1
|
Yang J, Wang F, Huang S, Feng T, Xiong K, Chen Y, Chao H. A Ruthenium(II) Complex Inhibits BRD4 for Synergistic Seno- and Chemo-Immunotherapy in Cisplatin-Resistant Tumor Cells. Angew Chem Int Ed Engl 2025; 64:e202505689. [PMID: 40151095 DOI: 10.1002/anie.202505689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 03/27/2025] [Indexed: 03/29/2025]
Abstract
Drug resistance is a significant challenge for tumor therapy. Activating immunity is an effective method to combat drug-resistant tumors. Utilizing metallic chemotherapeutic agents to induce nonapoptotic programmed cell death is a practical approach to stimulate immunity. Besides, triggering tumor cell senescence, named senotherapy, is also an effective but often ignored method to induce immune responses. Despite some progress, reports on metallic immunotherapeutic stimuli are sparse and mainly delve into the level of organelle targeting, with vague drug-target mechanisms. Here, we report a Ru(II) complex (Ru2c) inhibits BRD4 with high affinity at a nanomolar constant. After encapsulation into biotin-DNA cage, Ru2c@biotin-DNA cage was demonstrated to kill drug-resistant cancer cells through a synergistic apoptosis-ferroptosis-senescence pathway, exhibiting 51-fold anticancer activity compared to the commercial inhibitor JQ-1. Ru2c effectively erased drug-resistant tumors and activated innate and acquired immunity in vivo. To the best of our knowledge, Ru2c is the first metal-based BRD4 inhibitor to achieve synergistic seno-immunotherapy and chemo-immunotherapy.
Collapse
Affiliation(s)
- Jinrong Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P.R. China
| | - Fa Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P.R. China
| | - Shuqi Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P.R. China
| | - Tao Feng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P.R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P.R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P.R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P.R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P.R. China
| |
Collapse
|
2
|
Zhang S, Wang F, You J, Hou J, Chen S, Zhao E, He Z. Oxygen-Independent Two-Photon Photodynamic Therapy Through Novel Photoinduced Triarylamine-Radical Cations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503981. [PMID: 40434259 DOI: 10.1002/smll.202503981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/15/2025] [Indexed: 05/29/2025]
Abstract
Photodynamic therapy (PDT) generally employs cytotoxic reactive oxygen species (ROS) for eliminating tumors. However, most photosensitizers rely on oxygen to sensitize ROS production, which conflicts with the pathological hypoxia environment in solid tumors. Thus, developing oxygen-independent therapeutic strategies for the combat of tumors is in urgent need. In this work, we report the usage of novel photoinduced reactive nitrogen radical cations for oxygen-independent PDT. Three triarylamine derivatives (PNA-1/2/9) are facilely constructed through a highly efficient one-step reaction from common commercially available reagents, and demonstrate outstanding photoinduced oxidative capabilities, which are confirmed as triarylamine radical cations (PNA•+). The generation of PNA•+ does not require oxygen, and its stability surpasses that of ROS, leading to a more effective PDT outcome. Detailed studies reveal the excellent lipid-droplet targeting of PNA and high in vitro PDT efficacy even in hypoxic environments. Remarkably, these triarylamines demonstrate excellent two-photon absorbance with high cross-sections of up to 700 GM. Furthermore, effectively inhibition of tumor growth is observed in mouse model under two-photon excitation (808 nm). To the best of the knowledge, this work is the first case to use triarylamine radical cations for oxygen-independent PDT, opening a new avenue for the effective treatment of hypoxic tumors.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Science and School of Biomedical Engineering, Harbin Institute of Technology, Shenzhen, Guangdong, 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Fei Wang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Jiawei You
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Sijie Chen
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Engui Zhao
- School of Science and School of Biomedical Engineering, Harbin Institute of Technology, Shenzhen, Guangdong, 518055, China
| | - Zikai He
- School of Science and School of Biomedical Engineering, Harbin Institute of Technology, Shenzhen, Guangdong, 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| |
Collapse
|
3
|
Mandal A, Singh V, Peters S, Mandal AA, Sadhukhan T, Koch B, Banerjee S. Ferrocene conjugated Os(II) complex for photo-catalytic cancer therapy of triple-negative breast cancer cells. Dalton Trans 2025; 54:6785-6789. [PMID: 40241667 DOI: 10.1039/d5dt00515a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
A novel ferrocene-conjugated bimetallic Os(II) photocatalyst (OsFe) showed micromolar photocatalytic anticancer activity against triple-negative breast cancer cells via NADH oxidation and caspase 3 activation under visible light.
