1
|
Zhao Z, Cui H, Cui H. Decoding tissue complexity: multiscale mapping of chemistry-structure-function relationships through advanced visualization technologies. J Mater Chem B 2025. [PMID: 40476698 DOI: 10.1039/d5tb00744e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Comprehensively acquiring biological tissue information is pivotal for advancing our understanding of biological systems, elucidating disease mechanisms, and developing innovative clinical strategies. Biological tissues, as nature's archetypal biomaterials, exhibit multiscale structural and functional complexity that provides critical principles for synthetic biomaterials. Tissues/organs integrate molecular, biomechanical, and hierarchical architectural features across scales, offering a blueprint for engineering functional materials capable of mimicking or interfacing with living systems. Biological visualization technologies have emerged as indispensable tools for decoding tissue complexity, leveraging their unique technical advantages and multidimensional analytical capabilities to bridge the gap between macroscopic observations and molecular insights. The integration of cutting-edge technologies such as artificial intelligence (AI), augmented reality, and deep learning is revolutionizing the field and enabling real-time, high-resolution, and predictive analyses that transcend the limitations of traditional imaging modalities. This review systematically explores the principles, applications, and limitations of state-of-the-art biological visualization technologies, with a particular emphasis on the transformative advancements in AI-driven image analysis, multidimensional imaging and reconstruction, and multimodal data integration. By analyzing these technological trends, we envision a future where biological visualization evolves towards greater intelligence, multidimensionality, and multiscale precision, offering unprecedented theoretical and methodological support for deciphering tissue complexity and further advancing biomaterials development. These advancements promise to accelerate breakthroughs in precision medicine, tissue engineering, and therapeutic development, ultimately reshaping the landscape of biomedical research and clinical practice.
Collapse
Affiliation(s)
- Zhiyuan Zhao
- Key Laboratory of Biorheological Science and Technology (Chongqing), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Haijun Cui
- Key Laboratory of Biorheological Science and Technology (Chongqing), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Haitao Cui
- Key Laboratory of Biorheological Science and Technology (Chongqing), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
2
|
Jia L, Liu S, Gu L, Liu X, Sun K, Chu F, Zeng J, Liu W, Jiang H, Liu X. Integrated biomimetic bioprinting of perichondrium with cartilage for auricle reconstruction. Bioact Mater 2025; 48:100-117. [PMID: 40034808 PMCID: PMC11874231 DOI: 10.1016/j.bioactmat.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
The construction and regeneration of tissue-engineered auricles are pacesetters in tissue engineering and have realized their first international clinical application. However, the unstable regeneration quality and insufficient mechanical strength have become significant obstacles impeding its clinical promotion. The perichondrium is indispensable for the nutritional and vascular supply of the underlying cartilage tissue, as well as for proper anatomical functioning and mechanical performance. This study presents a novel strategy for integrated construction of bioengineered perichondrium with bioprinted cartilage to enhance the regeneration quality and mechanical properties of tissue-engineered auricles. Simulating the anatomical structure of the native auricle designs a sandwich construction model containing bilateral perichondrium and intermediate cartilage, employing a photocrosslinkable acellular cartilage matrix and gelatin bionics matrix microenvironment, applying co-cultured auricular chondrocytes and adipose-derived stem cells creates functional cell populations, designing hatch patterns imitates microscopic arrangement structures, utilizing sacrificial materials forms interlaminar network traffic to enhance the tight connection between layers, and finally, assessing the regenerative quality of the constructs explores their feasibility and stability. The multi-level and multi-scale biomimetic construction strategy overcomes the technical limitation of the integrated construction of perichondrium-wrapped auricles and realizes biomimicry in morphology, structure, and biomechanics. Altogether, this study provides a technical reference for the hierarchical construction of complex tissues and promotes the clinical translation and application of engineered tissues or organs.
Collapse
Affiliation(s)
- Litao Jia
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, PR China
| | - Siyu Liu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, PR China
| | - Luosha Gu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, PR China
| | - Xiaomin Liu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, PR China
| | - Kexin Sun
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, PR China
| | - Feiyang Chu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, PR China
| | - Jinshi Zeng
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, PR China
| | - Wenshuai Liu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, PR China
| | - Haiyue Jiang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, PR China
| | - Xia Liu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, PR China
| |
Collapse
|
3
|
Giraldo-Londoño O, Bettale C, Martinez K, Thaqi M, Wheeler A. Low-Cost, High-Fidelity Skin and Intestine Surrogates for Surgical Training. J Surg Res 2025; 311:8-22. [PMID: 40378658 DOI: 10.1016/j.jss.2025.03.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 03/14/2025] [Accepted: 03/25/2025] [Indexed: 05/19/2025]
Abstract
INTRODUCTION Organ surrogates play a pivotal role in training surgical residents, offering a safe and cost-effective alternative to live human patients or animals. However, existing surrogates often fall short, either due to their high cost or inability to accurately replicate the mechanical behavior and anatomical complexity of human tissue. This study aims to address these limitations by developing affordable, realistic, and biomechanically accurate organ surrogates tailored for surgical training. MATERIALS AND METHODS Our methods involve 3D printing customized molds for pour casting, injection molding, and rotational molding, employing off-the-shelf platinum-cure silicone rubbers and specially formulated silicone-based blends as base materials. This approach ensures cost-effectiveness and allows utilizing commercially available materials and accessible laboratory equipment, enabling low-cost in-house fabrication of multi-layered skin and intestine surrogates for surgical training. RESULTS Feedback received from surgical residents and surgeons at the University of Missouri School of Medicine indicates that our surrogates consistently outperform industry-standard models in terms of biomechanical accuracy. Moreover, our cost analysis revealed that our fabrication methods yield surrogates that are over 90% less expensive than commercial alternatives. CONCLUSIONS The skin and intestine surrogates developed in this study demonstrate the feasibility of creating affordable, high-fidelity surgical training models using accessible materials and established fabrication techniques. By addressing the limitations of existing surrogates, this work lays the foundation for developing a broader range of anatomical models. These advances have the potential to improve the effectiveness and accessibility of surgical training.
Collapse
Affiliation(s)
- Oliver Giraldo-Londoño
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri.
| | - Chadwick Bettale
- Department of Industrial and Systems Engineering, University of Missouri, Columbia, Missouri
| | - Kyle Martinez
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri
| | - Milot Thaqi
- Department of General Surgery, University of Missouri, Columbia, Missouri
| | - Andrew Wheeler
- Department of General Surgery, University of Missouri, Columbia, Missouri
| |
Collapse
|
4
|
Jin Y, Xue S, He Y. Flexible Pressure Sensors Enhanced by 3D-Printed Microstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500076. [PMID: 40249136 DOI: 10.1002/adma.202500076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/03/2025] [Indexed: 04/19/2025]
Abstract
3D printing has revolutionized the development of flexible pressure sensors by enabling the precise fabrication of diverse microstructures that significantly enhance sensor performance. These advancements have substantially improved key attributes such as sensitivity, response time, and durability, facilitating applications in wearable electronics, robotics, and human-machine interfaces. This review provides a comprehensive analysis of the sensing mechanisms of these sensors, emphasizing the role of microstructures, such as micro-patterned, microporous, and hierarchical designs, in optimizing performance. The advantages of 3D printing techniques, including direct and indirect fabrication methods, in the creation of complex microstructures with high precision and adaptability are highlighted. Specific applications, including human physiological signal monitoring, motion detection, soft robotics, and emerging applications, are explored to demonstrate the versatility of these sensors. Additionally, this review briefly discusses key challenges, such as material compatibility, optimization difficulties, and environmental stability, as well as emerging trends, such as the integration of advanced technologies, innovative designs, and multidimensional sensing as promising avenues for future advancements. By summarizing recent progress and identifying opportunities for innovation, this review provides critical insights into bridging the gap between research and real-world applications, helping to accelerate the evolution of flexible pressure sensors with sophisticated 3D-printed microstructures.
Collapse
Affiliation(s)
- Yuan Jin
- Zhejiang-Italy Joint Lab for Smart Materials and Advanced Structures, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Shen'ao Xue
- Zhejiang-Italy Joint Lab for Smart Materials and Advanced Structures, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yong He
- School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
5
|
Niu H, Zou L, Liu Y, Li Z, Ren H, Liao H, Zhang X, An S, Ren F, Ge X, Cheng L, Yang F, Pan H, Rong S, Chang D, Ma H. CRISPR/Cas System-Based Fluorescent Sensor for Analysis and Detection. Crit Rev Anal Chem 2025:1-16. [PMID: 40125908 DOI: 10.1080/10408347.2025.2481409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Fluorescent sensor is an important tool to reliaze qualitative or quantitative detection of target analyte based on the fluorescence principle. Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) has been utilized to develop as a precise, efficient, and highly sensitive molecular diagnostic tool due to its efficient targeting and gene editing ability. At present, CRISPR/Cas system-based fluorescent sensors have shown excellent performance in the field of analysis and detection, and have received widespread attention. Therefore, this paper reviews the mechanism of the CRISPR/Cas system, the characteristics of different Cas proteins, and the principle and characteristics of the fluorescent sensor, with a focus on summarizing the application of the CRISPR/Cas system-based fluorescent sensor for analysis and detection.
Collapse
Affiliation(s)
- Huiru Niu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Lina Zou
- Nursing School, Mudanjiang Medical University, Mudanjiang, China
| | - Yanan Liu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Zheng Li
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Huanyu Ren
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Hao Liao
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaojing Zhang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Shanshan An
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Fei Ren
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Xiuhong Ge
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Lang Cheng
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Feiyan Yang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Hongzhi Pan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shengzhong Rong
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Dong Chang
- Department of Clinical Laboratory, the Affiliated Pudong Hospital, Fudan University, Shanghai, China
| | - Hongkun Ma
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
6
|
Camacho-Cardenosa M, Pulido-Escribano V, Estrella-Guisado G, Dorado G, Herrera-Martínez AD, Gálvez-Moreno MÁ, Casado-Díaz A. Bioprinted Hydrogels as Vehicles for the Application of Extracellular Vesicles in Regenerative Medicine. Gels 2025; 11:191. [PMID: 40136896 PMCID: PMC11941778 DOI: 10.3390/gels11030191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Three-dimensional bioprinting is a new advance in tissue engineering and regenerative medicine. Bioprinting allows manufacturing three-dimensional (3D) structures that mimic tissues or organs. The bioinks used are mainly made of natural or synthetic polymers that must be biocompatible, printable, and biodegradable. These bioinks may incorporate progenitor cells, favoring graft implantation and regeneration of injured tissues. However, the natures of biomaterials, bioprinting processes, a lack of vascularization, and immune responses are factors that limit the viability and functionality of implanted cells and the regeneration of damaged tissues. These limitations can be addressed by incorporating extracellular vesicles (EV) into bioinks. Indeed, EV from progenitor cells may have regenerative capacities, being similar to those of their source cells. Therefore, their combinations with biomaterials can be used in cell-free therapies. Likewise, they can complement the manufacture of bioinks by increasing the viability, differentiation, and regenerative ability of incorporated cells. Thus, the main objective of this review is to show how the use of 3D bioprinting technology can be used for the application of EV in regenerative medicine by incorporating these nanovesicles into hydrogels used as bioinks. To this end, the latest advances derived from in vitro and in vivo studies have been described. Together, these studies show the high therapeutic potential of this strategy in regenerative medicine.
