1
|
Liu Y, Liu M, Li X, Wen L, Chen X, Huang Z, Ding D, Yang S, Chen Y, Chen R. Electrical activation of periodate by nano-zero-valent cobalt/nitrogen-doped carbon for sulfisoxazole degradation: Insights into rapid electron transfer mechanisms. J Colloid Interface Sci 2025; 685:854-865. [PMID: 39870003 DOI: 10.1016/j.jcis.2025.01.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/29/2025]
Abstract
Periodate (PI) activation via three-dimensional electrochemical (E) is a promising approach for degrading sulfisoxazole (SIZ), while the scarcity of active sites significantly limits the efficient electron-transfer rate. Herein, we synthesized multiple strongly active zero-valent cobalt (Co0) nanoparticles encapsulated in nitrogen-doped carbon (NC) shells through Co-potassium chloride (KCl) doping pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8) to induce the rapid electron transfer pathways (ETP). Specifically, molten KCl doping provides confined structures for Co0 with a diameter of 12.57 nm embedded in the NC shell, thereby expanding the active space of Co0/NC. The generated Co0/NC exhibited an enormous electrochemically active surface area (ECSA, 736.92 cm2/mg), low charge transfer resistance (Rct, 38.50 Ω), and strong adsorption energy (-6.003 eV), which together promote robust electron transfer kinetics. Capitalizing on these properties, the E-Co0/NC-PI system achieved 100% SIZ removal at a degradation rate of 1.587 min-1 under near-neutral (pH 5.00-9.00) conditions, with ultra-low energy consumption (0.011 kWh m-3, $0.125/L). This study highlights a Co0/NC-induced rapid ETP for SIZ removal, offering insights into enhanced electrical activation of PI for wastewater treatment.
Collapse
Affiliation(s)
- Yu Liu
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Liu
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoping Li
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanxuan Wen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaobao Chen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zonghan Huang
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengjiong Yang
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shanxi 710055, China
| | - Yang Chen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Rongzhi Chen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Chen S, Kuznetsov NM, Hou L, Choi HJ, Zhang K, Zhao J, Li Y. Limited Electron-Dominated Electrorheological Response with TiO 2 Buffer Layer. NANO LETTERS 2025; 25:5591-5598. [PMID: 40138541 DOI: 10.1021/acs.nanolett.4c05619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
We report porous carbon sphere electrorheological (ER) nanoparticles coated with a titanium dioxide layer (HCs@TiO2). Utilizing the buffering effect of amorphous TiO2, the HCs@TiO2 ER fluid (ERF) shows a yield stress that exceeds that of previous carbon-based ER nanomaterials. The mechanisms of the high ER response are elucidated through the analysis of the dielectric properties, demonstrating that the amorphous TiO2 shell not only restricts the electron-dominated motion but also significantly improves the interfacial polarization. Furthermore, the HCs@TiO2 ERF exhibits superior sedimentation stability and low current density, which is attributed to the formation of a hydrogen bond network. The rheological behavior of HCs@TiO2 ERF is analyzed using the Bingham and Cho-Choi-Jhon model, where the dynamic yield stress as a function of electric field strength is fitted using a generalized yield stress equation. These analyses indicate that local electrostatic accumulation between the hybrid shells benefits the ER response.
Collapse
Affiliation(s)
- Sai Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Nikita M Kuznetsov
- National Research Center "Kurchatov Institute", Moscow 123182, Russia
- MIREA, Russian Technological University, Moscow 119454, Russia
| | - Longtao Hou
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Hyoung Jin Choi
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, South Korea
| | - Ke Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Jiupeng Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yao Li
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
3
|
Ariga K. Layer-by-Layer Nanoarchitectonics: A Method for Everything in Layered Structures. MATERIALS (BASEL, SWITZERLAND) 2025; 18:654. [PMID: 39942320 PMCID: PMC11820121 DOI: 10.3390/ma18030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025]
Abstract
The development of functional materials and the use of nanotechnology are ongoing projects. These fields are closely linked, but there is a need to combine them more actively. Nanoarchitectonics, a concept that comes after nanotechnology, is ready to do this. Among the related research efforts, research into creating functional materials through the formation of thin layers on surfaces, molecular membranes, and multilayer structures of these materials have a lot of implications. Layered structures are especially important as a key part of nanoarchitectonics. The diversity of the components and materials used in layer-by-layer (LbL) assemblies is a notable feature. Examples of LbL assemblies introduced in this review article include quantum dots, nanoparticles, nanocrystals, nanowires, nanotubes, g-C3N4, graphene oxide, MXene, nanosheets, zeolites, nanoporous materials, sol-gel materials, layered double hydroxides, metal-organic frameworks, covalent organic frameworks, conducting polymers, dyes, DNAs, polysaccharides, nanocelluloses, peptides, proteins, lipid bilayers, photosystems, viruses, living cells, and tissues. These examples of LbL assembly show how useful and versatile it is. Finally, this review will consider future challenges in layer-by-layer nanoarchitectonics.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| |
Collapse
|
4
|
Ariga K. Materials Nanoarchitectonics for Advanced Devices. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5918. [PMID: 39685353 DOI: 10.3390/ma17235918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Advances in nanotechnology have made it possible to observe and evaluate structures down to the atomic and molecular level. The next step in the development of functional materials is to apply the knowledge of nanotechnology to materials sciences. This is the role of nanoarchitectonics, which is a concept of post-nanotechnology. Nanoarchitectonics is defined as a methodology to create functional materials using nanounits such as atoms, molecules, and nanomaterials as building blocks. Nanoarchitectonics is very general and is not limited to materials or applications, and thus nanoarchitecture is applied in many fields. In particular, in the evolution from nanotechnology to nanoarchitecture, it is useful to consider the contribution of nanoarchitecture in device applications. There may be a solution to the widely recognized problem of integrating top-down and bottom-up approaches in the design of functional systems. With this in mind, this review discusses examples of nanoarchitectonics in developments of advanced devices. Some recent examples are introduced through broadly dividing them into organic molecular nanoarchitectonics and inorganic materials nanoarchitectonics. Examples of organic molecular nanoarchitecture include a variety of control structural elements, such as π-conjugated structures, chemical structures of complex ligands, steric hindrance effects, molecular stacking, isomerization and color changes due to external stimuli, selective control of redox reactions, and doping control of organic semiconductors by electron transfer reactions. Supramolecular chemical processes such as association and intercalation of organic molecules are also important in controlling device properties. The nanoarchitectonics of inorganic materials often allows for control of size, dimension, and shape, and their associated physical properties can also be controlled. In addition, there are specific groups of materials that are suitable for practical use, such as nanoparticles and graphene. Therefore, nanoarchitecture of inorganic materials also has a more practical aspect. Based on these aspects, this review finally considers the future of materials nanoarchitectonics for further advanced devices.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| |
Collapse
|
5
|
Liu B, Hou J, Wang K, Xu C, Zhang Q, Gu L, Zhou W, Li Q, Wang J, Liu H. Surface Charge Regulation of Graphene by Fluorine and Chlorine Co-Doping for Constructing Ultra-Stable and Large Energy Density Micro-Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402033. [PMID: 39294103 PMCID: PMC11558090 DOI: 10.1002/advs.202402033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/30/2024] [Indexed: 09/20/2024]
Abstract
Settling the structure stacking of graphene (G) nanosheets to maintain the high dispersity has been an intense issue to facilitate their practical application in the microelectronics-related devices. Herein, the co-doping of the highest electronegative fluorine (F) and large atomic radius chlorine (Cl) into G via a one-step electrochemical exfoliation protocol is engineered to actualize the ultralong cycling stability for flexible micro-supercapacitors (MSCs). Density functional theoretical calculations unveiled that the F into G can form the "ionic" C─F bond to increase the repulsive force between nanosheets, and the introduction of Cl can enlarge the layer spacing of G as well as increase active sites by accumulating the charge on pore defects. The co-doping of F and Cl generates the strong synergy to achieve high reversible capacitance and sturdy structure stability for G. The as-constructed aqueous gel-based MSC exhibited the superb cycling stability for 500,000 cycles with no capacitance loss and structure stacking. Furthermore, the ionic liquid gel-based MSC demonstrated a high energy density of 113.9 mW h cm-3 under high voltage of up to 3.5 V. The current work enlightens deep insights into the design and scalable preparation of high-performance co-doped G electrode candidate in the field of flexible microelectronics.
