1
|
Liu W, Peng M, Chen M, Zhao Y, Yu Y, Jian P, Liu Z, Zeng Y, Luo Y, Tian X, Gao Z, Dai J, Chen C, Wu F, Hu W. A Bias-Tunable Multispectral Photodetector Based on a GaN/Te xSe 1- x Homo-Type Heterojunction with a Unidirectional Barrier. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417428. [PMID: 40051304 PMCID: PMC12061333 DOI: 10.1002/advs.202417428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/22/2025] [Indexed: 05/10/2025]
Abstract
Multispectral detection technology captures characteristic spectral information across various wavebands, exhibiting substantial application potential. However, most currently reported multispectral photodetectors rely on intricate dual- or multi-junction structures, severely limiting material thickness, doping concentration, and band alignment design, thereby impeding widespread adoption. In this study, a bias-tunable multispectral photodetector featuring a straightforward single-junction design is introduced. The device comprises a TexSe1- x/GaN homo-type heterojunction with a unidirectional barrier. This structure effectively suppresses the majority-carrier dark current, yielding a low reverse dark current of ≈10-12 A and a high rectification ratio of up to 105. By adjusting the bias polarity and magnitude, the spectral response range of the device can be broadened from ultraviolet (UV) to short-wave infrared. Notably, the photodetection performance is exceptional: at 0 V bias, the device exhibits a responsivity of 0.25 A W-1 and a specific detectivity of 5.04 × 1011 cm Hz1/2 W-1 under 365 nm illumination; at -2 V bias, it achieves a responsivity of 0.58 A W-1 and a specific detectivity of 2.64 × 109 cm Hz1/2 W-1 under 1060 nm illumination. Leveraging the bias-tunable spectral response characteristic of the device, proof-of-concept imaging is successfully demonstrated. This research presents a simplified and economical method for fabricating multispectral photodetectors.
Collapse
Affiliation(s)
- Weijie Liu
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
| | - Meng Peng
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
| | - Maohua Chen
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
| | - Yongming Zhao
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
| | - Yiye Yu
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- State Key Laboratory of Infrared Science and TechnologyShanghai Institute of Technical PhysicsChinese Academy of SciencesShanghai200083China
| | - Pengcheng Jian
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
| | - Zunyu Liu
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
| | - Yuhui Zeng
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
| | - Yuang Luo
- School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhan430074China
| | - Xiantai Tian
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
| | - Zhiwei Gao
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
| | - Jiangnan Dai
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
| | - Changqing Chen
- School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhan430074China
| | - Feng Wu
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
| | - Weida Hu
- State Key Laboratory of Infrared Science and TechnologyShanghai Institute of Technical PhysicsChinese Academy of SciencesShanghai200083China
| |
Collapse
|
2
|
Li T, Gao W, Wang Y, Li T, Zhi G, Zhou M, Niu T. Thermodynamics and kinetics in van der Waals epitaxial growth of Te. NANOSCALE 2025; 17:9308-9314. [PMID: 40100152 DOI: 10.1039/d4nr05266h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Chemical vapour deposition (CVD) in a tube furnace and molecular beam epitaxy (MBE) in a vacuum chamber represent the most effective methods for the production of low-dimensional nanomaterials. However, the as-synthesized products always exhibit diverse morphologies and phases due to the varying thermodynamic and kinetic factors. A comprehensive investigation into these factors is thus imperative. Here, we employ tellurium (Te), a p-type semiconductor characterized by anisotropic properties, as a model system for van der Waals (vdW) epitaxy to elucidate the difference of kinetic and thermodynamic influences in CVD and MBE processes. From a thermodynamic perspective, the inherent structural anisotropy of Te crystals favors the growth of 1D nanowires. In the CVD process, Te predominantly forms 1D structures at low substrate temperatures (Tsub < 473 K) due to substantial thermal mass and high deposition rates. At higher Tsub (>633 K), diffusion becomes predominant, resulting in the formation of kinetically controlled 2D Te nanoflakes. In MBE, the formation of 1D Te nanowires is impeded by kinetic limitations stemming from a limited deposition flux, yielding 2D Te films at low Tsub (120-300 K). Only at higher Tsub (400 K), when the MBE system reaches a thermodynamic equilibrium, can 1D nanowires be synthesized. Our study reveals the distinct roles of thermodynamic and kinetic parameters in guiding the morphological evolution of Te nanostructures, and the findings provide a general framework for understanding the growth mechanism of other vdW epitaxial low-dimensional nanomaterials.
Collapse
Affiliation(s)
- Taotao Li
- Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China.
- Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province, College of Science, China Jiliang University, Hangzhou 310018, China
| | - Wenjin Gao
- Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China.
- School of Physics, Beihang University, Beijing 100191, China
| | - Yongsong Wang
- Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China.
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizábal 4, 20018, San Sebastián, Spain
| | - Tianzhao Li
- Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China.
- School of Physics, Beihang University, Beijing 100191, China
| | | | - Miao Zhou
- Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China.
