also diffuse into the bulk, resulting in both buried interface and bulk passivation. In addition, the improved perovskite growth has been found due to the enhanced hydrophily after introducing CsFa/CsAc as additive. According to these advantages, a pure-red PeLED with 24.2% efficiency at 639 nm has been achieved.
Collapse
Affiliation(s)
- Ji Jiang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mingming Shi
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhengchang Xia
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong Cheng
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zema Chu
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Zhang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Jingzhen Li
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhigang Yin
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingbi You
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xingwang Zhang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
22
|
Li H, Feng Y, Zhu M, Gao Y, Fan C, Cui Q, Cai Q, Yang K, He H, Dai X, Huang J, Ye Z. Nanosurface-reconstructed perovskite for highly efficient and stable active-matrix light-emitting diode display. NATURE NANOTECHNOLOGY 2024; 19:638-645. [PMID: 38649747 DOI: 10.1038/s41565-024-01652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/13/2024] [Indexed: 04/25/2024]
Abstract
Perovskite quantum dots (QDs) are promising for various photonic applications due to their high colour purity, tunable optoelectronic properties and excellent solution processability. Surface features impact their optoelectronic properties, and surface defects remain a major obstacle to progress. Here we develop a strategy utilizing diisooctylphosphinic acid-mediated synthesis combined with hydriodic acid-etching-driven nanosurface reconstruction to stabilize CsPbI3 QDs. Diisooctylphosphinic acid strongly adsorbs to the QDs and increases the formation energy of halide vacancies, enabling nanosurface reconstruction. The QD film with nanosurface reconstruction shows enhanced phase stability, improved photoluminescence endurance under thermal stress and electric field conditions, and a higher activation energy for ion migration. Consequently, we demonstrate perovskite light-emitting diodes (LEDs) that feature an electroluminescence peak at 644 nm. These LEDs achieve an external quantum efficiency of 28.5% and an operational half-lifetime surpassing 30 h at an initial luminance of 100 cd m-2, marking a tenfold improvement over previously published studies. The integration of these high-performance LEDs with specifically designed thin-film transistor circuits enables the demonstration of solution-processed active-matrix perovskite displays that show a peak external quantum efficiency of 23.6% at a display brightness of 300 cd m-2. This work showcases nanosurface reconstruction as a pivotal pathway towards high-performance QD-based optoelectronic devices.
Collapse
Affiliation(s)
- Hongjin Li
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, People's Republic of China
| | - Yifeng Feng
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, People's Republic of China
| | - Meiyi Zhu
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, People's Republic of China
| | - Yun Gao
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, People's Republic of China
| | - Chao Fan
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, People's Republic of China
| | - Qiaopeng Cui
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiuting Cai
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, People's Republic of China
| | - Ke Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Haiping He
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, People's Republic of China
| | - Xingliang Dai
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, People's Republic of China.
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, People's Republic of China.
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, People's Republic of China.
| | - Jingyun Huang
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, People's Republic of China.
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, People's Republic of China.
| | - Zhizhen Ye
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, People's Republic of China.
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, People's Republic of China.
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, People's Republic of China.
| |
Collapse
|
23
|
Wang YK, Wan H, Teale S, Grater L, Zhao F, Zhang Z, Duan HW, Imran M, Wang SD, Hoogland S, Liao LS. Long-range order enabled stability in quantum dot light-emitting diodes. Nature 2024; 629:586-591. [PMID: 38720080 DOI: 10.1038/s41586-024-07363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/27/2024] [Indexed: 05/18/2024]
Abstract
Light-emitting diodes (LEDs) based on perovskite quantum dots (QDs) have produced external quantum efficiencies (EQEs) of more than 25% with narrowband emission1,2, but these LEDs have limited operating lifetimes. We posit that poor long-range ordering in perovskite QD films-variations in dot size, surface ligand density and dot-to-dot stacking-inhibits carrier injection, resulting in inferior operating stability because of the large bias required to produce emission in these LEDs. Here we report a chemical treatment to improve the long-range order of perovskite QD films: the diffraction intensity from the repeating QD units increases three-fold compared with that of controls. We achieve this using a synergistic dual-ligand approach: an iodide-rich agent (aniline hydroiodide) for anion exchange and a chemically reactive agent (bromotrimethylsilane) that produces a strong acid that in situ dissolves smaller QDs to regulate size and more effectively removes less conductive ligands to enable compact, uniform and defect-free films. These films exhibit high conductivity (4 × 10-4 S m-1), which is 2.5-fold higher than that of the control, and represents the highest conductivity recorded so far among perovskite QDs. The high conductivity ensures efficient charge transportation, enabling red perovskite QD-LEDs that generate a luminance of 1,000 cd m-2 at a record-low voltage of 2.8 V. The EQE at this luminance is more than 20%. Furthermore, the stability of the operating device is 100 times better than previous red perovskite LEDs at EQEs of more than 20%.
