1
|
Li G, Shi S, Tan J, He L, Liu Q, Fang F, Fu H, Zhong M, Mai Z, Sun R, Liu K, Feng Z, Liang P, Yu Z, Wang X. Highly Efficient Synergistic Chemotherapy and Magnetic Resonance Imaging for Targeted Ovarian Cancer Therapy Using Hyaluronic Acid-Coated Coordination Polymer Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309464. [PMID: 39287149 PMCID: PMC11538696 DOI: 10.1002/advs.202309464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/24/2024] [Indexed: 09/19/2024]
Abstract
The diagnosis and treatment of ovarian cancer (OC) are still a grand challenge, more than 70% of patients are diagnosed at an advanced stage with a dismal prognosis. Magnetic resonance imaging (MRI) has shown superior results to other examinations in preoperative assessment, while cisplatin-based chemotherapy is the first-line treatment for OC. However, few previous studies have brought together the two rapidly expanding fields. Here a technique is presented using cisplatin prodrug (Pt-COOH), Fe3+, and natural polyphenols (Gossypol) to construct the nanoparticles (HA@PFG NPs) that have a stable structure, controllable drug release behavior, and high drug loading capacity. The acidic pH values in tumor sites facilitate the release of Fe3+, Pt-COOH, and Gossypol from HA@PFG NPs. Pt-COOH with GSH consumption and cisplatin-based chemotherapy plus Gossypol with pro-apoptotic effects displays a synergistic effect for killing tumor cells. Furthermore, the release of Fe3+ at the tumor sites promotes ferroptosis and enables MRI imaging of OC. In the patient-derived tumor xenograft (PDX) model, HA@PFG NPs alleviate the tumor activity. RNA sequencing analysis reveals that HA@PFG NPs ameliorate OC symptoms mainly through IL-6 signal pathways. This work combines MRI imaging with cisplatin-based chemotherapy, which holds great promise for OC diagnosis and synergistic therapy.
Collapse
Affiliation(s)
- Guang Li
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
- Department of Gynecological Oncology and Cervical LesionsHunan Provincial Maternal and Child Health Care HospitalChangsha410013China
| | - Shengying Shi
- Department of NursingNanfang HospitalSouthern Medical UniversityGuangzhou510000China
| | - Jingxiu Tan
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| | - Lijuan He
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| | - Qiwen Liu
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| | - Feng Fang
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| | - Huijiao Fu
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| | - Min Zhong
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| | - Ziyi Mai
- Department of PharmacyThe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhen518035China
| | - Rui Sun
- Department of Laboratory MedicineDongguan Institute of Clinical Cancer ResearchAffiliated Dongguan HospitalSouthern Medical UniversityDongguan523018China
| | - Kun Liu
- School of PharmacyGuangdong Medical UniversityDongguan523808China
| | - Zhenzhen Feng
- Department of Laboratory MedicineDongguan Institute of Clinical Cancer ResearchAffiliated Dongguan HospitalSouthern Medical UniversityDongguan523018China
| | - Peiqin Liang
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| | - Zhiqiang Yu
- Department of Laboratory MedicineDongguan Institute of Clinical Cancer ResearchAffiliated Dongguan HospitalSouthern Medical UniversityDongguan523018China
| | - Xuefeng Wang
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| |
Collapse
|
2
|
Li W, Li S, Zhu M, Xu G, Man X, Zhang Z, Liang H, Yang F. Developing a Rhodium(III) Complex to Reprogram the Tumor Immune and Metabolic Microenvironments: Overcoming Multidrug Resistance and Metastasis in Non-Small Cell Lung Cancer. J Med Chem 2024; 67:17243-17258. [PMID: 39298516 DOI: 10.1021/acs.jmedchem.4c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
To effectively inhibit the growth and metastasis of non-small cell lung cancer (NSCLC) and overcome its multidrug resistance (MDR), we designed and synthesized a series of rhodium (Rh, III) 2-benzoylpyridine thiosemicarbazone complexes. Through studying their structure-activity relationships, we identified the Rh(III) complex (Rh4) with excellent cytotoxicity against multidrug-resistant lung cancer cells (A549/ADR cells). Additionally, we successfully constructed an apoferritin (AFt) nanoparticle (NP) delivery system (AFt-Rh4 NPs). Importantly, AFt-Rh4 NPs not only exhibited excellent antitumor and antimetastatic capabilities against multidrug-resistant NSCLC in vivo but also demonstrated enhanced targeting ability and reduced systemic toxicity and adverse effects. Furthermore, we confirmed and elucidated the mechanisms by which Rh4/AFt-Rh4 NPs inhibit tumor metastasis and reverse MDR in NSCLC. This was achieved by reprogramming the immune and metabolic tumor microenvironments through induction of immunogenic cell death and inhibition of dual-energy metabolism.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Xueyu Man
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
- School of Pharmaceutical Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
3
|
Man X, Li W, Zhu M, Li S, Xu G, Zhang Z, Liang H, Yang F. Rational Design of a Hetero-multinuclear Gadolinium(III)-Copper(II) Complex: Integrating Magnetic Resonance Imaging, Photoacoustic Imaging, Mild Photothermal Therapy, Chemotherapy and Immunotherapy of Cancer. J Med Chem 2024; 67:15606-15619. [PMID: 39143701 DOI: 10.1021/acs.jmedchem.4c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
For more accurate diagnosis and effective treatment of cancer, we proposed to develop a hetero-multinuclear metal complex based on the property of apoferritin (AFt) for targeting tumor theranostics by integrating dual-modality imaging diagnosis and multimodality therapy. To this end, we rational designed and synthesized a trinuclear Gd(III)-Cu(II) thiosemicarbazone complex (Gd-2Cu) and then constructed a Gd-2Cu@AFt nanoparticle (NP) delivery system. Gd-2Cu/Gd-2Cu@AFt NPs not only had significant T1-weighted magnetic resonance imaging and photoacoustic imaging of the tumor but also effectively inhibited tumor growth through a combination of mild photothermal therapy, chemotherapy, and immunotherapy. Gd-2Cu@AFt NPs optimized the behavior of imaging diagnosis and therapy of Gd-2Cu, improved its targeting ability, and reduced the side effects in vivo. Besides, we revealed and clarified the anticancer mechanism of Gd-2Cu: interrupting energy metabolism of the tumor cell, inducing apoptosis of the tumor cell, and activating a systemic immune response by inducing immunogenic cell death of cancer cells.
Collapse
Affiliation(s)
- Xueyu Man
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| |
Collapse
|
4
|
Chen Y, Li X, Luo K, Wang T, Liu T, Lu E, Wang R, Luo Y, Sha X. Hyperthermia/glutathione-triggered ferritin nanoparticles amplify the ferroptosis for synergistic tumor therapy. Mater Today Bio 2024; 26:101085. [PMID: 38765248 PMCID: PMC11098959 DOI: 10.1016/j.mtbio.2024.101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
Breast cancer is the most diagnosed malignancy in women globally, and drug resistance is among the major obstacles to effective breast cancer treatment. Emerging evidence indicates that photothermal therapy and ferroptosis are both promising therapeutic techniques for the treatment of drug-resistant breast tumors. In this study, we proposed a thermal/ferroptosis/magnetic resonance imaging (MRI) triple functional nanoparticle (I@P-ss-FRT) in which ferritin, an iron storage material with excellent cellular uptake capacity, was attached via disulfide bonds onto polydopamine coated iron oxide nanoparticle (I@P) as photothermal transduction agent and MRI probe. I@P-ss-FRT converted the near-infrared light (NIR) into localized heat which accelerated the release of ferrous ions from ferritin accomplished by glutathione reduction and subsequently induced ferroptosis. The drug-resistant cancer cell lines exhibited a more significant uptake of I@P-ss-FRT and sensitivity to PTT/ferroptosis compared with normal cancer cell lines. In vivo, I@P-ss-FRT plus NIR displayed the best tumor-killing potential with inhibitory rate of 83.46 %, along with a decline in GSH/GPX-4 content and an increase in lipid peroxides generation at tumor sites. Therefore, I@P-ss-FRT can be applied to combat drug-resistant breast cancer.
Collapse
Affiliation(s)
- Yiting Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Xinhong Li
- Key Laboratory of Smart Drug Delivery (Ministry of Education), School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Kuankuan Luo
- Key Laboratory of Smart Drug Delivery (Ministry of Education), School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Tao Wang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Tongyao Liu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Enhao Lu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Rui Wang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Yu Luo
- Key Laboratory of Smart Drug Delivery (Ministry of Education), School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Xianyi Sha
- Key Laboratory of Smart Drug Delivery (Ministry of Education), School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, China
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200030, China
| |
Collapse
|
5
|
Jones AA, Snow CD. Porous protein crystals: synthesis and applications. Chem Commun (Camb) 2024; 60:5790-5803. [PMID: 38756076 DOI: 10.1039/d4cc00183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Large-pore protein crystals (LPCs) are an emerging class of biomaterials. The inherent diversity of proteins translates to a diversity of crystal lattice structures, many of which display large pores and solvent channels. These pores can, in turn, be functionalized via directed evolution and rational redesign based on the known crystal structures. LPCs possess extremely high solvent content, as well as extremely high surface area to volume ratios. Because of these characteristics, LPCs continue to be explored in diverse applications including catalysis, targeted therapeutic delivery, templating of nanostructures, structural biology. This Feature review article will describe several of the existing platforms in detail, with particular focus on LPC synthesis approaches and reported applications.
Collapse
Affiliation(s)
- Alec Arthur Jones
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523-1301, USA.
| | - Christopher D Snow
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523-1301, USA.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523-1301, USA
| |
Collapse
|
6
|
Cheng J, Li J, Yu Q, Li P, Huang J, Li J, Guan L, Xu Z, Xiao J, Duan X. Laser-activable murine ferritin nanocage for chemo-photothermal therapy of colorectal cancer. J Nanobiotechnology 2024; 22:297. [PMID: 38812019 PMCID: PMC11134727 DOI: 10.1186/s12951-024-02566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024] Open
Abstract
Chemotherapy, as a conventional strategy for tumor therapy, often leads to unsatisfied therapeutic effect due to the multi-drug resistance and the serious side effects. Herein, we genetically engineered a thermal-responsive murine Ferritin (mHFn) to specifically deliver mitoxantrone (MTO, a chemotherapeutic and photothermal agent) to tumor tissue for the chemotherapy and photothermal combined therapy of colorectal cancer, thanks to the high affinity of mHFn to transferrin receptor that highly expressed on tumor cells. The thermal-sensitive channels on mHFn allowed the effective encapsulation of MTO in vitro and the laser-controlled release of MTO in vivo. Upon irradiation with a 660 nm laser, the raised temperature triggered the opening of the thermal-sensitive channel in mHFn nanocage, resulting in the controlled and rapid release of MTO. Consequently, a significant amount of reactive oxygen species was generated, causing mitochondrial collapse and tumor cell death. The photothermal-sensitive controlled release, low systemic cytotoxicity, and excellent synergistic tumor eradication ability in vivo made mHFn@MTO a promising candidate for chemo-photothermal combination therapy against colorectal cancer.