Collapse
Affiliation(s)
- Marta Camacho-Cardenosa
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.C.-C.); (V.P.-E.); (G.E.-G.); (A.D.H.-M.)
| | - Victoria Pulido-Escribano
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.C.-C.); (V.P.-E.); (G.E.-G.); (A.D.H.-M.)
| | - Guadalupe Estrella-Guisado
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.C.-C.); (V.P.-E.); (G.E.-G.); (A.D.H.-M.)
| | - Gabriel Dorado
- Departamento Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain;
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| | - Aura D. Herrera-Martínez
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.C.-C.); (V.P.-E.); (G.E.-G.); (A.D.H.-M.)
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.C.-C.); (V.P.-E.); (G.E.-G.); (A.D.H.-M.)
| | - Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.C.-C.); (V.P.-E.); (G.E.-G.); (A.D.H.-M.)
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| |
Collapse
|
7
|
Braccini S, Pecorini G, Biagini S, Tacchini C, Battisti A, Puppi D. Chitosan/alginate polyelectrolyte complex hydrogels by additive manufacturing for in vitro 3D ovarian cancer modeling. Int J Biol Macromol 2025; 296:139795. [PMID: 39805455 DOI: 10.1016/j.ijbiomac.2025.139795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Polyelectrolyte complexes (PECs) are self-assembled systems formed from oppositely charged polymers, used to create hydrogels for cell culture. This work was aimed at additive manufacturing 3D hydrogels made of a PEC between chitosan (Cs) and alginate, as well as their investigation for in vitro 3D ovarian cancer modeling. PEC hydrogels stability in cell culture medium demonstrated their suitability for long-term cell culture applications. Higher in vitro viability of two human ovarian cancer cell lines was detected at different time points on PEC hydrogels than on Cs hydrogels, used as a control. In addition, during the 63-day culture experiment, cells effectively colonized the scaffolds while retaining their aggressive tumor characteristics. A significantly lower sensitivity to cisplatin and eugenol, also when combined, was observed in the developed 3D ovarian cancer models, in comparison to what was achieved in relevant 2D cell cultures. The obtained results demonstrated therefore the suitability of the developed scaffolds for in vitro investigation of tumor modeling.
Collapse
Affiliation(s)
- Simona Braccini
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM - Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Gianni Pecorini
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM - Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Serena Biagini
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM - Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Chiara Tacchini
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM - Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Antonella Battisti
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, p.zza San Silvestro 12, 56127 Pisa, Italy
| | - Dario Puppi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM - Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
8
|
Marmarchinia S, Chen X, Senel M, Gundogdu G, Mauney J, Khine M. Stretchable Strain Sensors for Real-Time Bladder Volume Monitoring. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11678-11687. [PMID: 39963026 DOI: 10.1021/acsami.4c19156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Urinary incontinence (UI) is a prevalent condition that adversely affects quality of life, driving the need for innovative technologies for continuous bladder monitoring. In this study, we introduce a wrinkled metal (platinum and gold) strain sensor tailored for real-time bladder volume monitoring. This stretchable sensor is designed to provide robust and reliable performance for 5000 cycles with minimal hysteresis, and its mechanical properties match that of bladder tissue, enabling accurate monitoring during bladder filling and emptying. Our experimental results demonstrate that the sensor offers high sensitivity and stability, with a dynamic range of up to 230% strain, Young's modulus of 11.7-32 kPa, and a gauge factor (GF) of 2.9-4.7. The sensor's efficacy was validated through in vitro bladder phantom studies and ex vivo pig bladder experiments, where it consistently tracked bladder volume changes with a sensitivity of 4.60 mL-1. The results suggest that the strain sensor is a promising candidate for robust, biocompatible bladder volume monitoring in patients with urinary disorders, offering an alternative to traditional methods by being more comfortable and biocompatible.
Collapse
Affiliation(s)
- Sara Marmarchinia
- Department of Biomedical Engineering, University of California, Irvine, California 92617, United States
| | - Xinlei Chen
- Department of Biomedical Engineering, University of California, Irvine, California 92617, United States
| | - Mehmet Senel
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
- Department Biochemistry, Faculty of Pharmacy, Biruni University, 34010 Istanbul, Turkiye
| | - Gokhan Gundogdu
- Department of Urology, University of California, Irvine, Orange, California 92868, United States
| | - Joshua Mauney
- Department of Biomedical Engineering, University of California, Irvine, California 92617, United States
- Department of Urology, University of California, Irvine, Orange, California 92868, United States
| | - Michelle Khine
- Department of Biomedical Engineering, University of California, Irvine, California 92617, United States
| |
Collapse
|
9
|
Sousa AC, Alvites R, Lopes B, Sousa P, Moreira A, Coelho A, Santos JD, Atayde L, Alves N, Maurício AC. Three-Dimensional Printing/Bioprinting and Cellular Therapies for Regenerative Medicine: Current Advances. J Funct Biomater 2025; 16:28. [PMID: 39852584 PMCID: PMC11765675 DOI: 10.3390/jfb16010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
The application of three-dimensional (3D) printing/bioprinting technologies and cell therapies has garnered significant attention due to their potential in the field of regenerative medicine. This paper aims to provide a comprehensive overview of 3D printing/bioprinting technology and cell therapies, highlighting their results in diverse medical applications, while also discussing the capabilities and limitations of their combined use. The synergistic combination of 3D printing and cellular therapies has been recognised as a promising and innovative approach, and it is expected that these technologies will progressively assume a crucial role in the treatment of various diseases and conditions in the foreseeable future. This review concludes with a forward-looking perspective on the future impact of these technologies, highlighting their potential to revolutionize regenerative medicine through enhanced tissue repair and organ replacement strategies.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (CESPU), Instituto Universitário de Ciências da Saúde (IUCS), Avenida Central de Gandra 1317, Gandra, 4585-116 Paredes, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Alícia Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - José Domingos Santos
- REQUIMTE-LAQV, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, UP, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Luís Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, Rua de Portugal—Zona Industrial, 2430-028 Marinha Grande, Portugal;
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
10
|
Chen C, Qiu K. 3D-Printed Artificial Organ Models for Surgical Applications. Methods Mol Biol 2025; 2902:183-195. [PMID: 40029604 DOI: 10.1007/978-1-0716-4402-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Medical errors are one of the leading death causes in the United States, becoming a serious concern in clinical surgeries. Although full elimination of medical errors is unattainable, proper surgical planning and rehearsals on presurgical artificial organ models can reduce the error occurrences. However, current organ models miss multiple important features, such as a lack of tissue-mimicking properties and quantitative sensing feedback, significantly limiting their capabilities in advanced surgical planning and rehearsal. Therefore, the design and development of new methods and customized inks to fabricate patient-specific 3D-printed artificial organ models with accurate tissue-mimicking sensation and real-time operation feedback can be greatly beneficial to surgical applications and outcomes.This chapter introduces relevant fabrication, properties, characterization, and applications of 3D-printed patient-specific prostate models with physical properties of tissue and integrated soft electronic sensors.
Collapse
Affiliation(s)
- Chuchu Chen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, USA
| | - Kaiyan Qiu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, USA.
| |
Collapse
|
11
|
Mallineni SK, Sethi M, Punugoti D, Kotha SB, Alkhayal Z, Mubaraki S, Almotawah FN, Kotha SL, Sajja R, Nettam V, Thakare AA, Sakhamuri S. Artificial Intelligence in Dentistry: A Descriptive Review. Bioengineering (Basel) 2024; 11:1267. [PMID: 39768085 PMCID: PMC11673909 DOI: 10.3390/bioengineering11121267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/06/2025] Open
Abstract
Artificial intelligence (AI) is an area of computer science that focuses on designing machines or systems that can perform operations that would typically need human intelligence. AI is a rapidly developing technology that has grabbed the interest of researchers from all across the globe in the healthcare industry. Advancements in machine learning and data analysis have revolutionized oral health diagnosis, treatment, and management, making it a transformative force in healthcare, particularly in dentistry. Particularly in dentistry, AI is becoming increasingly prevalent as it contributes to the diagnosis of oro-facial diseases, offers treatment modalities, and manages practice in the dental operatory. All dental disciplines, including oral medicine, operative dentistry, pediatric dentistry, periodontology, orthodontics, oral and maxillofacial surgery, prosthodontics, and forensic odontology, have adopted AI. The majority of AI applications in dentistry are for diagnoses based on radiographic or optical images, while other tasks are less applicable due to constraints such as data availability, uniformity, and computational power. Evidence-based dentistry is considered the gold standard for decision making by dental professionals, while AI machine learning models learn from human expertise. Dentistry AI and technology systems can provide numerous benefits, such as improved diagnosis accuracy and increased administrative task efficiency. Dental practices are already implementing various AI applications, such as imaging and diagnosis, treatment planning, robotics and automation, augmented and virtual reality, data analysis and predictive analytics, and administrative support. The dentistry field has extensively used artificial intelligence to assist less-skilled practitioners in reaching a more precise diagnosis. These AI models effectively recognize and classify patients with various oro-facial problems into different risk categories, both individually and on a group basis. The objective of this descriptive review is to review the most recent developments of AI in the field of dentistry.