Collapse
Affiliation(s)
- Ya-Kun Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, People's Republic of China
| | - Haoyue Wan
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sam Teale
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
| | - Luke Grater
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Feng Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, People's Republic of China
| | - Zhongda Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, People's Republic of China
| | - Hong-Wei Duan
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, People's Republic of China
| | - Muhammad Imran
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sui-Dong Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, People's Republic of China
| | - Sjoerd Hoogland
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Liang-Sheng Liao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, People's Republic of China.
| |
Collapse
|
24
|
Zhou X, Yang M, Shen C, Lian L, Hou L, Zhang J. Synchronously Polishing the Lead-Rich Surface and Passivating Surface Defects of CsPb(Br/I) 3 Quantum Dots for High-Performance Pure-Red PeLEDs. NANO LETTERS 2024; 24:3719-3726. [PMID: 38484387 DOI: 10.1021/acs.nanolett.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Mixed-halide CsPb(Br/I)3 perovskite quantum dots (QDs) are regarded as one of the most promising candidates for pure-red perovskite light-emitting diodes (PeLEDs) due to their precise spectral tuning property. However, the lead-rich surface of these QDs usually results in halide ion migration and nonradiative recombination loss, which remains a great challenge for high-performance PeLEDs. To solve the above issues, we employ a chelating agent of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid hydrate (DOTA) to polish the lead-rich surface of the QDs and meanwhile introduce a new ligand of 2,3-dimercaptosuccinic acid (DMSA) to passivate surface defects of the QDs. This synchronous post-treatment strategy results in high-quality CsPb(Br/I)3 QDs with suppressed halide ion migration and an improved photoluminescence quantum yield, which enables us to fabricate spectrally stable pure-red PeLEDs with a peak external quantum efficiency of 23.2%, representing one of the best performance pure-red PeLEDs based on mixed-halide CsPb(Br/I)3 QDs reported to date.
Collapse
Affiliation(s)
- Xin Zhou
- National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Semiconductor Micro Display, Foshan Nationstar Optoelectronics Company Ltd., Foshan 528000, China
| | - Mengmeng Yang
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| | - Chao Shen
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Linyuan Lian
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Lintao Hou
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Jibin Zhang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
25
|
Feng Y, Li H, Zhu M, Gao Y, Cai Q, Lu G, Dai X, Ye Z, He H. Nucleophilic Reaction-Enabled Chloride Modification on CsPbI 3 Quantum Dots for Pure Red Light-Emitting Diodes with Efficiency Exceeding 26 . Angew Chem Int Ed Engl 2024; 63:e202318777. [PMID: 38258990 DOI: 10.1002/anie.202318777] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Indexed: 01/24/2024]
Abstract
High-performance pure red perovskite light-emitting diodes (PeLEDs) with an emission wavelength shorter than 650 nm are ideal for wide-color-gamut displays, yet remain an unprecedented challenge to progress. Mixed-halide CsPb(Br/I)3 emitter-based PeLEDs suffer spectral stability induced by halide phase segregation and CsPbI3 quantum dots (QDs) suffer from a compromise between emission wavelength and electroluminescence efficiency. Here, we demonstrate efficient pure red PeLEDs with an emission centered at 638 nm based on PbClx -modified CsPbI3 QDs. A nucleophilic reaction that releases chloride ions and manipulates the ligand equilibrium of the colloidal system is developed to synthesize the pure red emission QDs. The comprehensive structural and spectroscopic characterizations evidence the formation of PbClx outside the CsPbI3 QDs, which regulates exciton recombination and prevents the exciton from dissociation induced by surface defects. In consequence, PeLEDs based on PbClx -modified CsPbI3 QDs with superior optoelectronic properties demonstrate stable electroluminescence spectra at high driving voltages, a record external quantum efficiency of 26.1 %, optimal efficiency roll-off of 16.0 % at 1000 cd m-2 , and a half lifetime of 7.5 hours at 100 cd m-2 , representing the state-of-the-art pure red PeLEDs. This work provides new insight into constructing the carrier-confined structure on perovskite QDs for high-performance PeLEDs.
