1
|
Diaz-Ruano AB, Gomez-Jimenez E, Llamas-Jimenez G, Ramirez-Muñoz A, Espejo-Hijano P, Rubio-Navarro A, Picon-Ruiz M. Advances in the use of nanoparticles for specific cell-target delivery of anti-cancer agents. Life Sci 2025; 371:123604. [PMID: 40189193 DOI: 10.1016/j.lfs.2025.123604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
In recent decades, cancer has emerged as one of the leading causes of death in developed countries. To revert this progression, scientists have focused on the design of new strategies for early detection of this disease and the development of more effective treatments for its eradication. Regarding the latter, one of the main research efforts has been directed toward designing more specific delivery systems for the administration of anti-tumoral agents. In this sense, the efficacy of conventional therapies used for cancer treatment, such as chemotherapy, immune checkpoint inhibitors and radiation therapy, are often limited by their lack of specificity and their potential to cause adverse secondary effects on healthy tissues. Therefore, designing specific cell-targeted delivery systems for anti-tumoral agents presents a promising approach to overcoming the limitations of conventional cancer therapies. In this review we summarize the advances in the use of nanoparticles for Specific Cell-Target Delivery of anti-tumoral agents from in vitro to clinical studies.
Collapse
Affiliation(s)
- Ana Belen Diaz-Ruano
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Eliana Gomez-Jimenez
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain
| | - Gloria Llamas-Jimenez
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain
| | - Arena Ramirez-Muñoz
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain
| | - Pablo Espejo-Hijano
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain
| | - Alfonso Rubio-Navarro
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; Excellence Research Unit ″Modeling Nature″ (MNat), University of Granada, 18100 Granada, Spain; Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Manuel Picon-Ruiz
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Excellence Research Unit ″Modeling Nature″ (MNat), University of Granada, 18100 Granada, Spain.
| |
Collapse
|
2
|
Hannon G, Heaton BJ, Plant-Hately A, David C, Liptrott NJ, Egizabal A, Ayerdi-Izquierdo A, Alvarez N, Ibarrola O, Celaya AA, Del Pozo Perez A, Lazcanoiturburu N, Luzuriaga I, Zegeye FD, Zienolddiny-Narui S, Jacobs A, Van Driessche A, Nelissen I, Abasolo I, Andrade F, Ventosa N, González-Mira E, Carreño A, Prina-Mello A. Interlaboratory comparison of endotoxin contamination assessment of nanomaterials. NANOSCALE 2024; 16:21011-21020. [PMID: 39445396 DOI: 10.1039/d4nr02821j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Endotoxin contamination is a significant hurdle to the translation of nanomaterials for biomedical applications. Multiple reports now describe that more than one-third of nanomaterials fail early pre-clinical assessment due to levels of endotoxin above regulatory requirements. Additionally, most immunological studies or in vivo studies testing nanomaterials in the literature lack inclusion of this assessment, which may lead to false-positive or false-negative results if high levels of the contaminant are present. The currently approved methods for endotoxin contamination assessment rely on enzymatic activity and wavelength absorbance as their endpoint, and many nanomaterials can interfere with such assays. For this reason, we devised an interlaboratory comparison of endotoxin contamination assessment for a range of nanomaterials to challenge the current international organization for standardization and pharmacopeia standards. Herein, we show that detected endotoxin levels could vary considerably between groups, and, in some instances, nanomaterials could both pass and fail regulatory endotoxin limits for medical devices depending on the group undertaking the assessment, all while passing all quality criteria standards. This work emphasises the requirement for multiple assays to fully assess the endotoxin levels in a nanomaterial and highlights the need for additional assays to be developed in this space.
Collapse
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Bethany J Heaton
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre of Excellence for Long-Acting Therapeutics, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Alexander Plant-Hately
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre of Excellence for Long-Acting Therapeutics, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Christopher David
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre of Excellence for Long-Acting Therapeutics, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Neill J Liptrott
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre of Excellence for Long-Acting Therapeutics, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ainhoa Egizabal
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastián, Spain
| | - Ana Ayerdi-Izquierdo
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastián, Spain
| | - Noelia Alvarez
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastián, Spain
| | - Oihane Ibarrola
- Biokeralty Research Institute AIE, Parque Tecnológico de Álava, Vitoria- Gasteiz, Álava, Spain
| | - Andres Arbona Celaya
- Biokeralty Research Institute AIE, Parque Tecnológico de Álava, Vitoria- Gasteiz, Álava, Spain
| | - Angel Del Pozo Perez
- Biokeralty Research Institute AIE, Parque Tecnológico de Álava, Vitoria- Gasteiz, Álava, Spain
| | - Nerea Lazcanoiturburu
- Biokeralty Research Institute AIE, Parque Tecnológico de Álava, Vitoria- Gasteiz, Álava, Spain
| | - Iris Luzuriaga
- Biokeralty Research Institute AIE, Parque Tecnológico de Álava, Vitoria- Gasteiz, Álava, Spain
| | | | | | - An Jacobs
- Health department, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Inge Nelissen
- Health department, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Ibane Abasolo
- Drug Delivery & Targeting, Vall d'Hebron Institute de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain
- Networking Research Centre for Bioengineering, Biomaterials, and nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanobiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain
| | - Fernanda Andrade
- Drug Delivery & Targeting, Vall d'Hebron Institute de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain
- Networking Research Centre for Bioengineering, Biomaterials, and nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Nora Ventosa
- Networking Research Centre for Bioengineering, Biomaterials, and nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Elisabet González-Mira
- Networking Research Centre for Bioengineering, Biomaterials, and nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Aida Carreño
- Networking Research Centre for Bioengineering, Biomaterials, and nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Adriele Prina-Mello
- Nanomedicine and Molecular Imaging Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Zheng Y, Li Y, Li M, Wang R, Jiang Y, Zhao M, Lu J, Li R, Li X, Shi S. COVID-19 cooling: Nanostrategies targeting cytokine storm for controlling severe and critical symptoms. Med Res Rev 2024; 44:738-811. [PMID: 37990647 DOI: 10.1002/med.21997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/16/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023]
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to wreak havoc worldwide, the "Cytokine Storm" (CS, also known as the inflammatory storm) or Cytokine Release Syndrome has reemerged in the public consciousness. CS is a significant contributor to the deterioration of infected individuals. Therefore, CS control is of great significance for the treatment of critically ill patients and the reduction of mortality rates. With the occurrence of variants, concerns regarding the efficacy of vaccines and antiviral drugs with a broad spectrum have grown. We should make an effort to modernize treatment strategies to address the challenges posed by mutations. Thus, in addition to the requirement for additional clinical data to monitor the long-term effects of vaccines and broad-spectrum antiviral drugs, we can use CS as an entry point and therapeutic target to alleviate the severity of the disease in patients. To effectively combat the mutation, new technologies for neutralizing or controlling CS must be developed. In recent years, nanotechnology has been widely applied in the biomedical field, opening up a plethora of opportunities for CS. Here, we put forward the view of cytokine storm as a therapeutic target can be used to treat critically ill patients by expounding the relationship between coronavirus disease 2019 (COVID-19) and CS and the mechanisms associated with CS. We pay special attention to the representative strategies of nanomaterials in current neutral and CS research, as well as their potential chemical design and principles. We hope that the nanostrategies described in this review provide attractive treatment options for severe and critical COVID-19 caused by CS.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mao Li
- Health Management Centre, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Ezeh CK, Dibua MEU. Anti-biofilm, drug delivery and cytotoxicity properties of dendrimers. ADMET AND DMPK 2024; 12:239-267. [PMID: 38720923 PMCID: PMC11075165 DOI: 10.5599/admet.1917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/24/2023] [Indexed: 05/12/2024] Open
Abstract
Background and purpose Treatments using antimicrobial agents have faced many difficulties as a result of biofilm formation by pathogenic microorganisms. The biofilm matrix formed by these microorganisms prevents antimicrobial agents from penetrating the interior where they can exact their activity effectively. Additionally, extracellular polymeric molecules associated with biofilm surfaces can absorb antimicrobial compounds, lowering their bioavailability. This problem has resulted in the quest for alternative treatment protocols, and the development of nanomaterials and devices through nanotechnology has recently been on the rise. Research approach The literature on dendrimers was searched for in databases such as Google Scholar, PubMed, and ScienceDirect. Key results As a nanomaterial, dendrimers have found useful applications as a drug delivery vehicle for antimicrobial agents against biofilm-mediated infections to circumvent these defense mechanisms. The distinctive properties of dendrimers, such as multi-valency, biocompatibility, high water solubility, non-immunogenicity, and biofilm matrix-/cell membrane fusogenicity (ability to merge with intracellular membrane or other proteins), significantly increase the efficacy of antimicrobial agents and reduce the likelihood of recurring infections. Conclusion This review outlines the current state of dendrimer carriers for biofilm treatments, provides examples of their real-world uses, and examines potential drawbacks.
Collapse
Affiliation(s)
- Christian K. Ezeh
- University of Nigeria, Department of Microbiology, Nsukka, Enugu State, Nigeria
| | | |
Collapse
|
5
|
Hannon G, Bogdanska A, Keogh A, Finn SP, Gobbo OL, Prina-Mello A. Biodistribution and histological analysis of iron oxide-dextran nanoparticles in wistar rats. Nanotoxicology 2023; 17:562-580. [PMID: 37982374 DOI: 10.1080/17435390.2023.2276413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/11/2023] [Indexed: 11/21/2023]
Abstract
Iron oxide nanoparticles (IONP) are showing promise in many biomedical applications. One of these- magnetic hyperthermia- utilizes externally applied alternating magnetic fields and tumor-residing magnetic nanoparticles to generate localized therapeutic temperature elevations. Magnetic hyperthermia is approved in Europe to treat glioblastoma and is undergoing clinical assessment in the United States to treat prostate cancer. In this study, we performed biodistribution and histological analysis of a new IONP (RCL-01) in Wistar rats. These nanoparticles are currently undergoing clinical assessment in locally advanced pancreatic ductal adenocarcinoma to determine the feasibility of magnetic hyperthermia treatment in this disease. The study presented here aimed to determine the fate of these nanoparticles in vivo and whether this results in organ damage. Wistar rats were injected intravenously with relatively high doses of IONP (30 mgFe/kg, 45 mgFe/kg and 60 mgFe/kg) and compared to a vehicle control to determine the accumulation of iron in organs and whether this resulted in histological changes in these tissues. Dose-dependent increases of iron were observed in the liver, spleen and lungs of IONP-treated animals at 7 days postinjection; however, this did not result in significant histological changes in these tissues. Immunofluorescent imaging determined these nanoparticles are internalized by macrophages in tissue, suggesting they are readily phagocytosed by the reticuloendothelial system for eventual recycling. Notably, no changes in iron or dextran staining were found in the kidneys across all treatment groups, providing evidence for potential renal clearance.