Collapse
Affiliation(s)
- Sreekanth Kumar Mallineni
- Pediatric Dentistry, Dr. Sulaiman Alhabib Medical Group, Rayyan, Riyadh 14212, Saudi Arabia
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Mallika Sethi
- Department of Periodontics, Inderprastha Dental College and Hospital, Ghaziabad 201010, Uttar Pradesh, India
| | - Dedeepya Punugoti
- Pediatric Dentistry, Sri Vydya Dental Hospital, Ongole 52300, Andhra Pradesh, India
| | - Sunil Babu Kotha
- Preventive Dentistry Department, Pediatric Dentistry Division, College of Dentistry, Riyadh Elm University, Riyadh 13244, Saudi Arabia
- Department of Pediatric and Preventive Dentistry, Datta Meghe Institute of Medical Sciences, Wardha 442004, Maharashtra, India
| | - Zikra Alkhayal
- Therapeutics & Biomarker Discovery for Clinical Applications, Cell Therapy & Immunobiology Department, King Faisal Specialist Hospital & Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia
- Department of Dentistry, King Faisal Specialist Hospital & Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Sarah Mubaraki
- Preventive Dentistry Department, Pediatric Dentistry Division, College of Dentistry, Riyadh Elm University, Riyadh 13244, Saudi Arabia
| | - Fatmah Nasser Almotawah
- Preventive Dentistry Department, Pediatric Dentistry Division, College of Dentistry, Riyadh Elm University, Riyadh 13244, Saudi Arabia
| | - Sree Lalita Kotha
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rishitha Sajja
- Clinical Data Management, Global Data Management and Centralized Monitoring, Global Development Operations, Bristol Myers Squibb, Pennington, NJ 07922, USA
| | - Venkatesh Nettam
- Department of Orthodontics, Narayana Dental College and Hospital, Nellore 523004, Andhra Pradesh, India
| | - Amar Ashok Thakare
- Department of Restorative Dentistry and Prosthodontics, College of Dentistry, Majmaah University, Al-Zulfi 11952, Saudi Arabia
| | - Srinivasulu Sakhamuri
- Department of Conservative Dentistry & Endodontics, Narayana Dental College and Hospital, Nellore 523004, Andhra Pradesh, India
| |
Collapse
|
12
|
Subramanian A, Mohanbabu J, Srinivasan T, T T, Subramaniyan V, V M, Sekar M, Wong LS. Reviewing the literature of 3D printing of bones and cartilage: Evidence and practice. ANNALS OF 3D PRINTED MEDICINE 2024; 16:100180. [DOI: 10.1016/j.stlm.2024.100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
|
13
|
Dong Y, Zhou X, Ding Y, Luo Y, Zhao H. Advances in tumor microenvironment: Applications and challenges of 3D bioprinting. Biochem Biophys Res Commun 2024; 730:150339. [PMID: 39032359 DOI: 10.1016/j.bbrc.2024.150339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024]
Abstract
The tumor microenvironment (TME) assumes a pivotal role in the treatment of oncological diseases, given its intricate interplay of diverse cellular components and extracellular matrices. This dynamic ecosystem poses a serious challenge to traditional research methods in many ways, such as high research costs, inefficient translation, poor reproducibility, and low modeling success rates. These challenges require the search for more suitable research methods to accurately model the TME, and the emergence of 3D bioprinting technology is transformative and an important complement to these traditional methods to precisely control the distribution of cells, biomolecules, and matrix scaffolds within the TME. Leveraging digital design, the technology enables personalized studies with high precision, providing essential experimental flexibility. Serving as a critical bridge between in vitro and in vivo studies, 3D bioprinting facilitates the realistic 3D culturing of cancer cells. This comprehensive article delves into cutting-edge developments in 3D bioprinting, encompassing diverse methodologies, biomaterial choices, and various 3D tumor models. Exploration of current challenges, including limited biomaterial options, printing accuracy constraints, low reproducibility, and ethical considerations, contributes to a nuanced understanding. Despite these challenges, the technology holds immense potential for simulating tumor tissues, propelling personalized medicine, and constructing high-resolution organ models, marking a transformative trajectory in oncological research.
Collapse
Affiliation(s)
- Yingying Dong
- The First School of Climical Medicine of Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xue Zhou
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China.
| | - Yunyi Ding
- Department of Emergency Medicine, The Second Affiliated Hospital of Zhejiang University, School, Hangzhou, 310009, China.
| | - Yichen Luo
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China.
| | - Hong Zhao
- The First School of Climical Medicine of Zhejiang Chinese Medical University, Hangzhou, 310053, China; Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310060, China.
| |
Collapse
|
14
|
Fernandes da Silva JLG, Barroso Gonçalves SM, Plácido da Silva HH, Tavares da Silva MP. Three-dimensional printed exoskeletons and orthoses for the upper limb-A systematic review. Prosthet Orthot Int 2024; 48:590-602. [PMID: 38175034 DOI: 10.1097/pxr.0000000000000318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
This systematic review aims to assess and summarize the current landscape in exoskeletons and orthotic solutions developed for upper limb medical assistance, which are partly or fully produced using 3-dimensional printing technologies and contain at least the elbow or the shoulder joints. The initial search was conducted on Web of Science, PubMed, and IEEEXplore, resulting in 92 papers, which were reduced to 72 after removal of duplicates. From the application of the inclusion and exclusion criteria and selection questionnaire, 33 papers were included in the review, being divided according to the analyzed joints. The analysis of the selected papers allowed for the identification of different solutions that vary in terms of their target application, actuation type, 3-dimensional printing techniques, and material selection, among others. The results show that there has been far more research on the elbow joint than on the shoulder joint, which can be explained by the relative complexity of the latter. Moreover, the findings of this study also indicate that there is still a gap between the research conducted on these devices and their practical use in real-world conditions. Based on current trends, it is anticipated that the future of 3-dimensional printed exoskeletons will revolve around the use of flexible and high-performance materials, coupled with actuated devices. These advances have the potential to replace the conventional fabrication methods of exoskeletons with technologies based on additive manufacturing.
Collapse
|
15
|
Chaurasia P, Singh R, Mahto SK. FRESH-based 3D bioprinting of complex biological geometries using chitosan bioink. Biofabrication 2024; 16:045007. [PMID: 38942010 DOI: 10.1088/1758-5090/ad5d18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
Traditional three-dimensional (3D) bioprinting has always been associated with the challenge of print fidelity of complex geometries due to the gel-like nature of the bioinks. Embedded 3D bioprinting has emerged as a potential solution to print complex geometries using proteins and polysaccharides-based bioinks. This study demonstrated the Freeform Reversible Embedding of Suspended Hydrogels (FRESH) 3D bioprinting method of chitosan bioink to 3D bioprint complex geometries. 4.5% chitosan was dissolved in an alkali solvent to prepare the bioink. Rheological evaluation of the bioink described its shear-thinning nature. The power law equation was fitted to the shear rate-viscosity plot. The flow index value was found to be less than 1, categorizing the material as pseudo-plastic. The chitosan bioink was extruded into another medium, a thermo-responsive 4.5% gelatin hydrogel. This hydrogel supports the growing print structures while printing. After this, the 3D bioprinted structure was crosslinked with hot water to stabilize the structure. Using this method, we have 3D bioprinted complex biological structures like the human tri-leaflet heart valve, a section of a human right coronary arterial tree, a scale-down outer structure of the human kidney, and a human ear. Additionally, we have shown the mechanical tunability and suturability of the 3D bioprinted structures. This study demonstrates the capability of the chitosan bioink and FRESH method for 3D bioprinting of complex biological models for biomedical applications.
Collapse
Affiliation(s)
- Parul Chaurasia
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Richa Singh
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Sanjeev Kumar Mahto
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
16
|
Xie HQ, Xie HT, Luo T, Yang BY, Gan DQ, Liao DF, Cui L, Song L, Xie MM. Design of 3D printing osteotomy block for foot based on triply periodic minimal surface. Sci Rep 2024; 14:15851. [PMID: 38982110 PMCID: PMC11233604 DOI: 10.1038/s41598-024-65318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
The ankle joint, which connects the lower limbs and the sole of the foot, is prone to sprain during walking and sports, which leads to ankle arthritis. Supratroleolar osteotomy is an ankle preserving operation for the treatment of ankle arthritis, in which the osteotomy is an important fixing and supporting part. In order to avoid stress shielding effect as much as possible, the osteotomy block is designed as a porous structure. In this study, the osteotomy block was designed based on three-period minimal surface, and the designed structure was manufactured by 3D printing. The mechanical properties of different structures were studied by mechanical test and finite element simulation. In mechanical tests, the Gyroid structure showed a progressive failure mechanism from bottom to bottom, while the Diamond structure showed a shear failure zone at 45° Angle, which was not conducive to energy absorption and was more prone to brittle fracture than the Gyroid structure. Therefore, the Gyroid structure is valuable for further research in the development of porous osteotomy.
Collapse
Affiliation(s)
- Hai-Qiong Xie
- School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, People's Republic of China
| | - Hai-Tao Xie
- XingGuo People's Hospital, Jiangxi, 341000, People's Republic of China
| | - Tao Luo
- School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, People's Republic of China
| | - Bai-Yin Yang
- School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, People's Republic of China
| | - Dao-Qi Gan
- School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, People's Republic of China
| | - Dong-Fa Liao
- Trauma Center, General Hospital of Western Theater Command of PLA, Rongdu Str. 270, Chengdu, 610083, People's Republic of China
| | - Lin Cui
- Trauma Center, General Hospital of Western Theater Command of PLA, Rongdu Str. 270, Chengdu, 610083, People's Republic of China
| | - Lei Song
- Department of Orthopaedics, First Affliated Hospital, Army Medical University, No. 30 Gaotanyanzheng Street, Chongqing, 400038, People's Republic of China.
| | - Mei-Ming Xie
- Trauma Center, General Hospital of Western Theater Command of PLA, Rongdu Str. 270, Chengdu, 610083, People's Republic of China.
| |
Collapse
|
17
|
Devlin C, Tomov ML, Chen H, Nama S, Ali S, Neelakantan S, Avazmohammadi R, Dasi LP, Bauser-Heaton HD, Serpooshan V. Patient-specific 3D in vitro modeling and fluid dynamic analysis of primary pulmonary vein stenosis. Front Cardiovasc Med 2024; 11:1432784. [PMID: 39026997 PMCID: PMC11254695 DOI: 10.3389/fcvm.2024.1432784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Primary pulmonary vein stenosis (PVS) is a rare congenital heart disease that proves to be a clinical challenge due to the rapidly progressive disease course and high rates of treatment complications. PVS intervention is frequently faced with in-stent restenosis and persistent disease progression despite initial venous recanalization with balloon angioplasty or stenting. Alterations in wall shear stress (WSS) have been previously associated with neointimal hyperplasia and venous stenosis underlying PVS progression. Thus, the development of patient-specific three-dimensional (3D) in vitro models is needed to further investigate the biomechanical outcomes of endovascular and surgical interventions. Methods In this study, deidentified computed tomography images from three patients were segmented to generate perfusable phantom models of pulmonary veins before and after catheterization. These 3D reconstructions were 3D printed using a clear resin ink and used in a benchtop experimental setup. Computational fluid dynamic (CFD) analysis was performed on models in silico utilizing Doppler echocardiography data to represent the in vivo flow conditions at the inlets. Particle image velocimetry was conducted using the benchtop perfusion setup to analyze WSS and velocity profiles and the results were compared with those predicted by the CFD model. Results Our findings indicated areas of undesirable alterations in WSS before and after catheterization, in comparison with the published baseline levels in the healthy in vivo tissues that may lead to regional disease progression. Discussion The established patient-specific 3D in vitro models and the developed in vitro-in silico platform demonstrate great promise to refine interventional approaches and mitigate complications in treating patients with primary PVS.
Collapse
Affiliation(s)
- Christian Devlin
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Martin L. Tomov
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Huang Chen
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Sindhu Nama
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Siraj Ali
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Sunder Neelakantan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Reza Avazmohammadi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
- School of Engineering Medicine, Texas A&M University, Houston, TX, United States
| | - Lakshmi Prasad Dasi
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Holly D. Bauser-Heaton
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Sibley Heart Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Children’s Healthcare of Atlanta, Atlanta, GA, United States
| |
Collapse
|
18
|
Hara N, Onoguchi M, Kawaguchi H, Matsushima N, Houjou O, Murai M, Nakano K, Makino W. Study of Attenuation Correction Using a Cardiac Dynamic Phantom: Synchronized Time-Phase-Gated Attenuation Correction Method. J Nucl Med Technol 2024; 52:121-131. [PMID: 38627013 DOI: 10.2967/jnmt.123.266785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/20/2023] [Indexed: 06/07/2024] Open
Abstract
In cardiac nuclear medicine examinations, absorption in the body is the main factor in the degradation of the image quality. The Chang and external source methods were used to correct for absorption in the body. However, fundamental studies on attenuation correction for electrocardiogram (ECG)-synchronized CT imaging have not been performed. Therefore, we developed and improved an ECG-synchronized cardiac dynamic phantom and investigated the synchronized time-phase-gated attenuation correction (STPGAC) method using ECG-synchronized SPECT and CT images of the same time phase. Methods: As a basic study, SPECT was performed using synchronized time-phase-gated (STPG) SPECT and non-phase-gated (NPG) SPECT. The attenuation-corrected images were, first, CT images with the same time phase as the ECG waveform of the gated SPECT acquisition (with CT images with the ECG waveform of the CT acquisition as the reference); second, CT images with asynchronous ECG; third, CT images of the 75% region; and fourth, CT images of the 40% region. Results: In the analysis of cardiac function in the phantom experiment, left ventricle ejection fraction (heart rate, 11.5%-13.4%; myocardial wall, 49.8%-55.7%) in the CT images was compared with that in the STPGAC method (heart rate, 11.5%-13.3%; myocardial wall, 49.6%-55.5%), which was closer in value to that of the STPGAC method. In the phantom polar map segment analyses, none of the images showed variability (F (10,10) < 0.5, P = 0.05). All images were correlated (r = 0.824-1.00). Conclusion: In this study, we investigated the STPGAC method using a SPECT/CT system. The STPGAC method showed similar values of cardiac function analysis to the CT images, suggesting that the STPGAC method accurately reconstructed the distribution of blood flow in the myocardial region. However, the target area for attenuation correction of the heart region was smaller than that of the whole body, and changing the gated SPECT conditions and attenuation-corrected images did not affect myocardial blood flow analysis.