Collapse
Affiliation(s)
- Yifeng Feng
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Hongjin Li
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Meiyi Zhu
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China
| | - Yun Gao
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Qiuting Cai
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Guochao Lu
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Xingliang Dai
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Shanxi, 030000, China
| | - Zhizhen Ye
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Shanxi, 030000, China
| | - Haiping He
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Shanxi, 030000, China
| |
Collapse
|
26
|
Wang H, Du Z, Jiang X, Cao S, Zou B, Zheng J, Zhao J. Ultrastable Photodetectors Based on Blue CsPbBr 3 Perovskite Nanoplatelets via a Surface Engineering Strategy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11694-11703. [PMID: 38387044 DOI: 10.1021/acsami.3c18659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Recently, photodetectors based on perovskite nanoplatelets (NPLs) have attracted considerable attention in the visible spectral region owing to their large absorption cross-section, high exciton binding energy, excellent charge transfer properties, and appropriate flexibility. However, their stability and performance are still challenging for perovskite NPL photodetectors. Here, a surface engineering strategy to enhance the optical stability of blue-light CsPbBr3 NPLs by acetylenedicarboxylic acid (ATDA) treatment has been developed. ATDA has strong binding capacity and a short chain length, which can effectively passivate defects and significantly improve the photoluminescence quantum efficiency, stability, and carrier mobility of NPLs. As a result, ATDA-treated CsPbBr3 NPLs exhibit improved optical properties in both solutions and films. The NPL solution maintains high PL performance even after being heated at 80 °C for 2 h, and the NPL film remains nondegradable after 4 h of exposure to ultraviolet irradiation. Especially, photodetectors based on the treated CsPbBr3 NPL films demonstrate exceptional performance, especially when the detectivity approaches up to 9.36 × 1012 Jones, which can be comparable to the best CsPbBr3 NPL photodetectors ever reported. More importantly, the assembled devices demonstrated high stability (stored in an air environment for more than 30 days), significantly exceeding that of untreated NPLs.
Collapse
Affiliation(s)
- Hao Wang
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Zhentao Du
- School of Resources, Environment, and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Xue Jiang
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Sheng Cao
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Bingsuo Zou
- School of Resources, Environment, and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Jinju Zheng
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211, China
| | - Jialong Zhao
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
- School of Resources, Environment, and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
27
|
Liang S, Hao J, Gu Z, Pang X, He Y. Regulating Charge Carrier Dynamics in Stable Perovskite Nanorods for Photo-Induced Atom Transfer Radical Polymerization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306506. [PMID: 37803459 DOI: 10.1002/smll.202306506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Indexed: 10/08/2023]
Abstract
Semiconducting nanocrystals have attracted world-wide research interest in artificial photosynthesis due to their appealing properties and enticing potentials in converting solar energy into valuable chemicals. Compared to 0D nanoparticles, 1D nanorods afford long-distance charge carriers separation and extended charge carriers lifetime due to the release of quantum confinement in axial direction. Herein, stable CsPbBr3 nanorods of distinctive dimensions are crafted without altering their properties and morphology via grafting hydrophobic polystyrene (PS) chains through a post-synthesis ligand exchange process. The resulting PS-capped CsPbBr3 nanorods exhibit a series of enhanced stabilities against UV irradiation, elevated temperature, and polar solvent, making them promising candidates for photo-induced atom transfer radical polymerization (ATRP). Tailoring the surface chemistry and dimension of the PS-capped CsPbBr3 nanorods endows stable, but variable reaction kinetics in the photo-induced ATRP of methyl methacrylate. The trapping-detrapping process of photogenerated charge carriers lead to extended lifetime of charge carriers in lengthened CsPbBr3 nanorods, contributing to a facilitated reaction kinetics of photo-induced ATRP. Therefore, by leveraging such stable PS-capped CsPbBr3 nanorods, the effects of surface chemistry and charge carriers dynamics on its photocatalytic performance are scrutinized, providing fundamental understandings for designing next-generation efficient nanostructured photocatalyst in artificial photosynthesis and solar energy conversion.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55415-4310, United States