Collapse
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging Group, Trinity Translational Medicine Institute, Ireland
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Anna Bogdanska
- Nanomedicine and Molecular Imaging Group, Trinity Translational Medicine Institute, Ireland
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Anna Keogh
- Department of Histopathology, Trinity College Dublin, Ireland
| | - Stephen P Finn
- Department of Histopathology, Trinity College Dublin, Ireland
| | - Oliviero L Gobbo
- School of Pharmacy and Pharmaceutical Sciences, Ireland
- Trinity St James's Cancer Institute, Ireland
| | - Adriele Prina-Mello
- Nanomedicine and Molecular Imaging Group, Trinity Translational Medicine Institute, Ireland
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute, Trinity College Dublin, Ireland
| |
Collapse
|
6
|
Van PN, Qian W, Zhe J, Henry J, Wang M, Liu B, Zhang W, Wang X, Paulus YM. Renally Clearable Ultraminiature Chain-Like Gold Nanoparticle Clusters for Multimodal Molecular Imaging of Choroidal Neovascularization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302069. [PMID: 37285214 PMCID: PMC10509731 DOI: 10.1002/adma.202302069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Currently, available gold nanoparticles (GNPs) typically accumulate in the liver and spleen, leading to concerns for their long-term biosafety. To address this long-standing problem, ultraminiature chain-like gold nanoparticle clusters (GNCs) are developed. Via self-assembly of 7-8 nm GNP monomers, GNCs provide redshifted optical absorption and scattering contrast in the near-infrared window. After disassembly, GNCs turn back to GNPs with a size smaller than the renal glomerular filtration size cutoff, allowing their excretion via urine. A one-month longitudinal study in a rabbit eye model demonstrates that GNCs facilitate multimodal molecular imaging of choroidal neovascularization (CNV) in vivo, non-invasively, with excellent sensitivity and spatial resolution. GNCs targeting αv β3 integrins enhance photoacoustic and optical coherence tomography (OCT) signals from CNV by 25.3-fold and 150%, respectively. With excellent biosafety and biocompatibility demonstrated, GNCs render a first-of-its-kind nanoplatform for biomedical imaging.
Collapse
Affiliation(s)
- Phuc Nguyen Van
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Wei Qian
- IMRA America, Inc., 1044 Woodridge Ave., Ann Arbor, MI 48105, USA
| | - Josh Zhe
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jessica Henry
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Mingyang Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Bing Liu
- IMRA America, Inc., 1044 Woodridge Ave., Ann Arbor, MI 48105, USA
| | - Wei Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yannis M. Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
7
|
Porta M, Pumarega J, Gasull M, Aguilar R, Henríquez-Hernández LA, Basagaña X, Zumbado M, Villar-García J, Rius C, Mehta S, Vidal M, Jimenez A, Campi L, Lop J, Pérez Luzardo OL, Dobaño C, Moncunill G. Individual blood concentrations of persistent organic pollutants and chemical elements, and COVID-19: A prospective cohort study in Barcelona. ENVIRONMENTAL RESEARCH 2023; 223:115419. [PMID: 36740154 PMCID: PMC9898057 DOI: 10.1016/j.envres.2023.115419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND There is wide, largely unexplained heterogeneity in immunological and clinical responses to SARS-CoV-2 infection. Numerous environmental chemicals, such as persistent organic pollutants (POPs) and chemical elements (including some metals, essential trace elements, rare earth elements, and minority elements), are immunomodulatory and cause a range of adverse clinical events. There are no prospective studies on the effects of such substances on the incidence of SARS-CoV-2 infection and COVID-19. OBJECTIVE To investigate the influence of blood concentrations of POPs and elements measured several years before the pandemic on the development of SARS-CoV-2 infection and COVID-19 in individuals from the general population. METHODS We conducted a prospective cohort study in 154 individuals from the general population of Barcelona. POPs and elements were measured in blood samples collected in 2016-2017. SARS-CoV-2 infection was detected by rRT-PCR in nasopharyngeal swabs and/or by antibody serology using eighteen isotype-antigen combinations measured in blood samples collected in 2020-2021. We analyzed the associations between concentrations of the contaminants and SARS-CoV-2 infection and development of COVID-19, taking into account personal habits and living conditions during the pandemic. RESULTS Several historically prevalent POPs, as well as arsenic, cadmium, mercury, and zinc, were not associated with COVID-19, nor with SARS-CoV-2 infection. However, DDE (adjusted OR = 5.0 [95% CI: 1.2-21]), lead (3.9 [1.0-15]), thallium (3.4 [1.0-11]), and ruthenium (5.0 [1.8-14]) were associated with COVID-19, as were tantalum, benzo(b)fluoranthene, DDD, and manganese. Thallium (3.8 [1.6-8.9]), and ruthenium (2.9 [1.3-6.7]) were associated with SARS-CoV-2 infection, and so were lead, gold, and (protectively) iron and selenium. We identified mixtures of up to five substances from several chemical groups, with all substances independently associated to the outcomes. CONCLUSIONS Our results provide the first prospective and population-based evidence of an association between individual concentrations of some contaminants and COVID-19 and SARS-CoV-2 infection. POPs and elements may contribute to explain the heterogeneity in the development of SARS-CoV-2 infection and COVID-19 in the general population. If the associations are confirmed as causal, means are available to mitigate the corresponding risks.
Collapse
Affiliation(s)
- Miquel Porta
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
| | - José Pumarega
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Magda Gasull
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Ruth Aguilar
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Luis A Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences, Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Xavier Basagaña
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; ISGlobal - PSMar - PRBB, Barcelona, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences, Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | | | - Cristina Rius
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Agència de Salut Pública de Barcelona, Barcelona, Spain
| | - Sneha Mehta
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; Columbia Mailman School of Public Health, New York, USA
| | - Marta Vidal
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Alfons Jimenez
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Laura Campi
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Lop
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain
| | - Octavio L Pérez Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences, Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Carlota Dobaño
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Gemma Moncunill
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
8
|
The Effect of Curcumin-Loaded Glucan Nanoparticles on Immune Cells: Size as a Critical Quality Attribute. Pharmaceutics 2023; 15:pharmaceutics15020623. [PMID: 36839945 PMCID: PMC9959491 DOI: 10.3390/pharmaceutics15020623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Curcumin is known for its multiple health benefits, largely due to its antioxidant and anti-inflammatory properties. It has been extensively studied as a therapeutic agent, however, it does not have good clinical efficacy due to its poor water solubility and bioavailability. Despite accepting the encapsulation of this compound in polymeric particles as one of the most promising strategies to increase its therapeutic value, these nanoparticles have fallen short of expectations due to a lack of assessment of their possible adverse effects on the immune system. Therefore, in this work, we report on a new method to encapsulate curcumin into glucan nanoparticles and their effects on cells of the immune system were evaluated. Two different-sized curcumin-loaded glucan NPs (GluCur 100 and GluCur 380) were produced, each with an encapsulation efficiency close to 100%, and were characterized regarding their size distribution, surface properties, and morphology. The results revealed the greatest hemolytic effect and cytotoxicity for the smallest particles (100 nm) tested in human PBMCs and RAW 264.7 cells. Although GluCur 380 NPs showed a weaker ROS production, they were able to inhibit the production of NO by macrophages. Furthermore, we found that the coagulation time was not affected by both sized-particles as well as platelet function. Additionally, both nanoparticles induced lymphocyte proliferation and TNF-α secretion by Mo-DCs. In conclusion, this report emphasizes the importance of the immunotoxicity assessment and how this is dependent on the intrinsic properties of nanomaterials, hopefully contributing to increasing the safety of nanomedicines.
Collapse
|
9
|
Singh N, Shi S, Goel S. Ultrasmall silica nanoparticles in translational biomedical research: Overview and outlook. Adv Drug Deliv Rev 2023; 192:114638. [PMID: 36462644 PMCID: PMC9812918 DOI: 10.1016/j.addr.2022.114638] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/06/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
The exemplary progress of silica nanotechnology has attracted extensive attention across a range of biomedical applications such as diagnostics and imaging, drug delivery, and therapy of cancer and other diseases. Ultrasmall silica nanoparticles (USNs) have emerged as a particularly promising class demonstrating unique properties that are especially suitable for and have shown great promise in translational and clinical biomedical research. In this review, we discuss synthetic strategies that allow precise engineering of USNs with excellent control over size and surface chemistry, functionalization, and pharmacokinetic and toxicological profiles. We summarize the current state-of-the-art in the biomedical applications of USNs with a particular focus on select clinical studies. Finally, we illustrate long-standing challenges in the translation of inorganic nanotechnology, particularly in the context of ultrasmall nanomedicines, and provide our perspectives on potential solutions and future opportunities in accelerating the translation and widespread adoption of USN technology in biomedical research.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112
| | - Sixiang Shi
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112,Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112,Correspondence to ;
| | - Shreya Goel
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112,Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112,Correspondence to ;
| |
Collapse
|
10
|
Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS NANO 2022; 16:17497-17551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite their clinical success in drug delivery applications, the potential of theranostic nanomedicines is hampered by mechanistic uncertainty and a lack of science-informed regulatory guidance. Both the therapeutic efficacy and the toxicity of nanoformulations are tightly controlled by the complex interplay of the nanoparticle's physicochemical properties and the individual patient/tumor biology; however, it can be difficult to correlate such information with observed outcomes. Additionally, as nanomedicine research attempts to gradually move away from large-scale animal testing, the need for computer-assisted solutions for evaluation will increase. Such models will depend on a clear understanding of structure-activity relationships. This review provides a comprehensive overview of the field of cancer nanomedicine and provides a knowledge framework and foundational interaction maps that can facilitate future research, assessments, and regulation. By forming three complementary maps profiling nanobio interactions and pathways at different levels of biological complexity, a clear picture of a nanoparticle's journey through the body and the therapeutic and adverse consequences of each potential interaction are presented.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
11
|
Zhang G, Luo W, Yang W, Li S, Li D, Zeng Y, Li Y. The importance of the
IL
‐1 family of cytokines in nanoimmunosafety and nanotoxicology. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1850. [DOI: 10.1002/wnan.1850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Guofang Zhang
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Wenhe Luo
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Wenjie Yang
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Su Li
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Dongjie Li
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Yanqiao Zeng
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| |
Collapse
|
12
|
Li T, Akinade T, Zhou J, Wang H, Tong Q, He S, Rinebold E, Valencia Salazar LE, Bhansali D, Zhong Y, Ruan J, Du J, Dalerba P, Leong KW. Therapeutic Nanocarriers Inhibit Chemotherapy-Induced Breast Cancer Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203949. [PMID: 36220339 PMCID: PMC9685442 DOI: 10.1002/advs.202203949] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/04/2022] [Indexed: 05/09/2023]
Abstract
Chemotherapy, although effective against primary tumors, may promote metastasis by causing the release of proinflammatory factors from damaged cells. Here, polymeric nanoparticles that deliver chemotherapeutics and scavenge proinflammatory factors simultaneously to inhibit chemotherapy-induced breast cancer metastasis are developed. The cationic nanoparticles can adsorb cell-free nucleic acids (cfNAs) based on charge-charge interaction, which downregulates the expression of Toll-like receptors and then reduces the secretion of inflammatory cytokines. Through in vitro structural optimization, cationic polyamidoamine (PAMAM) dendrimers modified with drug-binding dodecyl groups and diethylethanolamine surface groups (PAMAM-G3-C125 -DEEA20 ) exhibit the most desirable combination of nanoparticle size (≈140 nm), drug loading, cytotoxicity, cfNA binding, and anti-inflammatory activity. In the mouse models of breast cancer metastasis, paclitaxel-loaded nanoparticles reduce serum levels of cfNAs and inflammatory cytokines compared with paclitaxel treatment alone and inhibit both primary tumor growth and tumor metastasis. Additionally, no significant side effects are detected in the serum or major organs. These results provide a strategy to deliver chemotherapeutics to primary tumors while reducing the prometastatic effects of chemotherapy.