Collapse
Affiliation(s)
- Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Virendra Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Silda Peters
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Tumpa Sadhukhan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| | - Biplob Koch
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
4
|
Yadav AK, Kushwaha R, Mandal AA, Mandal A, Banerjee S. Intracellular Photocatalytic NADH/NAD(P)H Oxidation for Cancer Drug Development. J Am Chem Soc 2025; 147:7161-7181. [PMID: 39980079 DOI: 10.1021/jacs.4c18328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Photocatalytic cancer therapy (PCT) has emerged as a cutting-edge anticancer mechanism of action, harnessing light energy to mediate the catalytic oxidation of intracellular substrates. PCT is of significant current importance due to its potential to address the limitations of conventional chemotherapy, particularly drug resistance and side effects. This approach offers a noninvasive, targeted cancer treatment option by utilizing metal-based photocatalysts to induce redox and metabolic disorders within cancer cells. The photocatalysts disrupt the cancer cell metabolism by converting NADH/NAD(P)H to NAD+/NAD(P)+ via catalytic photoredox processes, altering intracellular NAD+/NADH or NAD(P)+/NAD(P)H ratios, which are crucial for cellular metabolism. Ir(III), Ru(II), Re(I), and Os(II) photocatalysts demonstrated promising PCT efficacy. Despite these developments, gaps remain in the literature for translating this new anticancer mechanism into clinical trials. This Perspective critically examines the developments in this research area and provides future directions for designing efficient photocatalysts for PCT.
Collapse
Affiliation(s)
- Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
5
|
Shi H, Marchi RC, Sadler PJ. Advances in the Design of Photoactivatable Metallodrugs: Excited State Metallomics. Angew Chem Int Ed Engl 2025; 64:e202423335. [PMID: 39806815 DOI: 10.1002/anie.202423335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Indexed: 01/16/2025]
Abstract
Photoactivatable metal complexes offer the prospect of novel drugs with low side effects and new mechanisms of action to combat resistance to current therapy. We highlight recent progress in the design of platinum, ruthenium, iridium, gold and other transition metal complexes, especially for applications as anticancer and anti-infective agents. In particular, understanding excited state chemistry related to identification of the bioactive species (excited state metallomics/pharmacophores) is important. Photoactivatable metallodrugs are classified here as photocatalysts, photorelease agents and ligand-activated agents. Their activation wavelengths, cellular mechanisms of action, experimental and theoretical metallomics of excited states and photoproducts are discussed to explore new strategies for the design and investigation of photoactivatable metallodrugs. These photoactivatable metallodrugs have potential in clinical applications of Photodynamic Therapy (PDT), Photoactivated Chemotherapy (PACT) and Photothermal Therapy (PTT).
Collapse
Affiliation(s)
- Huayun Shi
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Rafael C Marchi
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
6
|
Wang X, Wang Z, Hang H, Feng F. Auto-Deactivation of BODIPY-Derived Type I Photosensitizer Post Photodynamic Therapy under Hypoxia. Chembiochem 2025; 26:e202400767. [PMID: 39562291 DOI: 10.1002/cbic.202400767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
The long-lasting activity of photosensitizers during photodynamic therapy (PDT) causes excessive damage and arouses great concerns about biosafety. Herein, we synthesized a pyridinium-decorated diiodo-BODIPY compound (PyBDP) and investigated its photosensitizing activity under hypoxic condition in the presence of NADH that is abundant in the mitochondria of hypoxic tumors. The unique property of PyBDP lies in the redox environment-dependent photo-response. At green light exposure, PyBDP is converted into a colorless inactive form by interacting with NADH in a two-step one-electron transfer process. Interestingly, the NADH-dependent hydrogenation of PyBDP is affected by the presence of cytochrome c (Cyt cox) that is an important component of mitochondrial electron transport chain (Mito-ETC), unless Cyt cox is exhausted. Active radical species is produced during the photocatalytic reaction, which adds the understanding of PyBDP-induced photodamage. Therefore, we applied the strategy of auto-deactivation PDT using a BODIPY photosensitizer by tethering triphenylphosphonium to PyBDP. After PDT effect in a type I pathway, the photosensitizer underwent almost entire auto-deactivation in hypoxic HeLa cells. This work paves a way for the development of reductive PDT with enhanced safety and efficacy in fighting hypoxic tumors independent on reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Xia Wang
- MOE Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Zhaobin Wang
- MOE Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - He Hang
- MOE Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Fude Feng
- MOE Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| |
Collapse
|
7
|
Yu ZQ, Pan W, Yang X, Tian M, Zhang J, Liu H, Yang L, Liu X, Yan M, Xu S. Mitochondria-Nucleus Migration Probe for Ultrasensitive Monitoring of mtDNA Damage in Living Cells. Anal Chem 2025; 97:584-593. [PMID: 39739923 DOI: 10.1021/acs.analchem.4c04862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Mitochondrial DNA (mtDNA) damage is a prevalent phenomenon that has been proven to be implicated in a wide spectrum of diseases. However, the progressive attenuation of probe signals in response to mtDNA damage within living cells inherently limits the sensitivity and precision of current probes for detecting mtDNA damage. Herein, we employ an innovative organelle signal ratio imaging approach, utilizing the mitochondria-nucleus migration probe MCQ, to achieve unparalleled sensitivity in detecting mtDNA damage in living cells. MCQ exhibited an initial preferential binding to mtDNA, facilitated by its cationic quinolinium moiety, but migrated to the nucleus upon mtDNA damage. This unique migration behavior not only enhanced the spatial identifiability of mtDNA damage but also amplified detection sensitivity and precision significantly by harnessing the intensified nucleus signal against the attenuated mitochondrial signal. This innovative approach established a positive correlation between the signal and mtDNA damage, enabling the detection of even subtle mtDNA damage at the early stage of apoptosis with a remarkable 23-fold enhancement following just 5 min H2O2 induction in living cells, whereas conventional methods relying solely on the fading of mitochondrial signals proved insufficient. Furthermore, MCQ's ability to monitor the occurrence of mtDNA damage achieved the intricate differentiation between apoptosis and ferroptosis. By monitoring mtDNA damage, drug-induced apoptosis in cancer cells was further conducted using MCQ to evaluate the therapeutic efficacy of four anticancer drugs at very low concentrations. This innovative strategy not only paves the way for ultrasensitive detection of mtDNA damage but also holds immense promise for early monitoring of mtDNA damage-associated diseases.