Collapse
Affiliation(s)
- Binbin Liu
- Institute for Advanced Interdisciplinary Research (iAIR)Shandong Provincial Key Laboratory of Preparation and Measurement of Building MaterialsCollaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongUniversity of JinanJinanShandong250022P. R. China
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117574Singapore
| | - Jiagang Hou
- Kyiv College at Qilu University of TechnologyQilu University of TechnologyShandong Academy of SciencesJinanShandong250353P. R. China
| | - Kai Wang
- Institute for Advanced Interdisciplinary Research (iAIR)Shandong Provincial Key Laboratory of Preparation and Measurement of Building MaterialsCollaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongUniversity of JinanJinanShandong250022P. R. China
- Institute of Electrical EngineeringChinese Academy of SciencesBeijing100190P. R. China
| | - Caixia Xu
- Institute for Advanced Interdisciplinary Research (iAIR)Shandong Provincial Key Laboratory of Preparation and Measurement of Building MaterialsCollaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongUniversity of JinanJinanShandong250022P. R. China
| | - Qinghua Zhang
- Institute of PhysicsMatter PhysicsChinese Academy of Sciences/Beijing National Laboratory for CondensedBeijing100190P. R. China
| | - Lin Gu
- Institute of PhysicsMatter PhysicsChinese Academy of Sciences/Beijing National Laboratory for CondensedBeijing100190P. R. China
| | - Weijia Zhou
- Institute for Advanced Interdisciplinary Research (iAIR)Shandong Provincial Key Laboratory of Preparation and Measurement of Building MaterialsCollaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongUniversity of JinanJinanShandong250022P. R. China
| | - Qian Li
- Institute for Advanced Interdisciplinary Research (iAIR)Shandong Provincial Key Laboratory of Preparation and Measurement of Building MaterialsCollaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongUniversity of JinanJinanShandong250022P. R. China
| | - John Wang
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117574Singapore
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR)Shandong Provincial Key Laboratory of Preparation and Measurement of Building MaterialsCollaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongUniversity of JinanJinanShandong250022P. R. China
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| |
Collapse
|
6
|
Wang W, Ma M, Song Y, Wang Z, Bian C, Cai R, Wang X, Zhu X. Electrochemically Intercalated Ti 3C 2 MXene Bulk for Expanding Interlayer Spacing and Enhancing Supercapacitor Performance. Inorg Chem 2024; 63:20633-20642. [PMID: 39395002 DOI: 10.1021/acs.inorgchem.4c03280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Tuning the interlayer spacing of 2D MXenes bulk mainly focuses on hydrothermal intercalation, physiotherapy intercalation, and ion exchange intercalation. Nevertheless, the feasibility of electrochemical intercalation technology for expanding the interlayer spacing of Ti3C2 MXene bulk is not yet clear, and further research is required to advance it. Here, we employed an electrochemical intercalation technology to successfully embed metal cations (K+ and Na+) into the interlayer structure of Ti3C2 MXene bulk, expanding the interlayer spacing from ∼10.50 to ∼13.10 Å by K+ intercalation, which can broaden electron/ion transport channels and enhance supercapacitor performance. Compared to the pristine Ti3C2 MXene bulk, the specific capacitance value increased by a factor of 2.8. Moreover, the intercalated MXene also exhibits excellent rate capability, with an increase from 47.32 to 70.20%. This work opens up a new path for the modification of Ti3C2 MXene bulk.
Collapse
Affiliation(s)
- Weixin Wang
- Anhui Province Key Laboratory of Intelligent Computing and Applications, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Mingzhu Ma
- Anhui Province Key Laboratory of Intelligent Computing and Applications, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Yuting Song
- Anhui Province Key Laboratory of Intelligent Computing and Applications, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Zhixin Wang
- Anhui Province Key Laboratory of Intelligent Computing and Applications, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Changlei Bian
- Anhui Province Key Laboratory of Intelligent Computing and Applications, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Rui Cai
- Anhui Province Key Laboratory of Intelligent Computing and Applications, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Xin Wang
- Anhui Province Key Laboratory of Intelligent Computing and Applications, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P. R. China
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei 235000, P. R. China
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Xuebin Zhu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
7
|
Ding H, Liu Z, Xie J, Shen Z, Yu D, Chen Y, Lu Y, Zhou H, Zhang G, Pang H. Ion Exchange-Mediated 3D Cross-Linked ZIF-L Superstructure for Flexible Electrochemical Energy Storage. Angew Chem Int Ed Engl 2024; 63:e202410255. [PMID: 38881320 DOI: 10.1002/anie.202410255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
Metal-organic frameworks (MOFs) are considered as a promising candidate for advancing energy storage owing to their intrinsic multi-channel architecture, high theoretical capacity, and precise adjustability. However, the low conductivity and poor structural stability lead to unsatisfactory rate and cycling performance, greatly hindering their practical application. Herein, we propose a sea urchin-like Co-ZIF-L superstructure using molecular template to induce self-assembly followed by ion exchange method, which shows improved conductivity, successive channels, and high stability. The ion exchange can gradually etch the superstructure, leading to the reconstruction of Co-ZIF-L with three-dimensional (3D) cross-linked ultrathin porous nanosheets. Moreover, the precise control of Co to Ni ratios can construct effective micro-electric field and synergistically enhance the rapid transfer of electrons and electrolyte ions, improving the conductivity and stability of CoNi-ZIF-L. The Co6.53Ni-ZIF-L electrode exhibits a high specific capacity (602 F g-1 at 1 A g-1) and long cycling stability (95.3 % retention after 4,000 cycles at 5 A g-1). The Co6.53Ni-ZIF-L//AC asymmetric flexible supercapacitor employing gel electrolyte also exhibits excellent cycling stability (93.3 % retention after 4000 cycles at 5 A g-1). This discovery provides valuable insights for electrode material selection and energy storage efficiency improvement.
Collapse
Affiliation(s)
- Hongye Ding
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Zheng Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Zizhou Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Dianheng Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yihao Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yibo Lu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huijie Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| |
Collapse
|
8
|
Hu H, Yang C, Chen F, Li J, Jia X, Wang Y, Zhu X, Man Z, Wu G, Chen W. High-Entropy Engineering Reinforced Surface Electronic States and Structural Defects of Hierarchical Metal Oxides@Graphene Fibers toward High-Performance Wearable Supercapacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406483. [PMID: 38898699 DOI: 10.1002/adma.202406483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/08/2024] [Indexed: 06/21/2024]
Abstract
Construction advanced fibers with high Faradic activity and conductivity are effective to realize high energy density with sufficient redox reactions for fiber-based electrochemical supercapacitors (FESCs), yet it is generally at the sacrifice of kinetics and structural stability. Here, a high-entropy doping strategy is proposed to develop high-energy-density FESCs based on high-entropy doped metal oxide@graphene fiber composite (HE-MO@GF). Due to the synergistic participation of multi-metal elements via high-entropy doping, the HE-MO@GF features abundant oxygen vacancies from introducing various low-valence metal ions, lattice distortions, and optimized electronic structure. Consequently, the HE-MO@GF maintains sufficient active sites, a low diffusion barrier, fast adsorption kinetics, improved electronic conductivity, enhanced structural stability, and Faradaic reversibility. Thereinto, HE-MO@GF presents ultra-large areal capacitance (3673.74 mF cm-2) and excellent rate performance (1446.78 mF cm-2 at 30 mA cm-2) in 6 M KOH electrolyte. The HE-MO@GF-based solid-state FESCs also deliver high energy density (132.85 µWh cm-2), good cycle performance (81.05% of capacity retention after 10,000 cycles), and robust tolerance to sweat erosion and multiple washing, which is woven into the textile to power various wearable devices (e.g., watch, badge and luminous glasses). This high-entropy strategy provides significant guidance for designing innovative fiber materials and highlights the development of next-generation wearable energy devices.
