1
|
Burger NA, Loppinet B, Clarke A, Petekidis G. How Preparation Protocols Control the Rheology of Organoclay Gels. Ind Eng Chem Res 2025; 64:6980-6991. [PMID: 40191642 PMCID: PMC11970213 DOI: 10.1021/acs.iecr.4c04467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/09/2025]
Abstract
We elucidate the effect of preparation conditions on the rheological properties of organophilic clays consisting of platelet-like primary particles, VG69 (trademark of SLB) dispersed in oil, by varying the homogenization rate, homogenization temperature, and amount of added water. We establish that stable, nonsedimenting gel formation requires homogenization temperatures higher than 45 °C and the addition of a small amount of water during the homogenization stage. Dried organoclay dispersions, on the other hand, do not form stable gels, independent of the homogenization rate and temperature, suggesting the existence of only weak attractions in the absence of water molecules. Water-induced attraction is necessary to form gels, probably through hydrogen bonding between the silanol group of clay particles and water molecules. Moreover, the effect of homogenization temperature is related to the extent of exfoliation during the homogenization stage as confirmed by X-ray scattering. The gel plateau modulus, G p, is found to increase with clay concentration as G P ∼ c clay 3.9, typical of fractal gel networks. More interestingly, a linear increase in the elastic modulus with water concentration is observed over a wide range of water concentrations, while analyzing the effective yield strain deduced from the yield stress and elastic modulus reveals the existence of three regimes. We finally present dynamic state diagrams that clearly indicate the required conditions for the creation of stable gels and demonstrate the importance of controlling the preparation protocols in the formulation of clay dispersions and gels with desirable structural and mechanical properties.
Collapse
Affiliation(s)
- Nikolaos A. Burger
- IESL-FORTH, Vassilika Vouton, Heraklion 70013, Greece
- Department
of Materials Science & Engineering, University of Crete, Heraklion 70013, Greece
| | | | - Andrew Clarke
- SLB
Cambridge Research, High Cross, Madingley Road, Cambridge CB3 0EL, U.K.
| | - George Petekidis
- IESL-FORTH, Vassilika Vouton, Heraklion 70013, Greece
- Department
of Materials Science & Engineering, University of Crete, Heraklion 70013, Greece
| |
Collapse
|
2
|
Gao Y, Qiao Z, Zhang L, Shi L. High-Performance Proton Exchange Membrane with Vertically Aligned Montmorillonite Nanochannels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409192. [PMID: 39846353 DOI: 10.1002/smll.202409192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/16/2024] [Indexed: 01/24/2025]
Abstract
The traditional perfluorosulfonic acid proton exchange membrane is crucial for proton exchange membrane fuel cells, but its high cost has impeded broader commercialization. In this study, a novel concept of a cost-effective and stable vertically aligned polydopamine-intercalated montmorillonite membrane (VAPMM) is introduced. 2D nanochannels formed within the lamellar structure of polydopamine-coated montmorillonite nanosheets provide a significant stable in-plane proton conductivity of 0.58 S cm-1. The stacked lamellar structure is embedded in epoxy resin to maintain its orientation. Subsequently, precise slicing along the vertical direction of the 2D nanochannels yields a thin film ≈150 µm thick, featuring vertically aligned proton conductive transmembrane nanochannels. When assembled into a membrane electrode assembly with commercial gas diffusion electrodes, the VAPMM exhibits a maximum areal peak power density of up to 534.00 mW cm-2 at 75 °C with 100% RH, surpassing by more than four times that of a commercial Nafion membrane of similar thickness (N117, 183 µm, 116.17 mW cm-2). This study outlines a pathway for developing next-generation proton exchange membranes that are both cost-effective and highly stable. Additionally, it introduces a straightforward method to create fully vertically aligned transmembrane nanochannels while preserving the interlayer structure, which is crucial for advancements in nanofluidics.
Collapse
Affiliation(s)
- Yushuan Gao
- Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Zilin Qiao
- Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Lei Zhang
- Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Le Shi
- Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
3
|
Wang W, Yang Y, Zhang J. Regulating Lithium-Ion Transport in PEO-Based Solid-State Electrolytes through Microstructures of Clay Minerals. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5307-5315. [PMID: 39797773 DOI: 10.1021/acsami.4c16874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Clay minerals show significant potential as fillers in polymer composite solid electrolytes (CSEs), whereas the influence of their microstructures on lithium-ion (Li+) transport properties remains insufficiently understood. Herein, we design advanced poly(ethylene oxide) (PEO)-based CSEs incorporating clay minerals with diverse microstructures including 1D halloysite nanotubes, 2D Laponite (Lap) nanosheets, and 3D porous diatomite. These minerals form distinct Li+ transport pathways at the clay-PEO interfaces due to their varied structural configurations. Among them, 2D Lap nanosheets exhibit the most significant improvements in Li+ conductivity (1.67 × 10-4 ± 0.02 × 10-4 S cm-1 at 30 °C), Li+ transference number (0.72), and oxidative stability (4.7 V). Consequently, a solid-state Li|LiFePO4 battery with the PEO/Lap CSE exhibits high reversible capacity and superior cycling stability (with 90.2% capacity retention after 250 cycles at 1.0 and 30 °C). Furthermore, pouch batteries with an integrated LiFePO4 cathode and PEO/Lap CSE show superior safety performance, even under extreme damage. This work provides valuable theoretical insights for the design and application of clay mineral fillers in CSEs.
Collapse
Affiliation(s)
- Wankai Wang
- Research Center of Resource Chemistry and Energy Materials, Key Laboratory of Clay Mineral of Gansu, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yanfei Yang
- Research Center of Resource Chemistry and Energy Materials, Key Laboratory of Clay Mineral of Gansu, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Junping Zhang
- Research Center of Resource Chemistry and Energy Materials, Key Laboratory of Clay Mineral of Gansu, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
4
|
Abou-El-Sherbini KS, Morsi RMM, Elzahany EAM, Nour MA, Drweesh EA. Spectral and conductivity measurements insights on loading mechanisms of DMSO/water-kaolin complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124990. [PMID: 39186874 DOI: 10.1016/j.saa.2024.124990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Kaolin, a naturally occurring clay mineral renowned for its distinctive properties, holds significant importance across various industries. The integration of dimethyl sulfoxide (DMSO) into kaolin matrices, both in the presence and absence of water, has been extensively explored for its potential to enhance material characteristics. Addressing debates surrounding the proposed adsorption mechanism for the type I structure of DMSO, this study undertook a comprehensive physicochemical characterization of DMSO-kaolin complexes (DMSO-KCs) derived from untreated (UnK) and HCl-treated (HK) Egyptian ore, with a focus on elucidating the loading mechanism facilitated by water. Key insights gleaned from electrical conductivity, dielectric constant, and Fine Testing Technology - Fourier-transform infrared (FTT-FTIR) measurements, shedding light on the bonding nature of DMSO-KCs. FTT-FTIR analysis revealed two stages of water departure at 180 °C, with the final stage coinciding with the release of pyrolysis gases, confirming the catalytic degradation of DMSO. Through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), two distinct bonding types of DMSO molecules with kaolinite were identified: amorphous adsorbed (type I) and lattice-oriented intercalated (type II). Electrical characteristic evaluations within the temperature range of room temperature (RT) to 260 °C and frequency range of 42 Hz-1 MHz revealed that DMSO intercalation enhances the electrical properties of kaolin. Hydrated DMSO-KCs exhibited higher values of σac and ɛ' compared to non-hydrated samples. The activation energy (Ea) values for HCl-treated samples were smaller than those of untreated ones. Alternating current (AC) conductivity analysis indicated predominantly ionic behavior with frequency and temperature dependency in both HCl-treated and untreated kaolin. Our findings substantiate the adsorption mechanism of Type I DMSO, highlighting its amorphous nature, instability, and catalytic degradation over time, in contrast to the intercalated type II. This elucidation is pivotal for understanding the behavior of DMSO-KCs across diverse applications, including electronics, ceramics, and materialsscience.