Collapse
Affiliation(s)
- Zhen-Qing Yu
- School of Chemistry and Chemical Engineering University of Jinan, Jinan 250022, People's Republic of China
| | - Wenjing Pan
- School of Chemistry and Chemical Engineering University of Jinan, Jinan 250022, People's Republic of China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering University of Jinan, Jinan 250022, People's Republic of China
| | - Minggang Tian
- School of Chemistry and Chemical Engineering University of Jinan, Jinan 250022, People's Republic of China
| | - Jing Zhang
- School of Chemistry and Chemical Engineering University of Jinan, Jinan 250022, People's Republic of China
| | - Hongwen Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering and College of Medicine, Linyi University, Linyi 276000, China
| | - Xingjiang Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mei Yan
- School of Chemistry and Chemical Engineering University of Jinan, Jinan 250022, People's Republic of China
| | - Shuai Xu
- School of Chemistry and Chemical Engineering University of Jinan, Jinan 250022, People's Republic of China
| |
Collapse
|
8
|
Zhang J, Wang S, Sun Q, Zhang J, Shi X, Yao M, Chen J, Huang Q, Zhang G, Huang Q, Ai K, Bai Y. Peroxynitrite-Free Nitric Oxide-Embedded Nanoparticles Maintain Nitric Oxide Homeostasis for Effective Revascularization of Myocardial Infarcts. ACS NANO 2024; 18:32650-32671. [PMID: 39545833 DOI: 10.1021/acsnano.4c10118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Revascularization is crucial for treating myocardial infarction (MI). Nitric oxide (NO), at an appropriate concentration, is recognized as an ideal and potent pro-angiogenic factor. However, the application of NO in the treatment of MI is limited. Improper NO supplementation is harmful to revascularization because NO is converted into harmful peroxynitrite (ONOO-) in MI tissues with high reactive oxygen species (ROS) levels. We overcome these obstacles by embedding biliverdin and NO into Prussian blue (PB) nanolattices to obtain an ONOO--free NO-embedded nanomedicine (OFEN). Unlike previous NO donors, OFEN provides NO stably and spontaneously for a longer time (>7 days), which makes it possible to maintain a stable concentration of NO, suitable for angiogenesis, through dose optimization. More importantly, based on the synergy between PB and biliverdin, OFEN converts ROS into beneficial O2 and inhibits the production of ONOO- from the source. OFEN specifically targets MI tissues and achieves sustained and stable NO delivery at the MI site. OFEN effectively promotes revascularization in the MI tissue, significantly reduces myocardial death and fibrosis, and ultimately promotes the complete recovery of cardiac function. Our strategy provides a promising approach for the treatment of myocardial and other ischemic diseases.
Collapse
Affiliation(s)
- Jiaxiong Zhang
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Shuya Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, PR China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Quan Sun
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Jian Zhang
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Xiaojing Shi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, PR China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Meilian Yao
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Jing Chen
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Guogang Zhang
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, PR China
| | - Qun Huang
- Department of Child Health Care, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, PR China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, PR China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Yongping Bai
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| |
Collapse
|
9
|
Lee LC, Lo KK. Leveraging the Photofunctions of Transition Metal Complexes for the Design of Innovative Phototherapeutics. SMALL METHODS 2024; 8:e2400563. [PMID: 39319499 PMCID: PMC11579581 DOI: 10.1002/smtd.202400563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/03/2024] [Indexed: 09/26/2024]
Abstract
Despite the advent of various medical interventions for cancer treatment, the disease continues to pose a formidable global health challenge, necessitating the development of new therapeutic approaches for more effective treatment outcomes. Photodynamic therapy (PDT), which utilizes light to activate a photosensitizer to produce cytotoxic reactive oxygen species (ROS) for eradicating cancer cells, has emerged as a promising approach for cancer treatment due to its high spatiotemporal precision and minimal invasiveness. However, the widespread clinical use of PDT faces several challenges, including the inefficient production of ROS in the hypoxic tumor microenvironment, the limited penetration depth of light in biological tissues, and the inadequate accumulation of photosensitizers at the tumor site. Over the past decade, there has been increasing interest in the utilization of photofunctional transition metal complexes as photosensitizers for PDT applications due to their intriguing photophysical and photochemical properties. This review provides an overview of the current design strategies used in the development of transition metal complexes as innovative phototherapeutics, aiming to address the limitations associated with PDT and achieve more effective treatment outcomes. The current challenges and future perspectives on the clinical translation of transition metal complexes are also discussed.
