1
|
Tarvirdipour S, Abdollahi SN, Köser J, Bina M, Schoenenberger CA, Palivan CG. Enhanced antimicrobial protection through surface immobilization of antibiotic-loaded peptide multicompartment micelles. J Mater Chem B 2025. [PMID: 40227831 PMCID: PMC11996027 DOI: 10.1039/d5tb00246j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
The escalating global threat of antibiotic-resistant bacterial infections, driven by biofilm formation on medical device surfaces, prompts the need for innovative therapeutic strategies. To address this growing challenge, we develop rifampicin-loaded multicompartment micelles (RIF-MCMs) immobilized on surfaces, offering a dual-functional approach to enhance antimicrobial efficacy for localized therapeutic applications. We first optimize the physicochemical properties of RIF-MCMs, and subsequently coat the optimal formulation onto a glass substrate, as confirmed by quartz crystal microbalance and atomic force microscopy. Surface-immobilized RIF-MCMs facilitate sustained antibiotic release in response to biologically relevant temperatures (37 °C and 42 °C). In addition, their heterogeneous distribution enhances the surface's roughness, contributing to the antibacterial activity through passive mechanisms such as hindering bacterial adhesion and biofilm formation. In vitro antimicrobial testing demonstrates that RIF-MCM-modified surfaces achieve a 98% reduction in Staphylococcus aureus viability and a three-order-of-magnitude decrease in colony formation compared to unmodified surfaces. In contrast, RIF-MCMs exhibit minimal cytotoxicity to mammalian cells, making them suitable candidates for medical device coatings. Our dual-function antimicrobial strategy, combining sustained antibiotic release and enhanced surface roughness, presents a promising approach to locally prevent implant-associated infections and biofilm formation.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel-4058, Switzerland.
- NCCR-Molecular Systems Engineering, Mattenstrasse 24a, Basel-4058, Switzerland
| | - S Narjes Abdollahi
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel-4058, Switzerland.
| | - Joachim Köser
- School of Life Sciences, Institute for Chemistry and Bioanalytics, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz-4132, Switzerland
| | - Maryame Bina
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel-4058, Switzerland.
| | | | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel-4058, Switzerland.
- NCCR-Molecular Systems Engineering, Mattenstrasse 24a, Basel-4058, Switzerland
| |
Collapse
|
2
|
Babu R, Sathy BN, Gopal K, Thennavan A, Unni AKK, Nair SV, Rao H, Nair P, Menon D. Design, safety and efficacy evaluation of gemcitabine-eluting nanoyarn-integrated heparinized self expanding metallic stents for long-term management of malignant biliary obstruction. Acta Biomater 2025; 194:169-184. [PMID: 39798640 DOI: 10.1016/j.actbio.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Malignant biliary obstruction presents a significant therapeutic challenge and has serious consequences including cholangitis and death. Clinically, biliary stenting using self-expanding metallic- stent(SEMS) relieves this obstruction. However, stent occlusion occurs with time due to tumor/epithelial in-growth and bacterial colonization. To achieve sustained palliative benefit of stent-based approaches, both biliary sludge formation and in-growth need to be obviated. In this study, an innovative approach was adopted to inhibit sludge deposition and tissue in-growth by developing a heparinized drug-eluting SEMS. For this, heparinisation was performed on dopamine-functionalised-stents, which averted bile protein adsorption in vitro. Further, Gemcitabine loaded polycaprolactone electrospun-nanoyarns were integrated with heparinized-SEMS to achieve sustained drug release for nearly six months in vitro. Nanoyarn integration with heparinized-SEMS did not hamper its crimping, ease of deployment or functional behaviour. In vivo safety and efficacy were evaluated for five months after implantation in porcine bile duct through Endoscopic Retrograde Cholangiopancreatography. Minimal sludge deposition with no obstruction in bile flow, good stent patency and localized-sustained drug elution were observed for nanoyarn-integrated heparinized-SEMS. No alterations in the biochemical parameters, nor any inflammatory reactions were observed in vivo, all in comparison to control-SEMS. Overall, our research established an efficient multipronged strategy to tackle malignant biliary obstruction. STATEMENT OF SIGNIFICANCE: Bile duct occlusion due to cancer has several life-threatening consequences. This is clinically treated using metallic stents, with simultaneous intravenous use of anti-cancer drugs at high-doses. Nevertheless, tumor-growth along with bile-sludge accumulation happens after stenting, causing re-occlusion. Existing research uses stent modifications that fail to tackle both simultaneously, yielding short-term efficacy. To address this, heparinized-metallic stents were modified using chemo-drug eluting polymeric-nanoyarn integration. The key features of this device are: nanoyarn-integrated, uncovered stent design facilitating easy endoscopic implantation in bile duct; reduced bile-sludge deposition; prolonged, low-dose, localised drug release that can mitigate tumor-growth; and provide long-term stent patency without stent migration. This device proved to be safe, functional and efficacious for a period of five months in pig bile duct.
Collapse
Affiliation(s)
- Rosebin Babu
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Binulal Nelson Sathy
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Kavitha Gopal
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Arumugam Thennavan
- Central Animal Facility, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - A K K Unni
- Central Animal Facility, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Shantikumar V Nair
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Harshavardhan Rao
- Department of Gastroenterology, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Priya Nair
- Department of Gastroenterology, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India.
| | - Deepthy Menon
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India.
| |
Collapse
|
3
|
Bazzoli D, Mahmoodi N, Verrill TA, Overton TW, Mendes PM. Nanovibrational Stimulation of Escherichia coli Mitigates Surface Adhesion by Altering Cell Membrane Potential. ACS NANO 2024; 18:30786-30797. [PMID: 39436348 PMCID: PMC11544934 DOI: 10.1021/acsnano.4c11000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
Mechanical forces shape living matter from the macro- to the microscale as both eukaryotic and prokaryotic cells are force wielders and sensors. However, whereas such forces have been used to control mechanically dependent behaviors in mammalian cells, we lack the same level of understanding in bacteria. Surface adhesion, the initial stages of biofilm formation and surface biofouling, is a mechanically dependent process, which makes it an ideal target for mechano-control. In this study, we employed nanometer surface vibrations to mechanically stimulate bacteria and investigate their effect on adhesion. We discovered that vibrational stimulation at the nanoscale consistently reduces surface adhesion by altering cell membrane potential. Our findings identify a link between bacteria electrophysiology and surface adhesion and provide evidence that the nanometric mechanical "tickling" of bacteria can inhibit surface adhesion.
Collapse
Affiliation(s)
- Dario
G. Bazzoli
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Nasim Mahmoodi
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Terri-Anne Verrill
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Tim W. Overton
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Paula M. Mendes
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
4
|
Li H, Yang X. Effect of Surface Morphologies on the In Vitro and In Vivo Properties of Biomedical Metallic Materials. ACS Biomater Sci Eng 2024; 10:6017-6028. [PMID: 39269725 DOI: 10.1021/acsbiomaterials.4c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Metallic biomaterials, including traditional bioinert materials (such as stainless steel, cobalt-chromium alloys, pure titanium, and titanium alloys), novel biodegradable metals (such as pure magnesium and magnesium alloys, pure zinc and zinc alloys, and pure iron and iron alloys), and biomedical metallic glasses, have been widely used and studied as various biomedical implants and devices. Many scientists and researchers have investigated their superior biomechanical properties, corrosion behavior, and biocompatibility. However, their surface characteristics are of extreme importance due to continuing interactions between the surface/interface of an implanted metallic biomaterial and the surrounding physiological environment. Surface morphologies on these metallic biomaterials can modulate their in vitro and in vivo biological responses. In this review, we have summarized and investigated the effect of various surface morphologies on the corrosion behavior, cellular response, antibacterial activity, and osteogenesis of biomedical metallic materials. In addition, future research directions and challenges of surface morphologies on biomedical metallic materials have been elaborated. This review can lay a theoretical and practical foundation for further research and development on biomedical metallic materials.
Collapse
Affiliation(s)
- Huafang Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xuan Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
5
|
Piatti E, Miola M, Verné E. Tailoring of bioactive glass and glass-ceramics properties for in vitro and in vivo response optimization: a review. Biomater Sci 2024; 12:4546-4589. [PMID: 39105508 DOI: 10.1039/d3bm01574b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Bioactive glasses are inorganic biocompatible materials that can find applications in many biomedical fields. The main application is bone and dental tissue engineering. However, some applications in contact with soft tissues are emerging. It is well known that both bulk (such as composition) and surface properties (such as morphology and wettability) of an implanted material influence the response of cells in contact with the implant. This review aims to elucidate and compare the main strategies that are employed to modulate cell behavior in contact with bioactive glasses. The first part of this review is focused on the doping of bioactive glasses with ions and drugs, which can be incorporated into the bioceramic to impart several therapeutic properties, such as osteogenic, proangiogenic, or/and antibacterial ones. The second part of this review is devoted to the chemical functionalization of bioactive glasses using drugs, extra-cellular matrix proteins, vitamins, and polyphenols. In the third and final part, the physical modifications of the surfaces of bioactive glasses are reviewed. Both top-down (removing materials from the surface, for example using laser treatment and etching strategies) and bottom-up (depositing materials on the surface, for example through the deposition of coatings) strategies are discussed.
Collapse
Affiliation(s)
- Elisa Piatti
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Marta Miola
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Enrica Verné
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
6
|
Artusio F, Müller L, Razza N, Cordeiro Filipe I, Olgiati F, Richter Ł, Civera E, Özkan M, Gasbarri M, Rinaldi L, Wang H, Garcìa E, Schafer J, Michot L, Butot S, Baert L, Zuber S, Halik M, Stellacci F. Broad-Spectrum Supramolecularly Reloadable Antimicrobial Coatings. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29867-29875. [PMID: 38825754 PMCID: PMC11181266 DOI: 10.1021/acsami.4c04705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Antimicrobial surfaces limit the spread of infectious diseases. To date, there is no antimicrobial coating that has widespread use because of short-lived and limited spectrum efficacy, poor resistance to organic material, and/or cost. Here, we present a paint based on waterborne latex particles that is supramolecularly associated with quaternary ammonium compounds (QACs). The optimal supramolecular pairing was first determined by immobilizing selected ions on self-assembled monolayers exposing different groups. The QAC surface loading density was then increased by using polymer brushes. These concepts were adopted to develop inexpensive paints to be applied on many different surfaces. The paint could be employed for healthcare and food production applications. Its slow release of QAC allows for long-lasting antimicrobial action, even in the presence of organic material. Its efficacy lasts for more than 90 washes, and importantly, once lost, it can readily be restored by spraying an aqueous solution of the QAC. We mainly tested cetyltrimethylammonium as QAC as it is already used in consumer care products. Our antimicrobial paint is broad spectrum as it showed excellent antimicrobial efficiency against four bacteria and four viruses.