Collapse
Affiliation(s)
- Jinmei Cheng
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jiaxin Li
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qilin Yu
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Peishan Li
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Junyi Huang
- Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jinhui Li
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Leyang Guan
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Zhiyong Xu
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jisheng Xiao
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Xiaopin Duan
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
7
|
Zhang Q, Hu W, Guo M, Zhang X, Zhang Q, Peng F, Yan L, Hu Z, Tangthianchaichana J, Shen Y, Hu H, Du S, Lu Y. MMP-2 Responsive Peptide Hydrogel-Based Nanoplatform for Multimodal Tumor Therapy. Int J Nanomedicine 2024; 19:53-71. [PMID: 38187906 PMCID: PMC10771791 DOI: 10.2147/ijn.s432112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/25/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Responsive drug delivery systems hold great promise for tumor treatment as they focus on therapeutic agents directly, thus minimizing systemic toxicities and drug leakage. In this study, we covalently bound a matrix metalloproteinases-2 (MMP-2) enzyme-sensitive peptide to a tissue-penetrating peptide to rationally design a MMP-2 responsive multifunctional peptide hydrogel platform (aP/IR@FMKB) for cancer photothermal-chemo-immunotherapy. The constructed aP/IR@FMKB with bufalin (BF) loaded in trimethyl chitosan nanoparticles (TB NPs), photothermal agent IR820, and immune checkpoint inhibitor aPD-L1 by self-assembly could be dissociated in the presence of MMP-2 enzyme, triggering content release. Methods TB NPs, IR820, and aPD-L1 were encapsulated by intermolecular self-assembly and enzyme-sensitive nanogels (aP/IR@FMKB) were constructed. The in vitro cytotoxicity of the blank gels and their ability to induce immunogenic cell death (ICD) in aP/IR@FMKB were evaluated using 4T1 cells. The promotion of deep tumor penetration and enzyme responsiveness was analyzed using a 3D cell model. The retention and antitumor activity at the tumor sites were examined using the primary tumor model. To assess the antitumor effect of aP/IR@FMKB induced by the immune response and its mechanism of action, recurrent tumor and distal tumor models were constructed. Results This hydrogel system demonstrated exceptional photothermal performance and displayed prolonged local retention. Furthermore, the induction of ICD through IR820 and TB NPs sensitized the PD-L1 blockade, resulting in a remarkable 3.5-fold and 5.2-fold increase in the frequency of intratumor-infiltrating CD8+ T-cells in the primary tumor and distal tumor, respectively. Additionally, this system demonstrated remarkable efficacy in suppressing primary, distal, and recurrent tumors, underscoring its potential as a highly potent therapeutic strategy. Conclusion This innovative design of the responsive hydrogel can effectively modulate the tumor immune microenvironment while also demonstrating sensitivity to the PD-1/PD-L1 blockade. This significant finding highlights the promising potential of this hydrogel in the field of multimodal tumor therapy.
Collapse
Affiliation(s)
- Qing Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Wenjun Hu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Mingxue Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Xinyu Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Qin Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Fengqi Peng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Liwen Yan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Zucheng Hu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | | | - Yan Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Haiyan Hu
- School of Pharmacy, Beijing Health Vocational College, Beijing, 101100, People’s Republic of China
| | - Shouying Du
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Yang Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| |
Collapse
|
8
|
Ling H, Zhang Q, Luo Q, Ouyang D, He Z, Sun J, Sun M. Dynamic immuno-nanomedicines in oncology. J Control Release 2024; 365:668-687. [PMID: 38042376 DOI: 10.1016/j.jconrel.2023.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Anti-cancer therapeutics have achieved significant advances due to the emergence of immunotherapies that rely on the identification of tumors by the patients' immune system and subsequent tumor eradication. However, tumor cells often escape immunity, leading to poor responsiveness and easy tolerance to immunotherapy. Thus, the potentiated anti-tumor immunity in patients resistant to immunotherapies remains a challenge. Reactive oxygen species-based dynamic nanotherapeutics are not new in the anti-tumor field, but their potential as immunomodulators has only been demonstrated in recent years. Dynamic nanotherapeutics can distinctly enhance anti-tumor immune response, which derives the concept of the dynamic immuno-nanomedicines (DINMs). This review describes the pivotal role of DINMs in cancer immunotherapy and provides an overview of the clinical realities of DINMs. The preclinical development of emerging DINMs is also outlined. Moreover, strategies to synergize the antitumor immunity by DINMs in combination with other immunologic agents are summarized. Last but not least, the challenges and opportunities related to DINMs-mediated immune responses are also discussed.
Collapse
Affiliation(s)
- Hao Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qinyi Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Qiuhua Luo
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
| | - Defang Ouyang
- Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
9
|
Lv L, Shi Y, Deng Z, Xu J, Ye Z, He J, Chen G, Yu X, Wu J, Huang X, Li G. A polymeric nanocarrier that eradicates breast cancer stem cells and delivers chemotherapeutic drugs. Biomater Res 2023; 27:133. [PMID: 38102651 PMCID: PMC10722842 DOI: 10.1186/s40824-023-00465-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Drug nanocarriers can markedly reduce the toxicities and side effects of encapsulated chemotherapeutic drugs in the clinic. However, these drug nanocarriers have little effect on eradicating breast cancer stem cells (BCSCs). Although compounds that can inhibit BCSCs have been reported, these compounds are difficult to use as carriers for the widespread delivery of conventional chemotherapeutic drugs. METHODS Herein, we synthesize a polymeric nanocarrier, hyaluronic acid-block-poly (curcumin-dithiodipropionic acid) (HA-b-PCDA), and explore the use of HA-b-PCDA to simultaneously deliver chemotherapeutic drugs and eradicate BCSCs. RESULTS Based on molecular docking and molecular dynamics studies, HA-b-PCDA delivers 35 clinical chemotherapeutic drugs. To further verify the drug deliver ability of HA-b-PCDA, doxorubicin, paclitaxel, docetaxel, gemcitabine and camptothecin are employed as model drugs to prepare nanoparticles. These drug-loaded HA-b-PCDA nanoparticles significantly inhibit the proliferation and stemness of BCSC-enriched 4T1 mammospheres. Moreover, doxorubicin-loaded HA-b-PCDA nanoparticles efficiently inhibit tumor growth and eradicate approximately 95% of BCSCs fraction in vivo. Finally, HA-b-PCDA eradicates BCSCs by activating Hippo and inhibiting the JAK2/STAT3 pathway. CONCLUSION HA-b-PCDA is a polymeric nanocarrier that eradicates BCSCs and potentially delivers numerous clinical chemotherapeutic drugs.
Collapse
Affiliation(s)
- Li Lv
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Yonghui Shi
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Zhicheng Deng
- Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, Guangdong, 516600, China
| | - Jiajia Xu
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zicong Ye
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Jianxiong He
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Guanghui Chen
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Xiaoxia Yu
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Junyan Wu
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China.
| | - Xingzhen Huang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Guocheng Li
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China.
- Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, Guangdong, 516600, China.
| |
Collapse
|
10
|
Niu B, Wu Y, Zhou M, Lin R, Ge P, Chen X, Zhou H, Zhang X, Xie J. Precise delivery of celastrol by PEGylated aptamer dendrimer nanoconjugates for enormous therapeutic effect via superior intratumor penetration over antibody counterparts. Cancer Lett 2023; 579:216461. [PMID: 37898358 DOI: 10.1016/j.canlet.2023.216461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
Antibody-coated nanoparticles have been reported to have the extremely low delivery efficiency in solid tumors in preclinical trials. Though aptamers were considered to be superior over antibodies in cancer theranostics, whether PEGylated aptamer nanoparticles are better than antibody nanoparticles in improving delivery specificity and penetration efficiency of chemotherapeutics is still unknown. Here, we conjugate celastrol, a natural product with anti-tumor effect, onto PEGylated EpCAM aptamer or antibody dendrimers to obtain two nanoconjugates, and for the first time, conduct a comprehensive study to compare their performance in delivery specificity, intratumoral penetration ability and therapeutic outcomes. Our results showed that compared to antibody counterparts, PEGylated aptamer nanoconjugates exhibited the enhanced accumulation and retention specificities at tumor sites and the stronger intratumoral penetration capabilities by reducing the macrophage reservoir effects in solid tumors. When delivered celastrol to a colorectal xenograft tumor mice model by PEGylated aptamer dendrimers, 20 % of enhanced therapeutic efficiency was achieved compared to that by antibody-modified ones. Moreover, celastrol at 2 mg/kg delivered by PEGylated aptamer dendrimers showed the prominent anticancer efficiency (nearly 92 %) but without obvious side effects. These data firstly provide the proof-of-concept implementation that PEGylated aptamer nanoconjugates will display the great potential in the effective and safe cancer treatment with regard to the superiority over antibody ones in penetration abilities.
Collapse
Affiliation(s)
- Boning Niu
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China; Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuehuang Wu
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Min Zhou
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Ruimiao Lin
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Pengjin Ge
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Xiaohui Chen
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
| | - Xiaokun Zhang
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Jingjing Xie
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
| |
Collapse
|
11
|
Zhu M, Man X, Tongfu Y, Li W, Li S, Xu G, Zhang Z, Liang H, Yang F. Developing a Hetero-Trinuclear Erbium(III)-Copper(II) Complex Based on Apoferritin: Targeted Photoacoustic Imaging and Multimodality Therapy of Tumor. J Med Chem 2023; 66:15424-15436. [PMID: 37956097 DOI: 10.1021/acs.jmedchem.3c01583] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
For the integration of targeted diagnosis and treatment of tumor, we innovatively designed and synthesized a single-molecule hetero-multinuclear Er(III)-Cu(II) complex (ErCu2) and then constructed an ErCu2@apoferritin (AFt) nanoparticle (NP) delivery system. ErCu2 and ErCu2@AFt NPs not only provided an evident photoacoustic imaging (PAI) signal of the tumor but also effectively inhibited tumor growth by integrating photothermal therapy, chemotherapy, and immunotherapy. ErCu2@AFt NPs improved the targeting ability and decreased the systemic toxicity of ErCu2 in vivo. Furthermore, we confirmed that ErCu2 and ErCu2@AFt NPs inhibited tumor growth by inducing apoptosis and autophagy of tumor cells and activating the immune system. The study not only provides a novel strategy to develop therapeutic metal agents but also reveals their potential for targeted accurate diagnosis and multimodality therapy of cancer.
Collapse
Affiliation(s)
- Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Xueyu Man
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Yang Tongfu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| |
Collapse
|
12
|
Doustmihan A, Fathi M, Mazloomi M, Salemi A, Hamblin MR, Jahanban-Esfahlan R. Molecular targets, therapeutic agents and multitasking nanoparticles to deal with cancer stem cells: A narrative review. J Control Release 2023; 363:57-83. [PMID: 37739017 DOI: 10.1016/j.jconrel.2023.09.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
There is increasing evidence that malignant tumors are initiated and maintained by a sub-population of tumor cells that have similar biological properties to normal adult stem cells. This very small population of Cancer Stem Cells (CSC) comprises tumor initiating cells responsible for cancer recurrence, drug resistance and metastasis. Conventional treatments such as chemotherapy, radiotherapy and surgery, in addition to being potentially toxic and non-specific, may paradoxically increase the population, spread and survival of CSCs. Next-generation sequencing and omics technologies are increasing our understanding of the pathways and factors involved in the development of CSCs, and can help to discover new therapeutic targets against CSCs. In addition, recent advances in nanomedicine have provided hope for the development of optimal specific therapies to eradicate CSCs. Moreover, the use of artificial intelligence and nano-informatics can elucidate new drug targets, and help to design drugs and nanoparticles (NPs) to deal with CSCs. In this review, we first summarize the properties of CSCs and describe the signaling pathways and molecular characteristics responsible for the emergence and survival of CSCs. Also, the location of CSCs within the tumor and the effect of host factors on the creation and maintenance of CSCs are discussed. Newly discovered molecular targets involved in cancer stemness and some novel therapeutic compounds to combat CSCs are highlighted. The optimum properties of anti-CSC NPs, including blood circulation and stability, tumor accumulation and penetration, cellular internalization, drug release, endosomal escape, and aptamers designed for specific targeting of CSCs are covered. Finally, some recent smart NPs designed for therapeutic and theranostic purposes to overcome CSCs are discussed.