Collapse
Affiliation(s)
- Khaled S Abou-El-Sherbini
- Department of Inorganic Chemistry, National Research Centre, 33 El Bohouth st. (former Eltahrir st.), Dokki, Giza P.O.12622, Egypt.
| | - Reham M M Morsi
- Physical Chemistry Department, National Research Centre, 33 El Bohoth St., Dokki, P.O. 12622 Giza, Egypt
| | - Eman A M Elzahany
- Department of Inorganic Chemistry, National Research Centre, 33 El Bohouth st. (former Eltahrir st.), Dokki, Giza P.O.12622, Egypt
| | - Mohamed A Nour
- Chemical Metrology Division - Gas Analysis and Fire Safety Laboratory, National Institute of Standards (NIS), Egypt
| | - Elsayed A Drweesh
- Department of Inorganic Chemistry, National Research Centre, 33 El Bohouth st. (former Eltahrir st.), Dokki, Giza P.O.12622, Egypt.
| |
Collapse
|
5
|
Liu H, Wang S, Fu Y, Shi C, Song Y, Zhang L, Chen C, Ling Z. Dependence of the formation kinetics of carbon dioxide hydrate on clay aging for solid carbon dioxide storage. J Colloid Interface Sci 2024; 675:347-356. [PMID: 38972122 DOI: 10.1016/j.jcis.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Clay-based marine sediments have great potential for safe and effective carbon dioxide (CO2) encapsulation by storing enormous amounts of CO2 in solid gas hydrate form. However, the aging of clay with time changes the surface properties of clay and complicates the CO2 hydrate formation behaviors in sediments. Due to the long clay aging period, it is difficult to identify the role of clay aging in the formation of CO2 hydrate in marine sediments. Here, we used ultrasonication and plasma treatment to simulate the breakage and oxidation of clay nanoflakes in aging and investigated the influence of clay aging on CO2 hydrate formation kinetics. We found that the breakage and oxidation of clay nanoflakes would disrupt the siloxane rings and graft hydroxyl on the clay nanoflakes. This decreased the negative charge density of clay nanoflakes and weakened the interfacial interaction of clay nanoflakes with the surrounding water. Therefore, the small clay nanoflakes enriched in hydroxyl would disrupt the surrounding tetrahedral water structure analogous to the CO2 hydrate, resulting in the prolongation of CO2 hydrate nucleation. These results revealed the influence of the structure-function relationship of clay nanoflakes with CO2 hydrate formation and are favorable for the development of hydrate-based CO2 storage.
Collapse
Affiliation(s)
- Huiquan Liu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuai Wang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yixuan Fu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Changrui Shi
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yongchen Song
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China.
| | - Lunxiang Zhang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Cong Chen
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Zheng Ling
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China.
| |
Collapse
|
6
|
Bisio C, Brendlé J, Cahen S, Feng Y, Hwang SJ, Melanova K, Nocchetti M, O'Hare D, Rabu P, Leroux F. Recent advances and perspectives on intercalation layered compounds part 1: design and applications in the field of energy. Dalton Trans 2024; 53:14525-14550. [PMID: 39057836 DOI: 10.1039/d4dt00755g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Herein, initially, we present a general overview of the global financial support for chemistry devoted to materials science, specifically intercalation layered compounds (ILCs). Subsequently, the strategies to synthesise these host structures and the corresponding guest-host hybrid assemblies are exemplified on the basis of some families of materials, including pillared clays (PILCs), porous clay heterostructures (PCHs), zirconium phosphate (ZrP), layered double hydroxides (LDHs), graphite intercalation compounds (GICs), graphene-based materials, and MXenes. Additionally, a non-exhaustive survey on their possible application in the field of energy through electrochemical storage, mostly as electrode materials but also as electrolyte additives, is presented, including lithium technologies based on lithium ion batteries (LIBs), and beyond LiBs with a focus on possible alternatives such XIBs (X = Na (NIB), K (KIB), Al (AIB), Zn (ZIB), and Cl (CIB)), reversible Mg batteries (RMBs), dual-ion batteries (DIBs), Zn-air and Zn-sulphur batteries and supercapacitors as well as their relevance in other fields related to (opto)electronics. This selective panorama should help readers better understand the reason why ILCs are expected to meet the challenge of tomorrow as electrode materials.
Collapse
Affiliation(s)
- Chiara Bisio
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, AL, Italy.
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Via C. Golgi 19, 20133 Milano, MI, Italy
| | - Jocelyne Brendlé
- Institut de Science des Matériaux de Mulhouse CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, 3b rue Alfred Werner, 68093 Mulhouse CEDEX, France.
| | - Sébastien Cahen
- Institut Jean Lamour - UMR 7198 CNRS-Université de Lorraine, Groupe Matériaux Carbonés, Campus ARTEM - 2 Allée André Guinier, BP 50840, F54011, NancyCedex, Francia
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, China
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Klara Melanova
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic
| | - Morena Nocchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | - Dermot O'Hare
- Chemistry Research Laboratory, University of Oxford Department of Chemistry, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Pierre Rabu
- Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS - Université de Strasbourg, UMR7504, 23 rue du Loess, BP43, 67034 Strasbourg cedex 2, France
| | - Fabrice Leroux
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, UMR CNRS 6296, Clermont Auvergne INP, 24 av Blaise Pascal, BP 80026, 63171 Aubière cedex, France.