Collapse
Affiliation(s)
- Lawrence Cho‐Cheung Lee
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
| | - Kenneth Kam‐Wing Lo
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
- State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
| |
Collapse
|
10
|
Holden L, Curley RC, Avella G, Long C, Keyes TE. Targeting Mitochondrial Guanine Quadruplexes for Photoactivatable Chemotherapy in Hypoxic Environments. Angew Chem Int Ed Engl 2024; 63:e202408581. [PMID: 39012206 DOI: 10.1002/anie.202408581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 07/17/2024]
Abstract
A first example of a mitochondrial G-quadruplex (mitoG4s) targeted Ru(II) photooxidant complex is reported. The complex, Ru-TAP-PDC3 induces photodamage toward guanine quadruplexes (G4s) located in the mitochondrial genome under hypoxic and normoxic conditions. Ru-TAP-PDC3 shows high affinity for mitoG4s and localises within mitochondria of live HeLa cells. Immunolabelling with anti-G4 antibody, BG4, confirms Ru-TAP-PDC3 associates with G4s within the mitochondria of fixed cells. The complex induces depletion of mtDNA in live cells under irradiation at 405 nm, confirmed by loss of PicoGreen signal from mitochondria. Biochemical studies confirm this process induces apoptosis. The complex shows low dark toxicity and an impressive phototoxicity index (PI) of >89 was determined in Hela under very low intensity irradiation, 5 J/cm2. The phototoxicity is thought to operate through both Type II singlet oxygen and Type III pathways depending on normoxic or hypoxic conditions, from live cell assays and plasmid DNA cleavage. Overall, we demonstrate targeting mitoG4s and mtDNA with a photooxidant is a potent route to achieving apoptosis under hypoxic conditions that can be extended to phototherapy.
Collapse
Affiliation(s)
- Lorcan Holden
- School of Chemical Sciences National Center for Sensor Research, Dublin City University, Dublin, 9, Ireland
| | - Rhianne C Curley
- School of Chemical Sciences National Center for Sensor Research, Dublin City University, Dublin, 9, Ireland
| | - Giuseppe Avella
- School of Chemical Sciences National Center for Sensor Research, Dublin City University, Dublin, 9, Ireland
| | - Conor Long
- School of Chemical Sciences National Center for Sensor Research, Dublin City University, Dublin, 9, Ireland
| | - Tia E Keyes
- School of Chemical Sciences National Center for Sensor Research, Dublin City University, Dublin, 9, Ireland
| |
Collapse
|
11
|
Dao A, Chen S, Pan L, Ren Q, Wang X, Wu H, Gong Q, Chen Z, Ji S, Ru J, Zhu H, Liang C, Zhang P, Xia H, Huang H. A 700 nm LED Light Activated Ru(II) Complex Destroys Tumor Cytoskeleton via Photosensitization and Photocatalysis. Adv Healthc Mater 2024; 13:e2400956. [PMID: 38635863 DOI: 10.1002/adhm.202400956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Photoactivable chemotherapy (PACT) using metallic complexes provides spatiotemporal selectivity over drug activation for targeted anticancer therapy. However, the poor absorption in near-infrared (NIR) light region of most metallic complexes renders tissue penetration challenging. Herein, an NIR light triggered dinuclear photoactivable Ru(II) complex (Ru2) is presented and the antitumor mechanism is comprehensively investigated. The introduction of a donor-acceptor-donor (D-A-D) linker greatly enhances the intramolecular charge transition, resulting in a high molar extinction coefficient in the NIR region with an extended triplet excited state lifetime. Most importantly, when activated by 700 nm NIR light, Ru2 exhibits unique slow photodissociation kinetics that facilitates synergistic photosensitization and photocatalytic activity to destroy diverse intracellular biomolecules. In vitro and in vivo experiments show that when activated by 700 nm NIR light, Ru2 exhibits nanomolar photocytotoxicity toward 4T1 cancer cells via the induction of calcium overload and endoplasmic reticulum (ER) stress. These findings provide a robust foundation for the development of NIR-activated Ru(II) PACT complexes for phototherapeutic application.