Collapse
Affiliation(s)
- Abolfazl Doustmihan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - MirAhmad Mazloomi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysan Salemi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Wang T, Chen G, Zhang S, Li D, Wei G, Zhao X, Liu Y, Ding D, Zhang X. Steerable Microneedles Enabling Deep Delivery of Photosensitizers and CRISPR/Cas9 Systems for Effective Combination Cancer Therapy. NANO LETTERS 2023; 23:7990-7999. [PMID: 37595030 DOI: 10.1021/acs.nanolett.3c01914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Although gene therapy has shown prospects in treating triple-negative breast cancer, it is insufficient to treat such a malignant tumor. Herein, nanoparticles (NPs)-embedded dissolving microneedles (IR780-PL/pFBXO44@MNs) with steerable and flectional property were developed to achieve the codelivery of FBXO44-targeted CRISPR/Cas9 plasmids (pFBXO44) and hydrophobic photosensitizers. For improved NP penetration in tumor tissue, collagenase@MNs were preapplied to degrade the tumor matrix. Under light irradiation, IR780 exhibited remarkable phototherapy, while the escape efficiency of NPs from lysosomes was improved. pFBXO44 was subsequently released in tumor cell cytoplasm via reducing the disulfide bonds of NPs, which could specifically knock out the FBXO44 gene to inhibit the migration and invasion of tumor cells. As a result, tumor cells were eradicated, and lung metastasis was effectively suppressed. This micelle-incorporated microneedle platform broadens the potential of combining gene editing and photo synergistic cancer therapy.
Collapse
Affiliation(s)
- Tong Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Gang Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Shuangshuang Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Dazhao Li
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province 213003, China
| | - Guanjun Wei
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Xiaomei Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Yang Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Dawei Ding
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Xuenong Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| |
Collapse
|
14
|
Gao S, Liu M, Liu D, Kong X, Fang Y, Li Y, Wu H, Ji J, Yang X, Zhai G. Biomimetic biomineralization nanoplatform-mediated differentiation therapy and phototherapy for cancer stem cell inhibition and antitumor immunity activation. Asian J Pharm Sci 2023; 18:100851. [PMID: 37915760 PMCID: PMC10616143 DOI: 10.1016/j.ajps.2023.100851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 11/03/2023] Open
Abstract
Growing evidence suggests that the presence of cancer stem cells (CSCs) is a major challenge in current tumor treatments, especially the transition from non-CSCs to differentiation of CSCs for evading conventional therapies and driving metastasis. Here we propose a therapeutic strategy of synergistic differentiation therapy and phototherapy to induce differentiation of CSCs into mature tumor cells by differentiation inducers and synergistic elimination of them and normal cancer cells through phototherapy. In this work, we synthesized a biomimetic nanoplatform loaded with IR-780 and all-trans retinoic acid (ATRA) via biomineralization. This method can integrate aluminum ions into small-sized protein carriers to form nanoclusters, which undergo responsive degradation under acidic conditions and facilitate deep tumor penetration. With the help of CSC differentiation induced by ATRA, IR-780 inhibited the self-renewal of CSCs and cancer progression by generating hyperthermia and reactive oxygen species in a synergistic manner. Furthermore, ATRA can boost immunogenic cell death induced by phototherapy, thereby strongly causing a systemic anti-tumor immune response and efficiently eliminating CSCs and tumor cells. Taken together, this dual strategy represents a new paradigm of targeted eradication of CSCs and tumors by inducing CSC differentiation, improving photothermal therapy/photodynamic therapy and enhancing antitumor immunity.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Meng Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Dongzhu Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xinru Kong
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yuelin Fang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yingying Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hang Wu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
15
|
Wang Q, Cao H, Hou X, Wang D, Wang Z, Shang Y, Zhang S, Liu J, Ren C, Liu J. Cancer Stem-Like Cells-Oriented Surface Self-Assembly to Conquer Radioresistance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302916. [PMID: 37288841 DOI: 10.1002/adma.202302916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/07/2023] [Indexed: 06/09/2023]
Abstract
Cancer stem-like cells (CSCs), capable of indefinite self-renewal and differentiation, are considered to be the root cause of tumor radiotherapy (RT) resistance. However, the CSCs-targeted therapy still remains to be a great challenge because they are commonly located in the deep tumor making drugs hard to approach, and their hypoxic and acidic niche can further aggravate radioresistance. Herein, based on the finding that hypoxic CSCs highly express carbonic anhydrase IX (CAIX) on the cell membrane, a CAIX-targeted induced in situ self-assembly system on the surface of CSC is reported to overcome hypoxic CSC-mediated radioresistance. Via the sequential processes of "monomer release-target accumulation-surface self-assembly", the constructed peptide-based drug delivery system (CA-Pt) exhibits the advantages of deep penetration, amplified CAIX inhibition, and enhanced cellular uptake, which greatly relieves the hypoxic and acidic microenvironment to promote the hypoxic CSC differentiation and combines with platinum to boost the RT-inducing DNA damage. In both lung cancer tumor mouse and zebrafish embryo models, CA-Pt treatment can effectively assist RT in suppressing tumor growth and preventing tumor invasion and metastasis. This study uses a surface-induced self-assembly strategy to differentiate hypoxic CSCs, which may provide a universal treatment strategy for overcoming tumor radioresistance.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Hongmei Cao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Xiaoxue Hou
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Dianyu Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Zhilong Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Yue Shang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Shuqin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Chunhua Ren
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
16
|
Li L, Ni R, Zheng D, Chen L. Eradicating the tumor "seeds": nanomedicines-based therapies against cancer stem cells. Daru 2023; 31:83-94. [PMID: 36971921 PMCID: PMC10238364 DOI: 10.1007/s40199-023-00456-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/05/2023] [Indexed: 03/29/2023] Open
Abstract
OBJECTIVES Cancer stem cells (CSCs), a small subpopulation of cells with high tumorigenesis and strong intrinsic drug resistance, exhibit self-renewal and differentiation abilities. CSCs play a crucial role in tumor progression, drug resistance, recurrence and metastasis,and conventional therapy is not enough to eradicate them. Therefore, developing novel therapies targeting CSCs to increase drug sensitivity and preventing relapse is essential. The objective of this review is to present nanotherapies that target and eradicate the tumor "seeds". EVIDENCE ACQUISITION Evidence was collected and sorted from the literature ranging from 2000 to 2022, using appropriate keywords and key phrases as search terms within scientific databases such as Web of Science, PubMed and Google Scholar. RESULTS Nanoparticle drug delivery systems have been successfully applied to gain longer circulation time, more precise targeting capability and better stability during cancer treatment. Nanotechnology-based strategies that have been used to target CSCs, include (1) encapsulating small molecular drugs and genes by nanotechnology, (2) targeting CSC signaling pathways, (3) utilizing nanocarriers targeting for specific markers of CSCs, (4) improving photothermal/ photodynamic therapy (PTT/PDT), 5)targeting the metabolism of CSCs and 6) enhancing nanomedicine-aided immunotherapy. CONCLUSION This review summarizes the biological hallmarks and markers of CSCs, and the nanotechnology-based therapies to kill them. Nanoparticle drug delivery systems are appropriate means for delivering drugs to tumors through enhanced permeability and retention (EPR) effect. Furthermore, surface modification with special ligands or antibodies improves the recognition and uptake of tumor cells or CSCs. It is expected that this review can offer insights into features of CSCs and the exploration of targeting nanodrug delivery systems.
Collapse
Affiliation(s)
- Lin Li
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, 401147, Chongqing, China
| | - Rui Ni
- Department of Pharmacy, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Dan Zheng
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, 401147, Chongqing, China
| | - Lin Chen
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, 401147, Chongqing, China.
| |
Collapse
|
17
|
Zhao Z, Wang D, Li Y. Versatile biomimetic nanomedicine for treating cancer and inflammation disease. MEDICAL REVIEW (2021) 2023; 3:123-151. [PMID: 37724085 PMCID: PMC10471090 DOI: 10.1515/mr-2022-0046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/11/2023] [Indexed: 09/20/2023]
Abstract
Nanosized drug delivery systems (NDDSs) have emerged as a powerful tool to optimize drug delivery in complex diseases, including cancer and inflammation. However, the therapeutic effect of NDDSs is still far from satisfactory due to their poor circulation time, low delivery efficiency, and innate toxicity. Fortunately, biomimetic approaches offer new opportunities to develop nanomedicine, which is derived from a variety of native biomolecules including cells, exosomes, bacteria, and so on. Since inheriting the superior biocompatibility and versatile functions of natural materials, biomimetic nanomedicine can mimic biological processes, prolong blood circulation, and lower immunogenicity, serving as a desired platform for precise drug delivery for treating cancer and inflammatory disease. In this review, we outline recent advances in biomimetic NDDSs, which consist of two concepts: biomimetic exterior camouflage and bioidentical molecule construction. We summarize engineering strategies that further functionalized current biomimetic NDDSs. A series of functional biomimetic NDDSs created by our group are introduced. We conclude with an outlook on remaining challenges and possible directions for biomimetic NDDSs. We hope that better technologies can be inspired and invented to advance drug delivery systems for cancer and inflammation therapy.
Collapse
Affiliation(s)
- Zhiwen Zhao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dangge Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| |
Collapse
|
18
|
Na H, Venedicto M, Chang CY, Carrier J, Lai CY. Infrared-Activated Bactericide: Rhenium Disulfide (ReS 2)-Functionalized Mesoporous Silica Nanoparticles. ACS APPLIED BIO MATERIALS 2023; 6:1577-1585. [PMID: 36802462 DOI: 10.1021/acsabm.2c01084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
An attractive strategy for treating bacterial infection is the combination of antibiotic chemotherapy with photothermal therapy (PTT), which could be implemented using multifunctional nanomaterials. In this work, the intrinsic photothermal efficiency of two-dimensional (2D) rhenium disulfide (ReS2) nanosheets is enhanced by their coating on mesoporous silica nanoparticles (MSNs) to realize a highly efficient light-responsive nanoparticle endowed with controlled-release drug delivery capability, denoted as MSN-ReS2. The MSN component of the hybrid nanoparticle features augmented pore size toward facilitating increased loading of antibacterial drugs. The ReS2 synthesis is conducted in the presence of MSNs through an in situ hydrothermal reaction and leads to a uniform surface coating of the nanosphere. The MSN-ReS2 bactericide testing showed more than 99% bacterial killing efficiency in both Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) upon laser irradiation. A cooperative effect that led to a 100% bactericide effect on Gram-negative bacteria (E. coli) was observed when tetracycline hydrochloride was loaded in the carrier. The results show the potential of MSN-ReS2 to be used as a wound-healing therapeutic with a synergistic bactericide role.