Collapse
Affiliation(s)
- Narihiro Hara
- Radiological Technology, Sumitomo Hospital, Osaka, Japan;
| | - Masahisa Onoguchi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan; and
| | | | | | - Osamu Houjou
- Radiological Technology, Sumitomo Hospital, Osaka, Japan
| | - Masakazu Murai
- Radiological Technology, Sumitomo Hospital, Osaka, Japan
| | - Kohei Nakano
- Radiological Technology, Sumitomo Hospital, Osaka, Japan
| | - Wakana Makino
- Department of Cardiology, Sumitomo Hospital, Osaka, Japan
| |
Collapse
|
19
|
Soloukey S, Generowicz B, Warnert E, Springeling G, Schouten J, De Zeeuw C, Dirven C, Vincent A, Kruizinga P. Patient-Specific Vascular Flow Phantom for MRI- and Doppler Ultrasound Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:860-868. [PMID: 38471997 DOI: 10.1016/j.ultrasmedbio.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
OBJECTIVE Intraoperative Doppler ultrasound imaging of human brain vasculature is an emerging neuro-imaging modality that offers vascular brain mapping with unprecedented spatiotemporal resolution. At present, however, access to the human brain using Doppler Ultrasound is only possible in this intraoperative context, posing a significant challenge for validation of imaging techniques. This challenge necessitates the development of realistic flow phantoms outside of the neurosurgical operating room as external platforms for testing hardware and software. An ideal ultrasound flow phantom should provide reference-like values in standardized topologies such as a slanted pipe, and allow for measurements in structures closely resembling vascular morphology of actual patients. Additionally, the phantom should be compatible with other clinical cerebrovascular imaging modalities. To meet these criteria, we developed and validated a versatile, multimodal MRI- and ultrasound Doppler phantom. METHODS Our approach incorporates the latest advancements in phantom research using tissue-mimicking material and 3D-printing with water-soluble resin to create wall-less patient-specific lumens, compatible for ultrasound and MRI. RESULTS We successfully produced three distinct phantoms: a slanted pipe, a y-shape phantom representing a bifurcating vessel and an arteriovenous malformation (AVM) derived from clinical Digital Subtraction Angiography (DSA)-data of the brain. We present 3D ultrafast power Doppler imaging results from these phantoms, demonstrating their ability to mimic complex flow patterns as observed in the human brain. Furthermore, we showcase the compatibility of our phantom with Magnetic Resonance Imaging (MRI). CONCLUSION We developed an MRI- and Doppler Ultrasound-compatible flow-phantom using customizable, water-soluble resin prints ranging from geometrical forms to patient-specific vasculature.
Collapse
Affiliation(s)
- Sadaf Soloukey
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands; Department of Neurosurgery, Erasmus MC, Rotterdam, The Netherlands.
| | | | - Esther Warnert
- Deparment of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Geert Springeling
- Deparment of Experimental Medical Instrumentation, Erasmus MC, Rotterdam, The Netherlands
| | - Joost Schouten
- Department of Neurosurgery, Erasmus MC, Rotterdam, The Netherlands
| | - Chris De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands; Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, Netherlands
| | - Clemens Dirven
- Department of Neurosurgery, Erasmus MC, Rotterdam, The Netherlands
| | - Arnaud Vincent
- Department of Neurosurgery, Erasmus MC, Rotterdam, The Netherlands
| | - Pieter Kruizinga
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
20
|
Kennedy SM, K A, J JJB, V E, Rb JR. Transformative applications of additive manufacturing in biomedical engineering: bioprinting to surgical innovations. J Med Eng Technol 2024; 48:151-168. [PMID: 39282861 DOI: 10.1080/03091902.2024.2399017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/17/2024] [Accepted: 08/24/2024] [Indexed: 10/10/2024]
Abstract
This paper delves into the diverse applications and transformative impact of additive manufacturing (AM) in biomedical engineering. A detailed analysis of various AM technologies showcases their distinct capabilities and specific applications within the medical field. Special emphasis is placed on bioprinting of organs and tissues, a revolutionary area where AM has the potential to revolutionize organ transplantation and regenerative medicine by fabricating functional tissues and organs. The review further explores the customization of implants and prosthetics, demonstrating how tailored medical devices enhance patient comfort and performance. Additionally, the utility of AM in surgical planning is examined, highlighting how printed models contribute to increased surgical precision, reduced operating times, and minimized complications. The discussion extends to the 3D printing of surgical instruments, showcasing how these bespoke tools can improve surgical outcomes. Moreover, the integration of AM in drug delivery systems, including the development of innovative drug-loaded implants, underscores its potential to enhance therapeutic efficacy and reduce side effects. It also addresses personalized prosthetic implants, regulatory frameworks, biocompatibility concerns, and the future potential of AM in global health and sustainable practices.
Collapse
Affiliation(s)
- Senthil Maharaj Kennedy
- Department of Mechanical Engineering, AAA College of Engineering and Technology, Sivakasi, India
| | - Amudhan K
- Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, India
| | - Jerold John Britto J
- Department of Mechanical Engineering, Ramco Institute of Technology, Rajapalayam, India
| | - Ezhilmaran V
- Department of Manufacturing Engineering, Anna University, Chennai, India
| | - Jeen Robert Rb
- Department of Mechanical Engineering, Sri Krishna College of Technology, Coimbatore, India
| |
Collapse
|
21
|
Heuser M, Gonzalez-Uarquin F, Nuber M, Brockmann MA, Baumgart J, Baumgart N. A 3D-Printed Dummy for Training Distal Phalanx Amputation in Mice. Animals (Basel) 2024; 14:1253. [PMID: 38672401 PMCID: PMC11047469 DOI: 10.3390/ani14081253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The development of realistic dummies for training the distal phalanx amputation (DPA) technique in mouse pups is a promising alternative to reduce and replace animals in training for research and teaching. To test this, we obtained micro-CT data from postnatal day-five mouse pups, meticulously segmented them, and converted them into a 3D mesh format suitable for 3D printing. Once the dummy was printed, it was evaluated during actual training courses in two different groups: in the first group, users received no dummies to train the DPA, and in the second group, users were trained with three dummies. To assess the effectiveness of the dummy, we conducted a survey followed by an expert veterinarian evaluation. Our results showed that DPA is a complex procedure, and it is commonly poorly performed. When implementing the dummies, users who were not provided with dummies to practice only had an 8.3% success rate in DPA, while users provided with three dummies had a 45.5% success rate, respectively. Despite additional research being needed, our dummy offered improved practical training by providing a safe and effective alternative in line with ethical considerations while demonstrating the feasibility of using 3D printing technology to promote the 3Rs in experimental research.
Collapse
Affiliation(s)
- Miriam Heuser
- Translational Animal Research Center, University Medical Centre, Johannes Gutenberg-Universität Mainz, 55122 Mainz, Germany; (F.G.-U.); (M.N.); (J.B.); (N.B.)
| | - Fernando Gonzalez-Uarquin
- Translational Animal Research Center, University Medical Centre, Johannes Gutenberg-Universität Mainz, 55122 Mainz, Germany; (F.G.-U.); (M.N.); (J.B.); (N.B.)
| | - Maximilian Nuber
- Translational Animal Research Center, University Medical Centre, Johannes Gutenberg-Universität Mainz, 55122 Mainz, Germany; (F.G.-U.); (M.N.); (J.B.); (N.B.)
| | - Marc A. Brockmann
- Clinic and Polyclinic for Neuroradiology, University Medical Centre, Johannes Gutenberg-Universität Mainz, 55131 Mainz, Germany;
| | - Jan Baumgart
- Translational Animal Research Center, University Medical Centre, Johannes Gutenberg-Universität Mainz, 55122 Mainz, Germany; (F.G.-U.); (M.N.); (J.B.); (N.B.)
| | - Nadine Baumgart
- Translational Animal Research Center, University Medical Centre, Johannes Gutenberg-Universität Mainz, 55122 Mainz, Germany; (F.G.-U.); (M.N.); (J.B.); (N.B.)
| |
Collapse
|
22
|
Setiawan J, Rizal DM, Sofyantoro F, Priyono DS, Septriani NI, Mafiroh WU, Kotani T, Matozaki T, Putri WA. Bibliometric analysis of organoids in regenerative medicine-related research worldwide over two decades (2002-2022). Regen Med 2024; 19:119-133. [PMID: 38449425 DOI: 10.2217/rme-2023-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Aim: This study aimed to evaluate the trends in organoid culture research within the field of regenerative medicine from 2002 to 2022. Methods: The worldwide distribution of organoid research in regenerative medicine articles indexed in the Scopus database was analyzed. Result: A total of 840 documents were analyzed, averaging 42 publications annually. The USA (n = 296) led in publications, followed by China (n = 127), Japan (n = 91) and the UK (n = 75). Since 2011, research has surged, particularly in China, which emerged as a prominent center. Conclusion: The findings highlight significant growth in organoid research, promising future organ transplantation. Research trends integrate tissue engineering, gene modification and induced pluripotent stem cell technologies, reflecting a move toward personalized medicine.