| |
Collapse
|
7
|
Wang W, Yang Y, Yang J, Zhang J. Neuron-Like Silicone Nanofilaments@Montmorillonite Nanofillers of PEO-Based Solid-State Electrolytes for Lithium Metal Batteries with Wide Operation Temperature. Angew Chem Int Ed Engl 2024; 63:e202400091. [PMID: 38644754 DOI: 10.1002/anie.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 04/23/2024]
Abstract
Poly(ethylene oxide) (PEO)-based composite solid electrolytes (CSEs) are promising to accelerate commercialization of solid-state lithium metal batteries (SSLMBs). Nonetheless, this is hindered by the CSEs' limited ion conductivity at room temperature. Here, we propose design, synthesis, and application of the bioinspired neuron-like nanofillers for PEO-based CSEs. The neuron-like superhydrophobic nanofillers are synthesized by controllably grafting silicone nanofilaments onto montmorillonite nanosheets. Compared to various reported fillers, the nanofillers can greatly improve ionic conductivity (4.9×10-4 S cm-1, 30 °C), Li+ transference number (0.63), oxidation stability (5.3 V) and mechanical properties of the PEO-based CSEs because of the following facts. The distinctive neuron-like structure and the resulting synaptic-like connections establish numerous long-distance continuous channels over various directions in the PEO-based CSEs for fast and uniform Li+ transport. Consequently, the assembled SSLMBs with the CSEs and LiFePO4 or NCM811 cathodes display superior cycling stability over a wide temperature range of 50 °C to 0 °C. Surprisingly, the pouch batteries with the large-scale prepared CSEs kept working after being repeatedly bent, folded, cut or even punched in air. We believe that design of neuron-like nanofillers is a viable approach to produce CSEs with high room temperature ionic conductivity for SSLMBs.
Collapse
Affiliation(s)
- Wankai Wang
- Key Laboratory of Clay Mineral of Gansu and Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yanfei Yang
- Key Laboratory of Clay Mineral of Gansu and Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
| | - Jie Yang
- Key Laboratory of Clay Mineral of Gansu and Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
| | - Junping Zhang
- Key Laboratory of Clay Mineral of Gansu and Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| |
Collapse
|
8
|
Peng Z, Yan H, Zhang Q, Liu S, Jun SC, Poznyak S, Guo N, Li Y, Tian H, Dai L, Wang L, He Z. Stabilizing Zinc Anode through Ion Selection Sieving for Aqueous Zn-Ion Batteries. NANO LETTERS 2024. [PMID: 39037888 DOI: 10.1021/acs.nanolett.4c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Uncontrollable dendrite growth and corrosion induced by reactive water molecules and sulfate ions (SO42-) seriously hindered the practical application of aqueous zinc ion batteries (AZIBs). Here we construct artificial solid electrolyte interfaces (SEIs) realized by sodium and calcium bentonite with a layered structure anchored to anodes (NB@Zn and CB@Zn). This artificial SEI layer functioning as a protective coating to isolate activated water molecules, provides high-speed transport channels for Zn2+, and serves as an ionic sieve to repel negatively charged anions while attracting positively charged cations. The theoretical results show that the bentonite electrodes exhibit a higher binding energy for Zn2+. This demonstrates that the bentonite protective layer enhances the Zn-ion deposition kinetics. Consequently, the NB@Zn//MnO2 and CB@Zn//MnO2 full-battery capacities are 96.7 and 70.4 mAh g-1 at 2.0 A g-1 after 1000 cycles, respectively. This study aims to stabilize Zn anodes and improve the electrochemical performance of AZIBs by ion-selection sieving.
Collapse
Affiliation(s)
- Zhi Peng
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Hui Yan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110000, China
| | - Qingqing Zhang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Shude Liu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Sergey Poznyak
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220030, Belarus
| | - Na Guo
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Yuehua Li
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Huajun Tian
- Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education and School of Energy Power and Mechanical Engineering, and Beijing Laboratory of New Energy Storage Technology, North China Electric Power University, Beijing, 102206, China
| | - Lei Dai
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Ling Wang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Zhangxing He
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| |
Collapse
|
9
|
Thomas CM, Zeng D, Huang HC, Pham T, Torres-Castanedo CG, Bedzyk MJ, Dravid VP, Hersam MC. Earth-Abundant Kaolinite Nanoplatelet Gel Electrolytes for Solid-State Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34913-34922. [PMID: 38924489 DOI: 10.1021/acsami.4c03997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Lithium-ion batteries are the leading energy storage technology for portable electronics and vehicle electrification. However, demands for enhanced energy density, safety, and scalability necessitate solid-state alternatives to traditional liquid electrolytes. Moreover, the rapidly increasing utilization of lithium-ion batteries further requires that next-generation electrolytes are derived from earth-abundant raw materials in order to minimize supply chain and environmental concerns. Toward these ends, clay-based nanocomposite electrolytes hold significant promise since they utilize earth-abundant materials that possess superlative mechanical, thermal, and electrochemical stability, which suggests their compatibility with energy-dense lithium metal anodes. Despite these advantages, nanocomposite electrolytes rarely employ kaolinite, the most abundant variety of clay, due to strong interlayer interactions that have historically precluded efficient exfoliation of kaolinite. Overcoming this limitation, here we demonstrate a scalable liquid-phase exfoliation process that produces kaolinite nanoplatelets (KNPs) with high gravimetric surface area, thus enabling the formation of mechanically robust nanocomposites. In particular, KNPs are combined with a succinonitrile (SN) liquid electrolyte to form a nanocomposite gel electrolyte with high room-temperature ionic conductivity (1 mS cm-1), stiff storage modulus (>10 MPa), wide electrochemical stability window (4.5 V vs Li/Li+), and excellent thermal stability (>100 °C). The resulting KNP-SN nanocomposite gel electrolyte is shown to be suitable for high-rate rechargeable lithium metal batteries that employ high-voltage LiNi0.8Co0.15Al0.05O2 (NCA) cathodes. While the primary focus here is on solid-state batteries, our strategy for kaolinite liquid-phase exfoliation can serve as a scalable manufacturing platform for a wide variety of other kaolinite-based nanocomposite applications.
Collapse
Affiliation(s)
- Cory M Thomas
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Davy Zeng
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Hsien Cheng Huang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Thang Pham
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Carlos G Torres-Castanedo
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael J Bedzyk
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Physics and Astronomy and Applied Physics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Wang T, Wen Y, Qian B, Tang F, Zhang X, Xu X, Zhou Y, Dai J, Wang A, Xue F. Virological evaluation of natural and modified attapulgite against porcine epidemic diarrhoea virus. Virol J 2024; 21:120. [PMID: 38816738 PMCID: PMC11137985 DOI: 10.1186/s12985-024-02396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND The Porcine Epidemic Diarrhea Virus (PEDV) has caused significant economic losses in the global swine industry. As a potential drug for treating diarrhea, the antiviral properties of attapulgite deserve further study. METHODS In this study, various methods such as RT-qPCR, Western blot, viral titer assay, Cytopathic Effect, immunofluorescence analysis and transmission electron microscopy were used to detect the antiviral activity of attapulgite and to assess its inhibitory effect on PEDV. RESULTS When exposed to the same amount of virus, there was a significant decrease in the expression of the S protein, resulting in a viral titer reduction from 10-5.613 TCID50/mL to 10-2.90 TCID50/mL, which represents a decrease of approximately 102.6 folds. Results of cytopathic effect and indirect immunofluorescence also indicate a notable decrease in viral infectivity after attapulgite treatment. Additionally, it was observed that modified materials after acidification had weaker antiviral efficacy compared to powdered samples that underwent ultrasonic disintegration, which showed the strongest antiviral effects. CONCLUSION As a result, Attapulgite powders can trap and adsorb viruses to inhibit PEDV in vitro, leading to loss of viral infectivity. This study provides new materials for the development of novel disinfectants and antiviral additives.