Collapse
Affiliation(s)
- Ha Na
- Department of Mechanical and Materials Engineering, Florida International University, Miami 33174, United States
| | - Melissa Venedicto
- Department of Mechanical and Materials Engineering, Florida International University, Miami 33174, United States
| | - Chen-Yu Chang
- Department of Mechanical and Materials Engineering, Florida International University, Miami 33174, United States
| | - Jake Carrier
- Department of Chemistry and Biochemistry, Florida International University, Miami 33174, United States
| | - Cheng-Yu Lai
- Department of Mechanical and Materials Engineering, Florida International University, Miami 33174, United States.,Department of Chemistry and Biochemistry, Florida International University, Miami 33174, United States
| |
Collapse
|
19
|
Hydroxyethyl starch-folic acid conjugates stabilized theranostic nanoparticles for cancer therapy. J Control Release 2023; 353:391-410. [PMID: 36473606 DOI: 10.1016/j.jconrel.2022.11.059] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Small molecular prodrug-based nanomedicines with high drug-loading efficiency and tumor selectivity have attracted great attention for cancer therapy against solid tumors, including triple negative breast cancers (TNBC). However, abnormal tumor mechanical microenvironment (TMME) severely restricts antitumor efficacy of prodrug nanomedicines by limiting drug delivery and fostering cancer stem cells (CSCs). Herein, we employed carbamate disulfide bridged doxorubicin dimeric prodrug as pharmaceutical ingredient, marketed IR780 iodide as photothermal agent, and biocompatible hydroxyethyl starch-folic acid conjugates as amphiphilic surfactant to prepare a theranostic nanomedicine (FDINs), which could actively target at TNBC 4T1 tumor tissues and achieve reduction-responsive drug release with high glutathione concentration in cancer cells and CSCs. Importantly, in addition to directly causing damage to cancer cells and sensitizing chemotherapy, FDINs-mediated photothermal effect regulates aberrant TMME via reducing cancer associated fibroblasts and depleting extracellular matrix proteins, thereby normalizing intratumor vessel structure and function to facilitate drug and oxygen delivery. Furthermore, FDINs potently eliminate CSCs by disrupting unique CSCs niche and consuming intracellular GSH in CSCs. As a result, FDINs significantly suppress tumor growth in both subcutaneous and orthotopic 4T1 tumors. This study provides novel insights on rational design of prodrug nanomedicines for superior therapeutic effect against stroma- and CSCs-rich solid malignancies.
Collapse
|
20
|
Wang Y, Chen Q, Song H, Zhang Y, Chen H, Liu P, Sun T, Jiang C. A Triple Therapeutic Strategy with Antiexosomal Iron Efflux for Enhanced Ferroptosis Therapy and Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201704. [PMID: 36071027 DOI: 10.1002/smll.202201704] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Ferroptosis is a form of regulated cell death which can not only kill tumor cells but also enhance immunogenicity of tumor cells, and it is evidenced to be involved in a variety of tumor treatments, especially in cancer immunotherapy. Tumor cell-derived exosomes are reported to influence the progression and metastasis process of tumors. In the process of ferroptosis, exosomes are also demonstrated as mediators to export iron under high intracellular iron concentration and resist ferroptosis. Under this regard, the combined application of ferroptosis inducer and the inhibitor of iron-containing exosomes may enhance the ferroptosis. Herein, biocompatible hybrid nanoparticles composed of the iron oxide nanoparticles, polymers with oxaliplatin attached, and siProminin2 are constructed. The siProminin2 mediated exosomal inhibition can restore the intracellular iron concentration, which can also inhibit the secretion of tumor cell-derived exosomes. The combination of immunotherapy with oxaliplatin, ferroptosis-based cancer therapy and inhibition of tumor cell-derived exosomes can enhance the immune activation effects. The nanoparticles represent an excellent triple therapeutic strategy for enhancing ferroptosis-based cancer therapy and immunotherapy.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Qinjun Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Haolin Song
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Yiwen Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Hongyi Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Peixin Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Tao Sun
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Chen Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| |
Collapse
|
21
|
Cheng K, Liu B, Zhang XS, Zhang RY, Zhang F, Ashraf G, Fan GQ, Tian MY, Sun X, Yuan J, Zhao YD. Biomimetic material degradation for synergistic enhanced therapy by regulating endogenous energy metabolism imaging under hypothermia. Nat Commun 2022; 13:4567. [PMID: 35931744 PMCID: PMC9355994 DOI: 10.1038/s41467-022-32349-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 07/27/2022] [Indexed: 12/28/2022] Open
Abstract
Inefficient tumour treatment approaches often cause fatal tumour metastases. Here, we report a biomimetic multifunctional nanoplatform explicitly engineered with a Co-based metal organic framework polydopamine heterostructure (MOF-PDA), anethole trithione (ADT), and a macrophage membrane. Co-MOF degradation in the tumour microenvironment releases Co2+, which results in the downregulation of HSP90 expression and the inhibition of cellular heat resistance, thereby improving the photothermal therapy effect of PDA. H2S secretion after the enzymatic hydrolysis of ADT leads to high-concentration gas therapy. Moreover, ADT changes the balance between nicotinamide adenine dinucleotide/flavin adenine dinucleotide (NADH/FAD) during tumour glycolysis. ATP synthesis is limited by NADH consumption, which triggers a certain degree of tumour growth inhibition and results in starvation therapy. Potentiated 2D/3D autofluorescence imaging of NADH/FAD is also achieved in liquid nitrogen and employed to efficiently monitor tumour therapy. The developed biomimetic nanoplatform provides an approach to treat orthotopic tumours and inhibit metastasis. Metal organic frameworks (MOF) coated with mammalian cell membranes have good biocompatibility. Here, the authors develop a cobalt based hydrogen sulphide producing MOF cloaked with a macrophage membrane and show that the subsequent system can reduce tumour growth in mice.
Collapse
Affiliation(s)
- Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Xiao-Shuai Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Ruo-Yun Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Fang Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Ghazal Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Guo-Qing Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Ming-Yu Tian
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Xing Sun
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Jing Yuan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China. .,Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China.
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China. .,Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China.
| |
Collapse
|
22
|
Alle M, Sharma G, Lee SH, Kim JC. Next-generation engineered nanogold for multimodal cancer therapy and imaging: a clinical perspectives. J Nanobiotechnology 2022; 20:222. [PMID: 35778747 PMCID: PMC9250257 DOI: 10.1186/s12951-022-01402-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the significant threats to human life. Although various latest technologies are currently available to treat cancer, it still accounts for millions of death each year worldwide. Thus, creating a need for more developed and novel technologies to combat this deadly condition. Nanoparticles-based cancer therapeutics have offered a promising approach to treat cancer effectively while minimizing adverse events. Among various nanoparticles, nanogold (AuNPs) are biocompatible and have proved their efficiency in treating cancer because they can reach tumors via enhanced permeability and retention effect. The size and shape of the AuNPs are responsible for their diverse therapeutic behavior. Thus, to modulate their therapeutic values, the AuNPs can be synthesized in various shapes, such as spheres, cages, flowers, shells, prisms, rods, clusters, etc. Also, attaching AuNPs with single or multiple targeting agents can facilitate the active targeting of AuNPs to the tumor tissue. The AuNPs have been much explored for photothermal therapy (PTT) to treat cancer. In addition to PTT, AuNPs-based nanoplatforms have been investigated for combinational multimodal therapies in the last few years, including photodynamic therapy, chemotherapy, radiotherapy, immunotherapy, etc., to ablate cancer cells. Thus, the present review focuses on the recent advancements in the functionalization of AuNPs-based nanoconstructs for cancer imaging and therapy using combinatorial multimodal approaches to treat various cancers.
Collapse
Affiliation(s)
- Madhusudhan Alle
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung-Hwan Lee
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
23
|
Hou S, Hasnat M, Chen Z, Liu Y, Faran Ashraf Baig MM, Liu F, Chen Z. Application Perspectives of Nanomedicine in Cancer Treatment. Front Pharmacol 2022; 13:909526. [PMID: 35860027 PMCID: PMC9291274 DOI: 10.3389/fphar.2022.909526] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is a disease that seriously threatens human health. Based on the improvement of traditional treatment methods and the development of new treatment modes, the pattern of cancer treatment is constantly being optimized. Nanomedicine plays an important role in these evolving tumor treatment modalities. In this article, we outline the applications of nanomedicine in three important tumor-related fields: chemotherapy, gene therapy, and immunotherapy. According to the current common problems, such as poor targeting of first-line chemotherapy drugs, easy destruction of nucleic acid drugs, and common immune-related adverse events in immunotherapy, we discuss how nanomedicine can be combined with these treatment modalities, provide typical examples, and summarize the advantages brought by the application of nanomedicine.
Collapse
Affiliation(s)
- Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Muhammad Hasnat
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ziwei Chen
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Yinong Liu
- Hospital Laboratory of Nangjing Lishui People’s Hospital, Nangjing, China
| | - Mirza Muhammad Faran Ashraf Baig
- Laboratory of Biomedical Engineering for Novel Bio-functional, and Pharmaceutical Nanomaterials, Prince Philip Dental Hospital, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fuhe Liu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
- *Correspondence: Zelong Chen, ; Fuhe Liu,
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Province Engineering Research Center of Artificial Intelligence and Internet of Things Wise Medical, Zhengzhou, China
- *Correspondence: Zelong Chen, ; Fuhe Liu,
| |
Collapse
|
24
|
Xie X, Jiang K, Li B, Hou S, Tang H, Shao B, Ping Y, Zhang Q. A small-molecule self-assembled nanodrug for combination therapy of photothermal-differentiation-chemotherapy of breast cancer stem cells. Biomaterials 2022; 286:121598. [DOI: 10.1016/j.biomaterials.2022.121598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023]
|
25
|
Ju Y, Liao H, Richardson JJ, Guo J, Caruso F. Nanostructured particles assembled from natural building blocks for advanced therapies. Chem Soc Rev 2022; 51:4287-4336. [PMID: 35471996 DOI: 10.1039/d1cs00343g] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Advanced treatments based on immune system manipulation, gene transcription and regulation, specific organ and cell targeting, and/or photon energy conversion have emerged as promising therapeutic strategies against a range of challenging diseases. Naturally derived macromolecules (e.g., proteins, lipids, polysaccharides, and polyphenols) have increasingly found use as fundamental building blocks for nanostructured particles as their advantageous properties, including biocompatibility, biodegradability, inherent bioactivity, and diverse chemical properties make them suitable for advanced therapeutic applications. This review provides a timely and comprehensive summary of the use of a broad range of natural building blocks in the rapidly developing field of advanced therapeutics with insights specific to nanostructured particles. We focus on an up-to-date overview of the assembly of nanostructured particles using natural building blocks and summarize their key scientific and preclinical milestones for advanced therapies, including adoptive cell therapy, immunotherapy, gene therapy, active targeted drug delivery, photoacoustic therapy and imaging, photothermal therapy, and combinational therapy. A cross-comparison of the advantages and disadvantages of different natural building blocks are highlighted to elucidate the key design principles for such bio-derived nanoparticles toward improving their performance and adoption. Current challenges and future research directions are also discussed, which will accelerate our understanding of designing, engineering, and applying nanostructured particles for advanced therapies.