Collapse
Affiliation(s)
- Jajar Setiawan
- Department of Physiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dicky Moch Rizal
- Department of Physiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Fajar Sofyantoro
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dwi Sendi Priyono
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nur Indah Septriani
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Wulan Usfi Mafiroh
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Takenori Kotani
- Division of Molecular and Cellular Signaling, Department of Biochemistry & Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry & Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Biosignal Regulation, Department of Biochemistry & Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Wahyu Aristyaning Putri
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
23
|
Hosseinzadeh E, Bosques-Palomo B, Carmona-Arriaga F, Fabiani MA, Aguirre-Soto A. Fabrication of Soft Transparent Patient-Specific Vascular Models with Stereolithographic 3D printing and Thiol-Based Photopolymerizable Coatings. Macromol Rapid Commun 2024; 45:e2300611. [PMID: 38158746 DOI: 10.1002/marc.202300611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Indexed: 01/03/2024]
Abstract
An ideal vascular phantom should be anatomically accurate, have mechanical properties as close as possible to the tissue, and be sufficiently transparent for ease of visualization. However, materials that enable the convergence of these characteristics have remained elusive. The fabrication of patient-specific vascular phantoms with high anatomical fidelity, optical transparency, and mechanical properties close to those of vascular tissue is reported. These final properties are achieved by 3D printing patient-specific vascular models with commercial elastomeric acrylic-based resins before coating them with thiol-based photopolymerizable resins. Ternary thiol-ene-acrylate chemistry is found optimal. A PETMP/allyl glycerol ether (AGE)/polyethylene glycol diacrylate (PEGDA) coating with a 30/70% AGE/PEGDA ratio applied on a flexible resin yielded elastic modulus, UTS, and elongation of 3.41 MPa, 1.76 MPa, and 63.2%, respectively, in range with the human aortic wall. The PETMP/AGE/PEGDA coating doubled the optical transmission from 40% to 80%, approaching 88% of the benchmark silicone-based elastomer. Higher transparency correlates with a decrease in surface roughness from 2000 to 90 nm after coating. Coated 3D-printed anatomical replicas are showcased for pre-procedural planning and medical training with good radio-opacity and echogenicity. Thiol-click chemistry coatings, as a surface treatment for elastomeric stereolithographic 3D-printed objects, address inherent limitations of photopolymer-based additive manufacturing.
Collapse
Affiliation(s)
- Elnaz Hosseinzadeh
- School of Engineering and Sciences, Tecnologico de Monterrey, Nuevo León, Monterrey, 64849, México
| | - Beatriz Bosques-Palomo
- School of Engineering and Sciences, Tecnologico de Monterrey, Nuevo León, Monterrey, 64849, México
| | | | - Mario Alejandro Fabiani
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Nuevo León, Monterrey, 64710, México
| | - Alan Aguirre-Soto
- School of Engineering and Sciences, Tecnologico de Monterrey, Nuevo León, Monterrey, 64849, México
| |
Collapse
|
24
|
Zhang Y, O'Mahony A, He Y, Barber T. Hydrodynamic shear stress' impact on mammalian cell properties and its applications in 3D bioprinting. Biofabrication 2024; 16:022003. [PMID: 38277669 DOI: 10.1088/1758-5090/ad22ee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
As an effective cell assembly method, three-dimensional bioprinting has been widely used in building organ models and tissue repair over the past decade. However, different shear stresses induced throughout the entire printing process can cause complex impacts on cell integrity, including reducing cell viability, provoking morphological changes and altering cellular functionalities. The potential effects that may occur and the conditions under which these effects manifest are not clearly understood. Here, we review systematically how different mammalian cells respond under shear stress. We enumerate available experimental apparatus, and we categorise properties that can be affected under disparate stress patterns. We also summarise cell damaging mathematical models as a predicting reference for the design of bioprinting systems. We concluded that it is essential to quantify specific cell resistance to shear stress for the optimisation of bioprinting systems. Besides, as substantial positive impacts, including inducing cell alignment and promoting cell motility, can be generated by shear stress, we suggest that we find the proper range of shear stress and actively utilise its positive influences in the development of future systems.
Collapse
Affiliation(s)
- Yani Zhang
- School of Mechanical Engineering, UNSW, Sydney, NSW 2052, Australia
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Aidan O'Mahony
- Inventia Life Science Pty Ltd, Alexandria, Sydney, NSW 2015, Australia
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Tracie Barber
- School of Mechanical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
25
|
Shi W, Wang J, Gao J, Zou X, Dong Q, Huang Z, Sheng J, Guan C, Xu Y, Cui Y, Zhong X. Utilization of 3D printing technology in hepatopancreatobiliary surgery. J Zhejiang Univ Sci B 2024; 25:123-134. [PMID: 38303496 PMCID: PMC10835207 DOI: 10.1631/jzus.b2300175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/23/2023] [Indexed: 02/03/2024]
Abstract
The technology of three-dimensional (3D) printing emerged in the late 1970s and has since undergone considerable development to find numerous applications in mechanical engineering, industrial design, and biomedicine. In biomedical science, several studies have initially found that 3D printing technology can play an important role in the treatment of diseases in hepatopancreatobiliary surgery. For example, 3D printing technology has been applied to create detailed anatomical models of disease organs for preoperative personalized surgical strategies, surgical simulation, intraoperative navigation, medical training, and patient education. Moreover, cancer models have been created using 3D printing technology for the research and selection of chemotherapy drugs. With the aim to clarify the development and application of 3D printing technology in hepatopancreatobiliary surgery, we introduce seven common types of 3D printing technology and review the status of research and application of 3D printing technology in the field of hepatopancreatobiliary surgery.
Collapse
Affiliation(s)
- Wujiang Shi
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiangang Wang
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xian 710032, China
| | - Jianjun Gao
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xinlei Zou
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jialin Sheng
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Canghai Guan
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China. ,
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563006, China. ,
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361000, China. ,
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. ,
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng 224007, China. ,
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou 310053, China. ,
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China. ,
- Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China. ,
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China. ,
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
26
|
Aazmi A, Zhang D, Mazzaglia C, Yu M, Wang Z, Yang H, Huang YYS, Ma L. Biofabrication methods for reconstructing extracellular matrix mimetics. Bioact Mater 2024; 31:475-496. [PMID: 37719085 PMCID: PMC10500422 DOI: 10.1016/j.bioactmat.2023.08.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023] Open
Abstract
In the human body, almost all cells interact with extracellular matrices (ECMs), which have tissue and organ-specific compositions and architectures. These ECMs not only function as cellular scaffolds, providing structural support, but also play a crucial role in dynamically regulating various cellular functions. This comprehensive review delves into the examination of biofabrication strategies used to develop bioactive materials that accurately mimic one or more biophysical and biochemical properties of ECMs. We discuss the potential integration of these ECM-mimics into a range of physiological and pathological in vitro models, enhancing our understanding of cellular behavior and tissue organization. Lastly, we propose future research directions for ECM-mimics in the context of tissue engineering and organ-on-a-chip applications, offering potential advancements in therapeutic approaches and improved patient outcomes.
Collapse
Affiliation(s)
- Abdellah Aazmi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Duo Zhang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Corrado Mazzaglia
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
27
|
Dejescu CA, Bel LV, Melega I, Muresan SMC, Oana LI. Approaches to Laparoscopic Training in Veterinary Medicine: A Review of Personalized Simulators. Animals (Basel) 2023; 13:3781. [PMID: 38136818 PMCID: PMC10740942 DOI: 10.3390/ani13243781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Veterinary minimally invasive surgery (MIS) has experienced notable growth in recent years, yet the availability of specialized training tools remains limited and not readily accessible to practitioners worldwide. While borrowing simulators from human medicine practices suffices for acquiring fundamental laparoscopic skills, it proves inadequate when addressing procedure-specific nuances. Veterinary professionals are now taking steps to create simulators tailored to their patients, although the validation process can be time-consuming. Consequently, the availability of advanced laparoscopic simulators for veterinary training remains scarce. The present study aims to highlight custom-made simulators. A comprehensive search across five databases was conducted to uncover the simulators documented from 2010 to 2022. A total of five simulators emerged from this search, with four grounded in a canine model and only one in an equine model. These models underwent validation and were found to be effective in training surgeons for their designated tasks. The findings underscore a limited array of simulators, predominantly catering to two species (horses and dogs). Considering these findings, it is evident that further research is imperative to create laparoscopic simulators capable of facilitating advanced veterinary training. This would enable the continued evolution of surgical techniques across diverse species, including ruminants, small mammals, and non-mammalian animals.
Collapse
Affiliation(s)
| | - Lucia V. Bel
- Department of Surgery, Anesthesiology and Intensive Care, Faculty of Veterinary Medicine Cluj-Napoca, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (C.A.D.); (I.M.); (S.M.C.M.); (L.I.O.)
| | | | | | | |
Collapse
|
28
|
Ma L, Yu S, Xu X, Moses Amadi S, Zhang J, Wang Z. Application of artificial intelligence in 3D printing physical organ models. Mater Today Bio 2023; 23:100792. [PMID: 37746667 PMCID: PMC10511479 DOI: 10.1016/j.mtbio.2023.100792] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Artificial intelligence (AI) and 3D printing will become technologies that profoundly impact humanity. 3D printing of patient-specific organ models is expected to replace animal carcasses, providing scenarios that simulate the surgical environment for preoperative training and educating patients to propose effective solutions. Due to the complexity of 3D printing manufacturing, it is still used on a small scale in clinical practice, and there are problems such as the low resolution of obtaining MRI/CT images, long consumption time, and insufficient realism. AI has been effectively used in 3D printing as a powerful problem-solving tool. This paper introduces 3D printed organ models, focusing on the idea of AI application in 3D printed manufacturing of organ models. Finally, the potential application of AI to 3D-printed organ models is discussed. Based on the synergy between AI and 3D printing that will benefit organ model manufacturing and facilitate clinical preoperative training in the medical field, the use of AI in 3D-printed organ model making is expected to become a reality.
Collapse
Affiliation(s)
- Liang Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310000, China
- Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, 310000, China
| | - Shijie Yu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310000, China
- Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, 310000, China
| | - Xiaodong Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310000, China
- Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, 310000, China
| | - Sidney Moses Amadi
- International Education College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310000, China
| | - Jing Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Zhifei Wang
- Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, 310000, China
| |
Collapse
|
29
|
Ortiz-Ortiz DN, Mokarizadeh AH, Segal M, Dang F, Zafari M, Tsige M, Joy A. Synergistic Effect of Physical and Chemical Cross-Linkers Enhances Shape Fidelity and Mechanical Properties of 3D Printable Low-Modulus Polyesters. Biomacromolecules 2023; 24:5091-5104. [PMID: 37882707 DOI: 10.1021/acs.biomac.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Three-dimensional (3D) printing is becoming increasingly prevalent in tissue engineering, driving the demand for low-modulus, high-performance, biodegradable, and biocompatible polymers. Extrusion-based direct-write (EDW) 3D printing enables printing and customization of low-modulus materials, ranging from cell-free printing to cell-laden bioinks that closely resemble natural tissue. While EDW holds promise, the requirement for soft materials with excellent printability and shape fidelity postprinting remains unmet. The development of new synthetic materials for 3D printing applications has been relatively slow, and only a small polymer library is available for tissue engineering applications. Furthermore, most of these polymers require high temperature (FDM) or additives and solvents (DLP/SLA) to enable printability. In this study, we present low-modulus 3D printable polyester inks that enable low-temperature printing without the need for solvents or additives. To maintain shape fidelity, we incorporate physical and chemical cross-linkers. These 3D printable polyester inks contain pendant amide groups as the physical cross-linker and coumarin pendant groups as the photochemical cross-linker. Molecular dynamics simulations further confirm the presence of physical interactions between different pendants, including hydrogen bonding and hydrophobic interactions. The combination of the two types of cross-linkers enhances the zero-shear viscosity and hence provides good printability and shape fidelity.