Collapse
Affiliation(s)
- Tianmin Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuan Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bingxu Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225104, China
| | - Xiulong Xu
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225104, China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- China Pharmaceutical University, Nanjing, 211198, China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730099, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
11
|
Lv Z, Deng J, Cao T, Lee JY, Luo Y, Mao Y, Kim SH, Wang C, Hwang JH, Kang H, Yan X, Na J. Metal-Organic Frameworks Marry Sponge: New Opportunities for Advanced Water Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5590-5605. [PMID: 38457783 DOI: 10.1021/acs.langmuir.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Metal-organic frameworks (MOFs) have garnered attention across various fields due to their noteworthy features like high specific surface area, substantial porosity, and adjustable performance. In the realm of water treatment, MOFs exhibit great potential for eliminating pollutants such as organics, heavy metals, and oils. Nonetheless, the inherent powder characteristics of MOFs pose challenges in terms of recycling, pipeline blockage, and even secondary pollution in practical applications. Addressing these issues, the incorporation of MOFs into sponges proves to be an effective solution. Strategies like one-pot synthesis, in situ growth, and impregnation are commonly employed for loading MOFs onto sponges. This review comprehensively explores the synthesis strategies of MOFs and sponges, along with their applications in water treatment, aiming to contribute to the ongoing advancement of MOF materials.
Collapse
Affiliation(s)
- Zheng Lv
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zheng Zhou, 450046, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Jianmian Deng
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zheng Zhou, 450046, China
| | - Taiyang Cao
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zheng Zhou, 450046, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Jun Young Lee
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yulong Luo
- Faculty of Innovation and Design, City University of Macao, Macao 999078, China
| | - Yanli Mao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Seong Hwan Kim
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Chaohai Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Jin Hyun Hwang
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Haiyan Kang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Xu Yan
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Jongbeom Na
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
12
|
Tian L, Qian Y, Wang H, Zhao G, Tang A, Yang H. Mineral Phase Reconfiguration Enables the High Enzyme-like Activity of Vermiculite for Antibacterial Application. NANO LETTERS 2024; 24:386-393. [PMID: 38133588 DOI: 10.1021/acs.nanolett.3c04141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Phyllosilicates-based nanomaterials, particularly iron-rich vermiculite (VMT), have wide applications in biomedicine. However, the lack of effective methods to activate the functional layer covered by the external inert layer limits their future applications. Herein, we report a mineral phase reconfiguration strategy to prepare novel nanozymes by a molten salt method. The peroxidase-like activity of the VMT reconfiguration nanozyme is 10 times that of VMT, due to the electronic structure change of iron in VMT. Density-functional theory calculations confirmed that the upward shifted d-band center of the VMT reconfiguration nanozyme promoted the adsorption of H2O2 on the active iron sites and significantly elongated the O-O bond lengths. The reconfiguration nanozyme exhibited nearly 100% antibacterial activity toward Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), much higher than that of VMT (E. coli 10%, S. aureus 21%). This work provides new insights for the rational design of efficient bioactive phyllosilicates-based nanozyme.
Collapse
Affiliation(s)
- Luyuan Tian
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Yinyin Qian
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Hao Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Guoqiang Zhao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Aidong Tang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
13
|
Taheri-Ledari R, Ganjali F, Zarei-Shokat S, Dinmohammadi R, Asl FR, Emami A, Mojtabapour ZS, Rashvandi Z, Kashtiaray A, Jalali F, Maleki A. Plasmonic porous micro- and nano-materials based on Au/Ag nanostructures developed for photothermal cancer therapy: challenges in clinicalization. NANOSCALE ADVANCES 2023; 5:6768-6786. [PMID: 38059020 PMCID: PMC10696950 DOI: 10.1039/d3na00763d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Photothermal therapy (PTT) has developed in recent decades as a relatively safe method for the treatment of cancers. Recently, various species of gold and silver (Au and Ag) nanostructures have been developed and investigated to achieve PTT due to their highly localized surface plasmon resonance (LSPR) effect. Concisely, the collective oscillation of electrons on the surface of Au and Ag nanostructures upon exposure to a specific wavelength (depending on their size and shape) and further plasmonic resonance leads to the heating of the surface of these particles. Hence, porous species can be equipped with tiny plasmonic ingredients that add plasmonic properties to therapeutic cargoes. In this case, a precise review of the recent achievements is very important to figure out to what extent plasmonic photothermal therapy (PPTT) by Au/Ag-based plasmonic porous nanomedicines successfully treated cancers with satisfactory biosafety. Herein, we classify the various species of LSPR-active micro- and nano-materials. Moreover, the routes for the preparation of Ag/Au-plasmonic porous cargoes and related bench assessments are carefully reviewed. Finally, as the main aim of this study, principal requirements for the clinicalization of Ag/Au-plasmonic porous cargoes and their further challenges are discussed, which are critical for specialists in this field.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Reihane Dinmohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Fereshteh Rasouli Asl
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Ali Emami
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Zahra Sadat Mojtabapour
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Zahra Rashvandi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Farinaz Jalali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| |
Collapse
|
14
|
Lv C, Li Y, Zhu Y, Zhang Y, Kuang J, Zhao Q, Tang Y, Wang H. Quasi-Solid-State Aluminum-Air Batteries with Ultra-high Energy Density and Uniform Aluminum Stripping Behavior. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304214. [PMID: 37587016 PMCID: PMC10582464 DOI: 10.1002/advs.202304214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/22/2023] [Indexed: 08/18/2023]
Abstract
Aqueous aluminum-air batteries are attracting considerable attention with high theoretical capacity, low-cost and high safety. However, lifespan and safety of the battery are still limited by the inevitable hydrogen evolution reaction on the metal aluminum anode and electrolyte leakage. Herein, for the first time, a clay-based quasi-solid-state electrolyte is proposed to address such issues, which has excellent compatibility and a liquid-like ionic conductivity. The clay with uniform pore channels facilitates aluminum ions uniform stripping and reduces the activity of free H2 O molecules by reconstructing hydrogen bonds network, thus suppressing the self-corrosion of aluminum anode. As a result, the fabricated aluminum-air battery achieves the highest energy density of 4.56 KWh kg-1 with liquid-like operating voltage of 1.65 V and outstanding specific capacity of 2765 mAh g-1 , superior to those reported aluminum-air batteries. The principle of constructing quasi-solid-state electrolyte using low-cost clay may further promote the commercialization of aluminum-air batteries and provide a new insight into electrolyte design for aqueous energy storage system.