Collapse
Affiliation(s)
- Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia. .,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Haotian Liao
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan 610065, China
| | - Joseph J Richardson
- Department of Materials Engineering, University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
26
|
Xu X, Wu Y, Qian X, Wang Y, Wang J, Li J, Li Y, Zhang Z. Nanomedicine Strategies to Circumvent Intratumor Extracellular Matrix Barriers for Cancer Therapy. Adv Healthc Mater 2022; 11:e2101428. [PMID: 34706400 DOI: 10.1002/adhm.202101428] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/14/2021] [Indexed: 01/04/2023]
Abstract
The dense and heterogeneous physical network of the extracellular matrix (ECM) in tumors represents a formidable barrier that limits intratumor drug delivery and the therapeutic efficacy of many anticancer therapies. Here, the two major nanomedicine strategies to circumvent intratumor ECM barriers: regulating the physiochemical properties of nanomedicines and remodeling the components and structure of the ECM are summarized. Nanomedicines can be rationally regulated by optimizing physiochemical properties or designed with biomimetic features to promote ECM permeation capability. Meanwhile, they can also be designed to remodel the ECM by modulating signaling pathways or destroying the components and architecture of the ECM via chemical, biological, or physical treatments. These efforts produce profound improvements in intratumor drug delivery and anticancer efficacy. Moreover, to aid in their anticancer efficacy, feasible approaches for improving ECM-circumventing nanomedicines are proposed.
Collapse
Affiliation(s)
- Xiaoxuan Xu
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- School of Pharmacy University of Chinese Academy of Sciences 19A Yuqian Road Beijing 100049 China
| | - Yao Wu
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Xindi Qian
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- School of Pharmacy University of Chinese Academy of Sciences 19A Yuqian Road Beijing 100049 China
| | - Yuqi Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Jiaoying Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- School of Pharmacy University of Chinese Academy of Sciences 19A Yuqian Road Beijing 100049 China
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- School of Pharmacy University of Chinese Academy of Sciences 19A Yuqian Road Beijing 100049 China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations Yantai Institute of Materia Medica Shandong 264000 China
| |
Collapse
|
27
|
Xu XL, Zhang NN, Shu GF, Liu D, Qi J, Jin FY, Ji JS, Du YZ. A Luminol-Based Self-Illuminating Nanocage as a Reactive Oxygen Species Amplifier to Enhance Deep Tumor Penetration and Synergistic Therapy. ACS NANO 2021; 15:19394-19408. [PMID: 34806870 DOI: 10.1021/acsnano.1c05891] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The dense extracellular matrix (ECM) in tumor tissues resists drug diffusion into tumors and leads to a poor prognosis. To address this problem, glucose oxidase (GOx)-modified ferritin loaded with luminol-curcumin was fabricated. Once delivered to the tumor, this luminol-based self-illuminating nanocage could actively convert glucose to reactive oxygen species (ROS) to achieve starvation therapy. Then, excessive ROS were transmitted to luminol, thereby emitting 425 nm blue-violet light. Momentarily, light was further absorbed by curcumin and ROS production was amplified. Abundant ROS helps break down the ECM network to penetrate deep into tumors. In addition, ROS produced after cell internalization can induce apoptosis of tumor cells by decreasing the mitochondrial membrane potential and can promote ferroptosis by consuming reduced glutathione. Effective penetration and multiple pathways inducing tumor cell death contributed to the efficient antitumor effect (tumor inhibition rate of GOx-modified ferritin loaded with luminol-curcumin: 71.73%). This study developed a glucose-driven self-illuminating nanocage for active tumor penetration via ROS-mediated destruction of the ECM and provided the synergetic mechanism of apoptosis and ferroptosis.
Collapse
Affiliation(s)
- Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Nan-Nan Zhang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui 323000, China
| | - Gao-Feng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui 323000, China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jing Qi
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Fei-Yang Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jian-Song Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui 323000, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
28
|
Zhu X, Li L, Tang J, Yang C, Yu H, Liu K, Zheng Z, Gu X, Yu Q, Xu FJ, Gan Z. Cascade-responsive nano-assembly for efficient photothermal-chemo synergistic inhibition of tumor metastasis by targeting cancer stem cells. Biomaterials 2021; 280:121305. [PMID: 34890970 DOI: 10.1016/j.biomaterials.2021.121305] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
Metastasis has been widely recognized as the most lethal threats for cancer patients. Due to their special genetic and environmental context, cancer stem cells (CSCs) which are resistant to most cytotoxic drugs and radiation, are considered as the dominant culprit for metastasis. Thus, the efficient targeting and thorough elimination of CSCs are significantly urgent for the enhancement of therapeutic efficacy. Herein, we developed a facile and smart photothermal-chemo therapeutic nano-assembly system, of which the surface was modified by a sheddable PEG shell and acid-activatable pro-penetration peptide, to surmount the physiological barriers in targeting CSCs. A highly-efficient diradical-featured croconium-based photothermal agent and a natural cytotoxic heat shock protein (HSP) inhibitor were co-loaded in redox-sensitive chitosan matrices to realize the synergistic photothermal-chemo therapy. Within solid tumors, the PEG shell that prevents the nano-assembly from mononuclear phagocytic clearance could rapidly leave to expose the positively charged chitosan, and the detached iRGD could further actuate the tumor penetration of chitosan nanoparticles, and allow the CSCs targeting by selective recognition of CD44 protein. Owing to the HSP inhibition and chemo-sensitization, both the CSCs and non-CSCs could be thoroughly eliminated by the designed nano-assembly, largely inhibiting the tumor growth and metastasis. This work provides a potential strategy for CSCs-targeting drug delivery to solve the CSCs-related metastasis.
Collapse
Affiliation(s)
- Xianqi Zhu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lin Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jin Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chunyu Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kunpeng Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ziyan Zheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Qingsong Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Fu-Jian Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhihua Gan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
29
|
Zhu R, Lang T, Yin Q, Li Y. Nano drug delivery systems improve metastatic breast cancer therapy. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:244-274. [PMID: 37724299 PMCID: PMC10388745 DOI: 10.1515/mr-2021-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/03/2021] [Indexed: 09/20/2023]
Abstract
Despite continual progress in the technologies and regimens for cancer therapy, the treatment outcome of fatal metastatic breast cancer is far from satisfactory. Encouragingly, nanotechnology has emerged as a valuable tool to optimize drug delivery process in cancer therapy via preventing the cargos from degradation, improving the tumor-targeting efficiency, enhancing therapeutic agents' retention in specific sites, and controlling drug release. In the last decade, several mechanisms of suppressing tumor metastasis by functional nano drug delivery systems (NDDSs) have been revealed and a guidance for the rational design of anti-metastasis NDDSs is summarized, which consist of three aspects: optimization of physiochemical properties, tumor microenvironment remodeling, and biomimetic strategies. A series of medicinal functional biomaterials and anti-metastatic breast cancer NDDSs constructed by our team are introduced in this review. It is hoped that better anti-metastasis strategies can be inspired and applied in clinic.
Collapse
Affiliation(s)
- Runqi Zhu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianqun Lang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong Province, China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong Province, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Bohai rim Advanced Research Institute for Drug Discovery, Yantai, Shandong Province, China
- School of Pharmacy, Yantai University, Yantai, Shandong Province, China
| |
Collapse
|
30
|
Wang Y, Gong X, Li J, Wang H, Xu X, Wu Y, Wang J, Wang S, Li Y, Zhang Z. M2 macrophage microvesicle-inspired nanovehicles improve accessibility to cancer cells and cancer stem cells in tumors. J Nanobiotechnology 2021; 19:397. [PMID: 34838042 PMCID: PMC8627085 DOI: 10.1186/s12951-021-01143-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/14/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer cells and cancer stem cells (CSCs) are the major players of cancer malignancy and metastasis, but they are extremely difficult to access. Inspired by the vital role of macrophages and microvesicle-mediated cell–cell communication in tumors, we herein designed M2 macrophage microvesicle-inspired nanovehicle of cabazitaxel (M-CFN) to promote accessibility to cancer cells and CSCs in tumors. In the 4T1 tumor model, M-CFN flexibly permeated the tumor mass, accessed cancer cells and CD90-positive cells, and significantly promoted their entry into CSC fractions in tumors. Moreover, M-CFN treatment profoundly eliminated aldehyde dehydrogenase (ALDH)-expressing CSCs in 4T1 and MCF-7 tumors, produced notable depression of tumor growth and caused 93.86% suppression of lung metastasis in 4T1 models. Therefore, the M2 macrophage microvesicle-inspired nanovehicle provides an encouraging strategy to penetrate the tumor tissues and access these insult cells in tumors for effective cancer therapy. ![]()
Collapse
Affiliation(s)
- Yuqi Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.,State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiang Gong
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hong Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiaoxuan Xu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yao Wu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiaoying Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Siling Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China.
| |
Collapse
|
31
|
Shang Q, Zhou S, Zhou Z, Jiang Y, Luan Y. Dual cancer stem cell manipulation to enhance phototherapy against tumor progression and metastasis. J Control Release 2021; 340:282-291. [PMID: 34740722 DOI: 10.1016/j.jconrel.2021.10.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 01/10/2023]
Abstract
Targeting breast cancer stem cells (BCSCs) therapy is a prospective strategy to eliminate tumors owing to the BCSCs-governed drug resistance, tumor progression and metastasis. BCSCs are intrinsically in a disequilibrium state with favorable ability of self-renewal rather than differentiation, resulting in inability of complete tumor eradication. Besides the original BCSCs, epithelial-mesenchymal transition (EMT) process can further facilitate BCSCs regeneration, accompanied by tumor progression and metastasis. Herein, we, for the first time, engineered a photodynamic nanoplatform to manipulate BCSCs against tumor progression and metastasis by not only remolding the disequilibrium state but also blocking the EMT process. The HP@PP was constructed by haloperidol (HP)-incorporated polyethyleneimine-polyhistidine (PP) micelles, which was further integrated with low molecular weight heparin (LMWH)-chlorin e6 (Ce6) conjugate (LC) to form HP@PP/LC nanoparticles (NPs). For HP@PP/LC NPs, the protonation of PP in tumor tissues precisely targeted HP to BCSCs for remolding the disequilibrium state via promoting BCSCs differentiation into tumor cells. Simultaneously, LC conjugate targeted to tumors for exerting EMT blocking ability with LMWH, as well as exerting photodynamic clearance of tumor cells with Ce6 component. Therefore, our nanoplatform provides an emerging strategy for manipulating BCSCs against tumor progression and metastasis, demonstrating a promising photodynamic platform against tumors.
Collapse
Affiliation(s)
- Qi Shang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shiyao Zhou
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zijia Zhou
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yue Jiang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuxia Luan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China,.
| |
Collapse
|
32
|
Yu W, Hu C, Gao H. Advances of nanomedicines in breast cancer metastasis treatment targeting different metastatic stages. Adv Drug Deliv Rev 2021; 178:113909. [PMID: 34352354 DOI: 10.1016/j.addr.2021.113909] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common tumor in women, and the metastasis further increases the malignancy with extremely high mortality. However, there is almost no effective method in the clinic to completely inhibit breast cancer metastasis due to the dynamic multistep process with complex pathways and scattered occurring site. Nowadays, nanomedicines have been evidenced with great potential in treating cancer metastasis. In this review, we summarize the latest research advances of nanomedicines in anti-metastasis treatment. Strategies are categorized according to the metastasis dynamics, including primary tumor, circulating tumor cells, pre-metastatic niches and secondary tumor. In each different stage of metastasis process, nanomedicines are designed specifically with different functions. At the end of the review, we give our perspectives on current limitations and future directions in anti-metastasis therapy. We expect the review provides comprehensive understandings of anti-metastasis therapy for breast cancer, and boosts the clinical translation in the future to improve women's health.