Collapse
Affiliation(s)
- Deliris N Ortiz-Ortiz
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abdol Hadi Mokarizadeh
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Maddison Segal
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Francis Dang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Mahdi Zafari
- Department of Biology, The University of Akron, Akron, Ohio 44325, United States
| | - Mesfin Tsige
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
30
|
Mohanadas HP, Nair V, Doctor AA, Faudzi AAM, Tucker N, Ismail AF, Ramakrishna S, Saidin S, Jaganathan SK. A Systematic Analysis of Additive Manufacturing Techniques in the Bioengineering of In Vitro Cardiovascular Models. Ann Biomed Eng 2023; 51:2365-2383. [PMID: 37466879 PMCID: PMC10598155 DOI: 10.1007/s10439-023-03322-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
Additive Manufacturing is noted for ease of product customization and short production run cost-effectiveness. As our global population approaches 8 billion, additive manufacturing has a future in maintaining and improving average human life expectancy for the same reasons that it has advantaged general manufacturing. In recent years, additive manufacturing has been applied to tissue engineering, regenerative medicine, and drug delivery. Additive Manufacturing combined with tissue engineering and biocompatibility studies offers future opportunities for various complex cardiovascular implants and surgeries. This paper is a comprehensive overview of current technological advancements in additive manufacturing with potential for cardiovascular application. The current limitations and prospects of the technology for cardiovascular applications are explored and evaluated.
Collapse
Affiliation(s)
| | - Vivek Nair
- Computational Fluid Dynamics (CFD) Lab, Mechanical and Aerospace Engineering, University of Texas Arlington, Arlington, TX, 76010, USA
| | | | - Ahmad Athif Mohd Faudzi
- Faculty of Engineering, School of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Nick Tucker
- School of Engineering, College of Science, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Ahmad Fauzi Ismail
- School of Chemical and Energy Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology Initiative, National University of Singapore, Singapore, Singapore
| | - Syafiqah Saidin
- IJNUTM Cardiovascular Engineering Centre, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Saravana Kumar Jaganathan
- Faculty of Engineering, School of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia.
- School of Engineering, College of Science, Brayford Pool, Lincoln, LN6 7TS, UK.
| |
Collapse
|
31
|
Wang X, Shujaat S, Shaheen E, Ferraris E, Jacobs R. Trueness of cone-beam computed tomography-derived skull models fabricated by different technology-based three-dimensional printers. BMC Oral Health 2023; 23:397. [PMID: 37328901 PMCID: PMC10273646 DOI: 10.1186/s12903-023-03104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/04/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Three-dimensional (3D) printing is a novel innovation in the field of craniomaxillofacial surgery, however, a lack of evidence exists related to the comparison of the trueness of skull models fabricated using different technology-based printers belonging to different cost segments. METHODS A study was performed to investigate the trueness of cone-beam computed tomography-derived skull models fabricated using different technology based on low-, medium-, and high-cost 3D printers. Following the segmentation of a patient's skull, the model was printed by: (i) a low-cost fused filament fabrication printer; (ii) a medium-cost stereolithography printer; and (iii) a high-cost material jetting printer. The fabricated models were later scanned by industrial computed tomography and superimposed onto the original reference virtual model by applying surface-based registration. A part comparison color-coded analysis was conducted for assessing the difference between the reference and scanned models. A one-way analysis of variance (ANOVA) with Bonferroni correction was applied for statistical analysis. RESULTS The model printed with the low-cost fused filament fabrication printer showed the highest mean absolute error ([Formula: see text]), whereas both medium-cost stereolithography-based and the high-cost material jetting models had an overall similar dimensional error of [Formula: see text] and [Formula: see text], respectively. Overall, the models printed with medium- and high-cost printers showed a significantly ([Formula: see text]) lower error compared to the low-cost printer. CONCLUSIONS Both stereolithography and material jetting based printers, belonging to the medium- and high-cost market segment, were able to replicate the skeletal anatomy with optimal trueness, which might be suitable for patient-specific treatment planning tasks in craniomaxillofacial surgery. In contrast, the low-cost fused filament fabrication printer could serve as a cost-effective alternative for anatomical education, and/or patient communication.
Collapse
Affiliation(s)
- Xiaotong Wang
- OMFS-IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, Leuven, 3000 Belgium
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang, 150001 Harbin China
| | - Sohaib Shujaat
- OMFS-IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, Leuven, 3000 Belgium
- King Abdullah International Medical Research Center, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Kingdom of Saudi Arabia, Riyadh, 14611 Saudi Arabia
| | - Eman Shaheen
- OMFS-IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, Leuven, 3000 Belgium
| | - Eleonora Ferraris
- Department of Mechanical Engineering, KU Leuven Campus De Nayer, Jan Pieter de Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Reinhilde Jacobs
- OMFS-IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, Leuven, 3000 Belgium
- Department of Dental Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52, Huddinge, Sweden
| |
Collapse
|
32
|
Fitzpatrick X, Fayzullin A, Wang G, Parker L, Dokos S, Guller A. Cells-in-Touch: 3D Printing in Reconstruction and Modelling of Microscopic Biological Geometries for Education and Future Research Applications. Bioengineering (Basel) 2023; 10:687. [PMID: 37370618 DOI: 10.3390/bioengineering10060687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Additive manufacturing (3D printing) and computer-aided design (CAD) still have limited uptake in biomedical and bioengineering research and education, despite the significant potential of these technologies. The utility of organ-scale 3D-printed models of living structures is widely appreciated, while the workflows for microscopy data translation into tactile accessible replicas are not well developed yet. Here, we demonstrate an accessible and reproducible CAD-based methodology for generating 3D-printed scalable models of human cells cultured in vitro and imaged using conventional scanning confocal microscopy with fused deposition modeling (FDM) 3D printing. We termed this technology CiTo-3DP (Cells-in-Touch for 3D Printing). As a proof-of-concept, we created dismountable CiTo-3DP models of human epithelial, mesenchymal, and neural cells by using selectively stained nuclei and cytoskeletal components. We also provide educational and research context for the presented cellular models. In the future, the CiTo-3DP approach can be adapted to different imaging and 3D printing modalities and comprehensively present various cell types, subcellular structures, and extracellular matrices. The resulting CAD and 3D printed models could be used for a broad spectrum of education and research applications.
Collapse
Affiliation(s)
- Xavier Fitzpatrick
- ARC Centre of Excellence for Nanoscale Biophotonics, Sydney, NSW 2052, Australia
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alexey Fayzullin
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Gonglei Wang
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lindsay Parker
- ARC Centre of Excellence for Nanoscale Biophotonics, Sydney, NSW 2052, Australia
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Socrates Dokos
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anna Guller
- ARC Centre of Excellence for Nanoscale Biophotonics, Sydney, NSW 2052, Australia
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
33
|
Sunildutt N, Parihar P, Chethikkattuveli Salih AR, Lee SH, Choi KH. Revolutionizing drug development: harnessing the potential of organ-on-chip technology for disease modeling and drug discovery. Front Pharmacol 2023; 14:1139229. [PMID: 37180709 PMCID: PMC10166826 DOI: 10.3389/fphar.2023.1139229] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
The inefficiency of existing animal models to precisely predict human pharmacological effects is the root reason for drug development failure. Microphysiological system/organ-on-a-chip technology (organ-on-a-chip platform) is a microfluidic device cultured with human living cells under specific organ shear stress which can faithfully replicate human organ-body level pathophysiology. This emerging organ-on-chip platform can be a remarkable alternative for animal models with a broad range of purposes in drug testing and precision medicine. Here, we review the parameters employed in using organ on chip platform as a plot mimic diseases, genetic disorders, drug toxicity effects in different organs, biomarker identification, and drug discoveries. Additionally, we address the current challenges of the organ-on-chip platform that should be overcome to be accepted by drug regulatory agencies and pharmaceutical industries. Moreover, we highlight the future direction of the organ-on-chip platform parameters for enhancing and accelerating drug discoveries and personalized medicine.
Collapse
Affiliation(s)
- Naina Sunildutt
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| | - Pratibha Parihar
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| | | | - Sang Ho Lee
- College of Pharmacy, Jeju National University, Jeju, Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
34
|
To G, Hawke JA, Larkins K, Burke G, Costello DM, Warrier S, Mohan H, Heriot A. A systematic review of the application of 3D-printed models to colorectal surgical training. Tech Coloproctol 2023; 27:257-270. [PMID: 36738361 DOI: 10.1007/s10151-023-02757-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The aim of this review was to explore the role of three-dimensional (3D) printing in colorectal surgical education and procedural simulation, and to assess the effectiveness of 3D-printed models in anatomic and operative education in colorectal surgery. METHODS A systematic review of the literature was performed following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to identify relevant publications relating to the use of 3D-printed models in colorectal surgery in an educational context. The search encompassed OVID Medline, Web of Science and EMBASE including papers in English published from 1 January 1995 to 1 January 2023. A total of 1018 publications were screened, and 5 met the criteria for inclusion in this review. RESULTS Four distinct 3D models were described across five studies. Two models demonstrated objective benefits in the use of 3D-printed models in anatomical education in academic outcomes at all levels of learner medical experience and were well accepted by learners. One model utilised for preoperative visualisation demonstrated improved operative outcomes in complete mesocolic excision compared with preoperative imaging review, with a 22.1% reduction in operative time (p < 0.001), 9.2% reduction in surgical duration (p = 0.035) and 37.3% reduction in intraoperative bleeding volume amongst novice surgeons (p < 0.01). Technical simulation has been demonstrated in a feasibility context in one model but remains limited in scope and application on account of the characteristics of available printing materials. CONCLUSIONS 3D printing is well accepted and effective for anatomic education and preoperative procedural planning amongst colorectal surgeons, trainees and medical students but remains a technology in the early stages of its possible application. Technological advancements are required to improve the tissue realism of 3D-printed organ models to achieve greater fidelity and provide realistic colorectal surgical simulations.
Collapse
Affiliation(s)
- Gloria To
- The University of Melbourne, Parkville, VIC, Australia
| | - Justin A Hawke
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia.
| | - Kirsten Larkins
- The University of Melbourne, Parkville, VIC, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Grace Burke
- International Medical Robotics Academy, North Melbourne, VIC, Australia
| | | | - Satish Warrier
- The University of Melbourne, Parkville, VIC, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
- International Medical Robotics Academy, North Melbourne, VIC, Australia
| | - Helen Mohan
- The University of Melbourne, Parkville, VIC, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Alexander Heriot
- The University of Melbourne, Parkville, VIC, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
- International Medical Robotics Academy, North Melbourne, VIC, Australia
| |
Collapse
|
35
|
Zhu L, Rong Y, Wang Y, Bao Q, An J, Huang D, Huang X. DLP printing of tough organogels for customized wearable sensors. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
36
|
Application of Hydrogels as Three-Dimensional Bioprinting Ink for Tissue Engineering. Gels 2023; 9:gels9020088. [PMID: 36826258 PMCID: PMC9956898 DOI: 10.3390/gels9020088] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
The use of three-dimensional bioprinting technology combined with the principle of tissue engineering is important for the construction of tissue or organ regeneration microenvironments. As a three-dimensional bioprinting ink, hydrogels need to be highly printable and provide a stiff and cell-friendly microenvironment. At present, hydrogels are used as bioprinting inks in tissue engineering. However, there is still a lack of summary of the latest 3D printing technology and the properties of hydrogel materials. In this paper, the materials commonly used as hydrogel bioinks; the advanced technologies including inkjet bioprinting, extrusion bioprinting, laser-assisted bioprinting, stereolithography bioprinting, suspension bioprinting, and digital 3D bioprinting technologies; printing characterization including printability and fidelity; biological properties, and the application fields of bioprinting hydrogels in bone tissue engineering, skin tissue engineering, cardiovascular tissue engineering are reviewed, and the current problems and future directions are prospected.