- School of Physics, Beihang University, Beijing 100191, China
- Tianmushan Laboratory, Hangzhou 310023, China
| | - Tianchao Niu
- Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China.
| |
Collapse
|
3
|
Lee SM, Jang SC, Park JM, Park J, Choi N, Chung KB, Lee JW, Kim HS. High-Mobility Tellurium Thin-Film Transistor: Oxygen Scavenger Effect Induced by a Metal-Capping Layer. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:418. [PMID: 40137593 PMCID: PMC11945103 DOI: 10.3390/nano15060418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025]
Abstract
With the ongoing development of electronic devices, there is an increasing demand for new semiconductors beyond traditional silicon. A key element in electronic circuits, complementary metal-oxide semiconductor (CMOS), utilizes both n-type and p-type semiconductors. While the advancements in n-type semiconductors have been substantial, the development of high-mobility p-type semiconductors has lagged behind. Recently, tellurium (Te) has been recognized as a promising candidate due to its superior electrical properties and the capability for large-area deposition via vacuum processes. In this work, an innovative approach involving the addition of a metal-capping layer onto Te thin-film transistors (TFTs) is proposed, which significantly enhances their electrical characteristics. In particular, the application of an indium (In) metal-capping layer has led to a dramatic increase in the field-effect mobility of Te TFTs from 2.68 to 33.54 cm2/Vs. This improvement is primarily due to the oxygen scavenger effect, which effectively minimizes oxidation and eliminates oxygen from the Te layer, resulting in the production of high-quality Te thin films. This progress in high-mobility p-type semiconductors is promising for the advancement of high-performance electronic devices in various applications and industries.
Collapse
Affiliation(s)
- Seung-Min Lee
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seong Cheol Jang
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Ji-Min Park
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Jaewon Park
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Nayoung Choi
- Department of Physics, Dongguk University, Seoul 04620, Republic of Korea
| | - Kwun-Bum Chung
- Department of Physics, Dongguk University, Seoul 04620, Republic of Korea
| | - Jung Woo Lee
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun-Suk Kim
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
4
|
Wang RH, Wang W, Zhang YZ, Hu W, Yue L, Ni JH, Zhang WQ, Pei G, Yang S, Chen LF. Photoexcitation-Enhanced High-Ionic Conductivity in Polymer Electrolytes for Flexible, All-Solid-State Lithium-Metal Batteries Operating at Room Temperature. Angew Chem Int Ed Engl 2025; 64:e202417605. [PMID: 39468954 DOI: 10.1002/anie.202417605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/12/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
Designing solid polymer electrolytes (SPEs) with high ionic conductivity for room-temperature operation is essential for advancing flexible all-solid-state energy storage devices. Innovative strategies are urgently required to develop SPEs that are safe, stable, and high-performing. In this work, we introduce photoexcitation-modulated heterojunctions as catalytically active fillers within SPEs, guided by photocatalytic design principles, and meanwhile employ natural bacterial cellulose to improve the compatibility with poly(ethylene oxide), improve the coordination environment of lithium salts, and optimize both ion transport and mechanical properties. In situ photothermal experiments and theoretical calculations reveal that the strong photogenerated electric field produced by trace heterojunctions within poly(ethylene oxide) electrolytes under photoexcitation significantly enhances lithium salt dissociation, increasing the concentration of mobile Li+. This results in a substantial increase in ionic conductivity, reaching 0.135 mS cm-1 at 25 °C, with a Li+ transference number as high as 0.46. The flexible all-solid-state lithium-metal pouch cells exhibit an impressive discharge capacity of 178.8 mAh g-1 even after repeated bending and folding, and demonstrate exceptional long-term cycling stability, retaining 86.7 % of their initial capacity after 250 cycles at 1 C (25 °C). This research offers a novel approach to developing high-performance flexible lithium-metal batteries.
Collapse
Affiliation(s)
- Rong-Hao Wang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD), School of Engineering Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Weiyi Wang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD), School of Engineering Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yu-Zhen Zhang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD), School of Engineering Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Wei Hu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD), School of Engineering Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Liang Yue
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD), School of Engineering Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jia-Hao Ni
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD), School of Engineering Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Wan-Qun Zhang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD), School of Engineering Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Gang Pei
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD), School of Engineering Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Shangfeng Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD), School of Engineering Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Li-Feng Chen
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD), School of Engineering Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| |
Collapse
|
5
|
Zhang K, Fu C, Kelly S, Liang L, Kang SH, Jiang J, Zhang R, Wang Y, Wan G, Siriviboon P, Yoon M, Ye PD, Wu W, Li M, Huang S. Thickness-dependent polaron crossover in tellurene. SCIENCE ADVANCES 2025; 11:eads4763. [PMID: 39772675 PMCID: PMC11708887 DOI: 10.1126/sciadv.ads4763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Polarons, quasiparticles from electron-phonon coupling, are crucial for material properties including high-temperature superconductivity and colossal magnetoresistance. However, scarce studies have investigated polaron formation in low-dimensional materials with phonon polarity and electronic structure transitions. In this work, we studied polarons of tellurene, composed of chiral Te chains. The frequency and linewidth of the A1 phonon, which becomes increasingly polar for thinner tellurene, change abruptly for thickness below 10 nanometers, where field-effect mobility drops rapidly. These phonon and transport signatures, combined with phonon polarity and band structure, suggest a crossover from large polarons in bulk tellurium to small polarons in few-layer tellurene. Effective field theory considering phonon renormalization in the small-polaron regime semiquantitatively reproduces the phonon hardening and broadening effects. This polaron crossover stems from the quasi-one-dimensional nature of tellurene, where modulation of interchain distance reduces dielectric screening and promotes electron-phonon coupling. Our work provides valuable insights into the influence of polarons on phononic, electronic, and structural properties in low-dimensional materials.