Collapse
|
33
|
Cao J, Bhatnagar S, Wang J, Qi X, Prabha S, Panyam J. Cancer stem cells and strategies for targeted drug delivery. Drug Deliv Transl Res 2021; 11:1779-1805. [PMID: 33095384 PMCID: PMC8062588 DOI: 10.1007/s13346-020-00863-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) are a small proportion of cancer cells with high tumorigenic activity, self-renewal ability, and multilineage differentiation potential. Standard anti-tumor therapies including conventional chemotherapy, radiation therapy, and molecularly targeted therapies are not effective against CSCs, and often lead to enrichment of CSCs that can result in tumor relapse. Therefore, it is hypothesized that targeting CSCs is key to increasing the efficacy of cancer therapies. In this review, CSC properties including CSC markers, their role in tumor growth, invasiveness, metastasis, and drug resistance, as well as CSC microenvironment are discussed. Further, CSC-targeted strategies including the use of targeted drug delivery systems are examined.
Collapse
Affiliation(s)
- Jin Cao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shubhmita Bhatnagar
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA
| | - Jiawei Wang
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xueyong Qi
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Swayam Prabha
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- Cancer Research & Molecular Biology and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayanth Panyam
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
34
|
Song N, Zhang J, Zhai J, Hong J, Yuan C, Liang M. Ferritin: A Multifunctional Nanoplatform for Biological Detection, Imaging Diagnosis, and Drug Delivery. Acc Chem Res 2021; 54:3313-3325. [PMID: 34415728 DOI: 10.1021/acs.accounts.1c00267] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ferritins are spherical iron storage proteins within cells that are composed of a combination of 24 subunits of two types, heavy-chain ferritin (HFn) and light-chain ferritin (LFn). They autoassemble naturally into a spherical hollow nanocage with an outer diameter of 12 nm and an interior cavity that is 8 nm in diameter. In recent years, with the constantly emerging safety issues and the concerns about unfavorable uniformity and indefinite in vivo behavior of traditional nanomedicines, the characteristics of native ferritin nanocages, such as the unique nanocage structure, excellent safety profile, and definite in vivo behavior, make ferritin-based formulations uniquely attractive for nanomedicine development. To date, a variety of cargo molecules, including therapeutic drugs (e.g., cisplatin, carboplatin, paclitaxel, curcumin, atropine, quercetin, gefitinib, daunomycin, epirubicin, doxorubicin, etc.), imaging agents (e.g., fluorescence dyes, radioisotopes, and MRI contrast agents), nucleic acids (e.g., siRNA and miRNA), and metal nanoparticles (e.g., Fe3O4, CeO2, AuPd, CuS, CoPt, FeCo, Ag, etc.) have been loaded into the interior cavity of ferritin nanocages for a broad range of biomedical applications from in vitro biosensing to targeted delivery of cargo molecules in living systems with the aid of modified targeting ligands either genetically or chemically. We reported that human HFn could selectively deliver a large amount of cargo into tumors in vivo via transferrin receptor 1 (TfR1)-mediated tumor-cell-specific targeting followed by rapid internalization. By the use of the intrinsic tumor-targeting property and unique nanocage structure of human HFn, a broad variety of cargo-loaded HFn formulations have been developed for biological analysis, imaging diagnosis, and medicine development. In view of the intrinsic tumor-targeting property, unique nanocage structure, lack of immunogenicity, and definite in vivo behavior, human HFn holds promise to promote therapeutic drugs, diagnostic imaging agents, and targeting moieties into multifunctional nanomedicines.Since the report of the intrinsic tumor-targeting property of human HFn, we have extensively explored human HFn as an ideal nanocarrier for tumor-targeted delivery of anticancer drugs, MRI contrast agents, inorganic nanoparticles, and radioisotopes. In particular, by the use of genetic tools, we also have genetically engineered human HFn nanocages to recognize a broader range of disease biomarkers. In this Account, we systematically review human ferritins from characterizing their tumor-binding property and understanding their mechanism and kinetics for cargo loading to exploring their biomedical applications. We finally discuss the prospect of ferritin-based formulations to become next-generation nanomedicines. We expect that ferritin formulations with unique physicochemical characteristics and intrinsic tumor-targeting property will attract broad interest in fundamental drug research and offer new opportunities for nanomedicine development.
Collapse
Affiliation(s)
- Ningning Song
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianlin Zhang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiao Zhai
- Tung Foundation Biomedical Sciences Centre/Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Juanji Hong
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chang Yuan
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
35
|
Hu J, Jiang Q, Shi T, Lin X, Zhao Y, Wang X, Liu X. In Situ Generated and Amplified Oxidative Stress with Metallo‐Nanodrug Assembly for Metastatic Cancer Therapy with High Specificity and Efficacy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jialing Hu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Qunying Jiang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Tianhui Shi
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xue Lin
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Yun Zhao
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xiuyuan Wang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| |
Collapse
|
36
|
Gao S, Yang X, Xu J, Qiu N, Zhai G. Nanotechnology for Boosting Cancer Immunotherapy and Remodeling Tumor Microenvironment: The Horizons in Cancer Treatment. ACS NANO 2021; 15:12567-12603. [PMID: 34339170 DOI: 10.1021/acsnano.1c02103] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Immunotherapy that harnesses the human immune system to fight cancer has received widespread attention and become a mainstream strategy for cancer treatment. Cancer immunotherapy not only eliminates primary tumors but also treats metastasis and recurrence, representing a major advantage over traditional cancer treatments. Recently with the development of nanotechnology, there exists much work applying nanomaterials to cancer immunotherapy on the basis of their excellent physiochemical properties, such as efficient tissue-specific delivery function, huge specific surface area, and controllable surface chemistry. Consequently, nanotechnology holds significant potential in improving the efficacy of cancer immunotherapy. Nanotechnology-based immunotherapy mainly manifests its inhibitory effect on tumors via two different approaches: one is to produce an effective anti-tumor immune response during tumorigenesis, and the other is to enhance tumor immune defense ability by modulating the immune suppression mechanism in the tumor microenvironment. With the success of tumor immunotherapy, understanding the interaction between the immune system and smart nanomedicine has provided vigorous vitality for the development of cancer treatment. This review highlights the application, progress, and prospect of nanomedicine in the process of tumor immunoediting and also discusses several engineering methods to improve the efficiency of tumor treatment.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| | - Xiaoye Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| | - Jiangkang Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| | - Na Qiu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| |
Collapse
|
37
|
Sun X, Hong Y, Gong Y, Zheng S, Xie D. Bioengineered Ferritin Nanocarriers for Cancer Therapy. Int J Mol Sci 2021; 22:7023. [PMID: 34209892 PMCID: PMC8268655 DOI: 10.3390/ijms22137023] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
Ferritin naturally exists in most organisms and can specifically recognize the transferrin 1 receptor (TfR1), which is generally highly expressed on various types of tumor cells. The pH dependent reversible assembling and disassembling property of ferritin renders it as a suitable candidate for encapsulating a variety of anticancer drugs and imaging probes. Ferritins external surface is chemically and genetically modifiable which can serve as attachment site for tumor specific targeting peptides or moieties. Moreover, the biological origin of these protein cages makes it a biocompatible nanocarrier that stabilizes and protects the enclosed particles from the external environment without provoking any toxic or immunogenic responses. Recent studies, further establish ferritin as a multifunctional nanocarrier for targeted cancer chemotherapy and phototherapy. In this review, we introduce the favorable characteristics of ferritin drug carriers, the specific targeted surface modification and a multifunctional nanocarriers combined chemotherapy with phototherapy for tumor treatment. Taken together, ferritin is a potential ideal base of engineered nanoparticles for tumor therapy and still needs to explore more on its way.
Collapse
Affiliation(s)
- Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; (Y.H.); (Y.G.); (S.Z.); (D.X.)
| | | | | | | | | |
Collapse
|
38
|
Wei Q, He J, Wang S, Hua S, Qi Y, Li F, Ling D, Zhou M. Low-dose X-ray enhanced tumor accumulation of theranostic nanoparticles for high-performance bimodal imaging-guided photothermal therapy. J Nanobiotechnology 2021; 19:155. [PMID: 34039369 PMCID: PMC8152352 DOI: 10.1186/s12951-021-00875-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/27/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Theranostic nanoparticles (NPs) have achieved rapid development owing to their capacity for personalized multimodal diagnostic imaging and antitumor therapy. However, the efficient delivery and bulk accumulation of NPs in tumors are still the decisive factors in improving therapeutic effect. It is urgent to seek other methods to alters tumor microenvironment (like vascular permeability and density) for enhancing the efficiency of nanoparticles delivery and accumulation at the tumor site. METHODS Herein, we developed a Raman-tagged hollow gold nanoparticle (termed as HAuNP@DTTC) with surface-enhanced Raman scattering (SERS) property, which could be accumulated efficiently in tumor site with the pre-irradiation of low-dose (3 Gy) X-ray and then exerted highly antitumor effect in breast cancer model. RESULTS The tumor growth inhibition (TGI) of HAuNP@DTTC-induced photothermal therapy (PTT) was increased from 60% for PTT only to 97%, and the lethal distant metastasis of 4T1 breast cancer (such as lung and liver) were effectively inhibited under the X-ray-assisted PTT treatment. Moreover, with the strong absorbance induced by localized surface plasmon resonance in near-infrared (NIR) region, the signals of Raman/photoacoustic (PA) imaging in tumor was also significantly enhanced after the administration of HAuNP@DTTC, indicating it could be used as the Raman/PA imaging and photothermal agent simultaneously under 808 nm laser irradiation. CONCLUSIONS Our studied of the as-prepared HAuNP@DTTC integrated the Raman/PA imaging and PTT functions into the single platform, and showed the good prospects for clinical applications especially with the low-dose X-ray irradiation as an adjuvant, which will be a productive strategy for enhancing drug delivery and accumulation in tumor theranostics.
Collapse
Affiliation(s)
- Qiaolin Wei
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
- Institute of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jian He
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Shuaifei Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shiyuan Hua
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Yuchen Qi
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China.
- State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
39
|
Liu S, Khan AR, Yang X, Dong B, Ji J, Zhai G. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. J Control Release 2021; 335:1-20. [PMID: 33991600 DOI: 10.1016/j.jconrel.2021.05.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) of cancer is a persistent problem in chemotherapy. Scientists have considered the overexpressed efflux transporters responsible for MDR and chemotherapy failure. MDR extremely limits the therapeutic effect of chemotherapy in cancer treatment. Many strategies have been applied to solve this problem. Multifunctional nanoparticles may be one of the most promising approaches to reverse MDR of tumor. These nanoparticles can keep stability in the blood circulation and selectively accumulated in the tumor microenvironment (TME) either by passive or active targeting. The stimuli-sensitive or organelle-targeting nanoparticles can release the drug at the targeted-site without exposure to normal tissues. In order to better understand reversal of MDR, three main strategies are concluded in this review. First strategy is the synergistic effect of chemotherapeutic drugs and ABC transporter inhibitors. Through directly inhibiting overexpressed ABC transporters, chemotherapeutic drugs can enter into resistant cells without being efflux. Second strategy is based on nanoparticles circumventing over-expressed efflux transporters and directly targeting resistance-related organelles. Third approach is the combination of multiple therapy modes overcoming cancer resistance. At last, numerous researches demonstrated cancer stem-like cells (CSCs) had a deep relation with drug resistance. Here, we discuss two different drug delivery approaches of nanomedicine based on CSC therapy.