Collapse
Affiliation(s)
- Tianyu Li
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Tolulope Akinade
- Graduate Program in Cellular, Molecular and Biomedical StudiesVagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNY10027USA
| | - Jie Zhou
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- Department of Breast OncologyAffiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhou510095P. R. China
| | - Hongxia Wang
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Qisong Tong
- School of Biomedical Sciences and EngineeringGuangzhou International CampusSouth China University of TechnologyGuangzhou511442P. R. China
| | - Siyu He
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Emily Rinebold
- Department of Pathology & Cell BiologyDepartment of Medicine (Division of Digestive and Liver Diseases)Herbert Irving Comprehensive Cancer Center (HICCC) and Columbia Stem Cell Initiative (CSCI)Columbia UniversityNew YorkNY10032USA
- Department of Surgery (Division of Colorectal Surgery)Columbia University Medical CenterNew YorkNY10032USA
| | - Luis E. Valencia Salazar
- Department of Pathology & Cell BiologyDepartment of Medicine (Division of Digestive and Liver Diseases)Herbert Irving Comprehensive Cancer Center (HICCC) and Columbia Stem Cell Initiative (CSCI)Columbia UniversityNew YorkNY10032USA
| | - Divya Bhansali
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Yiling Zhong
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Jing Ruan
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Jinzhi Du
- School of Biomedical Sciences and EngineeringGuangzhou International CampusSouth China University of TechnologyGuangzhou511442P. R. China
| | - Piero Dalerba
- Department of Pathology & Cell BiologyDepartment of Medicine (Division of Digestive and Liver Diseases)Herbert Irving Comprehensive Cancer Center (HICCC) and Columbia Stem Cell Initiative (CSCI)Columbia UniversityNew YorkNY10032USA
| | - Kam W. Leong
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- Department of Systems BiologyColumbia University Medical CenterNew YorkNY10032USA
| |
Collapse
|
13
|
Pandey A, Mishra AK. Immunomodulation, Toxicity, and Therapeutic Potential of Nanoparticles. BIOTECH 2022; 11:42. [PMID: 36134916 PMCID: PMC9497228 DOI: 10.3390/biotech11030042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Altered immune responses associated with human disease conditions, such as inflammatory and infectious diseases, cancers, and autoimmune diseases, are among the primary causes of morbidity across the world. A wealth of studies has demonstrated the efficiency of nanoparticles (NPs)-based immunotherapy strategies in different laboratory model systems. Nanoscale dimensions (<100 nm) enable NPs to have increased surface area to volume ratio, surface charge, and reactivity. Physicochemical properties along with the shapes, sizes, and elasticity influence the immunomodulatory response induced by NPs. In recent years, NPs-based immunotherapy strategies have attained significant focus in the context of cancers and autoimmune diseases. This rapidly growing field of nanomedicine has already introduced ~50 nanotherapeutics in clinical practices. Parallel to wide industrial applications of NPs, studies have raised concerns about their potential threat to the environment and human health. In past decades, a wealth of in vivo and in vitro studies has demonstrated the immunotoxicity potential of various NPs. Given that the number of engineered/designed NPs in biomedical applications is continuing to increase, it is pertinent to establish the toxicity profile for their safe and intelligent use in biomedical applications. The review is intended to summarize the NPs-induced immunomodulation pertaining to toxicity and therapeutic development in human health.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abhinava K. Mishra
- Molecular, Cellular and Developmental Biology Department, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
14
|
Wu H, Wang MD, Zhu JQ, Li ZL, Wang WY, Gu LH, Shen F, Yang T. Mesoporous Nanoparticles for Diagnosis and Treatment of Liver Cancer in the Era of Precise Medicine. Pharmaceutics 2022; 14:1760. [PMID: 36145508 PMCID: PMC9500788 DOI: 10.3390/pharmaceutics14091760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Primary liver cancer is the seventh-most-common cancer worldwide and the fourth-leading cause of cancer mortality. In the current era of precision medicine, the diagnosis and management of liver cancer are full of challenges and prospects. Mesoporous nanoparticles are often designed as specific carriers of drugs and imaging agents because of their special morphology and physical and chemical properties. In recent years, the design of the elemental composition and morphology of mesoporous nanoparticles have greatly improved their drug-loading efficiency, biocompatibility and biodegradability. Especially in the field of primary liver cancer, mesoporous nanoparticles have been modified as highly tumor-specific imaging contrast agents and targeting therapeutic medicine. Various generations of complexes and structures have been determined for the complicated clinical management requirements. In this review, we summarize these advanced mesoporous designs in the different diagnostic and therapeutic fields of liver cancer and discuss the relevant advantages and disadvantages of transforming applications. By comparing the material properties, drug-delivery characteristics and application methods of different kinds of mesoporous materials in liver cancer, we try to help determine the most suitable drug carriers and information media for future clinical trials. We hope to improve the fabrication of biomedical mesoporous nanoparticles and provide direct evidence for specific cancer management.
Collapse
Affiliation(s)
- Han Wu
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310053, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| | - Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
| | - Jia-Qi Zhu
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310053, China
| | - Zhen-Li Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
| | - Wan-Yin Wang
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| | - Li-Hui Gu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| | - Tian Yang
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310053, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| |
Collapse
|
15
|
Aboeleneen SB, Scully MA, Harris JC, Sterin EH, Day ES. Membrane-wrapped nanoparticles for photothermal cancer therapy. NANO CONVERGENCE 2022; 9:37. [PMID: 35960404 PMCID: PMC9373884 DOI: 10.1186/s40580-022-00328-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/27/2022] [Indexed: 05/31/2023]
Abstract
Cancer is a global health problem that needs effective treatment strategies. Conventional treatments for solid-tumor cancers are unsatisfactory because they cause unintended harm to healthy tissues and are susceptible to cancer cell resistance. Nanoparticle-mediated photothermal therapy is a minimally invasive treatment for solid-tumor cancers that has immense promise as a standalone therapy or adjuvant to other treatments like chemotherapy, immunotherapy, or radiotherapy. To maximize the success of photothermal therapy, light-responsive nanoparticles can be camouflaged with cell membranes to endow them with unique biointerfacing capabilities that reduce opsonization, prolong systemic circulation, and improve tumor delivery through enhanced passive accumulation or homotypic targeting. This ensures a sufficient dose of photoresponsive nanoparticles arrives at tumor sites to enable their complete thermal ablation. This review summarizes the state-of-the-art in cell membrane camouflaged nanoparticles for photothermal cancer therapy and provides insights to the path forward for clinical translation.
Collapse
Affiliation(s)
| | | | - Jenna C Harris
- Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Eric H Sterin
- Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Emily S Day
- Biomedical Engineering, University of Delaware, Newark, DE, USA.
- Materials Science and Engineering, University of Delaware, Newark, DE, USA.
- Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE, USA.
| |
Collapse
|
16
|
Lafuente-Gómez N, Wang S, Fontana F, Dhanjani M, García-Soriano D, Correia A, Castellanos M, Rodriguez Diaz C, Salas G, Santos HA, Somoza Á. Synergistic immunomodulatory effect in macrophages mediated by magnetic nanoparticles modified with miRNAs. NANOSCALE 2022; 14:11129-11138. [PMID: 35904896 DOI: 10.1039/d2nr01767a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we describe the synthesis of magnetic nanoparticles composed of a maghemite core (MNP) and three different coatings (dextran, D-MNP; carboxymethyldextran, CMD-MNP; and dimercaptosuccinic acid, DMSA-MNP). Their interactions with red blood cells, plasma proteins, and macrophages were also assessed. CMD-MNP was selected for its good biosafety profile and for promoting a pro-inflammatory response in macrophages, which was associated with the nature of the coating. Thus, we proposed a smart miRNA delivery system using CMD-MNP as a carrier for cancer immunotherapy applications. Particularly, we prove that CMD-MNP-miRNA155 and CMD-MNP-miRNA125b nanoparticles can display a pro-inflammatory response in human macrophages by increasing the expression of CD80 and the levels of TNF-α and IL-6. Hence, our proposed miRNA-delivery nanosystem can be exploited as a new immunotherapeutic tool based on magnetic nanoparticles.
Collapse
Affiliation(s)
- Nuria Lafuente-Gómez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049, Madrid, Spain.
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mónica Dhanjani
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049, Madrid, Spain.
| | - David García-Soriano
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049, Madrid, Spain.
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Milagros Castellanos
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049, Madrid, Spain.
| | - Ciro Rodriguez Diaz
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049, Madrid, Spain.
| | - Gorka Salas
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049, Madrid, Spain.