Collapse
|
37
|
Nuber M, Gonzalez-Uarquin F, Neufurth M, Brockmann MA, Baumgart J, Baumgart N. Development of a 3D simulator for training the mouse in utero electroporation. PLoS One 2022; 17:e0279004. [PMID: 36516187 PMCID: PMC9749995 DOI: 10.1371/journal.pone.0279004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
In utero electroporation (IUE) requires high-level training in microinjection through the mouse uterine wall into the lateral ventricle of the mouse brain. Training for IUE is currently being performed in live mice as no artificial models allow simulations yet. This study aimed to develop an anatomically realistic 3D printed simulator to train IUE in mice. To this end, we created embryo models containing lateral ventricles. We coupled them to uterus models in six steps: (1) computed tomography imaging, (2) 3D model segmentation, (3) 3D model refinement, (4) mold creation to cast the actual model, (5) 3D mold printing, and (6) mold casting the molds with a mix of soft silicones to ensure the hardness and consistency of the uterus and embryo. The results showed that the simulator assembly successfully recreated the IUE. The compression test did not differ in the mechanical properties of the real embryo or in the required load for uterus displacement. Furthermore, more than 90% of the users approved the simulator as an introduction to IUE and considered that the simulator could help reduce the number of animals for training. Despite current limitations, our 3D simulator enabled a realistic experience for initial approximations to the IUE and is a real alternative for implementing the 3Rs. We are currently working on refining the model.
Collapse
Affiliation(s)
- Maximilian Nuber
- Translational Animal Research Center, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Fernando Gonzalez-Uarquin
- Translational Animal Research Center, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Meik Neufurth
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Marc A. Brockmann
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jan Baumgart
- Translational Animal Research Center, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Nadine Baumgart
- Translational Animal Research Center, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- * E-mail:
| |
Collapse
|
38
|
Großmann L, Kieckhöfer M, Weitschies W, Krause J. 4D prints of flexible dosage forms using thermoplastic polyurethane with hybrid shape memory effect. Eur J Pharm Biopharm 2022; 181:227-238. [PMID: 36423878 DOI: 10.1016/j.ejpb.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Thermoplastic polyurethanes are versatile materials due to their flexible and elastic properties. In research, medicine, and pharmacy, they are used in dosage forms, implants or as components of medical devices. To gain a deeper understanding of the influences on unfolding or expanding dosage forms, in this publication, 3D printing was used to produce differently shaped and foldable objects from various technical thermoplastic polyurethane filaments. The shape memory behaviour of the dosage forms was exploited to fold and package them in water-soluble hard gelatin capsules. The unfolding time and dimensional recovery of the 3D printed dosage forms were investigated as a function of material properties and shape. As an example, for the use of flexible dosage forms, 3D models have been designed so that their unfolded size is suitable for possible gastric retention. Depending on the shape and material, different unfolding behaviours could be shown. Over a storage period of 60 days, a time related stress on the 4D printed objects was evaluated, which possibly affects the unfolding process. The results of this work aim to be used to evaluate the behaviour of 3D printed unfolding and expanding dosage forms and how they may be suitable for the development of innovative sustained drug delivery concepts or medicinal devices. The basic principle of a hybrid shape memory effect used here could possibly be applied to other drug delivery strategies besides gastric retention.
Collapse
Affiliation(s)
- Linus Großmann
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany.
| | - Maximilian Kieckhöfer
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany.
| | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany.
| | - Julius Krause
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany.
| |
Collapse
|
39
|
Zommiti M, Connil N, Tahrioui A, Groboillot A, Barbey C, Konto-Ghiorghi Y, Lesouhaitier O, Chevalier S, Feuilloley MGJ. Organs-on-Chips Platforms Are Everywhere: A Zoom on Biomedical Investigation. Bioengineering (Basel) 2022; 9:646. [PMID: 36354557 PMCID: PMC9687856 DOI: 10.3390/bioengineering9110646] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/27/2022] [Indexed: 08/28/2023] Open
Abstract
Over the decades, conventional in vitro culture systems and animal models have been used to study physiology, nutrient or drug metabolisms including mechanical and physiopathological aspects. However, there is an urgent need for Integrated Testing Strategies (ITS) and more sophisticated platforms and devices to approach the real complexity of human physiology and provide reliable extrapolations for clinical investigations and personalized medicine. Organ-on-a-chip (OOC), also known as a microphysiological system, is a state-of-the-art microfluidic cell culture technology that sums up cells or tissue-to-tissue interfaces, fluid flows, mechanical cues, and organ-level physiology, and it has been developed to fill the gap between in vitro experimental models and human pathophysiology. The wide range of OOC platforms involves the miniaturization of cell culture systems and enables a variety of novel experimental techniques. These range from modeling the independent effects of biophysical forces on cells to screening novel drugs in multi-organ microphysiological systems, all within microscale devices. As in living biosystems, the development of vascular structure is the salient feature common to almost all organ-on-a-chip platforms. Herein, we provide a snapshot of this fast-evolving sophisticated technology. We will review cutting-edge developments and advances in the OOC realm, discussing current applications in the biomedical field with a detailed description of how this technology has enabled the reconstruction of complex multi-scale and multifunctional matrices and platforms (at the cellular and tissular levels) leading to an acute understanding of the physiopathological features of human ailments and infections in vitro.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Research Unit Bacterial Communication and Anti-infectious Strategies (CBSA, UR4312), University of Rouen Normandie, 27000 Evreux, France
| | | | | | | | | | | | | | | | - Marc G. J. Feuilloley
- Research Unit Bacterial Communication and Anti-infectious Strategies (CBSA, UR4312), University of Rouen Normandie, 27000 Evreux, France
| |
Collapse
|
40
|
Phantom Study on the Robustness of MR Radiomics Features: Comparing the Applicability of 3D Printed and Biological Phantoms. Diagnostics (Basel) 2022; 12:diagnostics12092196. [PMID: 36140598 PMCID: PMC9497898 DOI: 10.3390/diagnostics12092196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The objectives of our study were to (a) evaluate the feasibility of using 3D printed phantoms in magnetic resonance imaging (MR) in assessing the robustness and repeatability of radiomic parameters and (b) to compare the results obtained from the 3D printed phantoms to metrics obtained in biological phantoms. To this end, three different 3D phantoms were printed: a Hilbert cube (5 × 5 × 5 cm3) and two cubic quick response (QR) code phantoms (a large phantom (large QR) (5 × 5 × 4 cm3) and a small phantom (small QR) (4 × 4 × 3 cm3)). All 3D printed and biological phantoms (kiwis, tomatoes, and onions) were scanned thrice on clinical 1.5 T and 3 T MR with 1 mm and 2 mm isotropic resolution. Subsequent analyses included analyses of several radiomics indices (RI), their repeatability and reliability were calculated using the coefficient of variation (CV), the relative percentage difference (RPD), and the interclass coefficient (ICC) parameters. Additionally, the readability of QR codes obtained from the MR images was examined with several mobile phones and algorithms. The best repeatability (CV ≤ 10%) is reported for the acquisition protocols with the highest spatial resolution. In general, the repeatability and reliability of RI were better in data obtained at 1.5 T (CV = 1.9) than at 3 T (CV = 2.11). Furthermore, we report good agreements between results obtained for the 3D phantoms and biological phantoms. Finally, analyses of the read-out rate of the QR code revealed better texture analyses for images with a spatial resolution of 1 mm than 2 mm. In conclusion, 3D printing techniques offer a unique solution to create textures for analyzing the reliability of radiomic data from MR scans.
Collapse
|
41
|
Chen X, Han S, Wu W, Wu Z, Yuan Y, Wu J, Liu C. Harnessing 4D Printing Bioscaffolds for Advanced Orthopedics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106824. [PMID: 35060321 DOI: 10.1002/smll.202106824] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/15/2021] [Indexed: 05/13/2023]
Abstract
The development of programmable functional biomaterials makes 4D printing add a new dimension, time (t), based on 3D structures (x, y, z), therefore, 4D printed constructs could transform their morphology or function over time in response to environmental stimuli. Nowadays, highly efficient bone defect repair remains challenging in clinics. Combining programmable biomaterials, living cells, and bioactive factors, 4D bioprinting provides greater potential for constructing dynamic, personalized, and precise bone tissue engineering scaffolds by complex structure formation and functional maturation. Therefore, 4D bioprinting has been regarded as the next generation of bone repair technology. This review focuses on 4D printing and its advantages in orthopedics. The applications of different smart biomaterials and 4D printing strategies are briefly introduced. Furthermore, one summarizes the recent advancements of 4D printing in bone tissue engineering, uncovering the addressed and unaddressed medical requirements. In addition, current challenges and future perspectives are further discussed, which will offer more inspiration about the clinical transformation of this emerging 4D bioprinting technology in bone regeneration.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuyan Han
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Weihui Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Zihan Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
42
|
Fan X, Deng C, Gao H, Jiao B, Liu Y, Chen F, Deng L, Xiong W. 3D printing of nanowrinkled architectures via laser direct assembly. SCIENCE ADVANCES 2022; 8:eabn9942. [PMID: 35947660 PMCID: PMC9365276 DOI: 10.1126/sciadv.abn9942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Structural wrinkles in nature have been widely imitated to enhance the surface functionalities of objects, especially three-dimensional (3D) architectured wrinkles, holding promise for emerging applications in mechanical, electrical, and biological processes. However, the fabrication of user-defined 3D nanowrinkled architectures is a long-pending challenge. Here, we propose a bottom-up laser direct assembly strategy to fabricate multidimensional nanowrinkled architectures in a single-material one-step process. Through the introduction of laser-induced thermal transition into a 3D nanoprinting process for leading the point-by-point nanoscale wrinkling and the self-organization of wrinkle structures, we have demonstrated the program-controlled and on-demand fabrication of multidimensional nanowrinkled structures. Moreover, the precise control of wrinkle morphology with an optimal wavelength of 40 nanometers and the regulation of the dynamic transformation of wrinkled cellular microstructures via interfacial stress mismatch engineering have been achieved. This study provides a universal protocol for constructing nearly arbitrary nanowrinkled architectures and facilitates a new paradigm in nanostructure manufacturing.