Collapse
Affiliation(s)
- Fiora Artusio
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Lukas Müller
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Organic
Materials & Devices, Institute of Polymer Materials, Interdisciplinary
Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Nicolò Razza
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Inês Cordeiro Filipe
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Francesca Olgiati
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Łukasz Richter
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Edoardo Civera
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Melis Özkan
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Matteo Gasbarri
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Louisa Rinaldi
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Heyun Wang
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Esther Garcìa
- Nestlé
Research, Institute of Food Safety and Analytical
Sciences, Vers-chez-les-Blanc,
Box 44, 1000 Lausanne, Switzerland
| | - Julie Schafer
- Nestlé
Research, Institute of Food Safety and Analytical
Sciences, Vers-chez-les-Blanc,
Box 44, 1000 Lausanne, Switzerland
| | - Lise Michot
- Nestlé
Research, Institute of Food Safety and Analytical
Sciences, Vers-chez-les-Blanc,
Box 44, 1000 Lausanne, Switzerland
| | - Sophie Butot
- Nestlé
Research, Institute of Food Safety and Analytical
Sciences, Vers-chez-les-Blanc,
Box 44, 1000 Lausanne, Switzerland
| | - Leen Baert
- Nestlé
Research, Institute of Food Safety and Analytical
Sciences, Vers-chez-les-Blanc,
Box 44, 1000 Lausanne, Switzerland
| | - Sophie Zuber
- Nestlé
Research, Institute of Food Safety and Analytical
Sciences, Vers-chez-les-Blanc,
Box 44, 1000 Lausanne, Switzerland
| | - Marcus Halik
- Organic
Materials & Devices, Institute of Polymer Materials, Interdisciplinary
Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Francesco Stellacci
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Interfaculty
Bioengineering Institute, Ecole Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Bouhrour N, Nibbering PH, Bendali F. Medical Device-Associated Biofilm Infections and Multidrug-Resistant Pathogens. Pathogens 2024; 13:393. [PMID: 38787246 PMCID: PMC11124157 DOI: 10.3390/pathogens13050393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Medical devices such as venous catheters (VCs) and urinary catheters (UCs) are widely used in the hospital setting. However, the implantation of these devices is often accompanied by complications. About 60 to 70% of nosocomial infections (NIs) are linked to biofilms. The main complication is the ability of microorganisms to adhere to surfaces and form biofilms which protect them and help them to persist in the host. Indeed, by crossing the skin barrier, the insertion of VC inevitably allows skin flora or accidental environmental contaminants to access the underlying tissues and cause fatal complications like bloodstream infections (BSIs). In fact, 80,000 central venous catheters-BSIs (CVC-BSIs)-mainly occur in intensive care units (ICUs) with a death rate of 12 to 25%. Similarly, catheter-associated urinary tract infections (CA-UTIs) are the most commonlyhospital-acquired infections (HAIs) worldwide.These infections represent up to 40% of NIs.In this review, we present a summary of biofilm formation steps. We provide an overview of two main and important infections in clinical settings linked to medical devices, namely the catheter-asociated bloodstream infections (CA-BSIs) and catheter-associated urinary tract infections (CA-UTIs), and highlight also the most multidrug resistant bacteria implicated in these infections. Furthermore, we draw attention toseveral useful prevention strategies, and advanced antimicrobial and antifouling approaches developed to reduce bacterial colonization on catheter surfaces and the incidence of the catheter-related infections.
Collapse
Affiliation(s)
- Nesrine Bouhrour
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| |
Collapse
|
8
|
Wang K, Lv M, Si T, Tang X, Wang H, Chen Y, Zhou T. Mechanism analysis of surface structure-regulated Cu 2O in photocatalytic antibacterial process. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132479. [PMID: 37714003 DOI: 10.1016/j.jhazmat.2023.132479] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/17/2023]
Abstract
The effects of exposing crystal planes and vacancy defect engineering can induce unique surface atom arrangements that strongly influence the physicochemical properties of semiconductor materials. This paper used Cu2O with different surface structures as a research model. A liquid-phase method was chosen for surface structure regulation to prepare Cu2O semiconductors (Vo-(111)Cu2O, Vo-(100)Cu2O, Vo-(110)Cu2O) with different exposed crystalline surfaces analyze the antibacterial mechanisms of other faceted models in the photodynamic antibacterial process. The bactericidal effect of Vo-(111)Cu2O (40 μg/mL, 100%) was better than that of Vo-(100)Cu2O and Vo-(110)Cu2O. DFT simulations show that the photocatalytic antimicrobial performance of Vo-(111)Cu2O is improved due to surface defect structures caused by unsaturated coordination bonds and suspension bonds on its exposed crystalline surfaces. The suspension bonds act as active centres for trapping electrons, leading to a lower carrier complexation rate on the material surface. The antibacterial mechanism of Vo-(111)Cu2O showed that oxidative sterilization by reactive oxygen species (ROS) was the dominant factor (61.98%) in the antibacterial process. The most potent depolarizing effect on E. coli, the highest copper ion solubilization, and the highest ROS yield. Therefore, ROS oxidative sterilization, copper ion leaching sterilization, and contact damage synergistically affect E. coli from the inside out.
Collapse
Affiliation(s)
- Kangfu Wang
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Meiru Lv
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Tian Si
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Xiaoning Tang
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Hao Wang
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Yuanyuan Chen
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Tian Zhou
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
9
|
Wei Z, Zhang Z, Zhu W, Weng X. Polyetheretherketone development in bone tissue engineering and orthopedic surgery. Front Bioeng Biotechnol 2023; 11:1207277. [PMID: 37456732 PMCID: PMC10345210 DOI: 10.3389/fbioe.2023.1207277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Polyetheretherketone (PEEK) has been widely used in the medical field as an implant material, especially in bone tissue engineering and orthopedic surgery, in recent years. This material exhibits superior stability at high temperatures and is biosecured without harmful reactions. However, the chemical and biological inertness of PEEK still limits its applications. Recently, many approaches have been applied to improve its performance, including the modulation of physical morphology, chemical composition and antimicrobial agents, which advanced the osteointegration as well as antibacterial properties of PEEK materials. Based on the evolution of PEEK biomedical devices, many studies on the use of PEEK implants in spine surgery, joint surgery and trauma repair have been performed in the past few years, in most of which PEEK implants show better outcomes than traditional metal implants. This paper summarizes recent studies on the modification and application of biomedical PEEK materials, which provides further research directions for PEEK implants.
Collapse
Affiliation(s)
- Zhanqi Wei
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Ze Zhang
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Wei Zhu
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xisheng Weng
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Zhu B, Jia E, Zhang Q, Zhang Y, Zhou H, Tan Y, Deng Z. Titanium Surface-Grafted Zwitterionic Polymers with an Anti-Polyelectrolyte Effect Enhances Osteogenesis. Colloids Surf B Biointerfaces 2023; 226:113293. [PMID: 37028232 DOI: 10.1016/j.colsurfb.2023.113293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
Zwitterionic polymers have attracted considerable attention because of their anti-adsorption and unique anti-polyelectrolyte effects and was widely used in surface modification. In this study, zwitterionic copolymers (poly (sulfobetaine methacrylate-co-butyl acrylate) (pSB) coating on the surface of a hydroxylated titanium sheet using surface-initiated atom transfer radical polymerization (SI-ATRP) was successfully constructed. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and Water contact angle (WCA) analysis proved the successful preparation of the coating. The swelling effect caused by the anti-polyelectrolyte effect was reflected in the simulation experiment in vitro, and this coating can promote the proliferation and osteogenesis of MC3T3-E1. Therefore, this study provides a new strategy for designing multifunctional biomaterials for implant surface modifications.
Collapse
Affiliation(s)
- Bingbing Zhu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Erna Jia
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, PR China.
| | - Qimeng Zhang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, PR China
| | - Yanyan Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Hua Zhou
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, PR China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, PR China
| | - Ying Tan
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, PR China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, PR China.
| | - Zhennan Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
11
|
Liu Y, Dong T, Chen Y, Sun N, Liu Q, Huang Z, Yang Y, Cheng H, Yue K. Biodegradable and Cytocompatible Hydrogel Coating with Antibacterial Activity for the Prevention of Implant-Associated Infection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11507-11519. [PMID: 36852669 DOI: 10.1021/acsami.2c20401] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Implant-associated infection (IAI) caused by pathogens colonizing on the implant surface is a serious issue in the trauma-orthopedic surgery, which often leads to implant failure. The complications of IAI bring a big threat to the clinical practice of implants, accompanied by significant economic cost and long hospitalization time. In this study, we propose an antibiotics-free strategy to address IAI-related challenges by using a biodegradable and cytocompatible hydrogel coating. To achieve this, a novel hydrogel system was developed to combine the synergistic effects of good cell affinity and antibacterial properties. The hydrogel material was prepared by modifying a photocross-linkable gelatin-based polymer (GelMA) with cationic quaternary ammonium salt (QAS) groups via a mild and simple synthesis procedure. By engineering the length of the hydrophobic carbon chain on the QAS group and the degree of functionalization, the resulting GelMA-octylQAS hydrogel exhibited an integration of good mechanical properties, biodegradability, excellent bactericidal activity against various types of bacteria, and high cytocompatibility with mammalian cells. When coated onto the implant via the in situ cross-linking procedure, our hydrogel demonstrated superior antimicrobial ability in the infective model of femoral fracture of rats. Our results suggest that the GelMA-octylQAS hydrogel might provide a promising platform for preventing and treating IAI.
Collapse
Affiliation(s)
- Yanhui Liu
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Ting Dong
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Yuhang Chen
- Department of Orthopedic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong 528000, China
- Department of Orthopaedic Surgery, Division of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Na Sun
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Qi Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhenkai Huang
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Yafeng Yang
- Department of Orthopedics, the Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
| | - Hao Cheng
- Department of Orthopaedic Surgery, Division of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Kan Yue
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
12
|
Mo S, Tang K, Liao Q, Xie L, Wu Y, Wang G, Ruan Q, Gao A, Lv Y, Cai K, Tong L, Wu Z, Chu PK, Wang H. Tuning the arrangement of lamellar nanostructures: achieving the dual function of physically killing bacteria and promoting osteogenesis. MATERIALS HORIZONS 2023; 10:881-888. [PMID: 36537031 DOI: 10.1039/d2mh01147f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bacteria killing behavior based on physical effects is preferred for biomedical implants because of the negligible associated side effects. However, our current understanding of the antibacterial activity of nanostructures remains limited and, in practice, nanoarchitectures that are created on orthopedics should also promote osteogenesis simultaneously. In this study, tilted and vertical nanolamellar structures are fabricated on semi-crystalline polyether-ether-ketone (PEEK) via argon plasma treatment with or without pre-annealing. The two types of nanolamellae can physically kill the bacteria that come into contact with them, but the antibacterial mechanisms between the two are different. Specifically, the sharp edges of the vertically aligned nanolamellae can penetrate and damage the bacterial membrane, whereas bacteria are stuck on the tilted nanostructures and are stretched, leading to eventual destruction. The tilted nanolamellae are more desirable than the vertically aligned ones from the perspective of peri-implant bone regeneration. Our study not only reveals the role of the arrangement of nanostructures in orthopedic applications but also provides new information about different mechanisms of physical antibacterial activity.