Collapse
Affiliation(s)
- Kunyan Zhang
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Chuliang Fu
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shelly Kelly
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Liangbo Liang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Seoung-Hun Kang
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jing Jiang
- Edwardson School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Ruifang Zhang
- Edwardson School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yixiu Wang
- Edwardson School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Gang Wan
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Phum Siriviboon
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mina Yoon
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Peide D. Ye
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Wenzhuo Wu
- Edwardson School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907, USA
| | - Mingda Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shengxi Huang
- Department of Electrical and Computer Engineering and the Rice Advanced Materials Institute, Rice University, Houston, TX 77005, USA
| |
Collapse
|
6
|
Guan X, Chen Y, Ma Y, Liang H, Zheng Z, Ma C, Du C, Yao J, Yang G. New paradigms of 2D layered material self-driven photodetectors. NANOSCALE 2024; 16:20811-20841. [PMID: 39445401 DOI: 10.1039/d4nr03543g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
By virtue of the high carrier mobility, diverse electronic band structures, excellent electrostatic tunability, easy integration, and strong light-harvesting capability, 2D layered materials (2DLMs) have emerged as compelling contenders in the realm of photodetection and ushered in a new era of optoelectronic industry. In contrast to powered devices, self-driven photodetectors boast a wealth of advantages, notably low dark current, superior signal-to-noise ratio, low energy consumption, and exceptional compactness. Nevertheless, the construction of self-driven 2DLM photodetectors based on traditional p-n, homo-type, or Schottky heterojunctions, predominantly adopting a vertical configuration, confronts insurmountable dilemmas such as intricate fabrication procedures, sophisticated equipment, and formidable interface issues. In recent years, worldwide researchers have been devoted to pursuing exceptional strategies aimed at achieving the self-driven characteristics. This comprehensive review offers a methodical survey of the emergent paradigms toward self-driven photodetectors constructed from 2DLMs. Firstly, the burgeoning approaches employed to realize diverse self-driven 2DLM photodetectors are compiled, encompassing strategies such as strain modulation, thickness tailoring, structural engineering, asymmetric ferroelectric gating, asymmetric contacts (including work function, contact length, and contact area), ferroelectricity-enabled bulk photovoltaic effect, asymmetric optical antennas, among others, with a keen eye on the fundamental physical mechanisms that underpin them. Subsequently, the prevalent challenges within this research landscape are outlined, and the corresponding potential approaches for overcoming these obstacles are proposed. On the whole, this review highlights new device engineering avenues for the implementation of bias-free, high-performance, and highly integrated 2DLM optoelectronic devices.
Collapse
Affiliation(s)
- Xinyi Guan
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Yu Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Yuhang Ma
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Huanrong Liang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Churong Ma
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, Guangdong, P. R. China
| | - Chun Du
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, Guangdong, P. R. China
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| |
Collapse
|
7
|
Qin Q, Xu Z, Chen W, Liu X, Chen J, Gao W, Li L. High-Performance Gate-Voltage-Tunable Photodiodes Based on Nb 2Pd 3Se 8/WSe 2 Mixed-Dimensional Heterojunctions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63713-63722. [PMID: 39500518 PMCID: PMC11583975 DOI: 10.1021/acsami.4c09682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The mixed-dimensional (MD) van der Waals (vdWs) heterojunction for photodetectors has garnered significant attention owing to its exceptional compatibility and superior quality. Low-dimensional material heterojunctions exhibit unique photoelectric properties attributed to their nanoscale thickness and vdWs contact surfaces. In this work, a novel MD vdWs heterojunction composed of one-dimensional (1D) Nb2Pd3Se8 nanowires and two-dimensional (2D) WSe2 nanosheets is proposed. The heterojunction's energy band engineering is accomplished by manipulating the Fermi level of the bipolar 2D material via gate voltage, resulting in a rectification characteristic that can be adjusted with gate voltage. Under 685 nm laser irradiation, it demonstrates exceptional self-powered photodetection performance, attaining a photoresponsivity of 1.45 A W-1, an ultrahigh detectivity of 6.8 × 1012 Jones, and an ultrafast response time of 37/64 μs at zero bias. In addition, a broadband photodetector from 255 to 1064 nm is realized. These results demonstrate the great potential of Nb2Pd3Se8/WSe2 MD heterostructures for advanced electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Qinggang Qin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zhengyu Xu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Wei Chen
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xue Liu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Jiawang Chen
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Wenshuai Gao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Liang Li
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
8
|
Zha J, Dong D, Huang H, Xia Y, Tong J, Liu H, Chan HP, Ho JC, Zhao C, Chai Y, Tan C. Electronics and Optoelectronics Based on Tellurium. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408969. [PMID: 39279605 DOI: 10.1002/adma.202408969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/28/2024] [Indexed: 09/18/2024]
Abstract
As a true 1D system, group-VIA tellurium (Te) is composed of van der Waals bonded molecular chains within a triangular crystal lattice. This unique crystal structure endows Te with many intriguing properties, including electronic, optoelectronic, thermoelectric, piezoelectric, chirality, and topological properties. In addition, the bandgap of Te exhibits thickness dependence, ranging from 0.31 eV in bulk to 1.04 eV in the monolayer limit. These diverse properties make Te suitable for a wide range of applications, addressing both established and emerging challenges. This review begins with an elaboration of the crystal structures and fundamental properties of Te, followed by a detailed discussion of its various synthesis methods, which primarily include solution phase, and chemical and physical vapor deposition technologies. These methods form the foundation for designing Te-centered devices. Then the device applications enabled by Te nanostructures are introduced, with an emphasis on electronics, optoelectronics, sensors, and large-scale circuits. Additionally, performance optimization strategies are discussed for Te-based field-effect transistors. Finally, insights into future research directions and the challenges that lie ahead in this field are shared.