| | - Jingyi Hao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongheng Gu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanjie He
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
28
|
Kim D, Yun T, An S, Lee CL. How to improve the structural stabilities of halide perovskite quantum dots: review of various strategies to enhance the structural stabilities of halide perovskite quantum dots. NANO CONVERGENCE 2024; 11:4. [PMID: 38279984 PMCID: PMC10821855 DOI: 10.1186/s40580-024-00412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/08/2024] [Indexed: 01/29/2024]
Abstract
Halide perovskites have emerged as promising materials for various optoelectronic devices because of their excellent optical and electrical properties. In particular, halide perovskite quantum dots (PQDs) have garnered considerable attention as emissive materials for light-emitting diodes (LEDs) because of their higher color purities and photoluminescence quantum yields compared to conventional inorganic quantum dots (CdSe, ZnSe, ZnS, etc.). However, PQDs exhibit poor structural stabilities in response to external stimuli (moisture, heat, etc.) owing to their inherent ionic nature. This review presents recent research trends and insights into improving the structural stabilities of PQDs. In addition, the origins of the poor structural stabilities of PQDs and various methods to overcome this drawback are discussed. The structural degradation of PQDs is mainly caused by two mechanisms: (1) defect formation on the surface of the PQDs by ligand dissociation (i.e., detachment of weakly bound ligands from the surface of PQDs), and (2) vacancy formation by halide migration in the lattices of the PQDs due to the low migration energy of halide ions. The structural stabilities of PQDs can be improved through four methods: (1) ligand modification, (2) core-shell structure, (3) crosslinking, and (4) metal doping, all of which are presented in detail herein. This review provides a comprehensive understanding of the structural stabilities and opto-electrical properties of PQDs and is expected to contribute to future research on improving the device performance of perovskite quantum dot LEDs (PeLEDs).
Collapse
Affiliation(s)
- Dokyum Kim
- Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Taesun Yun
- Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Department of Physics, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sangmin An
- Department of Physics, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Chang-Lyoul Lee
- Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
29
|
Guo J, Fu Y, Zheng W, Xie M, Huang Y, Miao Z, Han C, Yin W, Zhang J, Yang X, Tian J, Zhang X. Entropy-Driven Strongly Confined Low-Toxicity Pure-Red Perovskite Quantum Dots for Spectrally Stable Light-Emitting Diodes. NANO LETTERS 2024; 24:417-423. [PMID: 38149580 DOI: 10.1021/acs.nanolett.3c04214] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Spectrally stable pure-red perovskite quantum dots (QDs) with low lead content are essential for high-definition displays but are difficult to synthesize due to QD self-purification. Here, we make use of entropy-driven quantum-confined pure-red perovskite QDs to fabricate light-emitting diodes (LEDs) that have low toxicity and are efficient and spectrum-stable. Based on experimental data and first-principles calculations, multiple element alloying results in a 60% reduction in lead content while improving QD entropy to promote crystal stability. Entropy-driven QDs exhibit photoluminescence with 100% quantum yields and single-exponential decay lifetimes without alteration of their morphology or crystal structure. The pure-red LEDs utilizing entropy-driven QDs have spectrally stable electroluminescence, achieving a brightness of 4932 cd/m2, a maximum external quantum efficiency of over 20%, and a 15-fold longer operational lifetime than the CsPbI3 QD-based LEDs. These achievements demonstrate that entropy-driven QDs can mitigate local compositional heterogeneity and ion migration.