Collapse
Affiliation(s)
- Shi Mo
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avene, Kowloon, Hong Kong, China
| | - Kaiwei Tang
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avene, Kowloon, Hong Kong, China
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, China
| | - Qing Liao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Lingxia Xie
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Yuzheng Wu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avene, Kowloon, Hong Kong, China
| | - Guomin Wang
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avene, Kowloon, Hong Kong, China
| | - Qingdong Ruan
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avene, Kowloon, Hong Kong, China
| | - Ang Gao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Yuanliang Lv
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- School of Advanced Manufacturing, Fuzhou University, Fuzhou, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liping Tong
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avene, Kowloon, Hong Kong, China
| | - Zhengwei Wu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avene, Kowloon, Hong Kong, China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China.
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avene, Kowloon, Hong Kong, China
| | - Huaiyu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
13
|
Arakkal A, Sirajunnisa P, Sailaja GS. Natural rubber latex films with effective growth inhibition against S. aureus via surface conjugated gentamicin. J BIOACT COMPAT POL 2023. [DOI: 10.1177/08839115231153823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Hospital-associated infections and related complications are of extreme concern in the healthcare sector since biofilms generated over material surfaces not only create turbulence in the healthcare practices followed but also ruin the device performance, and increased medication, leading to significant chances of drug resistance. Natural rubber latex (NRL) being the first choice for the manufacture of several conventional biomedical devices, it is essential to ensure the surfaces of the same are inherently inactive against most microorganisms. This study presents NRL film surface conjugated with a well-known antibiotic, gentamicin through an amide linkage to generate antibacterial activity to the surface with a significant growth inhibition rate, especially against Staphylococcus aureus. The NRL films were surface-oxidized under controlled acidic conditions to generate carboxyl groups exploring the unsaturation of the base monomer unit. The carboxyl group reacts with the amine groups of gentamicin facilitating its surface conjugation. The surface anchoring was authenticated by FTIR-ATR complimented further by contact angle measurement as a function of hydrophilicity and elemental analysis by EDX spectroscopy. The antibacterial efficacy of modified NRL films was evaluated using antibacterial drop test and the results indicated a substantial growth inhibition rate (>60%) against Pseudomonas aeruginosa and Staphylococcus aureus. The study could be further optimized and proposed as a viable route for the conjugation of active molecules over inert polymer molecules.
Collapse
Affiliation(s)
- Aswin Arakkal
- Department of Polymer Science & Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Paramban Sirajunnisa
- Department of Polymer Science & Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Gopalakrishnanchettiar Sivakamiammal Sailaja
- Department of Polymer Science & Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala, India
- Inter-University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Kochi, Kerala, India
| |
Collapse
|
14
|
Maffeis V, Hürlimann D, Krywko-Cendrowska A, Schoenenberger CA, Housecroft CE, Palivan CG. A DNA-Micropatterned Surface for Propagating Biomolecular Signals by Positional on-off Assembly of Catalytic Nanocompartments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202818. [PMID: 35869606 DOI: 10.1002/smll.202202818] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Signal transduction is pivotal for the transfer of information between and within living cells. The composition and spatial organization of specified compartments are key to propagating soluble signals. Here, a high-throughput platform mimicking multistep signal transduction which is based on a geometrically defined array of immobilized catalytic nanocompartments (CNCs) that consist of distinct polymeric nanoassemblies encapsulating enzymes and DNA or enzymes alone is presented. The dual role of single entities or tandem CNCs in providing confined but communicating spaces for complex metabolic reactions and in protecting encapsulated compounds from denaturation is explored. To support a controlled spatial organization of CNCs, CNCs are patterned by means of DNA hybridization to a microprinted glass surface. Specifically, CNC-functionalized DNA microarrays are produced where individual reaction compartments are kept in close proximity by a distinct geometrical arrangement to promote effective communication. Besides a remarkable versatility and robustness, the most prominent feature of this platform is the reversibility of DNA-mediated CNC-anchoring which renders it reusable. Micropatterns of polymer-based nanocompartment assemblies offer an ideal scaffold for the development of the next generation responsive and communicative soft-matter analytical devices for applications in catalysis and medicine.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Dimitri Hürlimann
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Agata Krywko-Cendrowska
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Catherine E Housecroft
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| |
Collapse
|
15
|
Nanomaterials and Coatings for Managing Antibiotic-Resistant Biofilms. Antibiotics (Basel) 2023; 12:antibiotics12020310. [PMID: 36830221 PMCID: PMC9952333 DOI: 10.3390/antibiotics12020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Biofilms are a global health concern responsible for 65 to 80% of the total number of acute and persistent nosocomial infections, which lead to prolonged hospitalization and a huge economic burden to the healthcare systems. Biofilms are organized assemblages of surface-bound cells, which are enclosed in a self-produced extracellular polymer matrix (EPM) of polysaccharides, nucleic acids, lipids, and proteins. The EPM holds the pathogens together and provides a functional environment, enabling adhesion to living and non-living surfaces, mechanical stability, next to enhanced tolerance to host immune responses and conventional antibiotics compared to free-floating cells. Furthermore, the close proximity of cells in biofilms facilitates the horizontal transfer of genes, which is responsible for the development of antibiotic resistance. Given the growing number and impact of resistant bacteria, there is an urgent need to design novel strategies in order to outsmart bacterial evolutionary mechanisms. Antibiotic-free approaches that attenuate virulence through interruption of quorum sensing, prevent adhesion via EPM degradation, or kill pathogens by novel mechanisms that are less likely to cause resistance have gained considerable attention in the war against biofilm infections. Thereby, nanoformulation offers significant advantages due to the enhanced antibacterial efficacy and better penetration into the biofilm compared to bulk therapeutics of the same composition. This review highlights the latest developments in the field of nanoformulated quorum-quenching actives, antiadhesives, and bactericides, and their use as colloid suspensions and coatings on medical devices to reduce the incidence of biofilm-related infections.
Collapse
|
16
|
Marcelo GA, Galhano J, Duarte MP, Kurutos A, Capelo-Martínez JL, Lodeiro C, Oliveira E. Functional Cyanine-Based PVA:PVP Polymers as Antimicrobial Tools toward Food and Health-Care Bacterial Infections. Macromol Biosci 2022; 22:e2200244. [PMID: 36004698 DOI: 10.1002/mabi.202200244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Indexed: 01/15/2023]
Abstract
The rising of multidrug-resistant bacteria and their associated proliferation as harmful microorganisms boosts the creation of new antibacterial surfaces and biomaterials with applications ranging from health to food packing. Herein, low-cost antibacterial PVA:PVP copolymers containing cyanine derivatives (1, 2, and 3) and their respective Cu2+ complexes are successfully obtained and tested against Gram-negative and Gram-positive bacteria. The possible application in food packing is addressed by covering the surface of typical paper mockups with the doped polymers. All dye-doped polymers present a broad-spectrum antibacterial effect against Gram-positive bacteria, especially for Bacillus cereus (B. cereus), Staphylococcus aureus (S. aureus), and methicillin-resistant S. aureus (MRSA) strains, with PVA:PVP@3 and PVA:PVP@3-Cu being the most effective. Moreover, polymers containing cyanine derivatives present interesting inhibition effects against Pseudomonas aeruginosa (P. aeruginosa), where the production of its characteristic blue/green virulent pigment is not observed. Of the coated paper mockups, PVA:PVP:paper@2 and PVA:PVP:paper@2-Cu are most effective against B. cereus and S. aureus, while PVA:PVP:paper@3 and PVA:PVP:paper@3-Cu are most effective against the MRSA strain. In these formulations, direct contact inhibition mechanisms appear to be more significant than diffusional mechanisms, due to cyanine release hindrance, making them very interesting and versatile platforms for medical and food applications.
Collapse
Affiliation(s)
- Gonçalo A Marcelo
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, Caparica, 2829-516, Portugal
| | - Joana Galhano
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, Caparica, 2829-516, Portugal
| | - Maria Paula Duarte
- Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, 2829-516, Portugal
| | - Atanas Kurutos
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, Sofia, 1113, Bulgaria
| | - Jose Luis Capelo-Martínez
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, Caparica, 2829-516, Portugal.,PROTEOMASS Scientific Society. Rua dos Inventores. Madam Parque, Caparica Campus, Caparica, 2829-516, Portugal
| | - Carlos Lodeiro
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, Caparica, 2829-516, Portugal.,PROTEOMASS Scientific Society. Rua dos Inventores. Madam Parque, Caparica Campus, Caparica, 2829-516, Portugal
| | - Elisabete Oliveira
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, Caparica, 2829-516, Portugal.,PROTEOMASS Scientific Society. Rua dos Inventores. Madam Parque, Caparica Campus, Caparica, 2829-516, Portugal
| |
Collapse
|
17
|
Wang CG, Surat'man NEB, Mah JJQ, Qu C, Li Z. Surface antimicrobial functionalization with polymers: fabrication, mechanisms and applications. J Mater Chem B 2022; 10:9349-9368. [PMID: 36373687 DOI: 10.1039/d2tb01555b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Undesirable adhesion of microbes such as bacteria, fungi and viruses onto surfaces affects many industries such as marine, food, textile, and healthcare. In particular in healthcare and food packaging, the effects of unwanted microbial contamination can be life-threatening. With the current global COVID-19 pandemic, interest in the development of surfaces with superior anti-viral and anti-bacterial activities has multiplied. Polymers carrying anti-microbial properties are extensively used to functionalize material surfaces to inactivate infection-causing and biocide-resistant microbes including COVID-19. This review aims to introduce the fabrication of polymer-based antimicrobial surfaces through physical and chemical modifications, followed by the discussion of the inactivation mechanisms of conventional biocidal agents and new-generation antimicrobial macromolecules in polymer-modified antimicrobial surfaces. The advanced applications of polymer-based antimicrobial surfaces on personal protective equipment against COVID-19, food packaging materials, biomedical devices, marine vessels and textiles are also summarized to express the research trend in academia and industry.