Collapse
Affiliation(s)
- Anyi Dao
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, Shenzhen, 510275, China
| | - Shiyan Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li Pan
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, Shenzhen, 510275, China
| | - Qingyan Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xun Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haorui Wu
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, Shenzhen, 510275, China
| | - Qiufang Gong
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Zeduan Chen
- Light Industry and Chemical Engineering College Guangdong University of Technology, Guangzhou, 510006, China
| | - Shaomin Ji
- Light Industry and Chemical Engineering College Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiaxi Ru
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - HaoTu Zhu
- Department of Oncology, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Chao Liang
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haiping Xia
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, Shenzhen, 510275, China
| |
Collapse
|
12
|
Wang X, Peng J, Meng C, Feng F. Recent advances for enhanced photodynamic therapy: from new mechanisms to innovative strategies. Chem Sci 2024; 15:12234-12257. [PMID: 39118629 PMCID: PMC11304552 DOI: 10.1039/d3sc07006a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Photodynamic therapy (PDT) has been developed as a potential cancer treatment approach owing to its non-invasiveness, spatiotemporal control and limited side effects. Currently, great efforts have been made to improve the PDT effect in terms of safety and efficiency. In this review, we highlight recent advances in innovative strategies for enhanced PDT, including (1) the development of novel radicals, (2) design of activatable photosensitizers based on the TME and light, and (3) photocatalytic NADH oxidation to damage the mitochondrial electron transport chain. Additionally, the new mechanisms for PDT are also presented as an inspiration for the design of novel PSs. Finally, we discuss the current challenges and future prospects in the clinical practice of these innovative strategies. It is hoped that this review will provide a new angle for understanding the relationship between the intratumoural redox environment and PDT mechanisms, and new ideas for the future development of smart PDT systems.
Collapse
Affiliation(s)
- Xia Wang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jinlei Peng
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Chi Meng
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Fude Feng
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
13
|
Qian K, Gao S, Jiang Z, Ding Q, Cheng Z. Recent advances in mitochondria-targeting theranostic agents. EXPLORATION (BEIJING, CHINA) 2024; 4:20230063. [PMID: 39175881 PMCID: PMC11335472 DOI: 10.1002/exp.20230063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/07/2024] [Indexed: 08/24/2024]
Abstract
For its vital role in maintaining cellular activity and survival, mitochondrion is highly involved in various diseases, and several strategies to target mitochondria have been developed for specific imaging and treatment. Among these approaches, theranostic may realize both diagnosis and therapy with one integrated material, benefiting the simplification of treatment process and candidate drug evaluation. A variety of mitochondria-targeting theranostic agents have been designed based on the differential structure and composition of mitochondria, which enable more precise localization within cellular mitochondria at disease sites, facilitating the unveiling of pathological information while concurrently performing therapeutic interventions. Here, progress of mitochondria-targeting theranostic materials reported in recent years along with background information on mitochondria-targeting and therapy have been briefly summarized, determining to deliver updated status and design ideas in this field to readers.
Collapse
Affiliation(s)
- Kun Qian
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Shu Gao
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhaoning Jiang
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingChina
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| | - Qihang Ding
- Department of ChemistryKorea UniversitySeoulRepublic of Korea
| | - Zhen Cheng
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingChina
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| |
Collapse
|
14
|
Jiang W, Lin L, Wu P, Lin H, Sui J. Near-Infrared-II Nanomaterials for Activatable Photodiagnosis and Phototherapy. Chemistry 2024; 30:e202400816. [PMID: 38613472 DOI: 10.1002/chem.202400816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/15/2024]
Abstract
Near-Infrared-II (NIR-II) spans wavelengths between 1,000 to 1,700 nanometers, featuring deep tissue penetration and reduced tissue scattering and absorption characteristics, providing robust support for cancer treatment and tumor imaging research. This review explores the utilization of activatable NIR-II photodiagnosis and phototherapy based on tumor microenvironments (e. g., reactive oxygen species, pH, glutathione, hypoxia) and external stimulation (e. g., laser, ultrasound, photothermal) for precise tumor treatment and imaging. Special emphasis is placed on the advancements and advantages of activatable NIR-II nanomedicines in novel therapeutic modalities like photodynamic therapy, photothermal therapy, and photoacoustic imaging. This encompasses achieving deep tumor penetration, real-time monitoring of the treatment process, and obtaining high-resolution, high signal-to-noise ratio images even at low material concentrations. Lastly, from a clinical perspective, the challenges faced by activatable NIR-II phototherapy are discussed, alongside potential strategies to overcome these hurdles.