Collapse
Affiliation(s)
- Haowei Hu
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Zhejiang Sci-Tech University, Shaoxing, 312000, P. R. China
| | - Chao Yang
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Zhejiang Sci-Tech University, Shaoxing, 312000, P. R. China
| | - Fangyuan Chen
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Zhejiang Sci-Tech University, Shaoxing, 312000, P. R. China
| | - Jiahui Li
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Zhejiang Sci-Tech University, Shaoxing, 312000, P. R. China
| | - Xiaoli Jia
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Zhejiang Sci-Tech University, Shaoxing, 312000, P. R. China
| | - Yuting Wang
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Zhejiang Sci-Tech University, Shaoxing, 312000, P. R. China
| | - Xiaolin Zhu
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Zhejiang Sci-Tech University, Shaoxing, 312000, P. R. China
| | - Zengming Man
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Zhejiang Sci-Tech University, Shaoxing, 312000, P. R. China
| | - Guan Wu
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Zhejiang Sci-Tech University, Shaoxing, 312000, P. R. China
| | - Wenxing Chen
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Zhejiang Sci-Tech University, Shaoxing, 312000, P. R. China
| |
Collapse
|
9
|
Pazhamalai P, Krishnan V, Mohamed Saleem MS, Kim SJ, Seo HW. Investigating composite electrode materials of metal oxides for advanced energy storage applications. NANO CONVERGENCE 2024; 11:30. [PMID: 39080114 PMCID: PMC11289214 DOI: 10.1186/s40580-024-00437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024]
Abstract
Electrochemical energy systems mark a pivotal advancement in the energy sector, delivering substantial improvements over conventional systems. Yet, a major challenge remains the deficiency in storage technology to effectively retain the energy produced. Amongst these are batteries and supercapacitors, renowned for their versatility and efficiency, which depend heavily on the quality of their electrode materials. Metal oxide composites, in particular, have emerged as highly promising due to the synergistic effects that significantly enhance their functionality and efficiency beyond individual components. This review explores the application of metal oxide composites in the electrodes of batteries and SCs, focusing on various material perspectives and synthesis methodologies, including exfoliation and hydrothermal/solvothermal processes. It also examines how these methods influence device performance. Furthermore, the review confronts the challenges and charts future directions for metal oxide composite-based energy storage systems, critically evaluating aspects such as scalability of synthesis, cost-effectiveness, environmental sustainability, and integration with advanced nanomaterials and electrolytes. These factors are crucial for advancing next-generation energy storage technologies, striving to enhance performance while upholding sustainability and economic viability.
Collapse
Affiliation(s)
- Parthiban Pazhamalai
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
- Research Institute of New Energy Industry (RINEI), Jeju National University, Jeju, 63243, South Korea
| | - Vignesh Krishnan
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
| | - Mohamed Sadiq Mohamed Saleem
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
| | - Sang-Jae Kim
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea.
- Research Institute of New Energy Industry (RINEI), Jeju National University, Jeju, 63243, South Korea.
- Nanomaterials & System Lab, Major of Mechanical System Engineering, College of Engineering, Jeju National University, Jeju, 63243, South Korea.
| | - Hye-Won Seo
- Department of Physics, Jeju National University, Jeju, 63243, South Korea.
| |
Collapse
|
10
|
Ariga K. Liquid-Liquid and Liquid-Solid Interfacial Nanoarchitectonics. Molecules 2024; 29:3168. [PMID: 38999120 PMCID: PMC11243083 DOI: 10.3390/molecules29133168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Nanoscale science is becoming increasingly important and prominent, and further development will necessitate integration with other material chemistries. In other words, it involves the construction of a methodology to build up materials based on nanoscale knowledge. This is also the beginning of the concept of post-nanotechnology. This role belongs to nanoarchitectonics, which has been rapidly developing in recent years. However, the scope of application of nanoarchitectonics is wide, and it is somewhat difficult to compile everything. Therefore, this review article will introduce the concepts of liquid and interface, which are the keywords for the organization of functional material systems in biological systems. The target interfaces are liquid-liquid interface, liquid-solid interface, and so on. Recent examples are summarized under the categories of molecular assembly, metal-organic framework and covalent organic framework, and living cell. In addition, the latest research on the liquid interfacial nanoarchitectonics of organic semiconductor film is also discussed. The final conclusive section summarizes these features and discusses the necessary components for the development of liquid interfacial nanoarchitectonics.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki 305-0044, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| |
Collapse
|
11
|
Yang Q, Chung K, Liu X, Sun L, Han J, Yang Y, Chen T, Shi W, Xu B. Confined Space Dual-Type Quantum Dots for High-Rate Electrochemical Energy Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401375. [PMID: 38747977 DOI: 10.1002/adma.202401375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/10/2024] [Indexed: 05/21/2024]
Abstract
Owing to the quantum size effect and high redox activity, quantum dots (QDs) play very essential roles toward electrochemical energy storage. However, it is very difficult to obtain different types and uniformly dispersed high-active QDs in a stable conductive microenvironment, because QDs prepared by traditional methods are mostly dissolved in solution or loaded on the surface of other semiconductors. Herein, dual-type semiconductor QDs (Co9S8 and CdS) are skillfully constructed within the interlayer of ultrathin-layered double hydroxides. In particular, the expandable interlayer provides a very suitable confined space for the growth and uniform dispersion of QDs, where Co9S8 originates from in situ transformation of cobalt atoms in laminate and CdS is generated from interlayer pre-embedding Cd2+. Meanwhile, XAFS and GGA+U calculations are employed to explore and prove the mechanism of QDs formation and energy storage characteristics as compared to surface loading QDs. Significantly, the hybrid supercapacitors achieve a high energy density of 329.2 µWh cm-2, capacitance retention of 99.1%, and coulomb efficiency of 96.9% after 22 000 cycles, which is superior to the reported QDs-based supercapacitors. These findings provide unique insights for designing and developing stable, ordered, and highly active QDs.
Collapse
Affiliation(s)
- Qingjun Yang
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - KingYan Chung
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Xinlong Liu
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Lin Sun
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jing Han
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Yujue Yang
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Tiandi Chen
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Bingang Xu
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
12
|
Li W, Yang S, Chen W, Yang J, Yu H, Lv R, Fu M. Free-standing and flexible polyvinyl alcohol-sodium alginate-polypyrrole electrodes based on interpenetrating network hydrogels. J Colloid Interface Sci 2024; 664:299-308. [PMID: 38479266 DOI: 10.1016/j.jcis.2024.03.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 04/07/2024]
Abstract
Flexible supercapacitors (FSCs) have attracted much attention due to their strong mechanical flexibility, wearability and portability, which greatly rely on the employed flexible electrodes. The conductive polymer hydrogels with excellent flexibility, processability and capacitive performance are one of the most promising candidates, which are still limited by their poor mechanical properties. Constructing robust interpenetrating polymer networks (IPN) is an effective approach to promote their mechanical properties. Herein, interpenetrating polyvinyl alcohol (PVA)-sodium alginate (SA)-polypyrrole (PPy) hydrogels are prepared by the freeze-thaw and in-situ polymerization method. The IPN structure composed of PVA and SA not only enhances the mechanical properties of hydrogels, but also provides substantial active sites for electrochemical reactions. Moreover, the hydrogen-bonding interaction between different components in the PVA-SA-PPy hydrogel boosts the charge/ion transfer. The optimal PVA-SA-PPy hydrogels show an elongation at break of 380 %, a tensile strength of 1.5 MPa, and a specific capacitance of 2646 mF cm-2 at 2 mA cm-2. The symmetric PVA-SA-PPy FSCs show an energy density of 96.7 μWh cm-2 at a power density of 999.9 μW cm-2, and the capacitance retention is 66.3 % after 10,000 cycles. These exceptional mechanical and electrochemical properties make the PVA-SA-PPy hydrogels a promising candidate for FSCs.
Collapse
Affiliation(s)
- Wenzheng Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Siyuan Yang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Wei Chen
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jing Yang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hao Yu
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Ruitao Lv
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Min Fu
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
13
|
Sun Q, Duan P, Zhang W, Xie Y, Ni X, Zheng J. Floatable Cu 2(OH)PO 4/rGO Aerogel for Full Spectrum Driven Photocatalytic Degradation of Organic Pollutants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11087-11097. [PMID: 38718184 DOI: 10.1021/acs.langmuir.4c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Photocatalytic technology is an attractive option for environmental remediation because of its green and sustainable nature. However, the inefficient utilization of solar energy and powder morphology currently impede its practical application. Here, we designed a floatable photocatalyst by anchoring 0D Cu2(OH)PO4 (CHP) nanoparticles on 2D graphene to construct 0D/2D CHP/reduced graphene oxide (rGO) aerogels. The CHP/rGO aerogels have interconnected mesopores that provide a large surface area, promoting particle dispersion and increasing the number of active sites. Moreover, the optical response of the CHP/rGO aerogel has been significantly expanded to cover the full spectrum of the solar light. Notably, the 20%CHP/rGO aerogel displayed a high degradation rate (k = 0.178 min-1) taking methylene blue (MB) as a model pollutant under light irradiation (λ > 420 nm). The enhanced photocatalytic activity is ascribed to the rapid electron transfer in the CHP/rGO heterostructures, as supported by the DFT theoretical calculations. Our research highlights the utilization of full spectrum responsive photocatalysts for the elimination of organic pollutants from wastewater under solar light irradiation, as well as the potential for catalyst recovery using floatable aerogels to meet industrial requirements.