Collapse
Affiliation(s)
- Chen-Gang Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.
| | - Nayli Erdeanna Binte Surat'man
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.
| | - Justin Jian Qiang Mah
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Chenyang Qu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore. .,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore
| |
Collapse
|
18
|
Xu LC, Siedlecki CA. Surface Texturing and Combinatorial Approaches to Improve Biocompatibility of Implanted Biomaterials. FRONTIERS IN PHYSICS 2022; 10:994438. [PMID: 38250242 PMCID: PMC10798815 DOI: 10.3389/fphy.2022.994438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Biomaterial associated microbial infection and blood thrombosis are two of the barriers that inhibit the successful use of implantable medical devices in modern healthcare. Modification of surface topography is a promising approach to combat microbial infection and thrombosis without altering bulk material properties necessary for device function and without contributing to bacterial antibiotic resistance. Similarly, the use of other antimicrobial techniques such as grafting poly(ethylene glycol) (PEG) and nitric oxide (NO) release also improve the biocompatibility of biomaterials. In this review, we discuss the development of surface texturing techniques utilizing ordered submicron-size pillars for controlling bacterial adhesion and biofilm formation, and we present combinatorial approaches utilizing surface texturing in combination with poly(ethylene glycol) (PEG) grafting and NO release to improve the biocompatibility of biomaterials. The manuscript also discusses efforts towards understanding the molecular mechanisms of bacterial adhesion responses to the surface texturing and NO releasing biomaterials, focusing on experimental aspects of the approach.
Collapse
Affiliation(s)
- Li-Chong Xu
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
| | - Christopher A. Siedlecki
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
- Department of Biomedical Engineering, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
| |
Collapse
|
19
|
Putra NE, Leeflang MA, Ducret V, Patrulea V, Fratila-Apachitei LE, Perron K, Ye H, Zhou J, Apachitei I, Zadpoor AA. Preventing Antibiotic-Resistant Infections: Additively Manufactured Porous Ti6Al4V Biofunctionalized with Ag and Fe Nanoparticles. Int J Mol Sci 2022; 23:13239. [PMID: 36362029 PMCID: PMC9654018 DOI: 10.3390/ijms232113239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 08/20/2024] Open
Abstract
Implant-associated infections are highly challenging to treat, particularly with the emergence of multidrug-resistant microbials. Effective preventive action is desired to be at the implant site. Surface biofunctionalization of implants through Ag-doping has demonstrated potent antibacterial results. However, it may adversely affect bone regeneration at high doses. Benefiting from the potential synergistic effects, combining Ag with other antibacterial agents can substantially decrease the required Ag concentration. To date, no study has been performed on immobilizing both Ag and Fe nanoparticles (NPs) on the surface of additively manufactured porous titanium. We additively manufactured porous titanium and biofunctionalized its surface with plasma electrolytic oxidation using a Ca/P-based electrolyte containing Fe NPs, Ag NPs, and the combinations. The specimen's surface morphology featured porous TiO2 bearing Ag and Fe NPs. During immersion, Ag and Fe ions were released for up to 28 days. Antibacterial assays against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa showed that the specimens containing Ag NPs and Ag/Fe NPs exhibit bactericidal activity. The Ag and Fe NPs worked synergistically, even when Ag was reduced by up to three times. The biofunctionalized scaffold reduced Ag and Fe NPs, improving preosteoblasts proliferation and Ca-sensing receptor activation. In conclusion, surface biofunctionalization of porous titanium with Ag and Fe NPs is a promising strategy to prevent implant-associated infections and allow bone regeneration and, therefore, should be developed for clinical application.
Collapse
Affiliation(s)
- Niko E. Putra
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Marius A. Leeflang
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Viorica Patrulea
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Lidy E. Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Jie Zhou
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Iulian Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Amir A. Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| |
Collapse
|
20
|
Bioengineering Approaches to Fight against Orthopedic Biomaterials Related-Infections. Int J Mol Sci 2022; 23:ijms231911658. [PMID: 36232956 PMCID: PMC9569980 DOI: 10.3390/ijms231911658] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
One of the most serious complications following the implantation of orthopedic biomaterials is the development of infection. Orthopedic implant-related infections do not only entail clinical problems and patient suffering, but also cause a burden on healthcare care systems. Additionally, the ageing of the world population, in particular in developed countries, has led to an increase in the population above 60 years. This is a significantly vulnerable population segment insofar as biomaterials use is concerned. Implanted materials are highly susceptible to bacterial and fungal colonization and the consequent infection. These microorganisms are often opportunistic, taking advantage of the weakening of the body defenses at the implant surface–tissue interface to attach to tissues or implant surfaces, instigating biofilm formation and subsequent development of infection. The establishment of biofilm leads to tissue destruction, systemic dissemination of the pathogen, and dysfunction of the implant/bone joint, leading to implant failure. Moreover, the contaminated implant can be a reservoir for infection of the surrounding tissue where microorganisms are protected. Therefore, the biofilm increases the pathogenesis of infection since that structure offers protection against host defenses and antimicrobial therapies. Additionally, the rapid emergence of bacterial strains resistant to antibiotics prompted the development of new alternative approaches to prevent and control implant-related infections. Several concepts and approaches have been developed to obtain biomaterials endowed with anti-infective properties. In this review, several anti-infective strategies based on biomaterial engineering are described and discussed in terms of design and fabrication, mechanisms of action, benefits, and drawbacks for preventing and treating orthopaedic biomaterials-related infections.
Collapse
|
21
|
|
22
|
Shi Y, Chen T, Shaw P, Wang PY. Manipulating Bacterial Biofilms Using Materiobiology and Synthetic Biology Approaches. Front Microbiol 2022; 13:844997. [PMID: 35875573 PMCID: PMC9301480 DOI: 10.3389/fmicb.2022.844997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Bacteria form biofilms on material surfaces within hours. Biofilms are often considered problematic substances in the fields such as biomedical devices and the food industry; however, they are beneficial in other fields such as fermentation, water remediation, and civil engineering. Biofilm properties depend on their genome and the extracellular environment, including pH, shear stress, and matrices topography, stiffness, wettability, and charges during biofilm formation. These surface properties have feedback effects on biofilm formation at different stages. Due to emerging technology such as synthetic biology and genome editing, many studies have focused on functionalizing biofilm for specific applications. Nevertheless, few studies combine these two approaches to produce or modify biofilms. This review summarizes up-to-date materials science and synthetic biology approaches to controlling biofilms. The review proposed a potential research direction in the future that can gain better control of bacteria and biofilms.
Collapse
Affiliation(s)
- Yue Shi
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tingli Chen
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Peter Shaw
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
23
|
Recent Progress on Bioinspired Antibacterial Surfaces for Biomedical Application. Biomimetics (Basel) 2022; 7:biomimetics7030088. [PMID: 35892358 PMCID: PMC9326651 DOI: 10.3390/biomimetics7030088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/10/2022] Open
Abstract
Surface bacterial fouling has become an urgent global challenge that calls for resilient solutions. Despite the effectiveness in combating bacterial invasion, antibiotics are susceptible to causing microbial antibiotic resistance that threatens human health and compromises the medication efficacy. In nature, many organisms have evolved a myriad of surfaces with specific physicochemical properties to combat bacteria in diverse environments, providing important inspirations for implementing bioinspired approaches. This review highlights representative natural antibacterial surfaces and discusses their corresponding mechanisms, including repelling adherent bacteria through tailoring surface wettability and mechanically killing bacteria via engineering surface textures. Following this, we present the recent progress in bioinspired active and passive antibacterial strategies. Finally, the biomedical applications and the prospects of these antibacterial surfaces are discussed.
Collapse
|
24
|
Ciprofloxacin-Loaded Titanium Nanotubes Coated with Chitosan: A Promising Formulation with Sustained Release and Enhanced Antibacterial Properties. Pharmaceutics 2022; 14:pharmaceutics14071359. [PMID: 35890255 PMCID: PMC9316085 DOI: 10.3390/pharmaceutics14071359] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Due to their high entrapment efficiency, anodized titanium nanotubes (TiO2-NTs) are considered effective reservoirs for loading/releasing strong antibiotics whose systemic administration is associated with diverse and severe side-effects. In this study, TiO2-NTs were synthesized by anodic oxidation of titanium foils, and the effects of electrolyte percentage and viscosity on their dimensions were evaluated. It was found that as the water content increased from 15 to 30%, the wall thickness, length, and inner diameter of the NTs increase from 5.9 to 15.8 nm, 1.56 to 3.21 µm, and 59 to 84 nm, respectively. Ciprofloxacin, a highly potent antibiotic, was loaded into TiO2-NTs with a high encapsulation efficiency of 93%, followed by coating with different chitosan layers to achieve a sustained release profile. The prepared formulations were characterized by various techniques, such as scanning electron microscopy, differential scanning calorimetry, and contact measurement. In vitro release studies showed that the higher the chitosan layer count, the more sustained the release. Evaluation of antimicrobial activity of the formulation against two endodontic species from Peptostreptococcus and Fusobacterium revealed minimum inhibitory concentrations (MICs) of 1 µg/mL for the former and the latter. To summarize, this study demonstrated that TiO2-NTs are promising reservoirs for drug loading, and that the chitosan coating provides not only a sustained release profile, but also a synergistic antibacterial effect.
Collapse
|
25
|
Song MS, Li RW, Qiu Y, Man SM, Tuipulotu DE, Birbilis N, Smith PN, Cole I, Kaplan DL, Chen XB. Gallium-Strontium Phosphate Conversion Coatings for Promoting Infection Prevention and Biocompatibility of Magnesium for Orthopedic Applications. ACS Biomater Sci Eng 2022; 8:2709-2723. [PMID: 35574832 DOI: 10.1021/acsbiomaterials.2c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Device-associated infections remain a clinical challenge. The common strategies to prevent bacterial infection are either toxic to healthy mammalian cells and tissue or involve high doses of antibiotics that can prompt long-term negative consequences. An antibiotic-free coating strategy to suppress bacterial growth is presented herein, which concurrently promotes bone cell growth and moderates the dissolution kinetics of resorbable magnesium (Mg) biomaterials. Pure Mg as a model biodegradable material was coated with gallium-doped strontium-phosphate through a chemical conversion process. Gallium was distributed in a gradual manner throughout the strontium-phosphate coating, with a compact structure and a gallium-rich surface. It was demonstrated that the coating protected the underlying Mg parts from significant degradation in minimal essential media at physiological conditions over 9 days. In terms of bacteria culture, the liberated gallium ions from the coatings upon Mg specimens, even though in minute quantities, inhibited the growth of Gram-positiveStaphylococcus aureus, Gram-negative Escherichia coli, andPseudomonas aeruginosa ─ key pathogens causing infection and early failure of the surgical implantations in orthopedics and trauma. More importantly, the gallium dopants displayed minimal interferences with the strontium-phosphate-based coating which boosted osteoblasts and undermined osteoclasts in in vitro co-cultures. This work provides a new strategy to prevent bacterial infection and control the degradation behavior of Mg-based orthopedic implants, while preserving osteogenic features of the devices.