Collapse
Affiliation(s)
- Jiajia Zha
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, 999077, China
| | - Dechen Dong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, 999077, China
| | - Haoxin Huang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Yunpeng Xia
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Jingyi Tong
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Handa Liu
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Hau Ping Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Chunsong Zhao
- Huawei Technologies CO., LTD, Shenzhen, 518000, China
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, 999077, China
| | - Chaoliang Tan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, 999077, China
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| |
Collapse
|
9
|
Peng M, He Y, Hu Y, Liu Z, Chen X, Liu Z, Yang J, Chen M, Liu W, Wu F, Li L, Dai J, Chen C, He J, Hu L, Chen C, Tang J. Te xSe 1-x Shortwave Infrared Photodiode Arrays with Monolithic Integration. NANO LETTERS 2024; 24:12620-12627. [PMID: 39324698 DOI: 10.1021/acs.nanolett.4c03728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
TexSe1-x shortwave infrared (SWIR) photodetectors show promise for monolithic integration with readout integrated circuits (ROIC), making it a potential alternative to conventional expensive SWIR photodetectors. However, challenges such as a high dark current density and insufficient detection performance hinder their application in large-scale monolithic integration. Herein, we develop a ZnO/TexSe1-x heterojunction photodiode and synergistically address the interfacial elemental diffusion and dangling bonds via inserting a well-selected 0.3 nm amorphous TeO2 interfacial layer. The optimized device achieves a reduced dark current density of -3.5 × 10-5 A cm-2 at -10 mV, a broad response from 300 to 1700 nm, a room-temperature detectivity exceeding 2.03 × 1011 Jones, and a 3 dB bandwidth of 173 kHz. Furthermore, for the first time, we monolithically integrate the TexSe1-x photodiodes on ROIC (64 × 64 pixels) with the largest-scale array among all TexSe1-x-based detectors. Finally, we demonstrate its applications in transmission imaging and substance identification.
Collapse
Affiliation(s)
- Meng Peng
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Yuming He
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Yuxuan Hu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Zunyu Liu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Xinyi Chen
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Zhiqiang Liu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Junrui Yang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Maohua Chen
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Weijie Liu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Feng Wu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Luying Li
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Jiangnan Dai
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Changqing Chen
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Jungang He
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430205, P. R. China
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Chao Chen
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
- Optics Valley Laboratory, Wuhan, Hubei 430074, P. R. China
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
- Optics Valley Laboratory, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
10
|
He Z, Su J, Wang YT, Wang K, Wang JL, Li Y, Wang R, Chen QX, Jiang HJ, Hou ZH, Liu JW, Yu SH. Interfacial-Assembly-Induced In Situ Transformation from Aligned 1D Nanowires to Quasi-2D Nanofilms. J Am Chem Soc 2024; 146:19998-20008. [PMID: 38865282 DOI: 10.1021/jacs.4c03730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
As the dimensionality of materials generally affects their characteristics, thin films composed of low-dimensional nanomaterials, such as nanowires (NWs) or nanoplates, are of great importance in modern engineering. Among various bottom-up film fabrication strategies, interfacial assembly of nanoscale building blocks holds great promise in constructing large-scale aligned thin films, leading to emergent or enhanced collective properties compared to individual building blocks. As for 1D nanostructures, the interfacial self-assembly causes the morphology orientation, effectively achieving anisotropic electrical, thermal, and optical conduction. However, issues such as defects between each nanoscale building block, crystal orientation, and homogeneity constrain the application of ordered films. The precise control of transdimensional synthesis and the formation mechanism from 1D to 2D are rarely reported. To meet this gap, we introduce an interfacial-assembly-induced interfacial synthesis strategy and successfully synthesize quasi-2D nanofilms via the oriented attachment of 1D NWs on the liquid interface. Theoretical sampling and simulation show that NWs on the liquid interface maintain their lowest interaction energy for the ordered crystal plane (110) orientation and then rearrange and attach to the quasi-2D nanofilm. This quasi-2D nanofilm shows enhanced electric conductivity and unique optical properties compared with its corresponding 1D geometry materials. Uncovering these growth pathways of the 1D-to-2D transition provides opportunities for future material design and synthesis at the interface.