Collapse
Affiliation(s)
- Shangui Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Abdur Rauf Khan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Bo Dong
- Department of cardiovascular medicine, Shandong Provincial Hospital, Jinan 250021, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
40
|
Li ZH, Chen Y, Sun Y, Zhang XZ. Platinum-Doped Prussian Blue Nanozymes for Multiwavelength Bioimaging Guided Photothermal Therapy of Tumor and Anti-Inflammation. ACS NANO 2021; 15:5189-5200. [PMID: 33703878 DOI: 10.1021/acsnano.0c10388] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Developing appropriate photothermal agents to meet complex clinical demands is an urgent challenge for photothermal therapy of tumors. Here, platinum-doped Prussian blue (PtPB) nanozymes with tunable spectral absorption, high photothermal conversion efficiency, and good antioxidative catalytic activity are developed by one-step reduction. By controlling the doping ratio, PtPB nanozymes exhibit tunable localized surface plasmon resonance (LSPR) frequency with significantly enhanced photothermal conversion efficiency and allow multiwavelength photoacoustic/infrared thermal imaging guided photothermal therapy. Experimental band gap and density functional theory calculations further reveal that the decrement of free carrier concentrations and increase in circuit paths of electron transitions co-contribute to the enhanced photothermal conversion efficiency of PtPB with tunable LSPR frequency. Benefiting from antioxidative catalytic activity, PtPB can simultaneously relieve inflammation caused by hyperthermia. Moreover, PtPB nanozymes exhibited good biosafety after intravenous injection. Our findings provide a paradigm for designing safe and efficient photothermal agents to treat complex tumor diseases.
Collapse
Affiliation(s)
- Zi-Hao Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ying Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yunxia Sun
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
41
|
Lv L, Shi Y, Wu J, Li G. Nanosized Drug Delivery Systems for Breast Cancer Stem Cell Targeting. Int J Nanomedicine 2021; 16:1487-1508. [PMID: 33654398 PMCID: PMC7914063 DOI: 10.2147/ijn.s282110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/10/2021] [Indexed: 01/15/2023] Open
Abstract
Breast cancer stem cells (BCSCs), also known as breast cancer initiating cells, are reported to be responsible for the initiation, progression, therapeutic resistance, and relapse of breast cancer. Conventional therapeutic agents mainly kill the bulk of breast tumor cells and fail to eliminate BCSCs, even enhancing the fraction of BCSCs in breast tumors sometimes. Therefore, it is essential to develop specific and effective methods of eliminating BCSCs that will enhance the efficacy of killing breast tumor cells and thereby, increase the survival rates and quality of life of breast cancer patients. Despite the availability of an increasing number of anti-BCSC agents, their clinical translations are hindered by many issues, such as instability, low bioavailability, and off-target effects. Nanosized drug delivery systems (NDDSs) have the potential to overcome the drawbacks of anti-BCSC agents by providing site-specific delivery and enhancing of the stability and bioavailability of the delivered agents. In this review, we first briefly introduce the strategies and agents used against BCSCs and then highlight the mechanism of action and therapeutic efficacy of several state-of-the-art NDDSs that can be used to treat breast cancer by eliminating BCSCs.
Collapse
Affiliation(s)
- Li Lv
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Yonghui Shi
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.,Department of Pharmacy, Zengcheng District People's Hospital of Guangzhou, Guangzhou, 511300, Guangdong, People's Republic of China
| | - Junyan Wu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Guocheng Li
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| |
Collapse
|
42
|
Zhou S, Zhen Z, Paschall AV, Xue L, Yang X, Bebin-Blackwell AG, Cao Z, Zhang W, Wang M, Teng Y, Zhou G, Li Z, Avci FY, Tang W, Xie J. FAP-Targeted Photodynamic Therapy Mediated by Ferritin Nanoparticles Elicits an Immune Response against Cancer Cells and Cancer Associated Fibroblasts. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007017. [PMID: 35822179 PMCID: PMC9273013 DOI: 10.1002/adfm.202007017] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 06/15/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are present in many types of tumors and play a pivotal role in tumor progression and immunosuppression. Fibroblast-activation protein (FAP), which is overexpressed on CAFs, has been indicated as a universal tumor target. However, FAP expression is not restricted to tumors, and systemic treatment against FAP often causes severe side effects. To solve this problem, a photodynamic therapy (PDT) approach was developed based on ZnF16Pc (a photosensitizer)-loaded and FAP-specific single chain variable fragment (scFv)-conjugated apoferritin nanoparticles, or αFAP-Z@FRT. αFAP-Z@FRT PDT efficiently eradicates CAFs in tumors without inducing systemic toxicity. When tested in murine 4T1 models, the PDT treatment elicits anti-cancer immunity, causing suppression of both primary and distant tumors, i.e. abscopal effect. Treatment efficacy is enhanced when αFAP-Z@FRT PDT is used in combination with anti-PD1 antibodies. Interestingly, it is found that the PDT treatment not only elicits a cellular immunity against cancer cells, but also stimulates an anti-CAFs immunity. This is supported by an adoptive cell transfer study, where T cells taken from 4T1-tumor-bearing animals treated with αFAP PDT retard the growth of A549 tumors established on nude mice. Overall, our approach is unique for permitting site-specific eradication of CAFs and inducing a broad spectrum anti-cancer immunity.
Collapse
Affiliation(s)
- Shiyi Zhou
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Zipeng Zhen
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Amy V Paschall
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Lijun Xue
- Department of Medical Oncology, Jinling Hospital, Nanjing University Clinical School of Medicine, Nanjing, Jiangsu 210002, China
| | - Xueyuan Yang
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | | | - Zhengwei Cao
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Mengzhe Wang
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yong Teng
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Zibo Li
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fikri Y Avci
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Wei Tang
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
43
|
Zhou G, Da Won Bae S, Nguyen R, Huo X, Han S, Zhang Z, Hebbard L, Duan W, Eslam M, Liddle C, Yuen L, Lam V, Qiao L, George J. An aptamer-based drug delivery agent (CD133-apt-Dox) selectively and effectively kills liver cancer stem-like cells. Cancer Lett 2020; 501:124-132. [PMID: 33352247 DOI: 10.1016/j.canlet.2020.12.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Liver cancer has no effective therapies, hence a poor survival. Cancer stem-like cells not only contribute to cancer initiation and progression, but also to drug resistance, cancer metastasis, and eventually treatment failure. Hence, any approaches that can effectively kill cancer stem-like cells hold a great potential for cancer treatment. CD133 is a robust marker for liver cancer stem-like cells. We developed a specific aptamer against CD133 (CD133-apt), and then loaded this aptamer with an anticancer drug doxorubicin (CD133-apt-Dox). The efficacy of CD133-apt-Dox in targeting liver cancer stem-like cells and its overall effect in treating liver cancer were investigated using multiple in vitro and in vivo studies including in patients-derived liver cancer organoids. We have observed that CD133-apt could preferably delivered doxorubicin to CD133-expressing cells with efficient drug accumulation and retention. CD133-apt-Dox impaired the self-renewal capacity of liver cancer stem-like cells and attenuated their stem-ness phenotypes in vitro or in vivo. CD133-apt-Dox significantly inhibited the growth of liver cancer cells and patients-derived organoids and reduced the growth of xenograft tumours in nude mice inhibited the growth of DEN-induced liver cancer in immunocompetent mice. Hence, aptamer-mediated targeting of CD133 is a highly promising approach for liver cancer therapy.
Collapse
MESH Headings
- AC133 Antigen/genetics
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/pharmacokinetics
- Aptamers, Nucleotide/administration & dosage
- Aptamers, Nucleotide/genetics
- Aptamers, Nucleotide/pharmacokinetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Doxorubicin/administration & dosage
- Doxorubicin/pharmacokinetics
- Drug Carriers/administration & dosage
- Drug Carriers/pharmacokinetics
- Drug Delivery Systems/methods
- HEK293 Cells
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
Collapse
Affiliation(s)
- Gang Zhou
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Sarah Da Won Bae
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Romario Nguyen
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Xiaoqi Huo
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Shuanglin Han
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Zhiqiang Zhang
- Renal Inflammation and Immunology Group, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia; Department of Urology, The Second Affiliated Hospital of Anhui Medical University, 230601, Anhui, China
| | - Lionel Hebbard
- Discipline of Molecular and Cell Biology, Australian Institute for Tropical Health and Medicine, Centre for Molecular Therapeutics, James Cook University, Townsville, 4811, Australia
| | - Wei Duan
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria, 3217, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Lawrence Yuen
- Department of Surgery, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Vincent Lam
- Department of Surgery, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia.
| |
Collapse
|
44
|
Wang Z, Sun M, Li W, Fan L, Zhou Y, Hu Z. A Novel CD133- and EpCAM-Targeted Liposome With Redox-Responsive Properties Capable of Synergistically Eliminating Liver Cancer Stem Cells. Front Chem 2020; 8:649. [PMID: 32850663 PMCID: PMC7431664 DOI: 10.3389/fchem.2020.00649] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer stem cells (CSCs) are a small subset of cells that sit atop the hierarchical ladder in many cancer types. Liver CSCs have been associated with high chemoresistance and recurrence rates in hepatocellular carcinoma (HCC). However, as of yet, no satisfactorily effective liver CSC-targeted treatment is available, which drove us to design and investigate the efficacy of a liposome-based delivery system. Here, we introduce a redox-triggered dual-targeted liposome, CEP-LP@S/D, capable of co-delivering doxorubicin (Dox) and salinomycin (Sal) for the synergistic treatment of liver cancer. This system is based on the association of CD133- and EpCAM-targeted peptides to form Y-shaped CEP ligands that were anchored to the surface of the liposome and allowed the selective targeting of CD133+ EpCAM+ liver CSCs. After arriving to the CSCs, the CEP-LP@S/D liposome undergoes endocytosis to the cytoplasm, where a high concentration of glutathione (GSH) breaks its disulfide bonds, thereby degrading the liposome. This then induces a rapid release of Dox and Sal to synergistically inhibit tumor growth. Notably, this effect occurs through Dox-induced apoptosis and concurrent lysosomal iron sequestration by Sal. Interestingly, both in vitro and in vivo studies indicated that our GSH-responsive co-delivery system not only effectively enhanced CSC targeting but also eliminated the non-CSC faction, thereby exhibiting high antitumor efficacy. We believe that the smart liposome nanocarrier-based co-delivery system is a promising strategy to combat liver cancer, which may also lay the groundwork for more enhanced approaches to target other cancer types as well.