Collapse
Affiliation(s)
- Qiaomei Sun
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Pengjun Duan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Wenqing Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Yuxuan Xie
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Xiang Ni
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Jianzhong Zheng
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| |
Collapse
|
14
|
Yu T, Li S, Li F, Zhang L, Wang Y, Sun J. In-situ synthesized and induced vertical growth of cobalt vanadium layered double hydroxide on few-layered V 2CT x MXene for high energy density supercapacitors. J Colloid Interface Sci 2024; 661:460-471. [PMID: 38308886 DOI: 10.1016/j.jcis.2024.01.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Two-dimensional (2D) MXene nanomaterials display great potential for green energy storage. However, as a result of self-stacking of MXene nanosheets and the presence of conventional binders, MXene-based nanomaterials are significantly hindered in their rate capability and cycling stability. We successfully constructed a self-supported stereo-structured composite (TMA-V2CTx/CoV-LDH/NF) by in-situ growing 2D cobalt vanadium layered double hydroxide (CoV-LDH) vertically on 2D few-layered V2CTx MXene nanosheets and interconnecting it with Ni foam (NF) with a self-supported structure to act as a binder-free electrode. In addition to inhibiting CoV-LDH aggregation, the highly conductive V2CTx MXene and CoV-LDH work synergistically to improve charge storage. The specific capacitance of the TMA-V2CTx/CoV-LDH/NF electrode is 2374 F/g (1187 C/g) at 1 A/g. At the same time, the TMA-V2CTx/CoV-LDH/NF exhibits excellent stability, retaining 85.3 % of its specific capacitance at 20 A/g after 10,000 cycles. In addition, the hybrid supercapacitor (HSC) is assembled based on positive electrode (TMA-V2CTx/CoV-LDH/NF) and negative electrode (AC), achieving the maximum energy density of 74.4 Wh kg-1 at 750.3 W kg-1. TMA-V2CTx/CoV-LDH/NF has potential as an electrode material for storing green energy. The research strategy provides a development prospect for the construction of novel V2CTx MXene-based electrode material with self-supported structures.
Collapse
Affiliation(s)
- Tingting Yu
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shaobin Li
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China; College of Materials Science and Engineering, Advanced Inorganic Function Composites Research Laboratory, Qiqihar University, Qiqihar 161006, China.
| | - Fengbo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Li Zhang
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China; College of Materials Science and Engineering, Advanced Inorganic Function Composites Research Laboratory, Qiqihar University, Qiqihar 161006, China.
| | - Yuping Wang
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| | - Jingyu Sun
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
15
|
Khan SS, Kokilavani S, Alahmadi TA, Ansari MJ. Enhanced visible light driven photodegradation of rifampicin and Cr(VI) reduction activity of ultra-thin ZnO nanosheets/CuCo 2S 4QDs: A mechanistic insights, degradation pathway and toxicity assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123760. [PMID: 38492754 DOI: 10.1016/j.envpol.2024.123760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/18/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
In this study, we focused on fabrication of porous ultra-thin ZnO nanosheet (PUNs)/CuCo2S4 quantum dots (CCS QDs) for visible light-driven photodegradation of rifampicin (RIF) and Cr(VI) reduction. The morphology, structural, optical and textural properties of fabricated photocatalyst were critically analyzed with different analytical and spectroscopic techniques. An exceptionally high RIF degradation (99.97%) and maximum hexavalent Cr(VI) reduction (96.17%) under visible light was achieved at 10 wt% CCS QDs loaded ZnO, which is 213% and 517% greater than bare ZnO PUNs. This enhancement attributed to the improved visible light absorption, interfacial synergistic effect, and high surface-rich active sites. Extremely high generation of ●OH attributed to the spin-orbit coupling in ZnO PUNs@CCS QDs and the existence of oxygen vacancies. Besides, the ZnOPUNs@CCS QDs, forming Z-scheme heterojunctions, enhanced the separation of photogenerated charge carriers. We investigated the influencing factors such as pH, inorganic ions, catalyst dosage and drug dosage on the degradation process. More impressively, a stable performance of ZnO PUNs@CCS QDs obtained even after six consecutive degradation (85.9%) and Cr(VI) reduction (67.7%) cycles. Furthermore, the toxicity of intermediates produced during the photodegradation process were assessed using ECOSAR program. This work provides a new strategy for ZnO-based photocatalysis as a promising candidate for the treatment of various contaminants present in water bodies.
Collapse
Affiliation(s)
- S Sudheer Khan
- Department of Oral Medicine and Radiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - S Kokilavani
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| |
Collapse
|
16
|
Zhu Y, Wang Z, Zhu X, Feng Z, Tang C, Wang Q, Yang Y, Wang L, Fan L, Hou J. Optimizing Performance in Supercapacitors through Surface Decoration of Bismuth Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16927-16935. [PMID: 38506726 DOI: 10.1021/acsami.3c17699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Bismuth (Bi) exhibits a high theoretical capacity, excellent electrical conductivity properties, and remarkable interlayer spacing, making it an ideal electrode material for supercapacitors. However, during the charge and discharge processes, Bi is prone to volume expansion and pulverization, resulting in a decline in the capacitance. Deposition of a nonmetal on its surface is considered an effective way to modulate its morphology and electronic structure. Herein, we employed the chemical vapor deposition technique to fabricate Se-decorated Bi nanosheets on a nickel foam (NF) substrate. Various characterizations indicated that the deposition of Se on Bi nanosheets regulated their surface morphology and chemical state, while sustaining their pristine phase structure. Electrochemical tests demonstrated that Se-decorated Bi nanosheets exhibited a 51.1% improvement in capacity compared with pristine Bi nanosheets (1313 F/g compared to 869 F/g at a current density of 5 A/g). The energy density of the active material in an assembled asymmetric supercapacitor could reach 151.2 Wh/kg at a power density of 800 W/kg. These findings suggest that Se decoration is a promising strategy to enhance the capacity of the Bi nanosheets.
Collapse
Affiliation(s)
- Yiyu Zhu
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Zhen Wang
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Xinyuan Zhu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, P. R. China
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, P. R. China
| | - Ziyu Feng
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, P. R. China
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Chaoyang Tang
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Qian Wang
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Ying Yang
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Lei Wang
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Lele Fan
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Jiwei Hou
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| |
Collapse
|
17
|
Qu L, Gou Q, Deng J, Zheng Y, Li M. A Perspective of Bioinspired Interfaces Applied in Renewable Energy Storage and Conversion Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6601-6611. [PMID: 38478901 DOI: 10.1021/acs.langmuir.3c03679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The natural world renders a large number of opportunities to design intriguing structures and fascinating functions for innovations of advanced surfaces and interfaces. Currently, bioinspired interfaces have attracted much attention in practical applications of renewable energy storage and conversion devices including rechargeable batteries, fuel cells, dye-sensitized solar cells, and supercapacitors. By mimicking miscellaneous natural creatures, many novel bioinspired interfaces with various components, structures, morphology, and configurations are exerted on the devices' electrodes, electrolytes, additives, separators, and catalyst matrixes, resorting to their wonderful mechanical, optical, electrical, physical, chemical, and electrochemical features compared with the corresponding traditional modes. In this Perspective, the principles of designing bioinspired interfaces are discussed with respect to biomimetic chemical components, physical morphologies, biochemical reactions, and macrobiomimetic assembly configurations. A brief summary, subsequently, is mainly focused on the recent progress on bioinspired interfaces applied in key materials for rechargeable batteries. Ultimately, a critical comment is projected on significant opportunities and challenges existing in the future development course of bioinspired interfaces. It is expected that this Perspective is able to provide a profound perception into some underlying artificial intelligent energy storage and conversion device design as a promising candidate to resolve the global energy crisis and environmental pollution.