Collapse
Affiliation(s)
- Wanying Jiang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Lisheng Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Ping Wu
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Hongxin Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Jian Sui
- Shengli Clinical Medical College of Fujian Medical University, Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, P. R. China
| |
Collapse
|
15
|
Yuan Z, Yan R, Fu Z, Wu T, Ren C. Impact of physicochemical properties on biological effects of lipid nanoparticles: Are they completely safe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172240. [PMID: 38582114 DOI: 10.1016/j.scitotenv.2024.172240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Lipid nanoparticles (LNPs) are promising materials and human-use approved excipients, with manifold applications in biomedicine. Researchers have tended to focus on improving the pharmacological efficiency and organ targeting of LNPs, while paid relatively less attention to the negative aspects created by their specific physicochemical properties. Here, we discuss the impacts of LNPs' physicochemical properties (size, surface hydrophobicity, surface charge, surface modification and lipid composition) on the adsorption-transportation-distribution-clearance processes and bio-nano interactions. In addition, since there is a lack of review emphasizing on toxicological profiles of LNPs, this review outlined immunogenicity, inflammation, hemolytic toxicity, cytotoxicity and genotoxicity induced by LNPs and the underlying mechanisms, with the aim to understand the properties that underlie the biological effects of these materials. This provides a basic strategy that increased efficacy of medical application with minimized side-effects can be achieved by modulating the physicochemical properties of LNPs. Therefore, addressing the effects of physicochemical properties on toxicity induced by LNPs is critical for understanding their environmental and health risks and will help clear the way for LNPs-based drugs to eventually fulfill their promise as a highly effective therapeutic agents for diverse diseases in clinic.
Collapse
Affiliation(s)
- Ziyi Yuan
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Ruyu Yan
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Zuyi Fu
- College of Rehabilitation, Captital Medical University, Beijing, China
| | - Tao Wu
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China.
| | - Chaoxiu Ren
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China.
| |
Collapse
|
16
|
Hao Z, Guo S, Tu W, Wang Q, Wang J, Zhang X, He Y, Gao D. Piezoelectric Catalysis Induces Tumor Cell Senescence to Boost Chemo-Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309487. [PMID: 38197548 DOI: 10.1002/smll.202309487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Cellular senescence, a vulnerable state of growth arrest, has been regarded as a potential strategy to weaken the resistance of tumor cells, leading to dramatic improvements in treatment efficacy. However, a selective and efficient strategy for inducing local tumor cellular senescence has not yet been reported. Herein, piezoelectric catalysis is utilized to reduce intracellular NAD+ to NADH for local tumor cell senescence for the first time. In detail, a biocompatible nanomedicine (BTO/Rh-D@M) is constructed by wrapping the piezoelectric BaTiO3/(Cp*RhCl2)2 (BTO/Rh) and doxorubicin (DOX) in the homologous cytomembrane with tumor target. After tumors are stimulated by ultrasound, negative and positive charges are generated on the BTO/Rh by piezoelectric catalysis, which reduce the intracellular NAD+ to NADH for cellular senescence and oxidize H2O to reactive oxygen species (ROS) for mitochondrial damage. Thus, the therapeutic efficacy of tumor immunogenic cell death-induced chemo-immunotherapy is boosted by combining cellular senescence, DOX, and ROS. The results indicate that 23.9% of the piezoelectric catalysis-treated tumor cells senesced, and solid tumors in mice disappeared completely after therapy. Collectively, this study highlights a novel strategy to realize cellular senescence utilizing piezoelectric catalysis and the significance of inducing tumor cellular senescence to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Zining Hao
- State Key Laboratory of Metastable Materials Science and Technology Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Shu Guo
- School of Vehicle and Energy, Yanshan University, Qinhuangdao, 066004, China
| | - Wenkang Tu
- State Key Laboratory of Metastable Materials Science and Technology Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Qiang Wang
- School of Science, Yanshan University, Qinhuangdao, 066004, China
| | - Jing Wang
- State Key Laboratory of Metastable Materials Science and Technology Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Xuwu Zhang
- State Key Laboratory of Metastable Materials Science and Technology Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Dawei Gao
- State Key Laboratory of Metastable Materials Science and Technology Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| |
Collapse
|
17
|
Ballester F, Hernández-García A, Santana MD, Bautista D, Ashoo P, Ortega-Forte E, Barone G, Ruiz J. Photoactivatable Ruthenium Complexes Containing Minimal Straining Benzothiazolyl-1,2,3-triazole Chelators for Cancer Treatment. Inorg Chem 2024; 63:6202-6216. [PMID: 38385171 PMCID: PMC11005040 DOI: 10.1021/acs.inorgchem.3c04432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/19/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Ruthenium(II) complexes containing diimine ligands have contributed to the development of agents for photoactivated chemotherapy. Several approaches have been used to obtain photolabile Ru(II) complexes. The two most explored have been the use of monodentate ligands and the incorporation of steric effects between the bidentate ligands and the Ru(II). However, the introduction of electronic effects in the ligands has been less explored. Herein, we report a systematic experimental, theoretical, and photocytotoxicity study of a novel series of Ru(II) complexes Ru1-Ru5 of general formula [Ru(phen)2(N∧N')]2+, where N∧N' are different minimal strained ligands based on the 1-aryl-4-benzothiazolyl-1,2,3-triazole (BTAT) scaffold, being CH3 (Ru1), F (Ru2), CF3 (Ru3), NO2 (Ru4), and N(CH3)2 (Ru5) substituents in the R4 of the phenyl ring. The complexes are stable in solution in the dark, but upon irradiation in water with blue light (λex = 465 nm, 4 mW/cm2) photoejection of the ligand BTAT was observed by HPLC-MS spectrometry and UV-vis spectroscopy, with t1/2 ranging from 4.5 to 14.15 min depending of the electronic properties of the corresponding BTAT, being Ru4 the less photolabile (the one containing the more electron withdrawing substituent, NO2). The properties of the ground state singlet and excited state triplet of Ru1-Ru5 have been explored using density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. A mechanism for the photoejection of the BTAT ligand from the Ru complexes, in H2O, is proposed. Phototoxicity studies in A375 and HeLa human cancer cell lines showed that the new Ru BTAT complexes were strongly phototoxic. An enhancement of the emission intensity of HeLa cells treated with Ru5 was observed in response to increasing doses of light due to the photoejection of the BTAT ligand. These studies suggest that BTAT could serve as a photocleavable protecting group for the cytotoxic bis-aqua ruthenium warhead [Ru(phen)2(OH2)2]2+.