Collapse
Affiliation(s)
- Chaonan Lv
- Hunan Provincial Key Laboratory of Chemical Power SourcesCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083P. R. China
| | - Yixin Li
- Hunan Provincial Key Laboratory of Chemical Power SourcesCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083P. R. China
| | - Yuanxin Zhu
- Hunan Provincial Key Laboratory of Chemical Power SourcesCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083P. R. China
| | - Yuxin Zhang
- Hunan Provincial Key Laboratory of Chemical Power SourcesCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083P. R. China
| | - Jialin Kuang
- Hunan Provincial Key Laboratory of Chemical Power SourcesCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083P. R. China
| | - Qing Zhao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)College of ChemistryNankai UniversityTianjin300071P. R. China
| | - Yougen Tang
- Hunan Provincial Key Laboratory of Chemical Power SourcesCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083P. R. China
| | - Haiyan Wang
- Hunan Provincial Key Laboratory of Chemical Power SourcesCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083P. R. China
| |
Collapse
|
15
|
Yan S, Feng Y, Lin J, Wang Y. Metal-Redox Bicatalysis Batteries for Energy Storage and Chemical Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212078. [PMID: 36841953 DOI: 10.1002/adma.202212078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Indexed: 06/18/2023]
Abstract
New types of electrochemical energy conversion and storage devices based on redox electrocatalytic reactions possess great potential in renewable energy to maximize energy utilization and balance environmental issues. The typical device is the metal-redox bicatalysis battery, where the cathode is redox bifunctional catalyst (named as redox bicatalyst) with gas, solid, liquid as active reactants while anode is metal, driven by cathodic redox electrocatalytic reactions during charge/discharge processes, which promotes the energy storage and chemical production. In this system, the metal anode, redox-bicatalyst cathode, electrolytes, and the redox electrochemical reactions can be modified and adjusted to achieve the optimal energy conversion and utilization. Therefore, the deep understanding of the electrochemical system is conducive to designing new devices to meet the demand among various applications, including energy storage and conversion. In this review, the authors clarify the fundamentals and design principles of the rechargeable/reversible metal-redox bicatalysis batteries and how each part affects the devices in energy conversion and chemical production. The authors summarize the electrocatalytic reduction/oxidation reactions, the reported systems relied on redox reactions, and the corresponding redox bicatalysts. Finally, a perspective of the key challenges and the possible new types of metal-redox bicatalysis batteries for efficient energy utilization and chemical production are given.
Collapse
Affiliation(s)
- Shichen Yan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, YangQiao West Road 155#, Fuzhou, Fujian, 350002, P. R. China
| | - Yangyang Feng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, YangQiao West Road 155#, Fuzhou, Fujian, 350002, P. R. China
| | - Jing Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, YangQiao West Road 155#, Fuzhou, Fujian, 350002, P. R. China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, YangQiao West Road 155#, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
16
|
García-Soriano FJ, Ceppi SA, Cometto FP, Primo EN, Barraco DE, Leiva EPM, Luque GL, Stutz G, Lener G, Bracamonte MV. Sepiolite as a novel polysulfide trapper for energy applications: an electrochemical, X-ray spectroscopic and DFT study. Phys Chem Chem Phys 2023; 25:24761-24769. [PMID: 37671503 DOI: 10.1039/d3cp03157h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Capacity retention is a critical property to enhance in electrochemical storage systems applied to renewable energy. In lithium-sulfur (Li-S) batteries, the capacity fade resulting from the shuttle effect of polysulfides is a major obstacle to their practical application. Sepiolite, an eco-friendly earth-abundant clay with suitable surface chemistry for anchoring and retaining various molecules and structures, was studied as a cathode additive to mitigate the shuttle effect using experimental and theoretical approaches. Electrochemical measurements, spectroscopy, and ab initio calculations were performed to describe the mechanism and interfaces involved in polysulfide retention using 2 wt% of sepiolite as an additive in Li-S batteries. The results showed that the addition of sepiolite significantly improved the capacity retention during battery cycling. Spectroscopic analysis revealed that the effective sepiolite-polysulfide interface was governed by oxidized sulfur species. Additionally, ab initio studies showed a highly exothermic adsorption both inside and outside the sepiolite pore. This study demonstrates the potential use of eco-friendly, low-cost, non-toxic, natural, and abundant materials as additives to increase capacity retention.
Collapse
Affiliation(s)
- Francisco Javier García-Soriano
- Instituto de Física Enrique Gaviola, IFEG, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Av. Haya de la Torre esq. Medina Allende, Córdoba, Argentina
- Facultad de Matemática, Astronomía Física y Computación, Universidad Nacional de Córdoba, Av. Haya de la Torre esq. Medina Allende, Córdoba, Argentina
- Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - Sergio Andrés Ceppi
- Instituto de Física Enrique Gaviola, IFEG, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Av. Haya de la Torre esq. Medina Allende, Córdoba, Argentina
- Facultad de Matemática, Astronomía Física y Computación, Universidad Nacional de Córdoba, Av. Haya de la Torre esq. Medina Allende, Córdoba, Argentina
| | - Fernando Pablo Cometto
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Av. Haya de la Torre esq. Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Emiliano Nicolás Primo
- Instituto de Física Enrique Gaviola, IFEG, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Av. Haya de la Torre esq. Medina Allende, Córdoba, Argentina
- Facultad de Matemática, Astronomía Física y Computación, Universidad Nacional de Córdoba, Av. Haya de la Torre esq. Medina Allende, Córdoba, Argentina
| | - Daniel Eugenio Barraco
- Instituto de Física Enrique Gaviola, IFEG, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Av. Haya de la Torre esq. Medina Allende, Córdoba, Argentina
- Facultad de Matemática, Astronomía Física y Computación, Universidad Nacional de Córdoba, Av. Haya de la Torre esq. Medina Allende, Córdoba, Argentina
| | - Ezequiel Pedro Marcos Leiva
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Av. Haya de la Torre esq. Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina
- Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - Guillermina Leticia Luque
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Av. Haya de la Torre esq. Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina
- Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - Guillermo Stutz
- Instituto de Física Enrique Gaviola, IFEG, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Av. Haya de la Torre esq. Medina Allende, Córdoba, Argentina
- Facultad de Matemática, Astronomía Física y Computación, Universidad Nacional de Córdoba, Av. Haya de la Torre esq. Medina Allende, Córdoba, Argentina
| | - German Lener
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Av. Haya de la Torre esq. Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina
- Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - María Victoria Bracamonte
- Instituto de Física Enrique Gaviola, IFEG, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Av. Haya de la Torre esq. Medina Allende, Córdoba, Argentina
- Facultad de Matemática, Astronomía Física y Computación, Universidad Nacional de Córdoba, Av. Haya de la Torre esq. Medina Allende, Córdoba, Argentina
- Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
17
|
Yang L, Yang X, Xia F, Gong Y, Li F, Yu J, Gao T, Li Y. Recent Progress on Natural Clay Minerals for Lithium-Sulfur Batteries. Chem Asian J 2023; 18:e202300473. [PMID: 37424057 DOI: 10.1002/asia.202300473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Li-S batteries with high energy density have the potential to become a viable alternative to Li-ion batteries. However, Li-S batteries still face several challenges, including the shuttle effect, low conversion kinetics, and Li dendrite growth. Natural clay minerals with porous structures, abundant Lewis-acid sites, high mechanical modulus, and versatile structural regulation show great potential for improving the performance of Li-S batteries. However, so far, relevant reviews focusing on the applications of natural clay minerals in Li-S batteries are still missing. To fill the gap, this review first presents an overview of the crystal structures of several natural clay minerals, including 1D (halloysites, attapulgites, and sepiolite), 2D (montmorillonite and vermiculite), and 3D (diatomite) structures, providing a theoretical basis for the application of natural clay minerals in Li-S batteries. Subsequently, research advancements in the natural clay-based energy materials in Li-S batteries have been comprehensively reviewed. Finally, the perspectives concerning the development of natural clay minerals and their applications in Li-S batteries are provided. We hope this review can provide timely and comprehensive information on the correlation between the structure and function of natural clay minerals in Li-S batteries and offer guidance for material selection and structure optimization of natural clay-based energy materials.