Collapse
Affiliation(s)
- Long Qu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20, East University Town Road, Shapingba District, Chongqing 401331, P. R. China
| | - Qianzhi Gou
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Jiangbin Deng
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Yujie Zheng
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Meng Li
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
18
|
Tundwal A, Kumar H, Binoj BJ, Sharma R, Kumar G, Kumari R, Dhayal A, Yadav A, Singh D, Kumar P. Developments in conducting polymer-, metal oxide-, and carbon nanotube-based composite electrode materials for supercapacitors: a review. RSC Adv 2024; 14:9406-9439. [PMID: 38516158 PMCID: PMC10951819 DOI: 10.1039/d3ra08312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Supercapacitors are the latest development in the field of energy storage devices (ESDs). A lot of research has been done in the last few decades to increase the performance of supercapacitors. The electrodes of supercapacitors are modified by composite materials based on conducting polymers, metal oxide nanoparticles, metal-organic frameworks, covalent organic frameworks, MXenes, chalcogenides, carbon nanotubes (CNTs), etc. In comparison to rechargeable batteries, supercapacitors have advantages such as quick charging and high power density. This review is focused on the progress in the development of electrode materials for supercapacitors using composite materials based on conducting polymers, graphene, metal oxide nanoparticles/nanofibres, and CNTs. Moreover, we investigated different types of ESDs as well as their electrochemical energy storage mechanisms and kinetic aspects. We have also discussed the classification of different types of SCs; advantages and drawbacks of SCs and other ESDs; and the use of nanofibres, carbon, CNTs, graphene, metal oxide-nanofibres, and conducting polymers as electrode materials for SCs. Furthermore, modifications in the development of different types of SCs such as pseudo-capacitors, hybrid capacitors, and electrical double-layer capacitors are discussed in detail; both electrolyte-based and electrolyte-free supercapacitors are taken into consideration. This review will help in designing and fabricating high-performance supercapacitors with high energy density and power output, which will act as an alternative to Li-ion batteries in the future.
Collapse
Affiliation(s)
- Aarti Tundwal
- Dept of Chemistry, Central University of Haryana Mahendergarh-123031 India
| | - Harish Kumar
- Dept of Chemistry, Central University of Haryana Mahendergarh-123031 India
| | - Bibin J Binoj
- Dept of Chemistry, Central University of Haryana Mahendergarh-123031 India
| | - Rahul Sharma
- Dept of Chemistry, Central University of Haryana Mahendergarh-123031 India
| | - Gaman Kumar
- Dept of Chemistry, Central University of Haryana Mahendergarh-123031 India
| | - Rajni Kumari
- Dept of Chemistry, Central University of Haryana Mahendergarh-123031 India
| | - Ankit Dhayal
- Dept of Chemistry, Central University of Haryana Mahendergarh-123031 India
| | - Abhiruchi Yadav
- Dept of Chemistry, Central University of Haryana Mahendergarh-123031 India
| | | | - Parvin Kumar
- Dept of Chemistry, Kurukshetra University Kurukshetra India
| |
Collapse
|
19
|
Chen K, Kim GC, Kim C, Yadav S, Lee IH. Engineering core-shell hollow-sphere Fe 3O 4@FeP@nitrogen-doped-carbon as an advanced bi-functional electrocatalyst for highly-efficient water splitting. J Colloid Interface Sci 2024; 657:684-694. [PMID: 38071817 DOI: 10.1016/j.jcis.2023.11.184] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 01/02/2024]
Abstract
Given the rapidly increasing energy demand and environmental pollution, to achieve energy conservation and emission reduction, hydrogen production has emerged as a promising alternative to traditional fossil fuels because of its high gravimetric energy density, and renewable and environmentally friendly characteristics. Herein, a core-shell hollow-sphere Fe3O4@FeP@nitrogen-doped-carbon (labeled as H-Fe3O4@FeP@NC) with a dual-interface, novel morphology, and superior conductivity is prepared as an advanced bi-functional electrocatalyst for electrochemical overall water splitting using a collaborative strategy comprising of facile self-assembly and phosphating. The prepared catalyst exhibits superior electrocatalytic activity compared to H-Fe3O4@NC and H-Fe3O4 for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Additionally, the overpotential of H-Fe3O4@FeP@NC for OER/HER (258/165 mV at 10 mA/cm2) is significantly lower than those of H-Fe3O4@NC (274/209 mV) and H-Fe3O4 (287/213 mV) at 10 mA/cm2. Meanwhile, the as-synthesized H-Fe3O4@FeP@NC, as an electrode pair, displays a low cell voltage of 1.69 V at 10 mA/cm2 and excellent stability after 100 h, indicating its practical application for overall water splitting. This work presents a practical and economical strategy toward the fabrication of catalyst for efficient water splitting and fuel cell.
Collapse
Affiliation(s)
- Kai Chen
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Gyu-Cheol Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Chiyeop Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sunny Yadav
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - In-Hwan Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
20
|
Ariga K. Confined Space Nanoarchitectonics for Dynamic Functions and Molecular Machines. MICROMACHINES 2024; 15:282. [PMID: 38399010 PMCID: PMC10892885 DOI: 10.3390/mi15020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Nanotechnology has advanced the techniques for elucidating phenomena at the atomic, molecular, and nano-level. As a post nanotechnology concept, nanoarchitectonics has emerged to create functional materials from unit structures. Consider the material function when nanoarchitectonics enables the design of materials whose internal structure is controlled at the nanometer level. Material function is determined by two elements. These are the functional unit that forms the core of the function and the environment (matrix) that surrounds it. This review paper discusses the nanoarchitectonics of confined space, which is a field for controlling functional materials and molecular machines. The first few sections introduce some of the various dynamic functions in confined spaces, considering molecular space, materials space, and biospace. In the latter two sections, examples of research on the behavior of molecular machines, such as molecular motors, in confined spaces are discussed. In particular, surface space and internal nanospace are taken up as typical examples of confined space. What these examples show is that not only the central functional unit, but also the surrounding spatial configuration is necessary for higher functional expression. Nanoarchitectonics will play important roles in the architecture of such a total system.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| |
Collapse
|
21
|
Ariga K. 2D Materials Nanoarchitectonics for 3D Structures/Functions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:936. [PMID: 38399187 PMCID: PMC10890396 DOI: 10.3390/ma17040936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
It has become clear that superior material functions are derived from precisely controlled nanostructures. This has been greatly accelerated by the development of nanotechnology. The next step is to assemble materials with knowledge of their nano-level structures. This task is assigned to the post-nanotechnology concept of nanoarchitectonics. However, nanoarchitectonics, which creates intricate three-dimensional functional structures, is not always easy. Two-dimensional nanoarchitectonics based on reactions and arrangements at the surface may be an easier target to tackle. A better methodology would be to define a two-dimensional structure and then develop it into a three-dimensional structure and function. According to these backgrounds, this review paper is organized as follows. The introduction is followed by a summary of the three issues; (i) 2D to 3D dynamic structure control: liquid crystal commanded by the surface, (ii) 2D to 3D rational construction: a metal-organic framework (MOF) and a covalent organic framework (COF); (iii) 2D to 3D functional amplification: cells regulated by the surface. In addition, this review summarizes the important aspects of the ultimate three-dimensional nanoarchitectonics as a perspective. The goal of this paper is to establish an integrated concept of functional material creation by reconsidering various reported cases from the viewpoint of nanoarchitectonics, where nanoarchitectonics can be regarded as a method for everything in materials science.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| |
Collapse
|
22
|
Ariga K. Materials Nanoarchitectonics at Dynamic Interfaces: Structure Formation and Functional Manipulation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:271. [PMID: 38204123 PMCID: PMC10780059 DOI: 10.3390/ma17010271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
The next step in nanotechnology is to establish a methodology to assemble new functional materials based on the knowledge of nanotechnology. This task is undertaken by nanoarchitectonics. In nanoarchitectonics, we architect functional material systems from nanounits such as atoms, molecules, and nanomaterials. In terms of the hierarchy of the structure and the harmonization of the function, the material created by nanoarchitectonics has similar characteristics to the organization of the functional structure in biosystems. Looking at actual biofunctional systems, dynamic properties and interfacial environments are key. In other words, nanoarchitectonics at dynamic interfaces is important for the production of bio-like highly functional materials systems. In this review paper, nanoarchitectonics at dynamic interfaces will be discussed, looking at recent typical examples. In particular, the basic topics of "molecular manipulation, arrangement, and assembly" and "material production" will be discussed in the first two sections. Then, in the following section, "fullerene assembly: from zero-dimensional unit to advanced materials", we will discuss how various functional structures can be created from the very basic nanounit, the fullerene. The above examples demonstrate the versatile possibilities of architectonics at dynamic interfaces. In the last section, these tendencies will be summarized, and future directions will be discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| |
Collapse
|
23
|
Ansari MZ, Hussain I, Mohapatra D, Ansari SA, Rahighi R, Nandi DK, Song W, Kim S. Atomic Layer Deposition-A Versatile Toolbox for Designing/Engineering Electrodes for Advanced Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303055. [PMID: 37937382 PMCID: PMC10767429 DOI: 10.1002/advs.202303055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/07/2023] [Indexed: 11/09/2023]
Abstract
Atomic layer deposition (ALD) has become the most widely used thin-film deposition technique in various fields due to its unique advantages, such as self-terminating growth, precise thickness control, and excellent deposition quality. In the energy storage domain, ALD has shown great potential for supercapacitors (SCs) by enabling the construction and surface engineering of novel electrode materials. This review aims to present a comprehensive outlook on the development, achievements, and design of advanced electrodes involving the application of ALD for realizing high-performance SCs to date, as organized in several sections of this paper. Specifically, this review focuses on understanding the influence of ALD parameters on the electrochemical performance and discusses the ALD of nanostructured electrochemically active electrode materials on various templates for SCs. It examines the influence of ALD parameters on electrochemical performance and highlights ALD's role in passivating electrodes and creating 3D nanoarchitectures. The relationship between synthesis procedures and SC properties is analyzed to guide future research in preparing materials for various applications. Finally, it is concluded by suggesting the directions and scope of future research and development to further leverage the unique advantages of ALD for fabricating new materials and harness the unexplored opportunities in the fabrication of advanced-generation SCs.