Collapse
Affiliation(s)
- Ming-Shi Song
- School of Engineering, RMIT University, Carlton, Victoria 3053, Australia
| | - Rachel W Li
- Trauma and Orthopaedic Research Laboratory, Department of Surgery, The Medical School, The Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Yao Qiu
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Si Ming Man
- Department of Immunology and Infectious Disease, College of Health & Medicine, The Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Daniel E Tuipulotu
- Department of Immunology and Infectious Disease, College of Health & Medicine, The Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Nick Birbilis
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Paul N Smith
- Department of Surgery, The Canberra Hospital, Garran, Australian Capital Territory 2605, Australia
| | - Ivan Cole
- School of Engineering, RMIT University, Carlton, Victoria 3053, Australia
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Xiao-Bo Chen
- School of Engineering, RMIT University, Carlton, Victoria 3053, Australia
| |
Collapse
|
26
|
Xu LC, Siedlecki CA. Submicron topography design for controlling staphylococcal bacterial adhesion and biofilm formation. J Biomed Mater Res A 2022; 110:1238-1250. [PMID: 35128791 PMCID: PMC9885517 DOI: 10.1002/jbm.a.37369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023]
Abstract
Surface topography modification with nano- or micro-textured structures has been an efficient approach to inhibit microbial adhesion and biofilm formation and thereby to prevent biomaterial-associated infection without modification of surface chemistry/bulk properties of materials and without causing antibiotic resistance. This manuscript focuses on submicron-textured patterns with ordered arrays of pillars on polyurethane (PU) biomaterial surfaces in an effort to understand the effects of surface pillar features and surface properties on adhesion and colonization responses of two staphylococcal strains. Five submicron patterns with a variety of pillar dimensions were designed and fabricated on PU film surfaces and bacterial adhesion and biofilm formation of Staphylococcal strains (Staphylococcus epidermidis RP62A and Staphylococcus aureus Newman D2C) were characterized. Results show that all submicron textured surface significantly reduced bacterial adhesion and inhibited biofilm formation, and bacterial adhesion linearly decreased with the reduction in top surface area fraction. Surface wettability did not show a linear correlation with bacterial adhesion, suggesting that surface contact area dominates bacterial adhesion. From this, it appears that the design of textured patterns should minimize surface area fraction to reduce the bacterial interaction with surfaces but in a way that ensures the mechanical strength of pillars in order to avoid collapse. These findings may provide a rationale for design of polymer surfaces for antifouling medical devices.
Collapse
Affiliation(s)
- Li-Chong Xu
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
| | - Christopher A. Siedlecki
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033,Department of Biomedical Engineering,The Pennsylvania State University, College of Medicine, Hershey, PA 17033,Correspondence: Dr. Christopher A. Siedlecki, The Pennsylvania State University, Milton S. Hershey Medical Center, College of Medicine, H151, 500 University Dr., Hershey, PA 17033. Phone: (717) 531-5716. Fax: (717) 531-4464.
| |
Collapse
|
27
|
Dhingra S, Sharma S, Saha S. Infection Resistant Surface Coatings by Polymer Brushes: Strategies to Construct and Applications. ACS APPLIED BIO MATERIALS 2022; 5:1364-1390. [DOI: 10.1021/acsabm.1c01006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shaifali Dhingra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shivangi Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
28
|
Biomaterials: Antimicrobial Surfaces in Biomedical Engineering and Healthcare. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Farkas E, Tarr R, Gerecsei T, Saftics A, Kovács KD, Stercz B, Domokos J, Peter B, Kurunczi S, Szekacs I, Bonyár A, Bányai A, Fürjes P, Ruszkai-Szaniszló S, Varga M, Szabó B, Ostorházi E, Szabó D, Horvath R. Development and In-Depth Characterization of Bacteria Repellent and Bacteria Adhesive Antibody-Coated Surfaces Using Optical Waveguide Biosensing. BIOSENSORS 2022; 12:bios12020056. [PMID: 35200317 PMCID: PMC8869200 DOI: 10.3390/bios12020056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 05/10/2023]
Abstract
Bacteria repellent surfaces and antibody-based coatings for bacterial assays have shown a growing demand in the field of biosensors, and have crucial importance in the design of biomedical devices. However, in-depth investigations and comparisons of possible solutions are still missing. The optical waveguide lightmode spectroscopy (OWLS) technique offers label-free, non-invasive, in situ characterization of protein and bacterial adsorption. Moreover, it has excellent flexibility for testing various surface coatings. Here, we describe an OWLS-based method supporting the development of bacteria repellent surfaces and characterize the layer structures and affinities of different antibody-based coatings for bacterial assays. In order to test nonspecific binding blocking agents against bacteria, OWLS chips were coated with bovine serum albumin (BSA), I-block, PAcrAM-g-(PMOXA, NH2, Si), (PAcrAM-P) and PLL-g-PEG (PP) (with different coating temperatures), and subsequent Escherichia coli adhesion was monitored. We found that the best performing blocking agents could inhibit bacterial adhesion from samples with bacteria concentrations of up to 107 cells/mL. Various immobilization methods were applied to graft a wide range of selected antibodies onto the biosensor's surface. Simple physisorption, Mix&Go (AnteoBind) (MG) films, covalently immobilized protein A and avidin-biotin based surface chemistries were all fabricated and tested. The surface adsorbed mass densities of deposited antibodies were determined, and the biosensor;s kinetic data were evaluated to divine the possible orientations of the bacteria-capturing antibodies and determine the rate constants and footprints of the binding events. The development of affinity layers was supported by enzyme-linked immunosorbent assay (ELISA) measurements in order to test the bacteria binding capabilities of the antibodies. The best performance in the biosensor measurements was achieved by employing a polyclonal antibody in combination with protein A-based immobilization and PAcrAM-P blocking of nonspecific binding. Using this setting, a surface sensitivity of 70 cells/mm2 was demonstrated.
Collapse
Affiliation(s)
- Eniko Farkas
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
| | - Robert Tarr
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, 1111 Budapest, Hungary;
| | - Tamás Gerecsei
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
- Department of Biological Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Andras Saftics
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
| | - Kinga Dóra Kovács
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
- Department of Biological Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Balazs Stercz
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (B.S.); (J.D.); (E.O.); (D.S.)
| | - Judit Domokos
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (B.S.); (J.D.); (E.O.); (D.S.)
| | - Beatrix Peter
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
| | - Sandor Kurunczi
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
| | - Inna Szekacs
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
| | - Attila Bonyár
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, 1111 Budapest, Hungary;
| | - Anita Bányai
- Centre for Energy Research, Microsystems Lab, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (A.B.); (P.F.)
| | - Péter Fürjes
- Centre for Energy Research, Microsystems Lab, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (A.B.); (P.F.)
| | | | - Máté Varga
- 77 Elektronika Ltd., 1116 Budapest, Hungary; (S.R.-S.); (M.V.); (B.S.)
| | - Barnabás Szabó
- 77 Elektronika Ltd., 1116 Budapest, Hungary; (S.R.-S.); (M.V.); (B.S.)
| | - Eszter Ostorházi
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (B.S.); (J.D.); (E.O.); (D.S.)
| | - Dóra Szabó
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (B.S.); (J.D.); (E.O.); (D.S.)
| | - Robert Horvath
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
- Correspondence:
| |
Collapse
|
30
|
Maurizi L, Bellat V, Moreau M, De Maistre E, Boudon J, Dumont L, Denat F, Vandroux D, Millot N. Titanate nanoribbon-based nanobiohybrid for potential applications in regenerative medicine. RSC Adv 2022; 12:26875-26881. [PMID: 36320832 PMCID: PMC9490774 DOI: 10.1039/d2ra04753e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
Nanoparticles capable of mimicking natural tissues represent a major technological advancement in regenerative medicine. In this pilot study, the development of a new nanohybrid composed of titanate nanoribbons to mimic the extracellular matrix is reported. During the first phase, nanoribbons were synthesized by hydrothermal treatment. Subsequently, titanate nanoribbons were functionalized by heterobifunctional polyethylene-glycol (PEG) to graft type I collagen on their surface. Biological properties of this new nanobiohybrid such as cytotoxicity to cardiac cells and platelet aggregation ability were evaluated. The so-formed nanobiohybrid permits cellular adhesion and proliferation favoring fine cardiac tissue healing and regeneration. Titanate nanoribbons functionalized by heterobifunctional polymer and type I collagen for cellular adhesion and proliferation. This new nanobiohybrid affected neither cytotoxicity nor platelet aggregation ability.![]()
Collapse
Affiliation(s)
- Lionel Maurizi
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, 21078 Dijon, France
| | - Vanessa Bellat
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, 21078 Dijon, France
- Société NVH Medicinal, Dijon, France
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, New York, NY, 10021, USA
| | - Mathieu Moreau
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, 21078 Dijon, France
| | | | - Julien Boudon
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, 21078 Dijon, France
| | | | - Franck Denat
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, 21078 Dijon, France
| | | | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, 21078 Dijon, France
| |
Collapse
|
31
|
Niu B, Chen Y, Zhang L, Tan J. Organic–inorganic hybrid nanomaterials prepared via polymerization-induced self-assembly: recent developments and future opportunities. Polym Chem 2022. [DOI: 10.1039/d2py00180b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review highlights recent developments in the preparation of organic–inorganic hybrid nanomaterials via polymerization-induced self-assembly.
Collapse
Affiliation(s)
- Bing Niu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
32
|
Susarla S, Chilkoor G, Kalimuthu JR, Saadi MASR, Cui Y, Arif T, Tsafack T, Puthirath AB, Sigdel P, Jasthi B, Sudeep PM, Hu L, Hassan A, Castro-Pardo S, Barnes M, Roy S, Verduzco R, Kibria MG, Filleter T, Lin H, Solares SD, Koratkar N, Gadhamshetty V, Rahman MM, Ajayan PM. Corrosion Resistance of Sulfur-Selenium Alloy Coatings. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104467. [PMID: 34651334 DOI: 10.1002/adma.202104467] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Despite decades of research, metallic corrosion remains a long-standing challenge in many engineering applications. Specifically, designing a material that can resist corrosion both in abiotic as well as biotic environments remains elusive. Here a lightweight sulfur-selenium (S-Se) alloy is designed with high stiffness and ductility that can serve as an excellent corrosion-resistant coating with protection efficiency of ≈99.9% for steel in a wide range of diverse environments. S-Se coated mild steel shows a corrosion rate that is 6-7 orders of magnitude lower than bare metal in abiotic (simulated seawater and sodium sulfate solution) and biotic (sulfate-reducing bacterial medium) environments. The coating is strongly adhesive, mechanically robust, and demonstrates excellent damage/deformation recovery properties, which provide the added advantage of significantly reducing the probability of a defect being generated and sustained in the coating, thus improving its longevity. The high corrosion resistance of the alloy is attributed in diverse environments to its semicrystalline, nonporous, antimicrobial, and viscoelastic nature with superior mechanical performance, enabling it to successfully block a variety of diffusing species.