Collapse
Affiliation(s)
- Liu Yang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Xin Yang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, P. R. China
| | - Feng Xia
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, P. R. China
| | - Yifei Gong
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, P. R. China
| | - Faxue Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, P. R. China
| | - Jianyong Yu
- Innovation Center for Textile Science & Technology, Donghua University, Shanghai, 201620, P. R. China
| | - Tingting Gao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, P. R. China
| | - Yiju Li
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
18
|
Sun S, Fang L, Guo H, Sun L, Liu Y, Cheng Y. A Bifunctional Liquid Fuel Cell Coupling Power Generation and V 3.5+ Electrolytes Production for All Vanadium Flow Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207728. [PMID: 37078798 PMCID: PMC10288229 DOI: 10.1002/advs.202207728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/28/2023] [Indexed: 05/03/2023]
Abstract
All vanadium flow batteries (VFBs) are considered one of the most promising large-scale energy storage technology, but restricts by the high manufacturing cost of V3.5+ electrolytes using the current electrolysis method. Here, a bifunctional liquid fuel cell is designed and proposed to produce V3.5+ electrolytes and generate power energy by using formic acid as fuels and V4+ as oxidants. Compared with the traditional electrolysis method, this method not only does not consume additional electric energy, but also can output electric energy. Therefore, the process cost of producing V3.5+ electrolytes is reduced by 16.3%. This fuel cell has a maximum power of 0.276 mW cm-2 at an operating current of 1.75 mA cm-2 . Ultraviolet-visible spectrum and potentiometric titration identify the oxidation state of prepared vanadium electrolytes is 3.48 ± 0.06, close to the ideal 3.5. VFBs with prepared V3.5+ electrolytes deliver similar energy conversion efficiency and superior capacity retention to that with commercial V3.5+ electrolytes. This work proposes a simple and practical strategy to prepare V3.5+ electrolytes.
Collapse
Affiliation(s)
- Shibo Sun
- State Key Laboratory of Organic‐Inorganic CompositesCollege of Chemical EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Liwei Fang
- State Key Laboratory of Organic‐Inorganic CompositesCollege of Chemical EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Hui Guo
- State Key Laboratory of Organic‐Inorganic CompositesCollege of Chemical EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Liping Sun
- China Energy Technology and Economics Research InstituteChina Energy Investment Corporation Ltd.Beijing102211P. R. China
| | - Yong Liu
- State Key Laboratory of Organic‐Inorganic CompositesCollege of Chemical EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Yuanhui Cheng
- State Key Laboratory of Organic‐Inorganic CompositesCollege of Chemical EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| |
Collapse
|
19
|
Functionally modified halloysite nanotubes for personalized bioapplications. Adv Colloid Interface Sci 2023; 311:102812. [PMID: 36427464 DOI: 10.1016/j.cis.2022.102812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/05/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Halloysite nanotubes (HNTs) are naturally aluminosilicate clay minerals that have the benefits of large surface areas, high mechanical properties, easy functionalization, and high biocompatibility, HNTs have been developed as multifunctional nanoplatforms for various bioapplications. Although some reviews have summarized the properties and bioapplications of HNTs, it remains unclear how to functionalize the modifications of HNTs for their personalized bioapplications. In this review, based on the physicochemical properties of HNTs, we summarized the methods of functionalized modifications (surface modification and structure modification) on HNTs. Also, we highlighted their personalized bioapplications (anti-bacterial, anti-inflammatory, wound healing, cancer theranostics, bone regenerative, and biosensing) by stressing on the main roles of HNTs. Finally, we provide perspectives on the future of functionalized modifications of HNTs for docking specific biological applications.
Collapse
|
20
|
Wang H, Sarwar MT, Tian L, Bao W, Yang H. Nanoclay Modulates Cation Occupancy in Manganese Ferrite for Catalytic Antibacterial Treatment. Inorg Chem 2022; 61:17692-17702. [DOI: 10.1021/acs.inorgchem.2c02803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hao Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan430074, China
| | - Muhammad Tariq Sarwar
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan430074, China
| | - Luyuan Tian
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan430074, China
| | - Wenxin Bao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan430074, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha410083, China
| |
Collapse
|
21
|
Wang H, Sarwar MT, Bao W, Tian L, Yang H. Surface acidity modulates the peroxidase-like activity of nanoclay. Chem Commun (Camb) 2022; 58:11135-11138. [PMID: 36106489 DOI: 10.1039/d2cc04213d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel surface acidity modulation strategy allows us to obtain modified nanoclay with specific peroxidase (POD)-like catalytic activity. Fe3+ exchange could increase the surface acidity of modified montmorillonite (MMT), resulting in a significant enhancement of its POD-like activity. We proposed that the POD-like catalytic reaction followed the electron transfer pathway and ping-pong mechanism. Correspondingly the constructed colorimetric sensor for H2O2 exhibited high sensitivity and specificity.