Collapse
Affiliation(s)
- Francisco
J. Ballester
- Departamento
de Química Inorgánica, Universidad
de Murcia and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Alba Hernández-García
- Departamento
de Química Inorgánica, Universidad
de Murcia and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - M. Dolores Santana
- Departamento
de Química Inorgánica, Universidad
de Murcia and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | | | - Pezhman Ashoo
- Departamento
de Química Inorgánica, Universidad
de Murcia and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Enrique Ortega-Forte
- Departamento
de Química Inorgánica, Universidad
de Murcia and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Giampaolo Barone
- Dipartimento
di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (SteBiCeF), Università degli Studi di Palermo, I-90128 Palermo, Italy
| | - José Ruiz
- Departamento
de Química Inorgánica, Universidad
de Murcia and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| |
Collapse
|
18
|
Wang Y, Shen H, Li Z, Liao S, Yin B, Yue R, Guan G, Chen B, Song G. Enhancing Fractionated Cancer Therapy: A Triple-Anthracene Photosensitizer Unleashes Long-Persistent Photodynamic and Luminous Efficacy. J Am Chem Soc 2024; 146:6252-6265. [PMID: 38377559 DOI: 10.1021/jacs.3c14387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Conventional photodynamic therapy (PDT) is often limited in treating solid tumors due to hypoxic conditions that impede the generation of reactive oxygen species (ROS), which are critical for therapeutic efficacy. To address this issue, a fractionated PDT protocol has been suggested, wherein light irradiation is administered in stages separated by dark intervals to permit oxygen recovery during these breaks. However, the current photosensitizers used in fractionated PDT are incapable of sustaining ROS production during the dark intervals, leading to suboptimal therapeutic outcomes (Table S1). To circumvent this drawback, we have synthesized a novel photosensitizer based on a triple-anthracene derivative that is designed for prolonged ROS generation, even after the cessation of light exposure. Our study reveals a unique photodynamic action of these derivatives, facilitating the direct and effective disruption of biomolecules and significantly improving the efficacy of fractionated PDT (Table S2). Moreover, the existing photosensitizers lack imaging capabilities for monitoring, which constraints the fine-tuning of irradiation parameters (Table S1). Our triple-anthracene derivative also serves as an afterglow imaging agent, emitting sustained luminescence postirradiation. This imaging function allows for the precise optimization of intervals between PDT sessions and aids in determining the timing for subsequent irradiation, thus enabling meticulous control over therapy parameters. Utilizing our novel triple-anthracene photosensitizer, we have formulated a fractionated PDT regimen that effectively eliminates orthotopic pancreatic tumors. This investigation highlights the promise of employing long-persistent photodynamic activity in advanced fractionated PDT approaches to overcome the current limitations of PDT in solid tumor treatment.