Collapse
Affiliation(s)
- Mohd Zahid Ansari
- School of Materials Science and EngineeringYeungnam University280 Daehak‐RoGyeongsanGyeongbuk38541Republic of Korea
| | - Iftikhar Hussain
- Department of Mechanical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowoonHong Kong
| | - Debananda Mohapatra
- Graduate School of Semiconductor Materials and Devices EngineeringUlsan National Institute of Science & Technology (UNIST)50 UNIST‐gilUlju‐gunUlsan44919Republic of Korea
| | - Sajid Ali Ansari
- Department of PhysicsCollege of ScienceKing Faisal UniversityP.O. Box 400HofufAl‐Ahsa31982Saudi Arabia
| | - Reza Rahighi
- SKKU Advanced Institute of Nano‐Technology (SAINT)Sungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Dip K Nandi
- Plessey Semiconductors LtdTamerton Road RoboroughPlymouthDevonPL6 7BQUK
| | - Wooseok Song
- Thin Film Materials Research CenterKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Soo‐Hyun Kim
- Graduate School of Semiconductor Materials and Devices EngineeringUlsan National Institute of Science & Technology (UNIST)50 UNIST‐gilUlju‐gunUlsan44919Republic of Korea
- Department of Materials Science and EngineeringUlsan National Institute of Science & Technology (UNIST)50 UNIST‐gilUlju‐gunUlsan44919Republic of Korea
| |
Collapse
|
24
|
Song G, Li C, Wang T, Lim KH, Hu F, Cheng S, Hondo E, Liu S, Kawi S. Hierarchical Hollow Carbon Particles with Encapsulation of Carbon Nanotubes for High Performance Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305517. [PMID: 37670220 DOI: 10.1002/smll.202305517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/26/2023] [Indexed: 09/07/2023]
Abstract
A novel and sustainable carbon-based material, referred to as hollow porous carbon particles encapsulating multi-wall carbon nanotubes (MWCNTs) (CNTs@HPC), is synthesized for use in supercapacitors. The synthesis process involves utilizing LTA zeolite as a rigid template and dopamine hydrochloride (DA) as the carbon source, along with catalytic decomposition of methane (CDM) to simultaneously produce MWCNTs and COx -free H2 . The findings reveal a distinctive hierarchical porous structure, comprising macropores, mesopores, and micropores, resulting in a total specific surface area (SSA) of 913 m2 g-1 . The optimal CNTs@HPC demonstrates a specific capacitance of 306 F g-1 at a current density of 1 A g-1 . Moreover, this material demonstrates an electric double-layer capacitor (EDLC) that surpasses conventional capabilities by exhibiting additional pseudocapacitance characteristics. These properties are attributed to redox reactions facilitated by the increased charge density resulting from the attraction of ions to nickel oxides, which is made possible by the material's enhanced hydrophilicity. The heightened hydrophilicity can be attributed to the presence of residual silicon-aluminum elements in CNTs@HPC, a direct outcome of the unique synthesis approach involving nickel phyllosilicate in CDM. As a result of this synthesis strategy, the material possesses excellent conductivity, enabling rapid transportation of electrolyte ions and delivering outstanding capacitive performance.
Collapse
Affiliation(s)
- Guoqiang Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou Province, 550003, China
| | - Claudia Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| | - Tian Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| | - Kang Hui Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| | - Feiyang Hu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| | - Shuwen Cheng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| | - Emmerson Hondo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| | - Shaomin Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| |
Collapse
|
25
|
Yang Z, Luo C, Wang N, Liu J, Zhang M, Xu J, Zhao Y. Fe 2O 3 Embedded in N-Doped Porous Carbon Derived from Hemin Loaded on Active Carbon for Supercapacitors. Molecules 2023; 29:146. [PMID: 38202729 PMCID: PMC10780133 DOI: 10.3390/molecules29010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The high power density and long cyclic stability of N-doped carbon make it an attractive material for supercapacitor electrodes. Nevertheless, its low energy density limits its practical application. To solve the above issues, Fe2O3 embedded in N-doped porous carbon (Fe2O3/N-PC) was designed by pyrolyzing Hemin/activated carbon (Hemin/AC) composites. A porous structure allows rapid diffusion of electrons and ions during charge-discharge due to its large surface area and conductive channels. The redox reactions of Fe2O3 particles and N heteroatoms contribute to pseudocapacitance, which greatly enhances the supercapacitive performance. Fe2O3/N-PC showed a superior capacitance of 290.3 F g-1 at 1 A g-1 with 93.1% capacity retention after 10,000 charge-discharge cycles. Eventually, a high energy density of 37.6 Wh kg-1 at a power density of 1.6 kW kg-1 could be delivered with a solid symmetric device.
Collapse
Affiliation(s)
- Zitao Yang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; (Z.Y.); (C.L.)
| | - Cunhao Luo
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; (Z.Y.); (C.L.)
| | - Ning Wang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; (Z.Y.); (C.L.)
| | - Junshao Liu
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; (Z.Y.); (C.L.)
| | - Menglong Zhang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; (Z.Y.); (C.L.)
| | - Jing Xu
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; (Z.Y.); (C.L.)
| | - Yongnan Zhao
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; (Z.Y.); (C.L.)
- Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
26
|
Jiang K, Gao M, Dou Z, Wang K, Yu H, Ning L, Yang Y, Lv R, Fu M. High mass loading and additive-free prussian blue analogue based flexible electrodes for Na-ion supercapacitors. J Colloid Interface Sci 2023; 650:490-497. [PMID: 37421751 DOI: 10.1016/j.jcis.2023.06.204] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/24/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
Supercapacitor electrodes often suffer from the low mass loading of active substances and the unsatisfactory ion/charge transport features due to the use of various additives. Exploring high mass loading and additive-free electrodes is of huge significance to develop advanced supercapacitors with commercial application prospects, which still remains challenging. Herein, high mass loading CoFe-prussian blue analogue (CoFe-PBA) electrodes are developed by a facile co-precipitation method using activated carbon cloth (ACC) as the flexible substrate. The homogeneous nanocube structure, large specific surface area (143.9 m2 g-1) and appropriate pore size distribution (3.4 nm) of the CoFe-PBA endow the as-prepared CoFe-PBA/ACC electrodes with low resistance and appealing ion diffusion characteristics. Typically, the high areal capacitance (1155.0 mF cm-2 at 0.5 mA cm-2) is obtained for high mass loading CoFe-PBA/ACC electrodes (9.7 mg cm-2). Furthermore, symmetrical flexible supercapacitors (FSCs) are constructed using CoFe-PBA/ACC electrodes and Na2SO4/polyving alcohol (Na2SO4/PVA) gel electrolyte, achieving superior stability (85.6% capacitance retention after 5,000 cycles), maximum energy density of 33.8 μWh cm-2 at 200.0 μW cm-2 and promising mechanical flexibility. This work is expected to offer inspirations for the development of high mass loading and additive-free electrodes for FSCs.