Collapse
Affiliation(s)
- Hao Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China. .,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.,Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, China
| | - Muhammad Tariq Sarwar
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China. .,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.,Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, China
| | - Wenxin Bao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China. .,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.,Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, China
| | - Luyuan Tian
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China. .,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.,Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China. .,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.,Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, China.,Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| |
Collapse
|
22
|
A unique terbium-fluoride-oxalate metal–organic framework containing [Tb-F]n chains with bifunctions of luminescent detection of Cr(VI) and catalyzing CO2 conversion to cyclic carbonates. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Magnetically recyclable nanocomposites via lanthanide-based MOFs grown on natural sea sponge: Screening hydrogenation of nitrophenol to aminophenol. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Duraivel M, Nagappan S, Park KH, Ha CS, Prabakar K. Transition metal oxy/hydroxides functionalized flexible halloysite nanotubes for hydrogen evolution reaction. J Colloid Interface Sci 2022; 618:518-528. [PMID: 35366479 DOI: 10.1016/j.jcis.2022.03.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022]
Abstract
The hierarchical halloysite nanotubes (HNT) have alumina containing positive Al-OH groups on its inner surface and silica-containing negative siloxane groups of Si-O-Si on its outer surface. The silicate laminate consists of silicon-oxygen at tetrahedral sites and aluminum-oxygen at octahedral sites. Since HNT has an abundant hydroxyl group on the surface with exceptional cation/anion exchange capacity, the surface-functionalized HNT could boost electrocatalytic activity. Hence, we have synthesized Ni, Co, and Cu metal oxy/hydroxides functionalized HNT by a facile hydrothermal method for HER. Among them, Co(OH)2@HNT on flexible carbon cloth displays an ultra-low overpotential of 65 mV at 10 mA cm-2 current density and Tafel slope of 181 mV dec-1 and also exhibited a larger exchange current density of 3.98 mA cm-2 in alkaline 1 M KOH electrolyte due to superior electrostatic affinity between OH- and Co2+. The electrolyzers with anion exchange membrane consisting of RuO2||Co(OH)2@HNT show remarkable stability of over 50 h at 10 mA cm-2 in alkaline electrolyte. The post stability sample retains the same surface oxidation state which confirms the robustness of the electrocatalyst. The reported results are far better than many of the transition metal oxides/chalcogenides electrocatalysts and hence it is expected that HNT could act as a potential alternative candidate to replace the benchmark platinum catalyst.
Collapse
Affiliation(s)
- Malarkodi Duraivel
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Saravanan Nagappan
- Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Kang Hyun Park
- Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Kandasamy Prabakar
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-Gu, Busan 46241, Republic of Korea.
| |
Collapse
|
25
|
Ghiyasiyan-Arani M, Salavati-Niasari M. Decoration of green synthesized S, N-GQDs and CoFe 2O 4 on halloysite nanoclay as natural substrate for electrochemical hydrogen storage application. Sci Rep 2022; 12:8103. [PMID: 35577885 PMCID: PMC9110390 DOI: 10.1038/s41598-022-12321-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/03/2022] [Indexed: 11/16/2022] Open
Abstract
Halloysite nanotubes (HNTs) with high active sites are used as natural layered mineral supports. Sulfur- and nitrogen-co doped graphene quantum dots (S, N-GQDs) as conductive additive and CoFe2O4 as the electrocatalyst was decorated on a HNT support to design an effective and environmentally friendly active material. Herein, an eco-friendly CoFe2O4/S, N-GQDs/HNTs nanocomposite is fabricated via a green hydrothermal method to equip developed hydrogen storage sites and to allow for quick charge transportation for hydrogen storage utilization. The hydrogen storage capacity of pure HNTs was 300 mAhg-1 at a current density of 1 mA after 20 cycles, while that of S, N-GQD-coated HNTs (S, N-GQDs/HNTs) was 466 mAhg-1 under identical conditions. It was also conceivable to increase the hydrogen sorption ability through the spillover procedure by interlinking CoFe2O4 in the halloysite nanoclay. The hydrogen storage capacity of the CoFe2O4/HNTs was 450 mAhg-1, while that of the representative designed nanocomposites of CoFe2O4/S, N-GQDs/HNTs was 600 mAhg-1. The halloysite nano clay and treated halloysite show potential as electrode materials for electrochemical energy storage in alkaline media; in particular, ternary CoFe2O4/S, N-GQD/HNT nanocomposites prove developed hydrogen sorption performance in terms of presence of conductive additive, physisorption, and spillover mechanisms.
Collapse
Affiliation(s)
- Maryam Ghiyasiyan-Arani
- Institute of Nano Science and Nano Technology, University of Kashan, P. O. Box. 87317-51167, Kashan, Islamic Republic of Iran.
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P. O. Box. 87317-51167, Kashan, Islamic Republic of Iran.
| |
Collapse
|
26
|
The Prospects of Clay Minerals from the Baltic States for Industrial-Scale Carbon Capture: A Review. MINERALS 2022. [DOI: 10.3390/min12030349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Carbon capture is among the most sustainable strategies to limit carbon dioxide emissions, which account for a large share of human impact on climate change and ecosystem destruction. This growing threat calls for novel solutions to reduce emissions on an industrial level. Carbon capture by amorphous solids is among the most reasonable options as it requires less energy when compared to other techniques and has comparatively lower development and maintenance costs. In this respect, the method of carbon dioxide adsorption by solids can be used in the long-term and on an industrial scale. Furthermore, certain sorbents are reusable, which makes their use for carbon capture economically justified and acquisition of natural resources full and sustainable. Clay minerals, which are a universally available and versatile material, are amidst such sorbents. These materials are capable of interlayer and surface adsorption of carbon dioxide. In addition, their modification allows to improve carbon dioxide adsorption capabilities even more. The aim of the review is to discuss the prospective of the most widely available clay minerals in the Baltic States for large-scale carbon dioxide emission reduction and to suggest suitable approaches for clay modification to improve carbon dioxide adsorption capacity.
Collapse
|
27
|
Wu L, Yu Y, Dai Y, Zhao Y, Zeng W, Liao B, Pang H. Multisize CoS 2 Particles Intercalated/Coated-Montmorillonite as Efficient Sulfur Host for High-Performance Lithium-Sulfur Batteries. CHEMSUSCHEM 2022; 15:e202101991. [PMID: 34664405 DOI: 10.1002/cssc.202101991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The chemisorption and catalysis of lithium polysulfides (LiPSs) are effective strategies to suppress the shuttle effect in lithium-sulfur (Li-S) batteries. Herein, multisize CoS2 particles intercalated/coated-montmorillonite (MMT) as an efficient sulfur host is synthesized. As expected, the obtained S/CoS2 @MMT cathode achieves an absorption-catalysis synergistic effect through the polar MMT aluminosilicate sheets and the well-dispersed nano-micron CoS2 particles. Furthermore, efficient interlamellar ion pathways and interconnected conductive network are constructed within the composite host due to the intercalation/coating of CoS2 in/on MMT. Therefore, the S/CoS2 @MMT cathode achieves an outstanding rate performance up to 5C (∼548 mAh g-1 ) and a high cycling stability with low capacity decay of 0.063 and 0.067 % per cycle for 500 cycles at 1C and 2C, respectively. With a higher sulfur loading of 4.0 mg cm-2 , the cathode still delivers satisfactory rate and cycling performance. It shows that the CoS2 @MMT host has great application prospects in Li-S batteries.