Collapse
Affiliation(s)
- Sandhya Susarla
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Govinda Chilkoor
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| | - Jawahar R Kalimuthu
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| | - M A S R Saadi
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Yufei Cui
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Taib Arif
- Department of Mechanical and Industrial Engineering, University of Toronto, Ontario, M5S 3G8, Canada
| | - Thierry Tsafack
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Anand B Puthirath
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Pawan Sigdel
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| | - Bharat Jasthi
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| | - Parambath M Sudeep
- Department of Mechanical and Industrial Engineering, University of Toronto, Ontario, M5S 3G8, Canada
| | - Leiqing Hu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Aly Hassan
- Department of Mechanical and Industrial Engineering, University of Toronto, Ontario, M5S 3G8, Canada
| | | | - Morgan Barnes
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Rafael Verduzco
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, Alberta, T2N 1N4, Canada
| | - Tobin Filleter
- Department of Mechanical and Industrial Engineering, University of Toronto, Ontario, M5S 3G8, Canada
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Santiago D Solares
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Nikhil Koratkar
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Venkataramana Gadhamshetty
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
- 2D materials for Biofilm Engineering Science and Technology (2D-BEST), South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| | - Muhammad M Rahman
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
33
|
Douglass M, Hopkins S, Chug MK, Kim G, Garren MR, Ashcraft M, Nguyen DT, Tayag N, Handa H, Brisbois EJ. Reduction in Foreign Body Response and Improved Antimicrobial Efficacy via Silicone-Oil-Infused Nitric-Oxide-Releasing Medical-Grade Cannulas. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52425-52434. [PMID: 34723458 DOI: 10.1021/acsami.1c18190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Foreign body response and infection are two universal complications that occur with indwelling medical devices. In response, researchers have developed different antimicrobial and antifouling surface strategies to minimize bacterial colonization and fibrous encapsulation. In this study, the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine (SNAP) and silicone oil were impregnated into silicone rubber cannulas (SR-SNAP-Si) using a solvent swelling method to improve the antimicrobial properties and decrease the foreign body response. The fabricated SR-SNAP-Si cannulas demonstrated a stable, prolonged NO release, exhibited minimal SNAP leaching, and maintained sliding angles < 15° for 21 days. SR-SNAP-Si cannulas displayed enhanced antimicrobial efficacy against Staphylococcus aureus in a 7-day biofilm bioreactor study, reducing the viability of adhered bacteria by 99.2 ± 0.2% compared to unmodified cannulas while remaining noncytotoxic toward human fibroblast cells. Finally, SR-SNAP-Si cannulas were evaluated for the first time in a 14- and 21-day subcutaneous mouse model, showing significantly enhanced biocompatibility compared to control cannulas by reducing the thickness of fibrous encapsulation by 60.9 ± 6.1 and a 60.8 ± 10.5% reduction in cell density around the implant site after 3 weeks. Thus, this work demonstrates that antifouling, NO-releasing surfaces can improve the lifetime and safety of indwelling medical devices.
Collapse
Affiliation(s)
- Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Sean Hopkins
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Manjyot Kaur Chug
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Gina Kim
- Office of Research, University Research Animal Resources, University of Georgia, Athens, Georgia 30602, United States
| | - Mark Richard Garren
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Morgan Ashcraft
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
- Pharmaceutical and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Dieu Thao Nguyen
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Nicole Tayag
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
- Pharmaceutical and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J Brisbois
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
34
|
Riduan SN, Yi G, Gao S, Tan JPK, Tan YL, Yuan Y, Lu H, Chng S, Ong JT, Hon PY, Abdad MY, Vasoo S, Ang BS, Yang YY, Ying JY, Zhang Y. Evaluation of the ZnO Nanopillar Surface for Disinfection Applications. ACS APPLIED BIO MATERIALS 2021; 4:7524-7531. [PMID: 35006710 DOI: 10.1021/acsabm.1c00767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Much attention has been devoted to the synthesis and antimicrobial studies of nanopatterned surfaces. However, factors contributing to their potential and eventual application, such as large-scale synthesis, material durability, and biocompatibility, are often neglected in such studies. In this paper, the ZnO nanopillar surface is found to be amenable to synthesis in large forms and stable upon exposure to highly accelerated lifetime tests (HALT) without any detrimental effect on its antimicrobial activity. Additionally, the material is effective against clinically isolated pathogens and biocompatible in vivo. These findings illustrate the broad applicability of ZnO nanopillar surfaces in the common equipment used in health-care and consumer industries.
Collapse
Affiliation(s)
- Siti Nurhanna Riduan
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #07-01, The Nanos, 138669 Singapore
| | - Guangshun Yi
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #07-01, The Nanos, 138669 Singapore
| | - Shujun Gao
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #09-01, The Nanos, 138669 Singapore.,Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, #08-03, Innovis, 138669 Singapore
| | - Jeremy Pang Kern Tan
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #07-01, The Nanos, 138669 Singapore
| | - Yee Lin Tan
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #07-01, The Nanos, 138669 Singapore
| | - Yuan Yuan
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #07-01, The Nanos, 138669 Singapore
| | - Hongfang Lu
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #09-01, The Nanos, 138669 Singapore.,Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, #08-03, Innovis, 138669 Singapore
| | - Shuyun Chng
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-04, Innovis, 138634 Singapore
| | - Jin Ting Ong
- National Centre for Infectious Diseases16 Jalan Tan Tock Seng, 308442 Singapore.,Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, 308433 Singapore
| | - Pei Yun Hon
- National Centre for Infectious Diseases16 Jalan Tan Tock Seng, 308442 Singapore.,Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, 308433 Singapore
| | - Mohammad Yazid Abdad
- National Centre for Infectious Diseases16 Jalan Tan Tock Seng, 308442 Singapore.,Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, 308433 Singapore
| | - Shawn Vasoo
- National Centre for Infectious Diseases16 Jalan Tan Tock Seng, 308442 Singapore.,Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, 308433 Singapore
| | - Brenda Sp Ang
- National Centre for Infectious Diseases16 Jalan Tan Tock Seng, 308442 Singapore.,Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, 308433 Singapore
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #07-01, The Nanos, 138669 Singapore
| | - Jackie Y Ying
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #09-01, The Nanos, 138669 Singapore.,Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, #08-03, Innovis, 138669 Singapore.,A*STAR Infectious Diseases Labs, A*STAR, 138669 Singapore
| | - Yugen Zhang
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #07-01, The Nanos, 138669 Singapore
| |
Collapse
|
35
|
Nasef MM, Gupta B, Shameli K, Verma C, Ali RR, Ting TM. Engineered Bioactive Polymeric Surfaces by Radiation Induced Graft Copolymerization: Strategies and Applications. Polymers (Basel) 2021; 13:3102. [PMID: 34578003 PMCID: PMC8473120 DOI: 10.3390/polym13183102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 11/16/2022] Open
Abstract
The interest in developing antimicrobial surfaces is currently surging with the rise in global infectious disease events. Radiation-induced graft copolymerization (RIGC) is a powerful technique enabling permanent tunable and desired surface modifications imparting antimicrobial properties to polymer substrates to prevent disease transmission and provide safer biomaterials and healthcare products. This review aims to provide a broader perspective of the progress taking place in strategies for designing various antimicrobial polymeric surfaces using RIGC methods and their applications in medical devices, healthcare, textile, tissue engineering and food packing. Particularly, the use of UV, plasma, electron beam (EB) and γ-rays for biocides covalent immobilization to various polymers surfaces including nonwoven fabrics, films, nanofibers, nanocomposites, catheters, sutures, wound dressing patches and contact lenses is reviewed. The different strategies to enhance the grafted antimicrobial properties are discussed with an emphasis on the emerging approach of in-situ formation of metal nanoparticles (NPs) in radiation grafted substrates. The current applications of the polymers with antimicrobial surfaces are discussed together with their future research directions. It is expected that this review would attract attention of researchers and scientists to realize the merits of RIGC in developing timely, necessary antimicrobial materials to mitigate the fast-growing microbial activities and promote hygienic lifestyles.
Collapse
Affiliation(s)
- Mohamed Mahmoud Nasef
- Advanced Materials Research Group, Center of Hydrogen Energy, Universiti Teknologi Malaysia, Jalan Sultan Yahya Putra, Kuala Lumpur 54100, Malaysia;
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia;
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi 110016, India; (B.G.); (C.V.)
| | - Kamyar Shameli
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia;
| | - Chetna Verma
- Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi 110016, India; (B.G.); (C.V.)
| | - Roshafima Rasit Ali
- Advanced Materials Research Group, Center of Hydrogen Energy, Universiti Teknologi Malaysia, Jalan Sultan Yahya Putra, Kuala Lumpur 54100, Malaysia;
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia;
| | - Teo Ming Ting
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Kajang 43000, Malaysia;
| |
Collapse
|
36
|
Hu XL, Shang Y, Yan KC, Sedgwick AC, Gan HQ, Chen GR, He XP, James TD, Chen D. Low-dimensional nanomaterials for antibacterial applications. J Mater Chem B 2021; 9:3640-3661. [PMID: 33870985 DOI: 10.1039/d1tb00033k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The excessive use of antibiotics has led to a rise in drug-resistant bacteria. These "superbugs" are continuously emerging and becoming increasingly harder to treat. As a result, new and effective treatment protocols that have minimal risks of generating drug-resistant bacteria are urgently required. Advanced nanomaterials are particularly promising due to their drug loading/releasing capabilities combined with their potential photodynamic/photothermal therapeutic properties. In this review, 0-dimensional, 1-dimensional, 2-dimensional, and 3-dimensional nanomaterial-based systems are comprehensively discussed for bacterial-based diagnostic and treatment applications. Since the use of these platforms as antibacterials is relatively new, this review will provide appropriate insight into their construction and applications. As such, we hope this review will inspire researchers to explore antibacterial-based nanomaterials with the aim of developing systems for clinical applications.
Collapse
Affiliation(s)
- Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Ying Shang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Kai-Cheng Yan
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA
| | - Hui-Qi Gan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK. and School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China.
| |
Collapse
|
37
|
Wang F, Sha X, Wu R, Zhang L, Song X, Tian X, Pan G, Liu L. A versatile pH-responsive peptide based dynamic biointerface for tracking bacteria killing and infection resistance. Biomater Sci 2021; 9:5785-5790. [PMID: 34350905 DOI: 10.1039/d1bm00950h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein we reported a versatile dynamic biointerface based on pH-responsive peptide self-assembly and disassembly to capture the bacteria to avoid bacteria further infected tissue around that can release peptides from the surface in a slightly acidic environment to kill the bacteria with the specificity. The exposed biointerface still presented infection resistance.