Collapse
Affiliation(s)
- Kun Jiang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Meng Gao
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhixin Dou
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Kunhua Wang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hao Yu
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Liangmin Ning
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanru Yang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Ruitao Lv
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Min Fu
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
27
|
Zhang J, Cen M, Wei T, Wang Q, Xu J. Hierarchical Nickel Cobalt Phosphide @ Carbon Nanofibers Composite Microspheres: Ultrahigh Energy Densities of Electrodes for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2927. [PMID: 37999280 PMCID: PMC10675319 DOI: 10.3390/nano13222927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Supercapacitors (SCs) are widely used in energy storage devices due to their superior power density and long cycle lifetime. However, the limited energy densities of SCs hinder their industrial application to a great extent. In this study, we present a new combination of metallic phosphide-carbon composites, synthesized by directly carbonizing (Ni1-xCox)5TiO7 nanowires via thermal chemical vapor deposition (TCVD) technology. The new method uses one-dimensional (1D) (Ni1-xCox)TiO7 nanowires as precursors and supporters for the in situ growth of intertwined porous CNF microspheres. These 1D nanowires undergo microstructure transformation, resulting in the formation of CoNiP nanoparticles, which act as excellent interconnected catalytic nanoparticles for the growth of porous 3D CNF microspheres. Benefiting from the synergistic effect of a unique 1D/3D structure, the agglomeration of nanoparticles can effectively be prevented. The resulting CNF microspheres exhibit an interconnected conductive matrix and provide a large specific surface area with abundant ion/charge transport channels. Consequently, at a scanning rate of 10 mV s-1, its specific capacitance in 1.0 M Na2SO4 + 0.05 M Fe(CN)63-/4- aqueous solution is as high as 311.7 mF cm-2. Furthermore, the CoNiP@CNFs composite film-based symmetrical SCs show an ultrahigh energy density of 20.08 Wh kg-1 at a power density of 7.20 kW kg-1, along with outstanding cycling stability, with 87.2% capacity retention after 10,000 cycles in soluble redox electrolytes. This work provides a new strategy for designing and applying high-performance binary transition metal phosphide/carbon composites for next-generation energy storage devices.
Collapse
Affiliation(s)
| | | | | | | | - Jing Xu
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; (J.Z.); (Q.W.)
| |
Collapse
|
28
|
Guo T, Zheng D, Xu G, Ding Y, Liu D. Two birds with one stone: facile fabrication of an iron-cobalt bimetallic sulfide nanosheet-assembled nanosphere for efficient energy storage and hydrogen evolution. Dalton Trans 2023; 52:14896-14903. [PMID: 37795943 DOI: 10.1039/d3dt02257a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Transition metal sulfides are widely regarded as the most promising electrode materials for supercapacitors. Herein, we utilized a straightforward electrodeposition method to prepare an iron-cobalt bimetallic sulfide nanosheet-assembled nanosphere on nickel foam (FeCo2S4/NF). The synergistic effect between bimetals and the unique three-dimensional structure significantly improved its capacitive performance. As a result, it demonstrated a remarkable specific capacitance, brilliant long-term stability and acceptable rate capability. Moreover, FeCo2S4/NF and active carbon (AC) were used to assemble an asymmetric supercapacitor (ASC), and FeCo2S4//AC displays a maximum energy density of 29.4 W h kg-1 at 800 W kg-1. Moreover, when adopted as an electrocatalyst for the hydrogen evolution reaction (HER), FeCo2S4/NF exhibited excellent catalytic properties (η10 = 165 mV). Our research provides a valuable insight into the multidisciplinary integration of high-performance energy materials.
Collapse
Affiliation(s)
- Tong Guo
- School of Chemistry and Environmental Engineering, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P.R. China.
| | - Dawei Zheng
- School of Chemistry and Environmental Engineering, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P.R. China.
| | - Guangyu Xu
- School of Chemistry and Environmental Engineering, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P.R. China.
| | - Yigang Ding
- School of Chemistry and Environmental Engineering, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P.R. China.
| | - Dong Liu
- School of Chemistry and Environmental Engineering, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P.R. China.
- Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, P.R. China
| |
Collapse
|
29
|
Wang M, Chen Y, Zhao S, Zhao C, Wang G, Wu M. Nitrogen-doped hierarchical porous carbons derived from biomass for oxygen reduction reaction. Front Chem 2023; 11:1218451. [PMID: 37398982 PMCID: PMC10311552 DOI: 10.3389/fchem.2023.1218451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Nowadays biomass has become important sources for the synthesis of different carbon nanomaterials due to their low cost, easy accessibility, large quantity, and rapid regeneration properties. Although researchers have made great effort to convert different biomass into carbons for oxygen reduction reaction (ORR), few of these materials demonstrated good electrocatalytical performance in acidic medium. In this work, fresh daikon was selected as the precursor to synthesize three dimensional (3D) nitrogen doped carbons with hierarchical porous architecture by simple annealing treatment and NH3 activation. The daikon-derived material Daikon-NH3-900 exhibits excellent electrocatalytical performance towards oxygen reduction reaction in both alkaline and acidic medium. Besides, it also shows good durability, CO and methanol tolerance in different electrolytes. Daikon-NH3-900 was further applied as the cathode catalyst for proton exchange membrane (PEM) fuel cell and shows promising performance with a peak power density up to 245 W/g.
Collapse
Affiliation(s)
- Min Wang
- College of New Energy, China University of Petroleum (East China), Qingdao, China
- State Key Laboratory of Heavy Oil Processing, School of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Yao Chen
- State Key Laboratory of Heavy Oil Processing, School of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Shunsheng Zhao
- State Key Laboratory of Heavy Oil Processing, School of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Cenkai Zhao
- State Key Laboratory of Heavy Oil Processing, School of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Guanxiong Wang
- Shenzhen Academy of Aerospace Technology, Shenzhen, China
| | - Mingbo Wu
- College of New Energy, China University of Petroleum (East China), Qingdao, China
- State Key Laboratory of Heavy Oil Processing, School of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| |
Collapse
|
30
|
Xu Y, Zhao W, Zou D, Li X, Qin M, Wang C, Liu D, Wang M. Effects of Inorganic Substitutions and Different Metal Electrode Materials on Electronic Transport Properties of Organic Molecular Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37307594 DOI: 10.1021/acs.langmuir.3c00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Incorporating inorganic components into organic molecular devices offers one novel alternative to address challenges existing in the fabrication and integration of nanoscale devices. In this study, using a theoretical method of density functional theory combined with the nonequilibrium Green's function, a series of benzene-based molecules with group III and V substitutions, including borazine molecule and XnB3-nN3H6 (X = Al or Ga, n = 1-3) molecules/clusters, are constructed and investigated. An analysis of electronic structures reveals that the introduction of inorganic components effectively reduces the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, albeit at the cost of reduced aromaticity in these molecules/clusters. Simulated electronic transport characteristics demonstrate that XnB3-nN3H6 molecules/clusters coupled between metal electrodes exhibit lower conductance compared to prototypical benzene molecule. Additionally, the choice of metal electrode materials significantly impacts the electronic transport properties, with platinum electrode devices displaying distinct behavior compared to silver, copper, and gold electrode devices. This distinction arises from the amount of transferred charge, which modulates the alignment between molecular orbitals and the Fermi level of the metal electrodes by shifting the molecular orbitals in energy. These findings provide valuable theoretical insights for the future design of molecular devices incorporating inorganic substitutions.
Collapse
Affiliation(s)
- Yuqing Xu
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, P. R. China
| | - Wenkai Zhao
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, P. R. China
| | - Dongqing Zou
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, P. R. China
| | - Xiaoteng Li
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, P. R. China
| | - Ming Qin
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, P. R. China
| | - Chunyang Wang
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, P. R. China
| | - Desheng Liu
- School of Physics, Shandong University, Jinan 250100, P. R. China
- Department of Physics, Jining University, Qufu 273155, P. R. China
| | - Meishan Wang
- College of Integrated Circuits, Ludong University, Yantai 264025, P. R. China
| |
Collapse
|
31
|
Ayub G, Rauf A, Husain M, Algahtani A, Tirth V, Al-Mughanam T, Alghtani AH, Sfina N, Rahman N, Sohail M, Khan R, Azzouz-Rached A, Khan A, Al-Shaalan NH, Alharthi S, Alharthy SA, Amin MA. Investigating the Physical Properties of Thallium-Based Ternary TlXF 3 (X = Be, Sr) Fluoroperovskite Compounds for Prospective Applications. ACS OMEGA 2023; 8:17779-17787. [PMID: 37251136 PMCID: PMC10210186 DOI: 10.1021/acsomega.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
In the present work, several properties of fluoroperovskites are computed and examined through the approximations of trans- and blaha-modified Becke-Johnson (TB-mBJ) and generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE) integrated within density functional theory (DFT). The lattice parameters for cubic TlXF3 (X = Be, Sr) ternary fluoroperovskite compounds at an optimized state are examined and their values are used to calculate the fundamental physical properties. TlXF3 (X = Be and Sr) cubic fluoroperovskite compounds contain no inversion symmetry and are thus a non-centrosymmetric system. The phonon dispersion spectra confirm the thermodynamic stability of these compounds. The results of electronic properties clarify that both the compounds possess a 4.3 eV of indirect band gap from M-X for TlBeF3 and a direct band gap of 6.03 eV from X-X for TlSrF3, which display that both compounds are insulators. Furthermore, the dielectric function is considered to explore optical properties like reflectivity, refractive index, absorption coefficient, etc., and the different types of transitions between the bands were investigated by using the imaginary part of the dielectric function. Mechanically, the compounds of interest are computed to be stable and possess high bulk modulus values, and the ratio of "G/B" is higher than "1", which indicates the strong and ductile nature of the compound. Based on our computations for the selected materials, we deem an efficient application of these compounds in an industrial application, which will provide a reference for future work.