- Unidad de Nanobiotecnología Asociada al Centro Nacional de Biotecnología (CSIC), 28049, Madrid, Spain
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen/University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049, Madrid, Spain.
- Unidad de Nanobiotecnología Asociada al Centro Nacional de Biotecnología (CSIC), 28049, Madrid, Spain
| |
Collapse
|
17
|
Liao Z, Huang J, Lo PC, Lovell JF, Jin H, Yang K. Self-adjuvanting cancer nanovaccines. J Nanobiotechnology 2022; 20:345. [PMID: 35883176 PMCID: PMC9316869 DOI: 10.1186/s12951-022-01545-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/04/2022] [Indexed: 11/12/2022] Open
Abstract
Nanovaccines, a new generation of vaccines that use nanoparticles as carriers and/or adjuvants, have been widely used in the prevention and treatment of various diseases, including cancer. Nanovaccines have sparked considerable interest in cancer therapy due to a variety of advantages, including improved access to lymph nodes (LN), optimal packing and presentation of antigens, and induction of a persistent anti-tumor immune response. As a delivery system for cancer vaccines, various types of nanoparticles have been designed to facilitate the delivery of antigens and adjuvants to lymphoid organs and antigen-presenting cells (APCs). Particularly, some types of nanoparticles are able to confer an immune-enhancing capability and can themselves be utilized for adjuvant-like effect for vaccines, suggesting a direction for a better use of nanomaterials and the optimization of cancer vaccines. However, this role of nanoparticles in vaccines has not been well studied. To further elucidate the role of self-adjuvanting nanovaccines in cancer therapy, we review the mechanisms of antitumor vaccine adjuvants with respect to nanovaccines with self-adjuvanting properties, including enhancing cross-presentation, targeting signaling pathways, biomimicking of the natural invasion process of pathogens, and further unknown mechanisms. We surveyed self-adjuvanting cancer nanovaccines in clinical research and discussed their advantages and challenges. In this review, we classified self-adjuvanting cancer nanovaccines according to the underlying immunomodulatory mechanism, which may provide mechanistic insights into the design of nanovaccines in the future.
Collapse
Affiliation(s)
- Zhiyun Liao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Huang
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
18
|
Theranostic Potentials of Gold Nanomaterials in Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14133047. [PMID: 35804818 PMCID: PMC9264814 DOI: 10.3390/cancers14133047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/03/2022] [Accepted: 06/17/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hematological malignancies (HMs) cover 50% of all malignancies, and people of all ages can be affected by these deadly diseases. In many cases, conventional diagnostic tools fail to diagnose HMs at an early stage, due to heterogeneity and the long-term indolent phase of HMs. Therefore, many patients start their treatment at the late stage of HMs and have poor survival. Gold nanomaterials (GNMs) have shown promise as a cancer theranostic agent. GNMs are 1 nm to 100 nm materials having magnetic resonance and surface-plasmon-resonance properties. GNMs conjugated with antibodies, nucleic acids, peptides, photosensitizers, chemotherapeutic drugs, synthetic-drug candidates, bioactive compounds, and other theranostic biomolecules may enhance the efficacy and efficiency of both traditional and advanced theranostic approaches to combat HMs. Abstract Hematological malignancies (HMs) are a heterogeneous group of blood neoplasia generally characterized by abnormal blood-cell production. Detection of HMs-specific molecular biomarkers (e.g., surface antigens, nucleic acid, and proteomic biomarkers) is crucial in determining clinical states and monitoring disease progression. Early diagnosis of HMs, followed by an effective treatment, can remarkably extend overall survival of patients. However, traditional and advanced HMs’ diagnostic strategies still lack selectivity and sensitivity. More importantly, commercially available chemotherapeutic drugs are losing their efficacy due to adverse effects, and many patients develop resistance against these drugs. To overcome these limitations, the development of novel potent and reliable theranostic agents is urgently needed to diagnose and combat HMs at an early stage. Recently, gold nanomaterials (GNMs) have shown promise in the diagnosis and treatment of HMs. Magnetic resonance and the surface-plasmon-resonance properties of GNMs have made them a suitable candidate in the diagnosis of HMs via magnetic-resonance imaging and colorimetric or electrochemical sensing of cancer-specific biomarkers. Furthermore, GNMs-based photodynamic therapy, photothermal therapy, radiation therapy, and targeted drug delivery enhanced the selectivity and efficacy of anticancer drugs or drug candidates. Therefore, surface-tuned GNMs could be used as sensitive, reliable, and accurate early HMs, metastatic HMs, and MRD-detection tools, as well as selective, potent anticancer agents. However, GNMs may induce endothelial leakage to exacerbate cancer metastasis. Studies using clinical patient samples, patient-derived HMs models, or healthy-animal models could give a precise idea about their theranostic potential as well as biocompatibility. The present review will investigate the theranostic potential of vectorized GNMs in HMs and future challenges before clinical theranostic applications in HMs.
Collapse
|
19
|
Safety Challenges and Application Strategies for the Use of Dendrimers in Medicine. Pharmaceutics 2022; 14:pharmaceutics14061292. [PMID: 35745863 PMCID: PMC9230513 DOI: 10.3390/pharmaceutics14061292] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/07/2023] Open
Abstract
Dendrimers are used for a variety of applications in medicine but, due to their host–guest and entrapment characteristics, are particularly used for the delivery of genes and drugs. However, dendrimers are intrinsically toxic, thus creating a major limitation for their use in biological systems. To reduce such toxicity, biocompatible dendrimers have been designed and synthesized, and surface engineering has been used to create advantageous changes at the periphery of dendrimers. Although dendrimers have been reviewed previously in the literature, there has yet to be a systematic and comprehensive review of the harmful effects of dendrimers. In this review, we describe the routes of dendrimer exposure and their distribution in vivo. Then, we discuss the toxicity of dendrimers at the organ, cellular, and sub-cellular levels. In this review, we also describe how technology can be used to reduce dendrimer toxicity, by changing their size and surface functionalization, how dendrimers can be combined with other materials to generate a composite formulation, and how dendrimers can be used for the diagnosis of disease. Finally, we discuss future challenges, developments, and research directions in developing biocompatible and safe dendrimers for medical purposes.
Collapse
|
20
|
Popov AB, Melle F, Linnane E, González-López C, Ahmed I, Parshad B, Franck CO, Rahmoune H, Richards FM, Muñoz-Espín D, Jodrell DI, Fairen-Jimenez D, Fruk L. Size-tuneable and immunocompatible polymer nanocarriers for drug delivery in pancreatic cancer. NANOSCALE 2022; 14:6656-6669. [PMID: 35438701 PMCID: PMC9070568 DOI: 10.1039/d2nr00864e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Nanocarriers have emerged as one of the most promising approaches for drug delivery. Although several nanomaterials have been approved for clinical use, the translation from lab to clinic remains challenging. However, by implementing rational design strategies and using relevant models for their validation, these challenges are being addressed. This work describes the design of novel immunocompatible polymer nanocarriers made of melanin-mimetic polydopamine and Pluronic F127 units. The nanocarrier preparation was conducted under mild conditions, using a highly reproducible method that was tuned to provide a range of particle sizes (<100 nm) without changing the composition of the carrier. A set of in vitro studies were conducted to provide a comprehensive assessment of the effect of carrier size (40, 60 and 100 nm) on immunocompatibility, viability and uptake into different pancreatic cancer cells varying in morphological and phenotypic characteristics. Pancreatic cancer is characterised by poor treatment efficacy and no improvement in patient survival in the last 40 years due to the complex biology of the solid tumour. High intra- and inter-tumoral heterogeneity and a dense tumour microenvironment limit diffusion and therapeutic response. The Pluronic-polydopamine nanocarriers were employed for the delivery of irinotecan active metabolite SN38, which is used in the treatment of pancreatic cancer. Increased antiproliferative effect was observed in all tested cell lines after administration of the drug encapsulated within the carrier, indicating the system's potential as a therapeutic agent for this hard-to-treat cancer.
Collapse
Affiliation(s)
- Andrea Bistrović Popov
- BioNano Engineering Lab, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - Francesca Melle
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Emily Linnane
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Cristina González-López
- BioNano Engineering Lab, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
- CRUK Cambridge Centre Early Detection Program, Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Ishtiaq Ahmed
- BioNano Engineering Lab, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - Badri Parshad
- BioNano Engineering Lab, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - Christoph O Franck
- BioNano Engineering Lab, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - Hassan Rahmoune
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Frances M Richards
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
- Translational Medicine, Oncology R&D, Astra Zeneca, Cambridge CB4 0WG, UK
| | - Daniel Muñoz-Espín
- CRUK Cambridge Centre Early Detection Program, Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Duncan I Jodrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - David Fairen-Jimenez
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Ljiljana Fruk
- BioNano Engineering Lab, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| |
Collapse
|
21
|
Three-dimensional (3D) liver cell models - a tool for bridging the gap between animal studies and clinical trials when screening liver accumulation and toxicity of nanobiomaterials. Drug Deliv Transl Res 2022; 12:2048-2074. [PMID: 35507131 PMCID: PMC9066991 DOI: 10.1007/s13346-022-01147-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/13/2022]
Abstract
Despite the exciting properties and wide-reaching applications of nanobiomaterials (NBMs) in human health and medicine, their translation from bench to bedside is slow, with a predominant issue being liver accumulation and toxicity following systemic administration. In vitro 2D cell-based assays and in vivo testing are the most popular and widely used methods for assessing liver toxicity at pre-clinical stages; however, these fall short in predicting toxicity for NBMs. Focusing on in vitro and in vivo assessment, the accurate prediction of human-specific hepatotoxicity is still a significant challenge to researchers. This review describes the relationship between NBMs and the liver, and the methods for assessing toxicity, focusing on the limitations they bring in the assessment of NBM hepatotoxicity as one of the reasons defining the poor translation for NBMs. We will then present some of the most recent advances towards the development of more biologically relevant in vitro liver methods based on tissue-mimetic 3D cell models and how these could facilitate the translation of NBMs going forward. Finally, we also discuss the low public acceptance and limited uptake of tissue-mimetic 3D models in pre-clinical assessment, despite the demonstrated technical and ethical advantages associated with them.