Collapse
Affiliation(s)
- Fenghua Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Di Leone S, Vallapurackal J, Yorulmaz Avsar S, Kyropolou M, Ward TR, Palivan CG, Meier W. Expanding the Potential of the Solvent-Assisted Method to Create Bio-Interfaces from Amphiphilic Block Copolymers. Biomacromolecules 2021; 22:3005-3016. [PMID: 34105950 DOI: 10.1021/acs.biomac.1c00424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Artificial membranes, as materials with biomimetic properties, can be applied in various fields, such as drug screening or bio-sensing. The solvent-assisted method (SA) represents a straightforward method to prepare lipid solid-supported membranes. It overcomes the main limitations of established membrane preparation methods, such as Langmuir-Blodgett (LB) or vesicle fusion. However, it has not yet been applied to create artificial membranes based on amphiphilic block copolymers, despite their enhanced mechanical stability compared to lipid-based membranes and bio-compatible properties. Here, we applied the SA method on different amphiphilic di- and triblock poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PDMS-b-PMOXA) copolymers and optimized the conditions to prepare artificial membranes on a solid support. The real-time membrane formation, the morphology, and the mechanical properties have been evaluated by a combination of atomic force microscopy and quartz crystal microbalance. Then, selected biomolecules including complementary DNA strands and an artificial deallylase metalloenzyme (ADAse) were incorporated into these membranes relying on the biotin-streptavidin technology. DNA strands served to establish the capability of these synthetic membranes to interact with biomolecules by preserving their correct conformation. The catalytic activity of the ADAse following its membrane anchoring induced the functionality of the biomimetic platform. Polymer membranes on solid support as prepared by the SA method open new opportunities for the creation of artificial membranes with tailored biomimetic properties and functionality.
Collapse
Affiliation(s)
- Stefano Di Leone
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland.,School of Life Sciences, Institute for Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland (FHNW), Grundenstrasse 40, 4132 Muttenz, Switzerland
| | - Jaicy Vallapurackal
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Saziye Yorulmaz Avsar
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Myrto Kyropolou
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Thomas R Ward
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cornelia G Palivan
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Wolfgang Meier
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
39
|
Ghavamian S, Hay ID, Habibi R, Lithgow T, Cadarso VJ. Three-Dimensional Micropatterning Deters Early Bacterial Adherence and Can Eliminate Colonization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23339-23351. [PMID: 33974396 DOI: 10.1021/acsami.1c01902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing strategies to prevent bacterial infections that do not rely on the use of drugs is regarded globally as an important means to stem the tide of antimicrobial resistance, as argued by the World Health Organization (WHO) (Mendelson, M.; Matsoso, M. P. The World Health Organization Global Action Plan for Antimicrobial Resistance. S. Afr. Med. J. 2015, 105 (5), 325-325. DOI: 10.7196/SAMJ.9644). Given that many antimicrobial-resistant infections are caused by the bacterial colonization of indwelling medical devices such as catheters and ventilators, the use of microengineered surfaces to prevent the initial attachment of microbes to these devices is a promising solution. In this work, it is demonstrated that 3D engineered surfaces can inhibit the initial phases of surface colonization for Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, representing the three most common catheter-associated urinary tract bacterial infections, identified by the WHO as urgent threats. A variety of designs including 11 different topographies and configurations that exhibited random distributions, sharp protrusions, and/or curvilinear shapes with dimensions ranging between 500 nm and 2 μm were tested to better understand the initial stages of surface colonization and how to optimize the design of fabricated surfaces for improved inhibition. These topographies were fabricated in two configurations to obtain either a standard 2D cross section or a 3D engineered topography using a novel UV lithography process enabling cost-efficient high-throughput manufacturing. Evaluating both the number of adhered bacteria and microcolonies formed by all three bacterial pathogens on the different surfaces provides insight into the initial colonization phase of bacterial growth on the various surfaces. The results demonstrate that both initial attachment and subsequent colonization can be significantly reduced on concrete 3D engineered patterns when compared to flat substrates and standard 2D micropatterns. Thus, this technology has great potential to reduce the colonization of bacteria on surfaces in clinical settings without the need for chemical treatments that might enhance antimicrobial resistance.
Collapse
Affiliation(s)
- Sara Ghavamian
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
| | - Iain D Hay
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Ruhollah Habibi
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Trevor Lithgow
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Victor J Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication, Clayton, Victoria 3800, Australia
| |
Collapse
|
40
|
Losic D. Advancing of titanium medical implants by surface engineering: recent progress and challenges. Expert Opin Drug Deliv 2021; 18:1355-1378. [PMID: 33985402 DOI: 10.1080/17425247.2021.1928071] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction:Titanium (Ti) and their alloys are used as main implant materials in orthopedics and dentistry for decades having superior mechanical properties, chemical stability and biocompatibility. Their rejections due lack of biointegration and bacterial infection are concerning with considerable healthcare costs and impacts on patients. To address these limitations, conventional Ti implants need improvements where the use of surface nanoengineering approaches and the development of a new generation of implants are recognized as promising strategies.Areas covered:This review presents an overview of recent progress on the application of surface engineering methods to advance Ti implants enable to address their key limitations. Several promising surface engineering strategies are presented and critically discussed to generate advanced surface properties and nano-topographies (tubular, porous, pillars) able not only to improve their biointegration, antibacterial performances, but also to provide multiple functions such as drug delivery, therapy, sensing, communication and health monitoring underpinning the development of new generation and smart medical implants.Expert opinion:Recent advances in cell biology, materials science, nanotechnology and additive manufacturing has progressively influencing improvements of conventional Ti implants toward the development of the next generation of implants with improved performances and multifunctionality. Current research and development are in early stage, but progressing with promising results and examples of moving into in-vivo studies an translation into real applications.
Collapse
Affiliation(s)
- Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Engineering North Building, Adelaide, SA, Australia.,ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Engineering North Building, Adelaide, SA, Australia
| |
Collapse
|
41
|
Borjihan Q, Dong A. Design of nanoengineered antibacterial polymers for biomedical applications. Biomater Sci 2021; 8:6867-6882. [PMID: 32756731 DOI: 10.1039/d0bm00788a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pathogenic bacteria have become global threats to public health. Since the advent of antibiotics about 100 years ago, their use has been embraced with great enthusiasm because of their effective treatment of bacterial infections. However, the evolution of pathogenic bacteria with resistance to conventional antibiotics has resulted in an urgent need for the development of a new generation of antibiotics. The use of antimicrobial polymers offers the promise of enhancing the efficacy of antimicrobial agents. Of the various antibacterial polymers that effectively eradicate pathogenic bacteria, those that are nanoengineered have garnered significant research interest in their design and biomedical applications. Because of their high surface area and high reactivity, these polymers show greater antibacterial activity than conventional antibacterial agents, by inhibiting the growth or destroying the cell membrane of pathogenic bacteria. This review summarizes several strategies for designing nanoengineered antibacterial polymers, explores the factors that affect their antibacterial properties, and examines key features of their design. It then comments briefly on the future prospects for nanoengineered antibacterial polymers. This review thus provides a feasible guide to developing nanoengineered antibacterial polymers by presenting both broad and in-depth bench research, and it offers suggestions for their potential in biomedical applications.
Collapse
Affiliation(s)
- Qinggele Borjihan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| | | |
Collapse
|
42
|
Zhu M, Fang J, Li Y, Zhong C, Feng S, Ge X, Ye H, Wang X, Zhu W, Lu X, Ren F. The Synergy of Topographical Micropatterning and Ta|TaCu Bilayered Thin Film on Titanium Implants Enables Dual-Functions of Enhanced Osteogenesis and Anti-Infection. Adv Healthc Mater 2021; 10:e2002020. [PMID: 33709499 DOI: 10.1002/adhm.202002020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Poor osteogenesis and implant-associated infection are the two leading causes of failure for dental and orthopedic implants. Surface design with enhanced osteogenesis often fails in antibacterial activity, or vice versa. Herein, a surface design strategy, which overcomes this trade-off via the synergistic effects of topographical micropatterning and a bilayered nanostructured metallic thin film is presented. A specific microgrooved pattern is fabricated on the titanium surface, followed by sequential deposition of a nanostructured copper (Cu)-containing tantalum (Ta) (TaCu) layer and a pure Ta cap layer. The microgrooved patterns coupled with the nanorough Ta cap layer shows strong contact guidance to preosteoblasts and significantly enhances the osteogenic differentiation in vitro, while the controlled local sustained release of Cu ions is responsible for high antibacterial activity. Importantly, rat calvarial defect models in vivo further confirm that the synergy of microgrooved patterns and the Ta|TaCu bilayered thin film on titanium surface could effectively promote bone regeneration. The present effective and versatile surface design strategy provides significant insight into intelligent surface engineering that can control biological response at the site of healing in dental and orthopedic implants.
Collapse
Affiliation(s)
- Mingyu Zhu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Ju Fang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yulei Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chuanxin Zhong
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Shihui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xiang Ge
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, 300354, China
| | - Haixia Ye
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xiaofei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Weiwei Zhu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610000, China
| | - Fuzeng Ren
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
43
|
Kouloumpis A, Chatzikonstantinou AV, Chalmpes N, Giousis T, Potsi G, Katapodis P, Stamatis H, Gournis D, Rudolf P. Germanane Monolayer Films as Antibacterial Coatings. ACS APPLIED NANO MATERIALS 2021; 4:2333-2338. [PMID: 33842855 PMCID: PMC8025679 DOI: 10.1021/acsanm.0c03149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/29/2021] [Indexed: 05/31/2023]
Abstract
Germanane (GeH), a graphane analogue, has attracted significant interest because of its optoelectronic properties; however, the environmental and biological effects of GeH have scarcely been investigated so far. Here we report a facile approach based on the Langmuir-Schaefer deposition to produce homogeneous and dense GeH monolayer films on various substrates. In view of possible applications and to extend the use of GeH to unexplored fields, we investigated its antibacterial activity for the first time and found that this promising 2D structure exhibits remarkable antibacterial activity against both Gram-negative and Gram-positive bacterial strains.