Collapse
Affiliation(s)
- Lian Wu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510665, P. R. China
| | - Yue Yu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510665, P. R. China
| | - Yongqiang Dai
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510665, P. R. China
| | - Yifang Zhao
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510665, P. R. China
| | - Wei Zeng
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510665, P. R. China
| | - Bing Liao
- Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, P. R. China
| | - Hao Pang
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510665, P. R. China
| |
Collapse
|
28
|
Agafonov A, Grishina E, Kudryakova N, Ramenskaya L, Kraev A, Shibaeva V. Ionogels: Squeeze flow rheology and ionic conductivity of quasi-solidified nanostructured hybrid materials containing ionic liquids immobilized on halloysite. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
29
|
Shaali R, Doroodmand MM, Moazeni M. Supercapacitance/Resistance Behaviors of Helminth Eggs as Reliable Recognition and Direct Differentiation Probe. Front Bioeng Biotechnol 2021; 9:782380. [PMID: 34938722 PMCID: PMC8685256 DOI: 10.3389/fbioe.2021.782380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 12/02/2022] Open
Abstract
Parasitic helminths are usually known as undesired pathogens, causing various diseases in both human and animal species. In this study, we explore supercapacitance/resistance behaviors as a novel probe for rapid identification and direct differentiation of Fasciola hepatica, Parascaris equorum (with and without larvae), Dicrocoelium dendriticum, Taenia multiceps, and Moniezia expansa eggs. This claim is attributed to some characteristics, such as grave supercapacitance/area, high-energy storage/area, large power/egg, huge permittivity, and great electrical break-down potential, respectively (Fasciola hepatica: 2,158, 0.485, 2.7 × 10–3, 267, 52.6, Parascaris equorum without larvae: 2,825, 0.574, 3.0 × 10–3, 351, 68.4, Parascaris equorum with larvae: 4,519, 0.716, 2.4 × 10–3, 1.96, 97.6, Dicrocoelium dendriticum: 1,581, 0.219, 2.8 × 10–3, 1.96, 48.8, Moniezia expansa: 714, 0.149, 2.2 × 10–3, 0.88, 35.2, Taenia multiceps: 3,738, 0.619, 4.7 × 10–3, 4.63, 84.4), and durable capacitance up to at least 15,000 sequential cycles at different scan rates (between 2.0 × 10−4 and 120.0 V s−1) as well as highly differentiated resistance between 400 and 600 Ω. These traits are measured by the “Blind Patch-Clamp” method, at the giga ohm sealed condition (6.18 ± 0.12 GΩ cm−1, n = 5). Significant detection ranges are detected for each capacitance and resistance with gradient limits as large as at least 880 to 1,000 mF and 400 to 600 Ω depending on the type of helminth egg. The effect of water in the structure of helminth eggs has also been investigated with acceptable reproducibility (RSD 7%–10%, n = 5). These intrinsic characteristics would provide novel facilitators for direct helminth egg identification in comparison with several methods, such as ELISA, PCR, and microscopic methods.
Collapse
Affiliation(s)
| | | | - Mohammad Moazeni
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
30
|
Cao P, Tang J, Wei A, Bai Q, Meng Q, Fan S, Ye H, Zhou Y, Zhou X, Yang J. Manipulating Uniform Nucleation to Achieve Dendrite-Free Zn Anodes for Aqueous Zn-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48855-48864. [PMID: 34614353 DOI: 10.1021/acsami.1c14947] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The essence of Zn dendrite formation is ultimately derived from Zn nucleation and growth during the repeated Zn plating/stripping process. Here, the nucleation process of Zn has been analyzed using ex situ scanning electron microscopy to explore the formation of the initial Zn dendrite, demonstrating that the formation of tiny protrusions (the initial state of Zn dendrites) is caused by the inhomogeneity of Zn nucleation. Based on this, the uniform Zn nucleation is promoted by the Ni5Zn21 alloy coating (ZnNi) on the surface of Zn foil by electrodeposition, and the mechanism of ZnNi-promoted even nucleation is further analyzed with the assistance of density functional theory (DFT). The DFT results indicate that the ZnNi displays a stronger binding ability to Zn compared to the bare Zn, suggesting that Zn nuclei will preferentially form around ZnNi instead of continuing to grow on the surface of the initial Zn nuclei. Therefore, the designed Zn metal anode (Zn@ZnNi) can be ultra-stable for over 2200 h at a current density of 2 mA cm-2 in the symmetric cell. Even at a much higher current density of 20 mA cm-2, the extra-long life of over 2200 cycles (over 530 h) can be achieved. Moreover, the full cell with the Zn@ZnNi anode exhibits extra-long cycling performance for 500 cycles with a capacity of 207.7 mA h g-1 and 1100 cycles (148.5 mA h g-1) at a current density of 0.5 and 1 A g-1, respectively.
Collapse
Affiliation(s)
- Penghui Cao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Jingjing Tang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Anran Wei
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qixian Bai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Qi Meng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Sicheng Fan
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Han Ye
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yulin Zhou
- Zhuzhou Smelter Group Co., Limited, Zhuzhou 412000, Hunan, China
| | - Xiangyang Zhou
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Juan Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
31
|
Zhao H, Zhang H, Wang Z, Jiang X, Xie Y, Xu Z, Wang Y, Yang W. Chain-Elongated Ionic Liquid Electrolytes for Low Self-Discharge All-Solid-State Supercapacitors at High Temperature. CHEMSUSCHEM 2021; 14:3895-3903. [PMID: 34288541 DOI: 10.1002/cssc.202101294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/12/2021] [Indexed: 06/13/2023]
Abstract
High power and good stability enable supercapacitors to work efficiently at high temperatures. However, the high-temperature-induced excessive ion transfer of the electrolyte would lead to severe self-discharge behavior, which has often been overlooked but can be highly detrimental. In this study, solid electrolytes consisting of poly(ethylene oxide) (PEO), bentonite clay, and ionic liquids (IL)-PEO-clay@[EMIM][BF4 ] (PCE), PEO-clay@[BMIM][BF4 ] (PCB), and PEO-clay@[HMIM][BF4 ] (PCH) lead to dramatic decreases in self-discharge when used in all-solid-state supercapacitors at high temperature of 70 °C, which correlate with chain elongation (i. e., [EMIM+ ]<[BMIM+ ]<[HMIM+ ]). Benefiting from both cation adsorption and high-temperature stabilization by bentonite clay, PCH-based supercapacitors (IL=[HMIM][BF4 ]) deliver an extremely low self-discharge rate, with only a 30.7 % voltage drop over 10 h at 70 °C (44.5 % for 38 h), which is much lower than that of traditional liquid supercapacitors (63.7 % drop over 10 h at 70 °C). This improvement in high-temperature self-discharge behavior is found to be from the decrease in diffusion-controlled faradaic process. Based on the longer-chain [HMIM+ ], soft-packaged supercapacitors exhibit a low self-discharge rate and work consistently at 70 °C. This chain-elongation strategy provides a new possibility for the suppression of self-discharge behavior in supercapacitors and further aids long-term energy storage by supercapacitors at high temperatures.
Collapse
Affiliation(s)
- Haibo Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Haitao Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Zixing Wang
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, 410006, P. R. China
| | - Xinglin Jiang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yanting Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Zhong Xu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yuchen Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
32
|
|