Collapse
Affiliation(s)
- Jie Guo
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Yuhao Fu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Weijia Zheng
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Mingyuan Xie
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuchao Huang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Zeyu Miao
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Ce Han
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Wenxu Yin
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Jiaqi Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, P.R. China
| | - Jianjun Tian
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
30
|
Yuan T, Teng Q, Li C, Li J, Su W, Song X, Shi Y, Xu H, Han Y, Wei S, Zhang Y, Li X, Li Y, Fan L, Yuan F. The emergence and prospects of carbon dots with solid-state photoluminescence for light-emitting diodes. MATERIALS HORIZONS 2024; 11:102-112. [PMID: 37823244 DOI: 10.1039/d3mh01292a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The significant features of carbon dots (CDs), such as bright and tunable photoluminescence, high thermal stability, and low toxicity, endow them with tremendous potential for application in next generation optoelectronics. Despite great progress achieved in the design of high-performance CDs so far, the practical applications in solid-state lighting and displays have been retarded by the aggregation-caused quenching (ACQ) effect ascribed to direct π-π interactions. This review provides a comprehensive overview of the recent progress made in solid-state CD emitters, including their synthesis, optical properties and applications in light-emitting diodes (LEDs). Their triplet-excited-state-involved properties, as well as their recent advances in phosphor-converted LEDs and electroluminescent LEDs, are mainly reviewed here. Finally, the prospects and challenges of solid-state CD-based LEDs are discussed with an eye on future development. We hope that this review will provide critical insights to inspire new exciting discoveries on solid-state CDs from both fundamental and practical standpoints so that the realization of their potential in optoelectronic areas can be facilitated.
Collapse
Affiliation(s)
- Ting Yuan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Qian Teng
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Chenhao Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Jinsui Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Wen Su
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xianzhi Song
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yuxin Shi
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Huimin Xu
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yuyi Han
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Shuyan Wei
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yang Zhang
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Xiaohong Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yunchao Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Louzhen Fan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Fanglong Yuan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
31
|
Zhang J, Cai B, Zhou X, Yuan F, Yin C, Wang H, Chen H, Ji X, Liang X, Shen C, Wang Y, Ma Z, Qing J, Shi Z, Hu Z, Hou L, Zeng H, Bai S, Gao F. Ligand-Induced Cation-π Interactions Enable High-Efficiency, Bright, and Spectrally Stable Rec. 2020 Pure-Red Perovskite Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303938. [PMID: 37464982 DOI: 10.1002/adma.202303938] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Achieving high-performance perovskite light-emitting diodes (PeLEDs) with pure-red electroluminescence for practical applications remains a critical challenge because of the problematic luminescence property and spectral instability of existing emitters. Herein, high-efficiency Rec. 2020 pure-red PeLEDs, simultaneously exhibiting exceptional brightness and spectral stability, based on CsPb(Br/I)3 perovskite nanocrystals (NCs) capping with aromatic amino acid ligands featuring cation-π interactions, are reported. It is proven that strong cation-π interactions between the PbI6 -octahedra of perovskite units and the electron-rich indole ring of tryptophan (TRP) molecules not only chemically polish the imperfect surface sites, but also markedly increase the binding affinity of the ligand molecules, leading to high photoluminescence quantum yields and greatly enhanced spectral stability of the CsPb(Br/I)3 NCs. Moreover, the incorporation of small-size aromatic TRP ligands ensures superior charge-transport properties of the assembled emissive layers. The resultant devices emitting at around 635 nm demonstrate a champion external quantum efficiency of 22.8%, a max luminance of 12 910 cd m-2 , and outstanding spectral stability, representing one of the best-performing Rec. 2020 pure-red PeLEDs achieved so far.