Collapse
Affiliation(s)
- Zhen He
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Department of Materials Science and Engineering, Institute of Innovative Materials, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Jie Su
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Tao Wang
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Department of Materials Science and Engineering, Institute of Innovative Materials, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kang Wang
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Jin-Long Wang
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Department of Materials Science and Engineering, Institute of Innovative Materials, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Li
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Rui Wang
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Qing-Xia Chen
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Hui-Jun Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Zhong-Huai Hou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Jian-Wei Liu
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Department of Materials Science and Engineering, Institute of Innovative Materials, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Yu J, Mu H, Wang P, Li H, Yang Z, Ren J, Li Y, Mei L, Zhang J, Yu W, Cui N, Yuan J, Wu J, Lan S, Zhang G, Lin S. Anisotropic van der Waals Tellurene-Based Multifunctional, Polarization-Sensitive, In-Line Optical Device. ACS NANO 2024; 18:19099-19109. [PMID: 39001858 DOI: 10.1021/acsnano.4c03973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Polarization plays a paramount role in scaling the optical network capacity. Anisotropic two-dimensional (2D) materials offer opportunities to exploit optical polarization-sensitive responses in various photonic and optoelectronic applications. However, the exploration of optical anisotropy in fiber in-line devices, critical for ultrafast pulse generation and modulation, remains limited. In this study, we present a fiber-integrated device based on a single-crystalline tellurene nanosheet. Benefiting from the chiral-chain crystal lattice and distinct optical dichroism of tellurene, multifunctional optical devices possessing diverse excellent properties can be achieved. By inserting the in-line device into a 1.5 μm fiber laser cavity, we generated both linearly polarized and dual-wavelength mode-locking pulses with a degree of polarization of 98% and exceptional long-term stability. Through a twisted configuration of two tellurene nanosheets, we realized an all-optical switching operation with a fast response. The multifunctional device also serves as a broadband photodetector. Notably, bipolar polarization encoding communication at 1550 nm can be achieved without any external voltage. The device's multifunctionality and stability in ambient environments established a promising prototype for integrating polarization as an additional physical dimension in fiber optical networks, encompassing diverse applications in light generation, modulation, and detection.
Collapse
Affiliation(s)
- Jing Yu
- Songshan Lake Materials Laboratory, Dongguan 523808, China
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Haoran Mu
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Pu Wang
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Haozhe Li
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Zixin Yang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Jing Ren
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Yang Li
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Luyao Mei
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Jingni Zhang
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Wenzhi Yu
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Nan Cui
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Jian Yuan
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Jian Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Sheng Lan
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Guangyu Zhang
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Shenghuang Lin
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
12
|
Xu Y, Qi J, Ma C, He Q. Wet-Chemical Synthesis of Elemental 2D Materials. Chem Asian J 2024; 19:e202301152. [PMID: 38469659 DOI: 10.1002/asia.202301152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Wet-chemical synthesis refers to the bottom-up chemical synthesis in solution, which is among the most popular synthetic approaches towards functional two-dimensional (2D) materials. It offers several advantages, including cost-effectiveness, high yields,, precious control over the production process. As an emerging family of 2D materials, elemental 2D materials (Xenes) have shown great potential in various applications such as electronics, catalysts, biochemistry,, sensing technologies due to their exceptional/exotic properties such as large surface area, tunable band gap,, high carrier mobility. In this review, we provide a comprehensive overview of the current state-of-the-art in wet-chemical synthesis of Xenes including tellurene, bismuthene, antimonene, phosphorene,, arsenene. The current solvent compositions, process parameters utilized in wet-chemical synthesis, their effects on the thickness, stability of the resulting Xenes are also presented. Key factors considered involves ligands, precursors, surfactants, reaction time, temperature. Finally, we highlight recent advances, existing challenges in the current application of wet-chemical synthesis for Xenes production, provide perspectives on future improvement.
Collapse
Affiliation(s)
- Yue Xu
- Department of Materials Science, Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Junlei Qi
- Department of Materials Science, Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Cong Ma
- Department of Materials Science, Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Qiyuan He
- Department of Materials Science, Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
13
|
Zhao Y, Zhao S, Pang X, Zhang A, Li C, Lin Y, Du X, Cui L, Yang Z, Hao T, Wang C, Yin J, Xie W, Zhu J. Biomimetic wafer-scale alignment of tellurium nanowires for high-mobility flexible and stretchable electronics. SCIENCE ADVANCES 2024; 10:eadm9322. [PMID: 38578997 PMCID: PMC10997201 DOI: 10.1126/sciadv.adm9322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/05/2024] [Indexed: 04/07/2024]
Abstract
Flexible and stretchable thin-film transistors (TFTs) are crucial in skin-like electronics for wearable and implantable applications. Such electronics are usually constrained in performance owing to a lack of high-mobility and stretchable semiconducting channels. Tellurium, a rising semiconductor with superior charge carrier mobilities, has been limited by its intrinsic brittleness and anisotropy. Here, we achieve highly oriented arrays of tellurium nanowires (TeNWs) on various substrates with wafer-scale scalability by a facile lock-and-shear strategy. Such an assembly approach mimics the alignment process of the trailing tentacles of a swimming jellyfish. We further apply these TeNW arrays in high-mobility TFTs and logic gates with improved flexibility and stretchability. More specifically, mobilities over 100 square centimeters per volt per second and on/off ratios of ~104 are achieved in TeNW-TFTs. The TeNW-TFTs on polyethylene terephthalate can sustain an omnidirectional bending strain of 1.3% for more than 1000 cycles. Furthermore, TeNW-TFTs on an elastomeric substrate can withstand a unidirectional strain of 40% with no performance degradation.