Collapse
|
22
|
Sun H, Bhandari K, Burrola S, Wu J, Ding WQ. Pancreatic Ductal Cell-Derived Extracellular Vesicles Are Effective Drug Carriers to Enhance Paclitaxel's Efficacy in Pancreatic Cancer Cells through Clathrin-Mediated Endocytosis. Int J Mol Sci 2022; 23:4773. [PMID: 35563165 PMCID: PMC9099870 DOI: 10.3390/ijms23094773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
Chemo-resistance challenges the clinical management of pancreatic ductal adenocarcinoma (PDAC). A limited admittance of chemotherapeutics to PDAC tissues is a key obstacle in chemotherapy of the malignancy. An enhanced uptake of drugs into PDAC cells is required for a more effective treatment. Extracellular vesicles (EVs), especially small EVs (sEVs), have emerged as drug carriers for delivering chemotherapeutics due to their low immunogenicity and propensity for homing toward tumor cells. The present study evaluated sEVs derived from six different human cell lines as carriers for paclitaxel (PTX). The encapsulation of the chemotherapeutics was achieved using incubation, sonication and electroporation. The cytotoxicity of the EV drugs was evaluated by MTS assay. While sonication led to a higher efficiency of drug loading than incubation and electroporation, PTX loaded through incubation with HPNE-derived sEVs (HI-PTX) was the most efficacious in killing PDAC cells. Furthermore, HI-PTX was taken up by PDAC cells more efficiently than other EV drugs, implying that the efficacy of HI-PTX is associated with its efficient uptake. This was supported by the observation that the cytotoxicity and uptake of HI-PTX is mediated via the clathrin-dependent endocytosis. Our results indicate that the hTERT-HPNE cell-derived EVs are effective drug carriers to enhance paclitaxel's efficacy in PDAC cells.
Collapse
Affiliation(s)
- Haoyao Sun
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China;
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (S.B.)
| | - Kritisha Bhandari
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (S.B.)
| | - Stephanie Burrola
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (S.B.)
| | - Jinchang Wu
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China;
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (S.B.)
| |
Collapse
|
23
|
Engineering immunity via skin-directed drug delivery devices. J Control Release 2022; 345:385-404. [DOI: 10.1016/j.jconrel.2022.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022]
|
24
|
Hrvat A, Schmidt M, Obholzer M, Benders S, Kollenda S, Horn PA, Epple M, Brandau S, Mallmann-Gottschalk N. Reactivity of NK Cells Against Ovarian Cancer Cells Is Maintained in the Presence of Calcium Phosphate Nanoparticles. Front Immunol 2022; 13:830938. [PMID: 35251021 PMCID: PMC8895254 DOI: 10.3389/fimmu.2022.830938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 11/29/2022] Open
Abstract
Calcium phosphate nanoparticles (CaP-NPs) are biodegradable carriers that can be functionalized with biologically active molecules. As such, they are potential candidates for delivery of therapeutic molecules in cancer therapies. In this context, it is important to explore whether CaP-NPs impair the natural or therapy-induced immune cell activity against cancer cells. Therefore, in this study, we have investigated the effects of different CaP-NPs on the anti-tumor activity of natural killer (NK) cells using different ovarian cancer (OC) cell line models. We explored these interactions in coculture systems consisting of NK cells, OC cells, CaP-NPs, and therapeutic Cetuximab antibodies (anti-EGFR, ADCC-inducing antibody). Our experiments revealed that aggregated CaP-NPs can serve as artificial targets, which activate NK cell degranulation and impair ADCC directed against tumor targets. However, when CaP-NPs were properly dissolved by sonication, they did not cause substantial activation. CaP-NPs with SiO2-SH-shell induced some activation of NK cells that was not observed with polyethyleneimine-coated CaP-NPs. Addition of CaP-NPs to NK killing assays did not impair conjugation of NK with OC and subsequent tumor cytolytic NK degranulation. Therapeutic antibody coupled to functionalized CaP-NPs maintained substantial levels of antibody-dependent cellular cytotoxic activity. Our study provides a cell biological basis for the application of functionalized CaP-NPs in immunologic anti-cancer therapies.
Collapse
Affiliation(s)
- Antonio Hrvat
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Mathias Schmidt
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Martin Obholzer
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Sonja Benders
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Sebastian Kollenda
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Sven Brandau
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
- German Cancer Consortium, Partner Site Essen-Düsseldorf, Essen, Germany
- *Correspondence: Sven Brandau,
| | - Nina Mallmann-Gottschalk
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| |
Collapse
|
25
|
Ramos TI, Villacis-Aguirre CA, López-Aguilar KV, Santiago Padilla L, Altamirano C, Toledo JR, Santiago Vispo N. The Hitchhiker's Guide to Human Therapeutic Nanoparticle Development. Pharmaceutics 2022; 14:247. [PMID: 35213980 PMCID: PMC8879439 DOI: 10.3390/pharmaceutics14020247] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Nanomedicine plays an essential role in developing new therapies through novel drug delivery systems, diagnostic and imaging systems, vaccine development, antibacterial tools, and high-throughput screening. One of the most promising drug delivery systems are nanoparticles, which can be designed with various compositions, sizes, shapes, and surface modifications. These nanosystems have improved therapeutic profiles, increased bioavailability, and reduced the toxicity of the product they carry. However, the clinical translation of nanomedicines requires a thorough understanding of their properties to avoid problems with the most questioned aspect of nanosystems: safety. The particular physicochemical properties of nano-drugs lead to the need for additional safety, quality, and efficacy testing. Consequently, challenges arise during the physicochemical characterization, the production process, in vitro characterization, in vivo characterization, and the clinical stages of development of these biopharmaceuticals. The lack of a specific regulatory framework for nanoformulations has caused significant gaps in the requirements needed to be successful during their approval, especially with tests that demonstrate their safety and efficacy. Researchers face many difficulties in establishing evidence to extrapolate results from one level of development to another, for example, from an in vitro demonstration phase to an in vivo demonstration phase. Additional guidance is required to cover the particularities of this type of product, as some challenges in the regulatory framework do not allow for an accurate assessment of NPs with sufficient evidence of clinical success. This work aims to identify current regulatory issues during the implementation of nanoparticle assays and describe the major challenges that researchers have faced when exposing a new formulation. We further reflect on the current regulatory standards required for the approval of these biopharmaceuticals and the requirements demanded by the regulatory agencies. Our work will provide helpful information to improve the success of nanomedicines by compiling the challenges described in the literature that support the development of this novel encapsulation system. We propose a step-by-step approach through the different stages of the development of nanoformulations, from their design to the clinical stage, exemplifying the different challenges and the measures taken by the regulatory agencies to respond to these challenges.
Collapse
Affiliation(s)
- Thelvia I. Ramos
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador
| | - Carlos A. Villacis-Aguirre
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
| | - Katherine V. López-Aguilar
- Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador;
| | | | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile;
- Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Placilla, Sector Curauma, Valparaíso 2340000, Chile
| | - Jorge R. Toledo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador
| |
Collapse
|
26
|
Brannon ER, Guevara MV, Pacifici NJ, Lee JK, Lewis JS, Eniola-Adefeso O. Polymeric particle-based therapies for acute inflammatory diseases. NATURE REVIEWS. MATERIALS 2022; 7:796-813. [PMID: 35874960 PMCID: PMC9295115 DOI: 10.1038/s41578-022-00458-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 05/02/2023]
Abstract
Acute inflammation is essential for initiating and coordinating the body's response to injuries and infections. However, in acute inflammatory diseases, inflammation is not resolved but propagates further, which can ultimately lead to tissue damage such as in sepsis, acute respiratory distress syndrome and deep vein thrombosis. Currently, clinical protocols are limited to systemic steroidal treatments, fluids and antibiotics that focus on eradicating inflammation rather than modulating it. Strategies based on stem cell therapeutics and selective blocking of inflammatory molecules, despite showing great promise, still lack the scalability and specificity required to treat acute inflammation. By contrast, polymeric particle systems benefit from uniform manufacturing at large scales while preserving biocompatibility and versatility, thus providing an ideal platform for immune modulation. Here, we outline design aspects of polymeric particles including material, size, shape, deformability and surface modifications, providing a strategy for optimizing the targeting of acute inflammation.
Collapse
Affiliation(s)
- Emma R. Brannon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI USA
| | | | - Noah J. Pacifici
- Department of Biomedical Engineering, University of California, Davis, CA USA
| | - Jonathan K. Lee
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Jamal S. Lewis
- Department of Biomedical Engineering, University of California, Davis, CA USA
| | | |
Collapse
|
27
|
Dou Y, Zhao F, Li X, Guo Y. Monitoring Nitric Oxide-Induced Hypoxic Tumor Radiosensitization by Radiation-Activated Nanoagents under BOLD/DWI Imaging. ACS Biomater Sci Eng 2021; 7:5242-5254. [PMID: 34612040 DOI: 10.1021/acsbiomaterials.1c00543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tumor heterogeneity leads to unpredictable radiotherapeutic outcomes although multiple sensitization strategies have been developed. Real-time monitoring of treatment response through noninvasive imaging methods is critical and a great challenge in optimizing radiotherapy. Herein, we propose a combined functional magnetic resonance imaging approach (blood-oxygen-level-dependent/diffusion-weighted (BOLD/DWI) imaging) for monitoring tumor response to nitric oxide (NO)-induced hypoxic radiosensitization achieved by radiation-activated nanoagents (NSC@SiO2-SNO NPs). This nanoagent carrying NO donors can efficiently concentrate in tumors and specifically produce high concentrations of NO under radiation. In vitro and in vivo studies show that this nanoagent can effectively reduce tumor hypoxia, promote radiation-induced apoptosis and DNA damage under hypoxia, and ultimately inhibit tumor growth. In vivo BOLD/DWI imaging enables noninvasive monitoring of improvements in tumor oxygen levels and radiosensitivity during treatment with this nanostrategy by quantifying functional parameters. This work demonstrates that BOLD/DWI imaging is a useful tool for evaluating tumor response and monitoring the effectiveness of radiotherapeutic strategies aimed at improving hypoxia, with great clinical potential.