Collapse
Affiliation(s)
- Youjuan Wang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hengxin Shen
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zhe Li
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shiyi Liao
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Baoli Yin
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Renye Yue
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Guoqiang Guan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Baode Chen
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
19
|
Zhao Z, Li J, Yuan W, Cheng D, Ma S, Li YF, Shi ZJ, Hu K. Nature-Inspired Photocatalytic Azo Bond Cleavage with Red Light. J Am Chem Soc 2024; 146:1364-1373. [PMID: 38082478 DOI: 10.1021/jacs.3c09837] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The emerging field of photoredox catalysis in mammalian cells enables spatiotemporal regulation of a wealth of biological processes. However, the selective cleavage of stable covalent bonds driven by low-energy visible light remains a great challenge. Herein, we report that red light excitation of a commercially available dye, abbreviated NMB+, leads to catalytic cleavage of stable azo bonds in both aqueous solutions and hypoxic cells and hence a means to photodeliver drugs or functional molecules. Detailed mechanistic studies reveal that azo bond cleavage is triggered by a previously unknown consecutive two-photon process. The first photon generates a triplet excited state, 3NMB+*, that is reductively quenched by an electron donor to generate a protonated NMBH•+. The NMBH•+ undergoes a disproportionation reaction that yields the initial NMB+ and two-electron-reduced NMBH (i.e., leuco-NMB, abbreviated as LNMB). Interestingly, LNMB forms a charge transfer complex with all four azo substrates that possess an intense absorption band in the red region. A second red photon induces electron transfer from LNMB to the azo substrate, resulting in azo bond cleavage. The charge transfer complex mediated two-photon catalytic mechanism reported herein is reminiscent of the flavin-dependent natural photoenzyme that catalyzes bond cleavage reactions with high-energy photons. The red-light-driven photocatalytic strategy offers a new approach to bioorthogonal azo bond cleavage for photodelivery of drugs or functional molecules.
Collapse
Affiliation(s)
- Zijian Zhao
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Jili Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Wei Yuan
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
- Institute of Optoelectronics, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Dajiao Cheng
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Suze Ma
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Ye-Fei Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Zhang-Jie Shi
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Ke Hu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| |
Collapse
|
20
|
Liu D, Liang M, Fan A, Bing W, Qi J. Hypoxia-responsive AIEgens for precise disease theranostics. LUMINESCENCE 2024; 39:e4659. [PMID: 38286609 DOI: 10.1002/bio.4659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 12/04/2023] [Indexed: 01/31/2024]
Abstract
Specific biomarker-activatable probes have revolutionized theranostics, being beneficial for precision medicine. Hypoxia is a critical pathological characteristic prevalent in numerous major diseases such as cancers, cardiovascular disorders, inflammatory diseases, and acute ischemia. Aggregation-induced emission luminogens (AIEgens) have emerged as a promising tool to tackle the biomedical issues. Of particular significance are the hypoxia-responsive AIEgens, representing a kind of crucial probe capable of delicately sensing and responding to the hypoxic microenvironment, thereby enhancing the precision of disease diagnosis and treatment. In this review, we summarize the recent advances of hypoxia-responsive AIEgens for varied biomedical applications. The hypoxia-responsive structures based on AIEgens, such as azobenzene, nitrobenzene, and N-oxide are presented, which are in response to the reduction property to bring about significant alternations in response spectra and/or fluorescence intensity. The bioapplications including imaging and therapy of tumor and ischemia diseases are discussed. Moreover, the review sheds light on the future challenges and prospects in this field. This review aims to provide comprehensive guidance and understanding into the development of activatable bioprobes, especially the hypoxia-responsive AIEgens for improving the diagnosis and therapy outcome of related diseases.
Collapse
Affiliation(s)
- Dongfang Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Mengyun Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Aohua Fan
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Wei Bing
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
21
|
Zhang J, Ma J, Zhang S, Lou X, Ding Y, Li Y, Xu M, Xie X, Jiao X, Dou X, Wang X, Tang B. Exploration of Thermally Activated Delayed Fluorescence (TADF)-Based Photoredox Catalyst To Establish the Mechanisms of Action for Photodynamic Therapy. ACS NANO 2023; 17:23430-23441. [PMID: 38011322 DOI: 10.1021/acsnano.3c05106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The mechanisms of action (MoA) have been proposed to further reduce the O2 dependence of photodynamic therapy (PDT) significantly. However, the triplet states of traditional photosensitizers are relatively short and also are easily deactivated by the quenching of H2O or O2. This is not conducive for the electron transfer in the photocatalytic process and poses a great obstacle to establish the MoA. Therefore, we selected and synthesized a zirconium(IV) complex (Zr(MesPDPPh)2) reported by Milsmann to address this issue. The specific symmetric and intact geometry endowed Zr(MesPDPPh)2 NPs with long-lived triplet excited state (τ = 350 μs), desired sensitized ability, and improved anti-interfering performance on O2, which was matched with the requirements of photoredox catalyst significantly. The results showed that while PDT (I) and PDT (II) could be achieved simultaneously by leveraging Zr(MesPDPPh)2 NPs, it also could be served as a rare example of thermally activated delayed fluorescence (TADF)-based photoredox catalyst to implement the MoA of PDT. It involved the oxidation of NADH and the establishment of catalytic cycle collaborating by O2 and cytochrome c (cyt c) in normoxia and hypoxia, respectively. As a result, the oxygen-free PDT and tumor-growth inhibition was realized.
Collapse
Affiliation(s)
- Jian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Jushuai Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Shuyue Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xiaoyan Lou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yunshu Ding
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yong Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Miaomiao Xu
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210003, People's Republic of China
| | - Xilei Xie
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xiaoyun Jiao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xueyu Dou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China
- Laoshan Laboratory, Qingdao 266237, People's Republic of China
| |
Collapse
|