Collapse
Affiliation(s)
- Zihua Wang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mengqi Sun
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for BiomedicalEffects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Wang Li
- Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry Chinese Academy of Sciences, Beijing, China
| | - Linyang Fan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for BiomedicalEffects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Ying Zhou
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhiyuan Hu
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for BiomedicalEffects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China.,School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Hu H, Qi Q, Dong Z, Yu X, Mo Y, Luo J, Wang Y, Du S, Lu Y. Albumin coated trimethyl chitosan-based targeting delivery platform for photothermal/chemo-synergistic cancer therapy. Carbohydr Polym 2020; 241:116335. [DOI: 10.1016/j.carbpol.2020.116335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/23/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
|
46
|
Qin W, Quan G, Sun Y, Chen M, Yang P, Feng D, Wen T, Hu X, Pan X, Wu C. Dissolving Microneedles with Spatiotemporally controlled pulsatile release Nanosystem for Synergistic Chemo-photothermal Therapy of Melanoma. Am J Cancer Res 2020; 10:8179-8196. [PMID: 32724465 PMCID: PMC7381723 DOI: 10.7150/thno.44194] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/13/2020] [Indexed: 12/22/2022] Open
Abstract
High aggressiveness and recurrence of melanoma tumors require multiple systemic drug administrations, causing discomfort and severe side effects to the patients. Topical treatment strategies that provide repetitively controllable and precise drug administrations will greatly improve treatment effects. Methods: In this study, a spatiotemporally controlled pulsatile release system, which combined dissolving microneedles (DMNs) and thermal-sensitive solid lipid nanoparticles (SLNs), was constructed to realize multiple doses of dual-modal chemo-photothermal therapy in a single administration. Paclitaxel (PTX) and photothermal agent IR-780 were encapsulated into SLNs and were concentrated in the tips of DMNs (PTX/IR-780 SLNs @DMNs). Equipped with several needles, the DMN patch could be directly inserted into the tumor site and provide a stable “Zone accumulation” to constrain the PTX/IR-780 SLNs at the tumor site with uniform distribution. Results:In vitro experiments showed that after irradiation with near-infrared light, the PTX/IR-780 SLNs gradually underwent phase transition, thereby accelerating the release of PTX. When irradiation was switched off, the PTX/IR-780 SLNs cooled to re-solidify with limited drug release. Compared with intravenous and intratumoral injections, very few SLNs from PTX/IR-780 SLNs @DMNs were distributed into other organs, resulting in enhanced bioavailability at the tumor site and good safety. In vivo analysis revealed that PTX/IR-780 SLNs @DMNs exhibited significant anti-tumor efficacy. In particular, the primary tumor was completely eradicated with a curable rate of 100% in 30 days and the highest survival rate of 66.67% after 100 days of treatment. Conclusion: Herein, we developed a DMN system with a unique spatiotemporally controlled pulsatile release feature that provides a user-friendly and low-toxicity treatment route for patients who need long-term and repeat treatments.
Collapse
|
47
|
Sitia L, Sevieri M, Bonizzi A, Allevi R, Morasso C, Foschi D, Corsi F, Mazzucchelli S. Development of Tumor-Targeted Indocyanine Green-Loaded Ferritin Nanoparticles for Intraoperative Detection of Cancers. ACS OMEGA 2020; 5:12035-12045. [PMID: 32548382 PMCID: PMC7271044 DOI: 10.1021/acsomega.0c00244] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/29/2020] [Indexed: 05/13/2023]
Abstract
Indocyanine green (ICG) is a fluorescent dye with a strong emission in the near-infrared spectral range that allows deep signal penetration and minimal interference of tissue autofluorescence. It has been employed in clinics for different applications, among which the more interesting is certainly near-infrared fluorescence image-guided surgery. This technique has found wide application in surgical oncology for lymph node mapping or for laparoscopic surgery. Despite ICG being useful for tracking loco-regional lymph nodes, it does not provide any information about cancer involvement of such lymph nodes or lymphatic vessels, lacking any tumor-targeting specificity. However, the clinical need in surgical oncology is not only a specific tracking of metastatic nodes but also the intraoperative detection of micrometastatic deposits. Here, we have exploited a nanotechnological solution to improve ICG usefulness by its encapsulation in H-ferritin (HFn) nanocages. They are natural protein-based nanoparticles that exhibit some very interesting features as delivery systems in oncological applications because they display specific tumor homing. We show that HFn loaded with ICG exhibits specific uptake into different cancer cell lines and is able to deliver ICG to the tumor more efficiently than the free dye in an in vivo model of TNBC. Our results pave the way for the application of ICG-loaded HFn in fluorescence image-guided surgery of cancer.
Collapse
Affiliation(s)
- Leopoldo Sitia
- Nanomedicine
Laboratory, Department of Biomedical and Clinical Sciences “Luigi
Sacco”, Università degli Studi
di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Marta Sevieri
- Nanomedicine
Laboratory, Department of Biomedical and Clinical Sciences “Luigi
Sacco”, Università degli Studi
di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Arianna Bonizzi
- Nanomedicine
Laboratory, Department of Biomedical and Clinical Sciences “Luigi
Sacco”, Università degli Studi
di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Raffaele Allevi
- Nanomedicine
Laboratory, Department of Biomedical and Clinical Sciences “Luigi
Sacco”, Università degli Studi
di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Carlo Morasso
- Nanomedicine
and Molecular Imaging Lab, Istituti Clinici
Scientifici Maugeri IRCCS, via S. Maugeri, 10, 27100 Pavia (PV), Italy
| | - Diego Foschi
- General
Surgery Division, Department of Biomedical and Clinical Sciences “Luigi
Sacco”, Università degli Studi
di Milano, via G.B. Grassi
74, 20157 Milan, Italy
| | - Fabio Corsi
- Nanomedicine
Laboratory, Department of Biomedical and Clinical Sciences “Luigi
Sacco”, Università degli Studi
di Milano, via G.B. Grassi 74, 20157 Milan, Italy
- Nanomedicine
and Molecular Imaging Lab, Istituti Clinici
Scientifici Maugeri IRCCS, via S. Maugeri, 10, 27100 Pavia (PV), Italy
- Breast
Unit, Istituti Clinici Scientifici Maugeri
IRCCS, via S. Maugeri,
10, 27100 Pavia
(PV), Italy
| | - Serena Mazzucchelli
- Nanomedicine
Laboratory, Department of Biomedical and Clinical Sciences “Luigi
Sacco”, Università degli Studi
di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| |
Collapse
|
48
|
Jiang Q, Wang K, Zhang X, Ouyang B, Liu H, Pang Z, Yang W. Platelet Membrane-Camouflaged Magnetic Nanoparticles for Ferroptosis-Enhanced Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001704. [PMID: 32338436 DOI: 10.1002/smll.202001704] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Although cancer immunotherapy has emerged as a tremendously promising cancer therapy method, it remains effective only for several cancers. Photoimmunotherapy (e.g., photodynamic/photothermal therapy) could synergistically enhance the immune response of immunotherapy. However, excessively generated immunogenicity will cause serious inflammatory response syndrome. Herein, biomimetic magnetic nanoparticles, Fe3 O4 -SAS @ PLT, are reported as a novel approach to sensitize effective ferroptosis and generate mild immunogenicity, enhancing the response rate of non-inflamed tumors for cancer immunotherapy. Fe3 O4 -SAS@PLT are built from sulfasalazine (SAS)-loaded mesoporous magnetic nanoparticles (Fe3 O4 ) and platelet (PLT) membrane camouflage and triggered a ferroptotic cell death via inhibiting the glutamate-cystine antiporter system Xc- pathway. Fe3 O4 -SAS @ PLT-mediated ferroptosis significantly improves the efficacy of programmed cell death 1 immune checkpoint blockade therapy and achieves a continuous tumor elimination in a mouse model of 4T1 metastatic tumors. Proteomics studies reveal that Fe3 O4 -SAS @ PLT-mediated ferroptosis could not only induce tumor-specific immune response but also efficiently repolarize macrophages from immunosuppressive M2 phenotype to antitumor M1 phenotype. Therefore, the concomitant of Fe3 O4 -SAS @ PLT-mediated ferroptosis with immunotherapy are expected to provide great potential in the clinical treatment of tumor metastasis.
Collapse
Affiliation(s)
- Qin Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Kuang Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xingyu Zhang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Boshu Ouyang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Haixia Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Zhiqing Pang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
49
|
Liu M, Zhu Y, Wu T, Cheng J, Liu Y. Nanobody-Ferritin Conjugate for Targeted Photodynamic Therapy. Chemistry 2020; 26:7442-7450. [PMID: 32166771 DOI: 10.1002/chem.202000075] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/24/2020] [Indexed: 12/15/2022]
Abstract
Ferritin is an iron-storage protein nanocage that is assembled from 24 subunits. The hollow cavity of ferritin enables its encapsulation of various therapeutic agents; therefore, ferritin has been intensively investigated for drug delivery. The use of antibody-ferritin conjugates provides an effective approach for targeted drug delivery. However, the complicated preparation and limited protein stability hamper wide applications of this system. Herein, we designed a novel nanobody-ferritin platform (Nb-Ftn) for targeted drug delivery. The site-specific conjugation between nanobody and ferritin is achieved by transglutaminase-catalyzed protein ligation. This ligation strategy allows the Nb conjugation after drug loading in ferritin, which avoids deactivation of the nanobody under the harsh pH environment required for drug encapsulation. To verify the tumor targeting of this Nb-Ftn platform, a photodynamic reagent, manganese phthalocyanine (MnPc), was loaded into the ferritin cavity, and an anti-EGFR nanobody was conjugated to the surface of the ferritin. The ferritin nanocage can encapsulate about 82 MnPc molecules. This MnPc@Nb-Ftn conjugate can be efficiently internalized by EGFR positive A431 cancer cells, but not by EGFR negative MCF-7 cells. Upon 730 nm laser irradiation, MnPc@Nb-Ftn selectively killed EGFR positive A431 cells by generating reactive oxygen species (ROS), whereas no obvious damage was observed on MCF-7 cells. Given that ferritin can be used for encapsulation of various therapeutic agents, this work provides a strategy for facile construction of nanobody-ferritin for targeted drug delivery.
Collapse
Affiliation(s)
- Manman Liu
- Department of Chemistry, CAS Key Laboratory of, Soft Mater Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Yang Zhu
- Department of Chemistry, CAS Key Laboratory of, Soft Mater Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Tiantian Wu
- Department of Chemistry, CAS Key Laboratory of, Soft Mater Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Junjie Cheng
- Department of Chemistry, CAS Key Laboratory of, Soft Mater Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Yangzhong Liu
- Department of Chemistry, CAS Key Laboratory of, Soft Mater Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
50
|
Yao H, Guo X, Zhou H, Ren J, Li Y, Duan S, Gong X, Du B. Mild Acid-Responsive "Nanoenzyme Capsule" Remodeling of the Tumor Microenvironment to Increase Tumor Penetration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20214-20227. [PMID: 32248684 DOI: 10.1021/acsami.0c03022] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dense extracellular matrix (ECM) severely impedes the spread of drugs in solid tumors and induces hypoxia, reducing chemotherapy efficiency. Different proteolytic enzymes, such as collagenase (Col) or bromelain, can directly attach to the surface of nanoparticles and improve their diffusion, but the method of ligation may also impair the enzymatic activity due to conformational changes or blockage of the active site. Herein, a "nanoenzyme capsule" was constructed by combining collagenase nanocapsules (Col-nc) with heavy-chain ferritin (HFn) nanocages encapsulating the chemotherapy drug doxorubicin (DOX) to enhance tumor penetration of the nanoparticles by hydrolyzing collagen from the ECM. Col-nc could protect the activity of the enzyme before reaching the site of action while being degraded under mildly acidic conditions in tumors, and the released proteolytic enzyme could digest collagen. In addition, HFn as a carrier could effectively load DOX and had a self-targeting ability, enabling the nanoparticles to internalize into cancer cells more effectively. From in vivo and in vitro studies, we found that collagen was effectively degraded by Col-nc/HFn(DOX) to increase the accumulation and penetration of nanoparticles in the solid tumor site and could alleviate hypoxia inside the tumor to enhance the antitumor effects of DOX. Therefore, the strategy of increasing nanoparticle penetration in this system is expected to provide a potential approach for the clinical treatment of solid tumors.
Collapse
Affiliation(s)
- Hanchun Yao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of Drug Research and Safety Evaluation, Zhengzhou 450001, Henan Province, China
| | - Xiaofang Guo
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Huijuan Zhou
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Jinjin Ren
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Li
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Songchao Duan
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaobao Gong
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Du
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of Drug Research and Safety Evaluation, Zhengzhou 450001, Henan Province, China
| |
Collapse
|