Collapse
Affiliation(s)
- Yan Dou
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Fangshi Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Xue Li
- Department of Radiology and Department of Radiation Oncology, Tianjin Medical University Second Hospital, Tianjin 300211, P. R. China
| | - Yanyan Guo
- Department of Radiology and Department of Radiation Oncology, Tianjin Medical University Second Hospital, Tianjin 300211, P. R. China
| |
Collapse
|
28
|
Fazal S, Lee R. Biomimetic Bacterial Membrane Vesicles for Drug Delivery Applications. Pharmaceutics 2021; 13:1430. [PMID: 34575506 PMCID: PMC8468068 DOI: 10.3390/pharmaceutics13091430] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/26/2021] [Accepted: 09/05/2021] [Indexed: 12/30/2022] Open
Abstract
Numerous factors need to be considered to develop a nanodrug delivery system that is biocompatible, non-toxic, easy to synthesize, cost-effective, and feasible for scale up over and above their therapeutic efficacy. With regards to this, worldwide, exosomes, which are nano-sized vesicles obtained from mammalian cells, are being explored as a biomimetic drug delivery system that has superior biocompatibility and high translational capability. However, the economics of undertaking large-scale mammalian culture to derive exosomal vesicles for translation seems to be challenging and unfeasible. Recently, Bacterial Membrane Vesicles (BMVs) derived from bacteria are being explored as a viable alternative as biomimetic drug delivery systems that can be manufactured relatively easily at much lower costs at a large scale. Until now, BMVs have been investigated extensively as successful immunomodulating agents, but their capability as drug delivery systems remains to be explored in detail. In this review, the use of BMVs as suitable cargo delivery vehicles is discussed with focus on their use for in vivo treatment of cancer and bacterial infections reported thus far. Additionally, the different types of BMVs, factors affecting their synthesis and different cargo loading techniques used in BMVs are also discussed.
Collapse
Affiliation(s)
| | - Ruda Lee
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan;
| |
Collapse
|
29
|
Gao S, Yang X, Xu J, Qiu N, Zhai G. Nanotechnology for Boosting Cancer Immunotherapy and Remodeling Tumor Microenvironment: The Horizons in Cancer Treatment. ACS NANO 2021; 15:12567-12603. [PMID: 34339170 DOI: 10.1021/acsnano.1c02103] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Immunotherapy that harnesses the human immune system to fight cancer has received widespread attention and become a mainstream strategy for cancer treatment. Cancer immunotherapy not only eliminates primary tumors but also treats metastasis and recurrence, representing a major advantage over traditional cancer treatments. Recently with the development of nanotechnology, there exists much work applying nanomaterials to cancer immunotherapy on the basis of their excellent physiochemical properties, such as efficient tissue-specific delivery function, huge specific surface area, and controllable surface chemistry. Consequently, nanotechnology holds significant potential in improving the efficacy of cancer immunotherapy. Nanotechnology-based immunotherapy mainly manifests its inhibitory effect on tumors via two different approaches: one is to produce an effective anti-tumor immune response during tumorigenesis, and the other is to enhance tumor immune defense ability by modulating the immune suppression mechanism in the tumor microenvironment. With the success of tumor immunotherapy, understanding the interaction between the immune system and smart nanomedicine has provided vigorous vitality for the development of cancer treatment. This review highlights the application, progress, and prospect of nanomedicine in the process of tumor immunoediting and also discusses several engineering methods to improve the efficiency of tumor treatment.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| | - Xiaoye Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| | - Jiangkang Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| | - Na Qiu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| |
Collapse
|
30
|
Hannon G, Prina-Mello A. Endotoxin contamination of engineered nanomaterials: Overcoming the hurdles associated with endotoxin testing. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1738. [PMID: 34254460 DOI: 10.1002/wnan.1738] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/30/2022]
Abstract
Nanomaterials are highly susceptible to endotoxin contamination due their large surface-to-volume ratios and endotoxins propensity to associate readily to hydrophobic and cationic surfaces. Additionally, the stability of endotoxin ensures it cannot be removed efficiently through conventional sterilization techniques such as autoclaving and ionizing radiation. In recent times, the true significance of this hurdle has come to light with multiple reports from the United States Nanotechnology Characterization Laboratory, in particular, along with our own experiences of endotoxin testing from multiple Horizon 2020-funded projects which highlight the importance of this issue for the clinical translation of nanomaterials. Herein, we provide an overview on the topic of endotoxin contamination of nanomaterials intended for biomedical applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Dublin, Ireland.,Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Adriele Prina-Mello
- Nanomedicine and Molecular Imaging Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Dublin, Ireland.,Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
31
|
Preclinical models and technologies to advance nanovaccine development. Adv Drug Deliv Rev 2021; 172:148-182. [PMID: 33711401 DOI: 10.1016/j.addr.2021.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
The remarkable success of targeted immunotherapies is revolutionizing cancer treatment. However, tumor heterogeneity and low immunogenicity, in addition to several tumor-associated immunosuppression mechanisms are among the major factors that have precluded the success of cancer vaccines as targeted cancer immunotherapies. The exciting outcomes obtained in patients upon the injection of tumor-specific antigens and adjuvants intratumorally, reinvigorated interest in the use of nanotechnology to foster the delivery of vaccines to address cancer unmet needs. Thus, bridging nano-based vaccine platform development and predicted clinical outcomes the selection of the proper preclinical model will be fundamental. Preclinical models have revealed promising outcomes for cancer vaccines. However, only few cases were associated with clinical responses. This review addresses the major challenges related to the translation of cancer nano-based vaccines to the clinic, discussing the requirements for ex vivo and in vivo models of cancer to ensure the translation of preclinical success to patients.
Collapse
|
32
|
Yu F, Wei C, Deng P, Peng T, Hu X. Deep exploration of random forest model boosts the interpretability of machine learning studies of complicated immune responses and lung burden of nanoparticles. SCIENCE ADVANCES 2021; 7:7/22/eabf4130. [PMID: 34039604 PMCID: PMC8153727 DOI: 10.1126/sciadv.abf4130] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/05/2021] [Indexed: 05/22/2023]
Abstract
The development of machine learning provides solutions for predicting the complicated immune responses and pharmacokinetics of nanoparticles (NPs) in vivo. However, highly heterogeneous data in NP studies remain challenging because of the low interpretability of machine learning. Here, we propose a tree-based random forest feature importance and feature interaction network analysis framework (TBRFA) and accurately predict the pulmonary immune responses and lung burden of NPs, with the correlation coefficient of all training sets >0.9 and half of the test sets >0.75. This framework overcomes the feature importance bias brought by small datasets through a multiway importance analysis. TBRFA also builds feature interaction networks, boosts model interpretability, and reveals hidden interactional factors (e.g., various NP properties and exposure conditions). TBRFA provides guidance for the design and application of ideal NPs and discovers the feature interaction networks that contribute to complex systems with small-size data in various fields.
Collapse
Affiliation(s)
- Fubo Yu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Changhong Wei
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peng Deng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ting Peng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
33
|
Li S, Guo X, Gao R, Sun M, Xu L, Xu C, Kuang H. Recent Progress on Biomaterials Fighting against Viruses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005424. [PMID: 33644954 DOI: 10.1002/adma.202005424] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/19/2020] [Indexed: 05/24/2023]
Abstract
Viruses not only pose severe threats to public health, but also influence the development of society. Over the past decade, rapid advances have been seen in the application of nanomaterials to virus research. As an interdisciplinary field, nanotechnology offers powerful functions because the structures of nanomaterials are unique, with remarkable physicochemical properties and excellent biocompatibility. Nanomaterials have been developed for virus detection and tracking and for antiviral strategies, to better understand viruses and reduce viral infections, implying a bright future for this field. Herein, the recent advances are systematically summarized regarding the nanomaterials used in viral studies. Representative applications of nanomaterials to viral detection and tracking are described. The antiviral effects achieved with nanomaterials based on different mechanisms are also described, including entry inhibition, inhibition of viral replication, and immunological enhancement. The current challenges and future opportunities in this promising field are also discussed.
Collapse
Affiliation(s)
- Si Li
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiao Guo
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Rui Gao
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
34
|
Li X, Li H, Zhang C, Pich A, Xing L, Shi X. Intelligent nanogels with self-adaptive responsiveness for improved tumor drug delivery and augmented chemotherapy. Bioact Mater 2021; 6:3473-3484. [PMID: 33869898 PMCID: PMC8024537 DOI: 10.1016/j.bioactmat.2021.03.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/23/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
For cancer nanomedicine, the main goal is to deliver therapeutic agents effectively to solid tumors. Here, we report the unique design of self-adaptive ultrafast charge-reversible chitosan-polypyrrole nanogels (CH-PPy NGs) for enhanced tumor delivery and augmented chemotherapy. CH was first grafted with PPy to form CH-PPy polymers that were used to form CH-PPy NGs through glutaraldehyde cross-linking via a miniemulsion method. The CH-PPy NGs could be finely treated with an alkaline solution to generate ultrafast charge-reversible CH-PPy-OH-4 NGs (R-NGs) with a negative charge at a physiological pH and a positive charge at a slightly acidic pH. The R-NGs display good cytocompatibility, excellent protein resistance, and high doxorubicin (DOX) loading efficiency. Encouragingly, the prepared R-NGs/DOX have prolonged blood circulation time, enhanced tumor accumulation, penetration and tumor cell uptake due to their self-adaptive charge switching to be positively charged, and responsive drug delivery for augmented chemotherapy of ovarian carcinoma in vivo. Notably, the tumor accumulation of R-NGs/DOX (around 4.7%) is much higher than the average tumor accumulation of other nanocarriers (less than 1%) reported elsewhere. The developed self-adaptive PPy-grafted CH NGs represent one of the advanced designs of nanomedicine that could be used for augmented antitumor therapy with low side effects.
Collapse
Affiliation(s)
- Xin Li
- Department of Gynecology and Obstetrics, XinHua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China.,DWI-Leibniz-Institute for Interactive Materials e.V., 52056, Aachen, Germany.,Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Helin Li
- DWI-Leibniz-Institute for Interactive Materials e.V., 52056, Aachen, Germany.,Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Changchang Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials e.V., 52056, Aachen, Germany.,Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany.,Aachen Maastricht Institute for Biobased Materials, Maastricht University, 6167, RD Geleen, Netherlands
| | - Lingxi Xing
- Department of Gynecology and Obstetrics, XinHua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.,CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390, Funchal, Portugal
| |
Collapse
|
35
|
Li Z, Liu Y, Fang X, Shu Z. Nanomaterials Enhance the Immunomodulatory Effect of Molecular Targeted Therapy. Int J Nanomedicine 2021; 16:1631-1661. [PMID: 33688183 PMCID: PMC7935456 DOI: 10.2147/ijn.s290346] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/23/2021] [Indexed: 01/22/2023] Open
Abstract
Molecular targeted therapy, a tumor therapy strategy that inhibits specific oncogenic targets, has been shown to modulate the immune response. In addition to directly inhibiting the proliferation and metastasis of tumor cells, molecular targeted drugs can activate the immune system through a variety of mechanisms, including by promoting tumor antigen processing and presentation, increasing intratumoral T cell infiltration, enhancing T cell activation and function, and attenuating the immunosuppressive effect of the tumor microenvironment. However, poor water solubility, insufficient accumulation at the tumor site, and nonspecific targeting of immune cells limit their application. To this end, a variety of nanomaterials have been developed to overcome these obstacles and amplify the immunomodulatory effects of molecular targeted drugs. In this review, we summarize the impact of molecular targeted drugs on the antitumor immune response according to their mechanisms, highlight the advantages of nanomaterials in enhancing the immunomodulatory effect of molecular targeted therapy, and discuss the current challenges and future prospects.