Collapse
Affiliation(s)
- Yingtao Zhao
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| | - Sanchuan Zhao
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| | - Xixi Pang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| | - Anni Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| | - Chenning Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| | - Yuxuan Lin
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| | - Xiaomeng Du
- College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lei Cui
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| | - Zhenhua Yang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| | - Tailang Hao
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| | - Chaopeng Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| | - Jun Yin
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| | - Wei Xie
- College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jian Zhu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
- Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
- Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
14
|
Qi J, Dai Y, Ma C, Ke C, Wang W, Wu Z, Wang X, Bao K, Xu Y, Huang H, Wang L, Wu J, Luo G, Chen Y, Lin Z, He Q. Surfactant-Free Ultrasonication-Assisted Synthesis of 2d Tellurium Based on Metastable 1T'-MoTe 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306962. [PMID: 37652747 DOI: 10.1002/adma.202306962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/21/2023] [Indexed: 09/02/2023]
Abstract
Elemental 2D materials (E2DMs) have been attracting considerable attention owing to their chemical simplicity and excellent/exotic properties. However, the lack of robust chemical synthetic methods seriously limits their potential. Here, a surfactant-free liquid-phase synthesis of high-quality 2D tellurium is reported based on ultrasonication-assisted exfoliation of metastable 1T'-MoTe2. The as-grown 2D tellurium nanosheets exhibit excellent single crystallinity, ideal 2D morphology, surfactant-free surface, and negligible 1D by-products. Furthermore, a unique growth mechanism based on the atomic escape of Te atoms from metastable transition metal dichalcogenides and guided 2D growth in the liquid phase is proposed and verified. 2D tellurium-based field-effect transistors show ultrahigh hole mobility exceeding 1000 cm2 V-1 s-1 at room temperature attributing to the high crystallinity and surfactant-free surface, and exceptional chemical and operational stability using both solid-state dielectric and liquid-state electrical double layer. The facile ultrasonication-assisted synthesis of high-quality 2D tellurium paves the way for further exploration of E2DMs and expands the scope of liquid-phase exfoliation (LPE) methodology toward the controlled wet-chemical synthesis of functional nanomaterials.
Collapse
Affiliation(s)
- Junlei Qi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yongping Dai
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, 999077, China
| | - Chengxuan Ke
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenbin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Zongxiao Wu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Kai Bao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yue Xu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Haoxin Huang
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Lingzhi Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Jingkun Wu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Guangfu Luo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, 999077, China
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
15
|
Si W, Zhou W, Liu X, Wang K, Liao Y, Yan F, Ji X. Recent Advances in Broadband Photodetectors from Infrared to Terahertz. MICROMACHINES 2024; 15:427. [PMID: 38675239 PMCID: PMC11051910 DOI: 10.3390/mi15040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
The growing need for the multiband photodetection of a single scene has promoted the development of both multispectral coupling and broadband detection technologies. Photodetectors operating across the infrared (IR) to terahertz (THz) regions have many applications such as in optical communications, sensing imaging, material identification, and biomedical detection. In this review, we present a comprehensive overview of the latest advances in broadband photodetectors operating in the infrared to terahertz range, highlighting their classification, operating principles, and performance characteristics. We discuss the challenges faced in achieving broadband detection and summarize various strategies employed to extend the spectral response of photodetectors. Lastly, we conclude by outlining future research directions in the field of broadband photodetection, including the utilization of novel materials, artificial microstructure, and integration schemes to overcome current limitations. These innovative methodologies have the potential to achieve high-performance, ultra-broadband photodetectors.
Collapse
Affiliation(s)
- Wei Si
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Wenbin Zhou
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Xiangze Liu
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Ke Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Yiming Liao
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Feng Yan
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoli Ji
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Liang H, Ma Y, Yi H, Yao J. Emerging Schemes for Advancing 2D Material Photoconductive-Type Photodetectors. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7372. [PMID: 38068116 PMCID: PMC10707280 DOI: 10.3390/ma16237372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 10/16/2024]
Abstract
By virtue of the widely tunable band structure, dangling-bond-free surface, gate electrostatic controllability, excellent flexibility, and high light transmittance, 2D layered materials have shown indisputable application prospects in the field of optoelectronic sensing. However, 2D materials commonly suffer from weak light absorption, limited carrier lifetime, and pronounced interfacial effects, which have led to the necessity for further improvement in the performance of 2D material photodetectors to make them fully competent for the numerous requirements of practical applications. In recent years, researchers have explored multifarious improvement methods for 2D material photodetectors from a variety of perspectives. To promote the further development and innovation of 2D material photodetectors, this review epitomizes the latest research progress in improving the performance of 2D material photodetectors, including improvement in crystalline quality, band engineering, interface passivation, light harvesting enhancement, channel depletion, channel shrinkage, and selective carrier trapping, with the focus on their underlying working mechanisms. In the end, the ongoing challenges in this burgeoning field are underscored, and potential strategies addressing them have been proposed. On the whole, this review sheds light on improving the performance of 2D material photodetectors in the upcoming future.