Collapse
Affiliation(s)
- Jibin Zhang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Bo Cai
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Xin Zhou
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Fanglong Yuan
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Chunyang Yin
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Heyong Wang
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Hongting Chen
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, 510632, China
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Xinzhen Ji
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Xiangfei Liang
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Chao Shen
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Yu Wang
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Zhuangzhuang Ma
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Jian Qing
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Zhangjun Hu
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Lintao Hou
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Sai Bai
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Feng Gao
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| |
Collapse
|
32
|
Ma Z, Ji X, Lin S, Chen X, Wu D, Li X, Zhang Y, Shan C, Shi Z, Fang X. Recent Advances and Opportunities of Eco-Friendly Ternary Copper Halides: A New Superstar in Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300731. [PMID: 36854310 DOI: 10.1002/adma.202300731] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Recently, the newly-emerging lead-free metal-halide materials with less toxicity and superior optoelectronic properties have received wide attention as the safer and potentially more robust alternatives to lead-based perovskite counterparts. Among them, ternary copper halides (TCHs) have become a vital group due to their unique features, including abundant structural diversity, ease of synthesis, unprecedented optoelectronic properties, high abundance, and low cost. Although the recent efforts in this field have made certain progresses, some scientific and technological issues still remain unresolved. Herein, a comprehensive and up-to-date overview of recent progress on the fundamental characteristics of TCH materials and their versatile applications is presented, which contains topics such as: i) crystal and electronic structure features and synthesis strategies; ii) mechanisms of self-trapped excitons, luminescence regulation, and environmental stability; and iii) their burgeoning optoelectronic devices of phosphor-converted white light-emitting diodes (WLEDs), electroluminescent LEDs, anti-counterfeiting, X-ray scintillators, photodetectors, sensors, and memristors. Finally, the current challenges together with future perspectives on the development of TCH materials and applications are also critically described, which is considered to be critical for accelerating the commercialization of these rapidly evolving technologies.
Collapse
Affiliation(s)
- Zhuangzhuang Ma
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Xinzhen Ji
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Shuailing Lin
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Xu Chen
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Di Wu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Xinjian Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Yu Zhang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Chongxin Shan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, Institute of Optoelectronics, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
33
|
Huang S, Gao S, Zhang H, Bian C, Zhao Y, Gu X, Xu W. Multi-Functional Ethylene-vinyl Acetate Copolymer Flexible Composite Film Embedded with Indium Acetate-Passivated Perovskite Quantum Dots. Polymers (Basel) 2023; 15:3986. [PMID: 37836035 PMCID: PMC10575095 DOI: 10.3390/polym15193986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/02/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
In recent years, all-inorganic cesium lead halide perovskite quantum dots have emerged as promising candidates for various optoelectronic applications, including sensors, light-emitting diodes, and solar cells, owing to their exceptional photoelectric properties. However, their commercial utilization has been limited by stability issues. In this study, we addressed this challenge by passivating the surface defects of CsPbBr3 quantum dots using indium acetate, a metal-organic compound. The resulting CsPbBr3 quantum dots exhibited not only high photoluminescence intensity, but also a remarkably narrow half-peak width of 19 nm. Furthermore, by embedding the CsPbBr3 quantum dots in ethylene-vinyl acetate, we achieved stretchability and significantly enhanced stability while preserving the original luminous intensity. The resulting composite film demonstrated the potential to improve the power conversion efficiency of crystalline silicon solar cells and enabled the creation of excellent white light-emitting diodes with coordinates of (0.33, 0.31). This co-passivation strategy, involving surface passivation and polymer packaging, provides a new idea for the practical application of CsPbBr3 quantum dots.
Collapse
Affiliation(s)
- Sheng Huang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China (Y.Z.)
| | | | | | | | | | - Xiuquan Gu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China (Y.Z.)
| | - Wenjie Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China (Y.Z.)
| |
Collapse
|
34
|
Chen K, Zhang D, Du Q, Hong W, Liang Y, Duan X, Feng S, Lan L, Wang L, Chen J, Ma D. Synergistic Halide- and Ligand-Exchanges of All-Inorganic Perovskite Nanocrystals for Near-Unity and Spectrally Stable Red Emission. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2337. [PMID: 37630921 PMCID: PMC10458086 DOI: 10.3390/nano13162337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
All-inorganic perovskite nanocrystals (NCs) of CsPbX3 (X = Cl, Br, I) are promising for displays due to wide color gamut, narrow emission bandwidth, and high photoluminescence quantum yield (PLQY). However, pure red perovskite NCs prepared by mixing halide ions often result in defects and spectral instabilities. We demonstrate a method to prepare stable pure red emission and high-PLQY-mixed-halide perovskite NCs through simultaneous halide-exchange and ligand-exchange. CsPbBr3 NCs with surface organic ligands are first synthesized using the ligand-assisted reprecipitation (LARP) method, and then ZnI2 is introduced for anion exchange to transform CsPbBr3 to CsPbBrxI3-x NCs. ZnI2 not only provides iodine ions but also acts as an inorganic ligand to passivate surface defects and prevent ion migration, suppressing non-radiative losses and halide segregation. The luminescence properties of CsPbBrxI3-x NCs depend on the ZnI2 content. By regulating the ZnI2 exchange process, red CsPbBrxI3-x NCs with organic/inorganic hybrid ligands achieve near-unity PLQY with a stable emission peak at 640 nm. The CsPbBrxI3-x NCs can be combined with green CsPbBr3 NCs to construct white light-emitting diodes with high-color gamut. Our work presents a facile ion exchange strategy for preparing spectrally stable mixed-halide perovskite NCs with high PLQY, approaching the efficiency limit for display or lighting applications.