Collapse
Affiliation(s)
- Zhongmin Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Yilun Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Zhenbo Shu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| |
Collapse
|
36
|
Izci M, Maksoudian C, Manshian BB, Soenen SJ. The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors. Chem Rev 2021; 121:1746-1803. [PMID: 33445874 PMCID: PMC7883342 DOI: 10.1021/acs.chemrev.0c00779] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 02/08/2023]
Abstract
Nanomaterial (NM) delivery to solid tumors has been the focus of intense research for over a decade. Classically, scientists have tried to improve NM delivery by employing passive or active targeting strategies, making use of the so-called enhanced permeability and retention (EPR) effect. This phenomenon is made possible due to the leaky tumor vasculature through which NMs can leave the bloodstream, traverse through the gaps in the endothelial lining of the vessels, and enter the tumor. Recent studies have shown that despite many efforts to employ the EPR effect, this process remains very poor. Furthermore, the role of the EPR effect has been called into question, where it has been suggested that NMs enter the tumor via active mechanisms and not through the endothelial gaps. In this review, we provide a short overview of the EPR and mechanisms to enhance it, after which we focus on alternative delivery strategies that do not solely rely on EPR in itself but can offer interesting pharmacological, physical, and biological solutions for enhanced delivery. We discuss the strengths and shortcomings of these different strategies and suggest combinatorial approaches as the ideal path forward.
Collapse
Affiliation(s)
- Mukaddes Izci
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Christy Maksoudian
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Bella B. Manshian
- Translational
Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Stefaan J. Soenen
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| |
Collapse
|
37
|
Roma-Rodrigues C, Raposo LR, Valente R, Fernandes AR, Baptista PV. Combined cancer therapeutics-Tackling the complexity of the tumor microenvironment. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1704. [PMID: 33565269 DOI: 10.1002/wnan.1704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
Cancer treatment has yet to find a "silver bullet" capable of selectively and effectively kill tumor cells without damaging healthy cells. Nanomedicine is a promising field that can combine several moieties in one system to produce a multifaceted nanoplatform. The tumor microenvironment (TME) is considered responsible for the ineffectiveness of cancer therapeutics and the difficulty in the translation from the bench to bed side of novel nanomedicines. A promising approach is the use of combinatorial therapies targeting the TME with the use of stimuli-responsive nanomaterials which would increase tumor targeting. Contemporary combined strategies for TME-targeting nanoformulations are based on the application of external stimuli therapies, such as photothermy, hyperthermia or ultrasounds, in combination with stimuli-responsive nanoparticles containing a core, usually composed by metal oxides or graphene, and a biocompatible stimuli-responsive coating layer that could also contain tumor targeting moieties and a chemotherapeutic agent to enhance the therapeutic efficacy. The obstacles that nanotherapeutics must overcome in the TME to accomplish an effective therapeutic cargo delivery and the proposed strategies for improved nanotherapeutics will be reviewed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Catarina Roma-Rodrigues
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Luís R Raposo
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Rúben Valente
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro V Baptista
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
38
|
Della Camera G, Lipsa D, Mehn D, Italiani P, Boraschi D, Gioria S. A Step-by-Step Approach to Improve Clinical Translation of Liposome-Based Nanomaterials, a Focus on Innate Immune and Inflammatory Responses. Int J Mol Sci 2021; 22:E820. [PMID: 33467541 PMCID: PMC7830677 DOI: 10.3390/ijms22020820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/25/2022] Open
Abstract
This study aims to provide guidelines to design and perform a robust and reliable physical-chemical characterization of liposome-based nanomaterials, and to support method development with a specific focus on their inflammation-inducing potential. Out of eight differently functionalized liposomes selected as "case-studies", three passed the physical-chemical characterization ( in terms of size-distribution, homogeneity and stability) and the screening for bacterial contamination (sterility and apyrogenicity). Although all three were non-cytotoxic when tested in vitro, they showed a different capacity to activate human blood cells. HSPC/CHOL-coated liposomes elicited the production of several inflammation-related cytokines, while DPPC/CHOL- or DSPC/CHOL-functionalized liposomes did not. This work underlines the need for accurate characterization at multiple levels and the use of reliable in vitro methods, in order to obtain a realistic assessment of liposome-induced human inflammatory response, as a fundamental requirement of nanosafety regulations.
Collapse
Affiliation(s)
- Giacomo Della Camera
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (G.D.C.); (D.L.); (D.M.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Naples, Italy; (P.I.); (D.B.)
| | - Dorelia Lipsa
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (G.D.C.); (D.L.); (D.M.)
| | - Dora Mehn
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (G.D.C.); (D.L.); (D.M.)
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Naples, Italy; (P.I.); (D.B.)
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Naples, Italy; (P.I.); (D.B.)
| | - Sabrina Gioria
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (G.D.C.); (D.L.); (D.M.)
| |
Collapse
|
39
|
Xie Q, Liu Y, Long Y, Wang Z, Jiang S, Ahmed R, Daniyal M, Li B, Liu B, Wang W. Hybrid-cell membrane-coated nanocomplex-loaded chikusetsusaponin IVa methyl ester for a combinational therapy against breast cancer assisted by Ce6. Biomater Sci 2021; 9:2991-3004. [DOI: 10.1039/d0bm02211j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hybrid-cell membrane coating nanocomplexes loading chikusetsusaponin IVa methyl ester for combinational therapy against breast cancer assisted with Ce6.
Collapse
|
40
|
Giubilato E, Cazzagon V, Amorim MJB, Blosi M, Bouillard J, Bouwmeester H, Costa AL, Fadeel B, Fernandes TF, Fito C, Hauser M, Marcomini A, Nowack B, Pizzol L, Powell L, Prina-Mello A, Sarimveis H, Scott-Fordsmand JJ, Semenzin E, Stahlmecke B, Stone V, Vignes A, Wilkins T, Zabeo A, Tran L, Hristozov D. Risk Management Framework for Nano-Biomaterials Used in Medical Devices and Advanced Therapy Medicinal Products. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4532. [PMID: 33066064 PMCID: PMC7601697 DOI: 10.3390/ma13204532] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/25/2022]
Abstract
The convergence of nanotechnology and biotechnology has led to substantial advancements in nano-biomaterials (NBMs) used in medical devices (MD) and advanced therapy medicinal products (ATMP). However, there are concerns that applications of NBMs for medical diagnostics, therapeutics and regenerative medicine could also pose health and/or environmental risks since the current understanding of their safety is incomplete. A scientific strategy is therefore needed to assess all risks emerging along the life cycles of these products. To address this need, an overarching risk management framework (RMF) for NBMs used in MD and ATMP is presented in this paper, as a result of a collaborative effort of a team of experts within the EU Project BIORIMA and with relevant inputs from external stakeholders. The framework, in line with current regulatory requirements, is designed according to state-of-the-art approaches to risk assessment and management of both nanomaterials and biomaterials. The collection/generation of data for NBMs safety assessment is based on innovative integrated approaches to testing and assessment (IATA). The framework can support stakeholders (e.g., manufacturers, regulators, consultants) in systematically assessing not only patient safety but also occupational (including healthcare workers) and environmental risks along the life cycle of MD and ATMP. The outputs of the framework enable the user to identify suitable safe(r)-by-design alternatives and/or risk management measures and to compare the risks of NBMs to their (clinical) benefits, based on efficacy, quality and cost criteria, in order to inform robust risk management decision-making.
Collapse
Affiliation(s)
- Elisa Giubilato
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy; (E.G.); (V.C.); (A.M.); (E.S.)
| | - Virginia Cazzagon
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy; (E.G.); (V.C.); (A.M.); (E.S.)
| | - Mónica J. B. Amorim
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Magda Blosi
- Institute of Science and Technology for Ceramics, National Research Council of Italy (CNR-ISTEC), Via Granarolo 64, 48018 Faenza, Italy; (M.B.); (A.L.C.)
| | - Jacques Bouillard
- Institut National de l’Environnement industriel et des Risques, Parc Technologique ALATA, 60550 Verneuil-en-Halatte, France; (J.B.); (A.V.)
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University, 6708 WE Wageningen, The Netherlands;
| | - Anna Luisa Costa
- Institute of Science and Technology for Ceramics, National Research Council of Italy (CNR-ISTEC), Via Granarolo 64, 48018 Faenza, Italy; (M.B.); (A.L.C.)
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Teresa F. Fernandes
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK;
| | - Carlos Fito
- Instituto Tecnologico del Embalaje, Transporte y Logistica, 46980 Paterna-Valencia, Spain;
| | - Marina Hauser
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; (M.H.); (B.N.)
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy; (E.G.); (V.C.); (A.M.); (E.S.)
| | - Bernd Nowack
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; (M.H.); (B.N.)
| | - Lisa Pizzol
- GreenDecision Srl, Via delle Industrie, 21/8, 30175 Venice, Italy; (L.P.); (A.Z.)
| | - Leagh Powell
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (L.P.); (V.S.)
| | - Adriele Prina-Mello
- Trinity Translational Medicine Institute, Trinity College, The University of Dublin, Dublin 8, Ireland;
| | - Haralambos Sarimveis
- School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece;
| | | | - Elena Semenzin
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy; (E.G.); (V.C.); (A.M.); (E.S.)
| | | | - Vicki Stone
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (L.P.); (V.S.)
| | - Alexis Vignes
- Institut National de l’Environnement industriel et des Risques, Parc Technologique ALATA, 60550 Verneuil-en-Halatte, France; (J.B.); (A.V.)
| | - Terry Wilkins
- Nanomanufacturing Institute, School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK;
| | - Alex Zabeo
- GreenDecision Srl, Via delle Industrie, 21/8, 30175 Venice, Italy; (L.P.); (A.Z.)
| | - Lang Tran
- Institute of Occupational Medicine, Research Avenue North, Riccarton, Edinburgh EH14 4AP, UK;
| | - Danail Hristozov
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy; (E.G.); (V.C.); (A.M.); (E.S.)
| |
Collapse
|
41
|
Chua CYX, Ho J, Demaria S, Ferrari M, Grattoni A. Emerging technologies for local cancer treatment. ADVANCED THERAPEUTICS 2020; 3:2000027. [PMID: 33072860 PMCID: PMC7567411 DOI: 10.1002/adtp.202000027] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 12/13/2022]
Abstract
The fundamental limitations of systemic therapeutic administration have prompted the development of local drug delivery platforms as a solution to increase effectiveness and reduce side effects. By confining therapeutics to the site of disease, local delivery technologies can enhance therapeutic index. This review highlights recent advances and opportunities in local drug delivery strategies for cancer treatment in addition to challenges that need to be addressed to facilitate clinical translation. The benefits of local cancer treatment combined with technological advancements and increased understanding of the tumor microenvironment, present a prime breakthrough opportunity for safer and more effective therapies.