Collapse
Affiliation(s)
| | | | | | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China; (H.L.); (Y.M.); (H.Y.)
| |
Collapse
|
17
|
Li L, Xu H, Li Z, Liu L, Lou Z, Wang L. CMOS-Compatible Tellurium/Silicon Ultra-Fast Near-Infrared Photodetector. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303114. [PMID: 37340580 DOI: 10.1002/smll.202303114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Indexed: 06/22/2023]
Abstract
High-quality photodetectors are always the main way to obtain external information, especially near-infrared sensors play an important role in remote sensing communication. However, due to the limitation of Silicon (Si) wide bandgap and the incompatibility of most near infrared photoelectric materials with traditional integrated circuits, the development of high performance and wide detection spectrum near infrared detectors suitable for miniaturization and integration is still facing many obstacles. Herein, the monolithic integration of large area tellurium optoelectronic functional units is realized by magnetron sputtering technology. Taking advantage of the type II heterojunction constructed by tellurium (Te) and silicon (Si), the photogenerated carriers are effectively separated, which prolongs the carrier lifetime and improves the photoresponse by several orders of magnitude. The tellurium/silicon (Te/Si) heterojunction photodetector demonstrates excellent detectivity and ultra-fast turn-on time. Importantly, an imaging array (20 × 20 pixels) based on the Te/Si heterojunction is demonstrated and high-contrast photoelectric imaging is realized. Because of the high contrast obtained by the Te/Si array, in comparison with the Si arrays, it significantly improve the efficiency and accuracy of the subsequent processing tasks when the electronic pictures are applied to artificial neural network (ANN) to simulate the artificial vision system.
Collapse
Affiliation(s)
- Linlin Li
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Xu
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Zhexin Li
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingchen Liu
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Lou
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Wang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Yi H, Ma C, Wang W, Liang H, Cui R, Cao W, Yang H, Ma Y, Huang W, Zheng Z, Zou Y, Deng Z, Yao J, Yang G. Quantum tailoring for polarization-discriminating Bi 2S 3 nanowire photodetectors and their multiplexing optical communication and imaging applications. MATERIALS HORIZONS 2023; 10:3369-3381. [PMID: 37404203 DOI: 10.1039/d3mh00733b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
In this study, cost-efficient atmospheric pressure chemical vapor deposition has been successfully developed to produce well-aligned high-quality monocrystalline Bi2S3 nanowires. By virtue of surface strain-induced energy band reconstruction, the Bi2S3 photodetectors demonstrate a broadband photoresponse across 370.6 to 1310 nm. Upon a gate voltage of 30 V, the responsivity, external quantum efficiency, and detectivity reach 23 760 A W-1, 5.55 × 106%, and 3.68 × 1013 Jones, respectively. The outstanding photosensitivity is ascribed to the high-efficiency spacial separation of photocarriers, enabled by synergy of the axial built-in electric field and type-II band alignment, as well as the pronounced photogating effect. Moreover, a polarization-discriminating photoresponse has been unveiled. For the first time, the correlation between quantum confinement and dichroic ratio is systematically explored. The optoelectronic dichroism is established to be negatively correlated with the cross dimension (i.e., width and height) of the channel. Specifically, upon 405 nm illumination, the optimized dichroic ratio reaches 2.4, the highest value among the reported Bi2S3 photodetectors. In the end, proof-of-concept multiplexing optical communications and broadband lensless polarimetric imaging have been implemented by exploiting the Bi2S3 nanowire photodetectors as light-sensing functional units. This study develops a quantum tailoring strategy for tailoring the polarization properties of (quasi-)1D material photodetectors whilst depicting new horizons for the next-generation opto-electronics industry.
Collapse
Affiliation(s)
- Huaxin Yi
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Churong Ma
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, Guangdong, P. R. China
| | - Wan Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Huanrong Liang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Rui Cui
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Weiwei Cao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Hailin Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Yuhang Ma
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Wenjing Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Yichao Zou
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Zexiang Deng
- School of Science, Guilin University of Aerospace Technology, Guilin 541004, Guangxi, P. R. China.
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| |
Collapse
|
19
|
Kim C, Hur N, Yang J, Oh S, Yeo J, Jeong HY, Shong B, Suh J. Atomic Layer Deposition Route to Scalable, Electronic-Grade van der Waals Te Thin Films. ACS NANO 2023; 17:15776-15786. [PMID: 37432767 DOI: 10.1021/acsnano.3c03559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Scalable production and integration techniques for van der Waals (vdW) layered materials are vital for their implementation in next-generation nanoelectronics. Among available approaches, perhaps the most well-received is atomic layer deposition (ALD) due to its self-limiting layer-by-layer growth mode. However, ALD-grown vdW materials generally require high processing temperatures and/or additional postdeposition annealing steps for crystallization. Also, the collection of ALD-producible vdW materials is rather limited by the lack of a material-specific tailored process design. Here, we report the annealing-free wafer-scale growth of monoelemental vdW tellurium (Te) thin films using a rationally designed ALD process at temperatures as low as 50 °C. They exhibit exceptional homogeneity/crystallinity, precise layer controllability, and 100% step coverage, all of which are enabled by introducing a dual-function co-reactant and adopting a so-called repeating dosing technique. Electronically, vdW-coupled and mixed-dimensional vertical p-n heterojunctions with MoS2 and n-Si, respectively, are demonstrated with well-defined current rectification as well as spatial uniformity. Additionally, we showcase an ALD-Te-based threshold switching selector with fast switching time (∼40 ns), selectivity (∼104), and low Vth (∼1.3 V). This synthetic strategy allows the low-thermal-budget production of vdW semiconducting materials in a scalable fashion, thereby providing a promising approach for monolithic integration into arbitrary 3D device architectures.