Collapse
Affiliation(s)
- Kaiwang Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China; (K.C.); (D.Z.); (Q.D.); (W.H.); (Y.L.); (X.D.); (S.F.); (L.L.)
| | - Dengliang Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China; (K.C.); (D.Z.); (Q.D.); (W.H.); (Y.L.); (X.D.); (S.F.); (L.L.)
| | - Qing Du
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China; (K.C.); (D.Z.); (Q.D.); (W.H.); (Y.L.); (X.D.); (S.F.); (L.L.)
| | - Wei Hong
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China; (K.C.); (D.Z.); (Q.D.); (W.H.); (Y.L.); (X.D.); (S.F.); (L.L.)
| | - Yue Liang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China; (K.C.); (D.Z.); (Q.D.); (W.H.); (Y.L.); (X.D.); (S.F.); (L.L.)
| | - Xingxing Duan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China; (K.C.); (D.Z.); (Q.D.); (W.H.); (Y.L.); (X.D.); (S.F.); (L.L.)
| | - Shangwei Feng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China; (K.C.); (D.Z.); (Q.D.); (W.H.); (Y.L.); (X.D.); (S.F.); (L.L.)
| | - Linfeng Lan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China; (K.C.); (D.Z.); (Q.D.); (W.H.); (Y.L.); (X.D.); (S.F.); (L.L.)
| | - Lei Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Jiangshan Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China; (K.C.); (D.Z.); (Q.D.); (W.H.); (Y.L.); (X.D.); (S.F.); (L.L.)
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China; (K.C.); (D.Z.); (Q.D.); (W.H.); (Y.L.); (X.D.); (S.F.); (L.L.)
| |
Collapse
|
35
|
Lin Q, Zhu Y, Wang Y, Li D, Zhao Y, Liu Y, Li F, Huang W. Flexible Quantum Dot Light-Emitting Device for Emerging Multifunctional and Smart Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210385. [PMID: 36880739 DOI: 10.1002/adma.202210385] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Quantum dot light-emitting diodes (QLEDs), owing to their exceptional performances in device efficiency, color purity/tunability in the visible region and solution-processing ability on various substrates, become a potential candidate for flexible and ultrathin electroluminescent (EL) lighting and display. Moreover, beyond the lighting and display, flexible QLEDs are enabled with endless possibilities in the era of the internet of things and artificial intelligence by acting as input/output ports in wearable integrated systems. Challenges remain in the development of flexible QLEDs with the goals for high performance, excellent flexibility/even stretchability, and emerging applications. In this paper, the recent developments of QLEDs including quantum dot materials, working mechanism, flexible/stretchable strategies and patterning strategies, and highlight its emerging multifunctional integrations and smart applications covering wearable optical medical devices, pressure-sensing EL devices, and neural smart EL devices, are reviewed. The remaining challenges are also summarized and an outlook on the future development of flexible QLEDs made. The review is expected to offer a systematic understanding and valuable inspiration for flexible QLEDs to simultaneously satisfy optoelectronic and flexible properties for emerging applications.
Collapse
Affiliation(s)
- Qinghong Lin
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, P. R. China
| | - Yangbin Zhu
- School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou, 325035, P. R. China
| | - Yue Wang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, P. R. China
| | - Deli Li
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, P. R. China
| | - Yi Zhao
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, P. R. China
| | - Yang Liu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, P. R. China
| | - Fushan Li
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Wei Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, P. R. China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| |
Collapse
|