Collapse
Affiliation(s)
- Antonios Kouloumpis
- Department
of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Alexandra V. Chatzikonstantinou
- Biotechnology
Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Nikolaos Chalmpes
- Department
of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Theodosis Giousis
- Department
of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Georgia Potsi
- Department
of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Petros Katapodis
- Biotechnology
Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Haralambos Stamatis
- Biotechnology
Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Gournis
- Department
of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Petra Rudolf
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
44
|
A Novel Design of Tri-Layer Membrane with Controlled Delivery of Paclitaxel and Anti-Biofilm Effect for Biliary Stent Applications. NANOMATERIALS 2021; 11:nano11020486. [PMID: 33673016 PMCID: PMC7918081 DOI: 10.3390/nano11020486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
Abstract
Here, we developed a novel biliary stent coating material that is composed of tri-layer membrane with dual function of sustained release of paclitaxel (PTX) anticancer drug and antibacterial effect. The advantages of using electrospinning technique were considered for the even distribution of PTX and controlled release profile from the nanofiber mat. Furthermore, film cast method was utilized to fabricate AgNPs-immobilized PU film to direct the release towards the tumor site and suppress the biofilm formation. The in vitro antibacterial test conducted against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria species showed excellent antibacterial effect. The in vitro drug release study confirmed the sustained release of PTX from the tri-layer membrane and the release profile fitted first order with correlation coefficient of R2 = 0.98. Furthermore, the release mechanism was studied using Korsmeyer–Peppas model, revealing that the release mechanism follows Fickian diffusion. Based on the results, this novel tri-layer membrane shows curative potential in clinical development.
Collapse
|
45
|
Nastruzzi A, Cicerchia F, Fortini A, Nastruzzi C. Gold hard anodized (GHA) materials with antimicrobial surface properties: mechanical, tribological, and microbiological characterization. EMERGENT MATERIALS 2021; 4:249-263. [PMID: 33585794 PMCID: PMC7871168 DOI: 10.1007/s42247-021-00180-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Infections acquired in public spaces (i.e., transports, restaurants, and bars, hospitals) present a serious burden for the entire health systems. In this respect, appropriate preventative and control measures in order to eliminate or reduce the negative effects of surface-transmitted infections appear highly desirable. Alongside recommendations for treatment and hygiene, antimicrobial material surfaces can offer indeed an important contribution to the prevention of infections. The aim of the current paper is therefore to describe the preparation and characterization of a new material obtained by an innovative anodic oxidation, defined as golden hard anodizing GHA. The anodic oxide surface thanks to the nanoporous structure acts as reservoir of silver ions (Ag+) which in turn confer antimicrobial properties to the material surface. Specifically, the manuscript presents a thorough preparation and characterization of a new material obtained by an innovative anodic oxidation treatment applied on commercially available aluminum alloys including the microscopic analysis and the description of the antimicrobial performances against a number of microorganisms, including among the others, Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. More specifically, the current article describes some of the properties of GHA materials. The tribological properties of GHA were evaluated through experimental tests performed with a pin-on-disk tribometer. The morphology of the wear surfaces was studied by means of a scanning electron microscope (SEM) analysis and profilometry investigations. Furthermore, in order to evaluate the possible anticorrosive properties of GHA, tests in neutral salt spray are in addition described.
Collapse
Affiliation(s)
| | | | - Annalisa Fortini
- Department of Engineering, University of Ferrara, via Giuseppe Saragat 1, 44122 Ferrara, Italy
| | - Claudio Nastruzzi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
46
|
Kollu NV, LaJeunesse DR. Cell Rupture and Morphogenesis Control of the Dimorphic Yeast Candida albicans by Nanostructured Surfaces. ACS OMEGA 2021; 6:1361-1369. [PMID: 33490795 PMCID: PMC7818643 DOI: 10.1021/acsomega.0c04980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Nanostructured surfaces control microbial biofilm formation by killing mechanically via surface architecture. However, the interactions between nanostructured surfaces (NSS) and cellular fungi have not been thoroughly investigated and the application of NSS as a means of controlling fungal biofilms is uncertain. Cellular yeast such as Candida albicans are structurally and biologically distinct from prokaryotic microbes and therefore are predicted to react differently to nanostructured surfaces. The dimorphic opportunistic fungal pathogen, C. albicans, is responsible for most cases of invasive candidiasis and is a serious health concern due to the rapid increase of drug resistance strains. In this paper, we show that the nanostructured surfaces from a cicada wing alter C. albicans' viability, biofilm formation, adhesion, and morphogenesis through physical contact. However, the fungal cell response to the NSS suggests that nanoscale mechanical interactions impact C. albicans differently than prokaryotic microbes. This study informs on the use of nanoscale architecture for the control of eukaryotic biofilm formation and illustrates some potential caveats with the application of NSS as an antimicrobial means.
Collapse
Affiliation(s)
- Naga Venkatesh Kollu
- Department of Nanoscience,
Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, Greensboro, North Carolina 27401, United States
| | - Dennis R. LaJeunesse
- Department of Nanoscience,
Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, Greensboro, North Carolina 27401, United States
| |
Collapse
|
47
|
Senevirathne SWMAI, Hasan J, Mathew A, Woodruff M, Yarlagadda PKDV. Bactericidal efficiency of micro- and nanostructured surfaces: a critical perspective. RSC Adv 2021; 11:1883-1900. [PMID: 35424086 PMCID: PMC8693530 DOI: 10.1039/d0ra08878a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/12/2020] [Indexed: 12/21/2022] Open
Abstract
Micro/nanostructured surfaces (MNSS) have shown the ability to inactivate bacterial cells by physical means. An enormous amount of research has been conducted in this area over the past decade. Here, we review the various surface factors that affect the bactericidal efficiency. For example, surface hydrophobicity of the substrate has been accepted to be influential on the bactericidal effect of the surface, but a review of the literature suggests that the influence of hydrophobicity differs with the bacterial species. Also, various bacterial viability quantification methods on MNSS are critically reviewed for their suitability for the purpose, and limitations of currently used protocols are discussed. Presently used static bacterial viability assays do not represent the conditions of which those surfaces could be applied. Such application conditions do have overlaying fluid flow, and bacterial behaviours are drastically different under flow conditions compared to under static conditions. Hence, it is proposed that the bactericidal effect should be assessed under relevant fluid flow conditions with factors such as shear stress and flowrate given due significance. This review will provide a range of opportunities for future research in design and engineering of micro/nanostructured surfaces with varying experimental conditions.
Collapse
Affiliation(s)
- S W M A I Senevirathne
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| | - J Hasan
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| | - A Mathew
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| | - M Woodruff
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| | - P K D V Yarlagadda
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| |
Collapse
|
48
|
Soto F, Wang J, Ahmed R, Demirci U. Medical Micro/Nanorobots in Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002203. [PMID: 33173743 PMCID: PMC7610261 DOI: 10.1002/advs.202002203] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/09/2020] [Indexed: 05/15/2023]
Abstract
Advances in medical robots promise to improve modern medicine and the quality of life. Miniaturization of these robotic platforms has led to numerous applications that leverages precision medicine. In this review, the current trends of medical micro and nanorobotics for therapy, surgery, diagnosis, and medical imaging are discussed. The use of micro and nanorobots in precision medicine still faces technical, regulatory, and market challenges for their widespread use in clinical settings. Nevertheless, recent translations from proof of concept to in vivo studies demonstrate their potential toward precision medicine.
Collapse
Affiliation(s)
- Fernando Soto
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Jie Wang
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Rajib Ahmed
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Utkan Demirci
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| |
Collapse
|
49
|
Musselman KP, Delumeau LV, Araujo R, Wang H, MacManus-Driscoll J. Electrochemical removal of anodic aluminium oxide templates for the production of phase-pure cuprous oxide nanorods for antimicrobial surfaces. Electrochem commun 2020; 120:106833. [PMID: 32963489 PMCID: PMC7498412 DOI: 10.1016/j.elecom.2020.106833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/25/2022] Open
Abstract
Antimicrobial surfaces are ones that incapacitate or kill pathogens landing on them, which could allow for self-sanitising surfaces for hospitals or implants, ensuring healthier stays and procedures. Cuprous compounds such as Cu2O are especially effective at incapacitating both viruses and bacteria, and nanorod arrays have been shown to prevent the adhesion of pathogens and mechanically deform bacteria to the point that their cell walls rupture. A Cu2O nanorod array should therefore allow for the exploitation of both of these effects. In the present work, an electrochemical method is introduced, where Cu2O nanorods formed in a substrate-supported anodic aluminium oxide (AAO) template are held at a stable electrochemical potential throughout the removal of the AAO template. This avoids the partial reduction of the nanorods from Cu2O to Cu that was observed during chemical removal of the template, which was attributed to the presence of residual aluminium from the template fabrication process that reacts with the etchant and lowers the electrochemical potential of the nanorods to a value that favours reduction. Using the electrochemical removal method, the reliable production of phase-pure, free-standing, crystalline Cu2O nanorod arrays on ITO/glass substrates is demonstrated. This simple method is compatible with nanorod arrays of any size.
Collapse
Affiliation(s)
- Kevin P Musselman
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave. West, Waterloo, Canada
- Waterloo Institute for Nanotechnology, 200 University Ave. West, Waterloo, Canada
| | - Louis-Vincent Delumeau
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave. West, Waterloo, Canada
- Waterloo Institute for Nanotechnology, 200 University Ave. West, Waterloo, Canada
| | - Roy Araujo
- Department of Electrical & Computer Engineering, Texas A&M University, 400 Bizzell St., College Station, TX 77843, USA
| | - Haiyan Wang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 46907, USA
| | - Judith MacManus-Driscoll
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| |
Collapse
|
50
|
Zheng K, Li S, Jing L, Chen P, Xie J. Synergistic Antimicrobial Titanium Carbide (MXene) Conjugated with Gold Nanoclusters. Adv Healthc Mater 2020; 9:e2001007. [PMID: 32881328 DOI: 10.1002/adhm.202001007] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Indexed: 12/16/2022]
Abstract
Bacterial resistance toward antibiotics is a world-wide problem, and one potential solution to fight against the resistance is to develop multi-mechanism antimicrobial agents to achieve synergistic performance. Titanium carbide (MXene) is an emerging 2D nanomaterial with antimicrobial ability to physically damage bacterial membrane and chemically induce oxidative stress, and it can be further conjugated with nanomaterials to improve its antibacterial performance. Herein, a synergistic antimicrobial agent is developed through conjugation of the ultra-small gold nanoclusters (AuNCs) on MXene nanosheets. The conjugated AuNCs are effectively delivered into bacteria after bacterial membrane damage caused by MXene, generating localized reactive oxygen species (ROS) of high concentration to effectively oxidize bacterial membrane lipid for enhanced membrane broken, as well as bacterial DNA for violent fragmentation. Thus, the synergistic physical (via MXene) and chemical (via MXene and AuNCs) antimicrobial mechanisms lead to eventual bacterial death of both Gram-positive and Gram-negative bacteria, with low IC50 values of 11.7 µg mL-1 of MXene and 0.04 µm of AuNCs. Moreover, the crumpled MXene-AuNCs structure is constructed to inhibit biofilm formation, which hold synergistic antibacterial ability of MXene-AuNCs conjugation, hydrophobic surface to prevent bacterial attachment, and large surface area containing higher density of bactericides.
Collapse
Affiliation(s)
- Kaiyuan Zheng
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Shuo Li
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Lin Jing
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Po‐Yen Chen
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| |
Collapse
|