Collapse
Affiliation(s)
- Corrine Ying Xuan Chua
- Department of Nanomedicine, Houston Methodist Research Institute (HMRI), Houston, TX, 77030, USA
| | - Jeremy Ho
- Department of Nanomedicine, Houston Methodist Research Institute (HMRI), Houston, TX, 77030, USA
- School of Medicine, Weill Cornell Medical College, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Mauro Ferrari
- University of Washington, Box 357630, H375 Health Science Building, Seattle, WA, 98195, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute (HMRI), Houston, TX, 77030, USA
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, 77030, USA
| |
Collapse
|
42
|
Ding Y, Xu H, Xu C, Tong Z, Zhang S, Bai Y, Chen Y, Xu Q, Zhou L, Ding H, Sun Z, Yan S, Mao Z, Wang W. A Nanomedicine Fabricated from Gold Nanoparticles-Decorated Metal-Organic Framework for Cascade Chemo/Chemodynamic Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001060. [PMID: 32995124 PMCID: PMC7507500 DOI: 10.1002/advs.202001060] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/07/2020] [Indexed: 05/08/2023]
Abstract
The incorporation of new modalities into chemotherapy greatly enhances the anticancer efficacy combining the merits of each treatment, showing promising potentials in clinical translations. Herein, a hybrid nanomedicine (Au/FeMOF@CPT NPs) is fabricated using metal-organic framework (MOF) nanoparticles and gold nanoparticles (Au NPs) as building blocks for cancer chemo/chemodynamic therapy. MOF NPs are used as vehicles to encapsulate camptothecin (CPT), and the hybridization by Au NPs greatly improves the stability of the nanomedicine in a physiological environment. Triggered by the high concentration of phosphate inside the cancer cells, Au/FeMOF@CPT NPs effectively collapse after internalization, resulting in the complete drug release and activation of the cascade catalytic reactions. The intracellular glucose can be oxidized by Au NPs to produce hydrogen dioxide, which is further utilized as chemical fuel for the Fenton reaction, thus realizing the synergistic anticancer efficacy. Benefitting from the enhanced permeability and retention effect and sophisticated fabrications, the blood circulation time and tumor accumulation of Au/FeMOF@CPT NPs are significantly increased. In vivo results demonstrate that the combination of chemotherapy and chemodynamic therapy effectively suppresses the tumor growth, meantime the systemic toxicity of this nanomedicine is greatly avoided.
Collapse
|
43
|
Ferretti AM, Usseglio S, Mondini S, Drago C, La Mattina R, Chini B, Verderio C, Leonzino M, Cagnoli C, Joshi P, Boraschi D, Italiani P, Li Y, Swartzwelter BJ, Sironi L, Gelosa P, Castiglioni L, Guerrini U, Ponti A. Towards bio-compatible magnetic nanoparticles: Immune-related effects, in-vitro internalization, and in-vivo bio-distribution of zwitterionic ferrite nanoparticles with unexpected renal clearance. J Colloid Interface Sci 2020; 582:678-700. [PMID: 32911414 DOI: 10.1016/j.jcis.2020.08.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Iron oxide and other ferrite nanoparticles have not yet found widespread application in the medical field since the translation process faces several big hurdles. The incomplete knowledge of the interactions between nanoparticles and living organisms is an unfavorable factor. This complex subject should be made simpler by synthesizing magnetic nanoparticles with good physical (relaxivity) and chemical (colloidal stability, anti-fouling) properties and no biological activity (no immune-related effects, minimal internalization, fast clearance). Such an innocent scaffold is the main aim of the present paper. We systematically searched for it within the class of small-to-medium size ferrite nanoparticles coated by small (zwitter)ionic ligands. Once established, it can be functionalized to achieve targeting, drug delivery, etc. and the observed biological effects will be traced back to the functional molecules only, as the nanosized scaffold is innocent. EXPERIMENTS We synthesized nine types of magnetic nanoparticles by systematic variation of core composition, size, coating. We investigated their physico-chemical properties and interaction with serum proteins, phagocytic microglial cells, and a human model of inflammation and studied their biodistribution and clearance in healthy mice. The nanoparticles have good magnetic properties and their surface charge is determined by the preferential adsorption of anions. All nanoparticle types can be considered as immunologically safe, an indispensable pre-requisite for medical applications in humans. All but one type display low internalization by microglial BV2 cells, a process strongly affected by the nanoparticle size. Both small (3 nm) and medium size (11 nm) zwitterionic nanoparticles are in part captured by the mononuclear phagocyte system (liver and spleen) and in part rapidly (≈1 h) excreted through the urinary system of mice. FINDINGS The latter result questions the universality of the accepted size threshold for the renal clearance of nanoparticles (5.5 nm). We suggest that it depends on the nature of the circulating particles. Renal filterability of medium-size magnetic nanoparticles is appealing because they share with small nanoparticles the decreased accumulation-related toxicity while performing better as magnetic diagnostic/therapeutic agents thanks to their larger magnetic moment. In conclusion, many of our nanoparticle types are a bio-compatible innocent scaffold with unexpectedly favorable clearance.
Collapse
Affiliation(s)
- Anna M Ferretti
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, Via G. Fantoli 16/15, 20138 Milano, Italy
| | - Sandro Usseglio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, Via G. Fantoli 16/15, 20138 Milano, Italy
| | - Sara Mondini
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, Via G. Fantoli 16/15, 20138 Milano, Italy
| | - Carmelo Drago
- Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche, Via P. Gaifami, 18, 95126 Catania, Italy
| | - Rosa La Mattina
- Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche, Via P. Gaifami, 18, 95126 Catania, Italy
| | - Bice Chini
- Istituto di Neuroscienze (IN), Consiglio Nazionale delle Ricerche, Via L. Vanvitelli 32, 20129 Milano, Italy
| | - Claudia Verderio
- Istituto di Neuroscienze (IN), Consiglio Nazionale delle Ricerche, Via L. Vanvitelli 32, 20129 Milano, Italy
| | - Marianna Leonzino
- Istituto di Neuroscienze (IN), Consiglio Nazionale delle Ricerche, Via L. Vanvitelli 32, 20129 Milano, Italy
| | - Cinzia Cagnoli
- Istituto di Neuroscienze (IN), Consiglio Nazionale delle Ricerche, Via L. Vanvitelli 32, 20129 Milano, Italy
| | - Pooja Joshi
- Istituto di Neuroscienze (IN), Consiglio Nazionale delle Ricerche, Via L. Vanvitelli 32, 20129 Milano, Italy
| | - Diana Boraschi
- Istituto di Biochimica e Biologia Cellulare (IBBC), Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Napoli, Italy
| | - Paola Italiani
- Istituto di Biochimica e Biologia Cellulare (IBBC), Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Napoli, Italy
| | - Yang Li
- Istituto di Biochimica e Biologia Cellulare (IBBC), Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Napoli, Italy
| | - Benjamin J Swartzwelter
- Istituto di Biochimica e Biologia Cellulare (IBBC), Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Napoli, Italy
| | - Luigi Sironi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milano, Italy; Centro Cardiologico Monzino IRCCS, Via C. Parea 3, 20138 Milano, Italy
| | - Paolo Gelosa
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milano, Italy; Centro Cardiologico Monzino IRCCS, Via C. Parea 3, 20138 Milano, Italy
| | - Laura Castiglioni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milano, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milano, Italy
| | - Alessandro Ponti
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, Via G. Fantoli 16/15, 20138 Milano, Italy.
| |
Collapse
|
44
|
Gaffron F, Tilch A, Grüttner C, Kowalski A, Kramer M, Teichgräber U, Hilger I. Challenges in Tracking of Fluorochrome-Labelled Nanoparticles in Mice via Whole Body NIRF Imaging. NANOMATERIALS 2020; 10:nano10030596. [PMID: 32214019 PMCID: PMC7153379 DOI: 10.3390/nano10030596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022]
Abstract
Fluorochrome-labelled iron oxide magnetic nanoparticles (MNP) have been of great help in elucidating biological processes. Here, we used dually-fluorochrome-labelled MNP and studied to what extent fluorescence detection could reflect their fate in living animals. One day after application in mice (200 µmol Fe/kg body weight), the fluorescence of the dye attached to the core (DY-730) was very prominent and in agreement with the increase of iron in the liver and spleen of mice, but inconspicuous at time points thereafter. We attribute this fluorescence behavior to early degradation processes of the MNP´s core in the cellular lysosomal compartment. In contrast, the fluorescence of the dye DY-555 stuck to the PEG coating was not detectable in vivo. In summary, labelling of MNP with dyes at their metallic core could be of help when detecting first incidences of MNP biodegradation in vivo, as opposed to dyes attached to the MNP coating.
Collapse
Affiliation(s)
- Florian Gaffron
- Institute for Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, D-07740 Jena, Germany; (F.G.); (A.T.); (U.T.)
| | - Andrea Tilch
- Institute for Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, D-07740 Jena, Germany; (F.G.); (A.T.); (U.T.)
| | - Cordula Grüttner
- Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, D-18119 Rostock, Germany (A.K.)
| | - Anja Kowalski
- Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, D-18119 Rostock, Germany (A.K.)
| | - Martin Kramer
- Department of Veterinary Clinical Sciences, Small Animal Clinic, Justus- Liebig-University, D-35390 Gießen, Germany;
| | - Ulf Teichgräber
- Institute for Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, D-07740 Jena, Germany; (F.G.); (A.T.); (U.T.)
| | - Ingrid Hilger
- Institute for Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, D-07740 Jena, Germany; (F.G.); (A.T.); (U.T.)
- Correspondence: ; Tel.: +49-3641-932-5921
| |
Collapse
|