Collapse
Affiliation(s)
- Changhwan Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Namwook Hur
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jiho Yang
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Saeyoung Oh
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jeongin Yeo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hu Young Jeong
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Bonggeun Shong
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Joonki Suh
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
20
|
Sisman O, Zappa D, Maraloiu VA, Comini E. Fabrication of CuO ( p)-ZnO ( n) Core-Shell Nanowires and Their H2-Sensing Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4802. [PMID: 37445116 DOI: 10.3390/ma16134802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Unlike the conventional one-dimensional (1D) core-shell nanowires (NWs) composed of p-type shells and n-type cores, in this work, an inverse design is proposed by depositing n-type ZnO (shell) layers on the surface of p-type CuO (core) NWs, to have a comprehensive understanding of their conductometric gas-sensing kinetics. The surface morphologies of bare and core-shell NWs were investigated by field emission scanning electron microscope (FE-SEM). The ZnO shell layer was presented by overlay images taken by electron dispersive X-ray spectroscopy (EDX) and high-resolution transmission electron microscopy (HRTEM). The pronounced crystalline plane peaks of ZnO were recorded in the compared glancing incident X-ray diffraction (GI-XRD) spectra of CuO and CuO-ZnO core-shell NWs. The ZnO shell layers broaden the absorption curve of CuO NWs in the UV-vis absorption spectra. As a result of the heterostructure formation, the intrinsic p-type sensing behavior of CuO NWs towards 250 and 500 ppm of hydrogen (H2) switched to n-type due to the deposition of ZnO shell layers, at 400 °C in dry airflow.
Collapse
Affiliation(s)
- Orhan Sisman
- Department of Functional Materials, FunGlass Center, Alexander Dubcek University of Trencin, 91150 Trencin, Slovakia
| | - Dario Zappa
- Sensor Laboratory, Department of Information Engineering (DII), University of Brescia, Via Valotti 7, 25123 Bresica, Italy
| | | | - Elisabetta Comini
- Sensor Laboratory, Department of Information Engineering (DII), University of Brescia, Via Valotti 7, 25123 Bresica, Italy
| |
Collapse
|
21
|
Lin DY, Hsu HP, Liu KH, Wu PH, Shih YT, Wu YF, Wang YP, Lin CF. Enhanced Optical Response of SnS/SnS 2 Layered Heterostructure. SENSORS (BASEL, SWITZERLAND) 2023; 23:4976. [PMID: 37430888 DOI: 10.3390/s23104976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 07/12/2023]
Abstract
The SnS/SnS2 heterostructure was fabricated by the chemical vapor deposition method. The crystal structure properties of SnS2 and SnS were characterized by X-ray diffraction (XRD) pattern, Raman spectroscopy, and field emission scanning electron microscopy (FESEM). The frequency dependence photoconductivity explores its carrier kinetic decay process. The SnS/SnS2 heterostructure shows that the ratio of short time constant decay process reaches 0.729 with a time constant of 4.3 × 10-4 s. The power-dependent photoresponsivity investigates the mechanism of electron-hole pair recombination. The results indicate that the photoresponsivity of the SnS/SnS2 heterostructure has been increased to 7.31 × 10-3 A/W, representing a significant enhancement of approximately 7 times that of the individual films. The results show the optical response speed has been improved by using the SnS/SnS2 heterostructure. These results indicate an application potential of the layered SnS/SnS2 heterostructure for photodetection. This research provides valuable insights into the preparation of the heterostructure composed of SnS and SnS2, and presents an approach for designing high-performance photodetection devices.
Collapse
Affiliation(s)
- Der-Yuh Lin
- Department of Electronic Engineering, National Changhua University of Education, No. 2, Shi-Da Rd., Changhua 500, Taiwan
| | - Hung-Pin Hsu
- Department of Electronic Engineering, Ming Chi University of Technology, No. 84, Gongzhuan Rd., Taishan Dist., New Taipei City 243, Taiwan
| | - Kuang-Hsin Liu
- Department of Electronic Engineering, National Changhua University of Education, No. 2, Shi-Da Rd., Changhua 500, Taiwan
| | - Po-Hung Wu
- Department of Electrical Engineering, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien 974, Taiwan
| | - Yu-Tai Shih
- Department of Physics, National Changhua University of Education, No. 1, Jin-De Rd., Changhua 500, Taiwan
| | - Ya-Fen Wu
- Department of Electronic Engineering, Ming Chi University of Technology, No. 84, Gongzhuan Rd., Taishan Dist., New Taipei City 243, Taiwan
| | - Yi-Ping Wang
- Department of Electronic Engineering, Ming Chi University of Technology, No. 84, Gongzhuan Rd., Taishan Dist., New Taipei City 243, Taiwan
| | - Chia-Feng Lin
- Department of Materials Science and Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung 402, Taiwan
| |
Collapse
|