Collapse
Affiliation(s)
- Gohar Ayub
- Department
of Physics, University of Lakki Marwat, 28420 Lakki Marwat, Khyber Pakhtunkhwa, Pakistan
| | - Abdur Rauf
- Institute
for Advanced Study (IAS), Shenzhen University, Nanhai Avenue, Shenzhen 518060, Guangdong, P. R. China
- College
of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
| | - Mudasser Husain
- Department
of Physics, University of Lakki Marwat, 28420 Lakki Marwat, Khyber Pakhtunkhwa, Pakistan
| | - Ali Algahtani
- Mechanical
Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, Guraiger, P.O. Box No. 9004, Abha 61413, Asir, Saudi Arabia
| | - Vineet Tirth
- Mechanical
Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, Guraiger, P.O. Box No. 9004, Abha 61413, Asir, Saudi Arabia
| | - Tawfiq Al-Mughanam
- Department
of Mechanical Engineering, College of Engineering, King Faisal University, P. O. Box 380, Al-Ahsa 31982, Saudi Arabia
| | - Abdulaziz H. Alghtani
- Department
of Mechanical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nourreddine Sfina
- College
of Sciences and Arts in Mahayel Asir, Department of Physics, King Khalid University, Abha 61421, Saudi Arabia
- Département
de Physique, Faculté des Sciences de Monastir, Laboratoire
de la Matière Condensée et des Nanosciences (LMCN), Université de Monastir, Avenue de l’Environnement, 5019 Monastir, Tunisia
| | - Nasir Rahman
- Department
of Physics, University of Lakki Marwat, 28420 Lakki Marwat, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Sohail
- Department
of Physics, University of Lakki Marwat, 28420 Lakki Marwat, Khyber Pakhtunkhwa, Pakistan
| | - Rajwali Khan
- Department
of Physics, University of Lakki Marwat, 28420 Lakki Marwat, Khyber Pakhtunkhwa, Pakistan
| | - Ahmed Azzouz-Rached
- Magnetic
Materials Laboratory, Faculty of Exact Sciences, Djillali Liabes University of Sidi Bel-Abbes, Sidi Bel Abbès 22000, Algeria
| | - Aurangzeb Khan
- Department of Physics, Abdul Wali Khan
University, 23200 Mardan, Pakistan
| | - Nora Hamad Al-Shaalan
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Center of Advanced Research in Science
and Technology, Taif University, P.O.
Box 11099, Taif 21944, Saudi Arabia
| | - Saif A. Alharthy
- Department of Medical Laboratory Sciences,
Faculty of Applied Medical
Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- King Fahd
Medical Research Center, King Abdulaziz
University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Mohammed A. Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
32
|
Rahman N, Rauf A, Husain M, Sfina N, Tirth V, Sohail M, Khan R, Azzouz-Rached A, Murtaza G, Khan AA, Khattak SA, Khan A. Probing the physical properties of M 2LiCeF 6 (M = Rb and Cs) double perovskite compounds for prospective high-energy applications employing the DFT framework. RSC Adv 2023; 13:15457-15466. [PMID: 37275204 PMCID: PMC10233347 DOI: 10.1039/d3ra01451g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Herein, the optoelectronic, structural, thermoelectric, and elastic characteristics of M2LiCeF6 (M = Rb and Cs) double perovskite compounds were investigated using ab initio modeling in the DFT framework. The Birch-Murnaghan fitting curve used for the optimization showed that these two compounds are structurally stable. The elastic properties of the M2LiCeF6 (M = Rb and Cs) double perovskite compounds were examined using the IRelast code. The results showed that these two compounds possess mechanical stability, anisotropy, and toughness, and offer resistance to plastic deformation. The precise and accurate determination of their electronic properties was achieved via the Trans-Blaha-modified Becke-Johnson (TB-mBJ) approximation. The Rb2LiCeF6 and Cs2LiCeF6 compounds are narrow band gap semiconductors with band gaps of 0.6 eV and 0.8 eV at the high symmetrical points from (Γ-M), respectively, exhibiting an indirect nature. To further understand how the various states contribute to the different band structures, total and partial density of state (DOS) computations were performed. The optical properties in the energy range of 0-40 eV for Rb2LiCeF6 and Cs2LiCeF6 were explored. The selected materials show transparency in the low incident photon energy range and have large light absorption and transmission at higher photon energies. Thus, it can be concluded that Rb2LiCeF6 and Cs2LiCeF6 can be used in high-frequency UV devices based on their optical characteristics. Both materials exhibit high electrical conductivity, power factors, and figures of merit (ZT) and act as effective thermoelectric resources. To the best of our knowledge, this is the first theoretical research on the optoelectronic, structural, thermoelectric, and elastic features of M2LiCeF6 (M = Rb and Cs).
Collapse
Affiliation(s)
- Nasir Rahman
- Department of Physics, University of Lakki Marwat 28420 Lakki Marwat KPK Pakistan
| | - Abdur Rauf
- Institute for Advanced Study (IAS), Shenzhen University Nanhai Avenue Shenzhen 518060 Guangdong P. R China
- College of Physics and Optoelectronics Engineering, Shenzhen University Shenzhen 518060 Guangdong P. R China
| | - Mudasser Husain
- Department of Physics, University of Lakki Marwat 28420 Lakki Marwat KPK Pakistan
| | - Nourreddine Sfina
- College of Sciences and Arts in Mahayel Asir, Department of Physics, King Khalid University Abha Saudi Arabia
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University Abha 61421 Kingdom of Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, P.O. Box No. 9004 Abha 61413 Asir Kingdom of Saudi Arabia
| | - Mohammad Sohail
- Department of Physics, University of Lakki Marwat 28420 Lakki Marwat KPK Pakistan
| | - Rajwali Khan
- Department of Physics, University of Lakki Marwat 28420 Lakki Marwat KPK Pakistan
| | - Ahmed Azzouz-Rached
- Magnetic Materials Laboratory, Faculty of Exact Sciences, Djillali Liabes University of Sidi Bel-Abbes Algeria
| | - Ghulam Murtaza
- Department of Physics, Islamia College University Peshawar KPK Pakistan
| | - Abid Ali Khan
- Department of Chemical Sciences, University of Lakki Marwat 28420 Lakki Marwat KPK Pakistan
| | | | - Aurangzeb Khan
- Department of Physics, Abdul Wali Khan University Mardan KPK Pakistan
| |
Collapse
|
33
|
Kadhim MM, Sadoon N, Abbas ZS, Hachim SK, Abdullaha SAH, Rheima AM. Exploring the role of 2D-C 2N monolayers in potassium ion batteries. J Mol Model 2023; 29:139. [PMID: 37055601 DOI: 10.1007/s00894-023-05539-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
CONTEXT In recent years, undivided attention has been given to the unique properties of layered nitrogenated holey graphene (C2N) monolayers (C2NMLs), which have widespread applications (e.g., in catalysis and metal-ion batteries). Nevertheless, the scarcity and impurity of C2NMLs in experiments and the ineffective technique of adsorbing a single atom on the surface of C2NMLs have significantly limited their investigation and thus their development. Within this research study, we proposed a novel model, i.e., atom pair adsorption, to inspect the potential use of a C2NML anode material for KIBs through first-principles (DFT) computations. The maximum theoretical capacity of K ions reached 2397 mA h g-1, which was greater in contrast with that of graphite. The results of Bader charge analysis and charge density difference revealed the creation of channels between K atoms and the C2NML for electron transport, which increased the interactions between them. The fast process of charge and discharge in the battery was due to the metallicity of the complex of C2NML/K ions and because the diffusion barrier of K ions on the C2NML was low. Moreover, the C2NML has the advantages of great cycling stability and low open-circuit voltage (approximately 0.423 V). The current work can provide useful insights into the design of energy storage materials with high efficiency. METHODS In this research, we used B3LYP-D3 functional and 6-31 + G* basis with GAMESS program to calculate adsorption energy, open-circuit voltage, and maximum theoretical capacity of K ions on the C2NML.
Collapse
Affiliation(s)
- Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq.
| | - Nasier Sadoon
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq
| | | | - Safa K Hachim
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- Medical Laboratory Techniques Department, Al-Turath University College, Baghdad, Iraq
| | | | - Ahmed Mahdi Rheima
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|