Collapse
Affiliation(s)
- Xuhao Fan
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chunsan Deng
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Gao
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Optics Valley Laboratory, Wuhan, Hubei 430074, China
| | - Binzhang Jiao
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuncheng Liu
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fayu Chen
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Leimin Deng
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Optics Valley Laboratory, Wuhan, Hubei 430074, China
| | - Wei Xiong
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Optics Valley Laboratory, Wuhan, Hubei 430074, China
| |
Collapse
|
43
|
Kim DY, Tan X, Li D, Yilmaz M, Miernik A, Qiu T. A Hybrid Surgical Simulator for Interactive Endoscopic Training. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:971-974. [PMID: 36086164 DOI: 10.1109/embc48229.2022.9871697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Endoscopy serves as an indispensable minimally-invasive surgical procedure. Due to the limited view and non-intuitive operation of the instrument, the mastery of endoscopic manipulation requires deep medical knowledge as well as complex perception and motor skills of the surgeon. Intensive surgical training is required, and simulation-based training is of more and more importance over traditional animal- or cadaver-based approaches. Here, we developed a hybrid surgical simulator that consists of a realistic physical organ model and an artificial intelligence (AI)-driven cyber model. We built a physical model of the full urinary tract with soft materials and detailed blood vessel structures. Endourological procedures were performed to localize and treat renal calculi by a flexible endoscope. An AI algorithm detects the lesions automatically with high accuracy and provides quantitative feedback about an operator's endoscopic skills. The hybrid simulator system shows great potential as an interactive and personalized learning environment for endoscopic skills. Clinical Relevance- This work establishes a preliminary approach for realistic endoscopic training. The developed hybrid surgical simulator - with high-fidelity physical organ models and quantitative feedback - can deliver effective hands-on learning to surgeons to improve their endoscopic skills.
Collapse
|
44
|
Nilsson DPG, Holmgren M, Holmlund P, Wåhlin A, Eklund A, Dahlberg T, Wiklund K, Andersson M. Patient-specific brain arteries molded as a flexible phantom model using 3D printed water-soluble resin. Sci Rep 2022; 12:10172. [PMID: 35715506 PMCID: PMC9205921 DOI: 10.1038/s41598-022-14279-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/03/2022] [Indexed: 11/08/2022] Open
Abstract
Visualizing medical images from patients as physical 3D models (phantom models) have many roles in the medical field, from education to preclinical preparation and clinical research. However, current phantom models are generally generic, expensive, and time-consuming to fabricate. Thus, there is a need for a cost- and time-efficient pipeline from medical imaging to patient-specific phantom models. In this work, we present a method for creating complex 3D sacrificial molds using an off-the-shelf water-soluble resin and a low-cost desktop 3D printer. This enables us to recreate parts of the cerebral arterial tree as a full-scale phantom model ([Formula: see text] cm) in transparent silicone rubber (polydimethylsiloxane, PDMS) from computed tomography angiography images (CTA). We analyzed the model with magnetic resonance imaging (MRI) and compared it with the patient data. The results show good agreement and smooth surfaces for the arteries. We also evaluate our method by looking at its capability to reproduce 1 mm channels and sharp corners. We found that round shapes are well reproduced, whereas sharp features show some divergence. Our method can fabricate a patient-specific phantom model with less than 2 h of total labor time and at a low fabrication cost.
Collapse
Affiliation(s)
| | - Madelene Holmgren
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, 901 87, Umeå, Sweden
- Department of Clinical Science, Neurosciences, Umeå University, 901 87, Umeå, Sweden
| | - Petter Holmlund
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, 901 87, Umeå, Sweden
| | - Anders Wåhlin
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, 901 87, Umeå, Sweden
- Department of Applied Physics and Electronics, Umeå University, 901 87, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 901 87, Umeå, Sweden
| | - Anders Eklund
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, 901 87, Umeå, Sweden
| | - Tobias Dahlberg
- Department of Physics, Umeå University, 901 87, Umeå, Sweden
| | - Krister Wiklund
- Department of Physics, Umeå University, 901 87, Umeå, Sweden
| | - Magnus Andersson
- Department of Physics, Umeå University, 901 87, Umeå, Sweden.
- Umeå Center for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
45
|
Application of 3D printing in cervical cancer brachytherapy. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Kamphuis ME, Kuipers H, Verschoor J, van Hespen JCG, Greuter MJW, Slart RHJA, Slump CH. Development of a dynamic myocardial perfusion phantom model for tracer kinetic measurements. EJNMMI Phys 2022; 9:31. [PMID: 35467161 PMCID: PMC9038974 DOI: 10.1186/s40658-022-00458-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Absolute myocardial perfusion imaging (MPI) is beneficial in the diagnosis and prognosis of patients with suspected or known coronary artery disease. However, validation and standardization of perfusion estimates across centers is needed to ensure safe and adequate integration into the clinical workflow. Physical myocardial perfusion models can contribute to this clinical need as these can provide ground-truth validation of perfusion estimates in a simplified, though controlled setup. This work presents the design and realization of such a myocardial perfusion phantom and highlights initial performance testing of the overall phantom setup using dynamic single photon emission computed tomography. RESULTS Due to anatomical and (patho-)physiological representation in the 3D printed myocardial perfusion phantom, we were able to acquire 22 dynamic MPI datasets in which 99mTc-labelled tracer kinetics was measured and analyzed using clinical MPI software. After phantom setup optimization, time activity curve analysis was executed for measurements with normal myocardial perfusion settings (1.5 mL/g/min) and with settings containing a regional or global perfusion deficit (0.8 mL/g/min). In these measurements, a specific amount of activated carbon was used to adsorb radiotracer in the simulated myocardial tissue. Such mimicking of myocardial tracer uptake and retention over time satisfactorily matched patient tracer kinetics. For normal perfusion levels, the absolute mean error between computed myocardial blood flow and ground-truth flow settings ranged between 0.1 and 0.4 mL/g/min. CONCLUSION The presented myocardial perfusion phantom is a first step toward ground-truth validation of multimodal, absolute MPI applications in the clinical setting. Its dedicated and 3D printed design enables tracer kinetic measurement, including time activity curve and potentially compartmental myocardial blood flow analysis.
Collapse
Affiliation(s)
- Marije E Kamphuis
- Multi-Modality Medical Imaging (M3i) Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands. .,Robotics and Mechatronics (RaM) Group, Faculty of Electrical Engineering Mathematics and Computer Science, University of Twente, Enschede, The Netherlands.
| | - Henny Kuipers
- Robotics and Mechatronics (RaM) Group, Faculty of Electrical Engineering Mathematics and Computer Science, University of Twente, Enschede, The Netherlands
| | - Jacqueline Verschoor
- Department of Nuclear Medicine, Ziekenhuis Groep Twente, Hengelo, The Netherlands
| | - Johannes C G van Hespen
- Multi-Modality Medical Imaging (M3i) Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Marcel J W Greuter
- Robotics and Mechatronics (RaM) Group, Faculty of Electrical Engineering Mathematics and Computer Science, University of Twente, Enschede, The Netherlands.,Medical Imaging Centre, Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Riemer H J A Slart
- Medical Imaging Centre, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Biomedical Photonic Imaging Group, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Cornelis H Slump
- Robotics and Mechatronics (RaM) Group, Faculty of Electrical Engineering Mathematics and Computer Science, University of Twente, Enschede, The Netherlands
| |
Collapse
|
47
|
Development of a Multicolor 3D Printer Using a Novel Filament Shifting Mechanism. INVENTIONS 2022. [DOI: 10.3390/inventions7020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Three-dimensional printing has become an unchallenged method for the manufacturing of complex shape objects. Although multicolor devices in Fuse Filament Feeder category recently have shown promising developments, their number still remains limited. The present study introduces the design of a new prototype of three-dimensional printer using Fused Filament Feeder and capable of printing multicolor objects. A single-color three-dimensional printer is used as a platform and is augmented for multicolor printing by the implementation of a mechatronic device that provides two functions. First, a transmission mechanism based on planetary gears allows feeding the selected filament color toward the printing head. The second function is provided by a combination of a central cam disk and several pushing rods. It allows selecting the filament color to be fed by the transmission system. The mechatronic device has been dimensioned to manage five different filament colors and the printing head has been modified to accommodate a five-to-one diamond nozzle. The filament shifting device is integrated into the single-color three-dimensional printer and a series of validation experiments has been carried out. These tests have demonstrated the new prototype ability to print out multicolor objects and to rival with commercial three-dimensional printers in terms of dimensional accuracy. This shows the ability of the proposed design and method to be used to upgrade a standard single-color 3D printer into a multicolor one. The presented multicolor 3D printer will be available to the 3D printing community for free.
Collapse
|
48
|
Jia L, Hua Y, Zeng J, Liu W, Wang D, Zhou G, Liu X, Jiang H. Bioprinting and regeneration of auricular cartilage using a bioactive bioink based on microporous photocrosslinkable acellular cartilage matrix. Bioact Mater 2022; 16:66-81. [PMID: 35386331 PMCID: PMC8958552 DOI: 10.1016/j.bioactmat.2022.02.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022] Open
Abstract
Tissue engineering provides a promising strategy for auricular reconstruction. Although the first international clinical breakthrough of tissue-engineered auricular reconstruction has been realized based on polymer scaffolds, this approach has not been recognized as a clinically available treatment because of its unsatisfactory clinical efficacy. This is mainly since reconstruction constructs easily cause inflammation and deformation. In this study, we present a novel strategy for the development of biological auricle equivalents with precise shapes, low immunogenicity, and excellent mechanics using auricular chondrocytes and a bioactive bioink based on biomimetic microporous methacrylate-modified acellular cartilage matrix (ACMMA) with the assistance of gelatin methacrylate (GelMA), poly(ethylene oxide) (PEO), and polycaprolactone (PCL) by integrating multi-nozzle bioprinting technology. Photocrosslinkable ACMMA is used to emulate the intricacy of the cartilage-specific microenvironment for active cellular behavior, while GelMA, PEO, and PCL are used to balance printability and physical properties for precise structural stability, form the microporous structure for unhindered nutrient exchange, and provide mechanical support for higher shape fidelity, respectively. Finally, mature auricular cartilage-like tissues with high morphological fidelity, excellent elasticity, abundant cartilage lacunae, and cartilage-specific ECM deposition are successfully regenerated in vivo, which provides new opportunities and novel strategies for the fabrication and regeneration of patient-specific auricular cartilage. Comprehensive proteomic characteristics of the acellular cartilage matrix. Bioactive bioink based on ACMMA, GelMA, and PEO promoted cell behavior. Bioactive bioink contained biomimetic ECM components and microporous structure. Higher biomechanics was provided by alternately bioactive bioink and PCL strands. Mature auricle cartilage with high shape fidelity and good mechanics was regenerated.
Collapse
|
49
|
Jin Z, He C, Fu J, Han Q, He Y. Balancing the customization and standardization: exploration and layout surrounding the regulation of the growing field of 3D-printed medical devices in China. Biodes Manuf 2022; 5:580-606. [PMID: 35194519 PMCID: PMC8853031 DOI: 10.1007/s42242-022-00187-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/17/2022] [Indexed: 12/23/2022]
Abstract
Medical devices are instruments and other tools that act on the human body to aid clinical diagnosis and disease treatment, playing an indispensable role in modern medicine. Nowadays, the increasing demand for personalized medical devices poses a significant challenge to traditional manufacturing methods. The emerging manufacturing technology of three-dimensional (3D) printing as an alternative has shown exciting applications in the medical field and is an ideal method for manufacturing such personalized medical devices with complex structures. However, the application of this new technology has also brought new risks to medical devices, making 3D-printed devices face severe challenges due to insufficient regulation and the lack of standards to provide guidance to the industry. This review aims to summarize the current regulatory landscape and existing research on the standardization of 3D-printed medical devices in China, and provide ideas to address these challenges. We focus on the aspects concerned by the regulatory authorities in 3D-printed medical devices, highlighting the quality system of such devices, and discuss the guidelines that manufacturers should follow, as well as the current limitations and the feasible path of regulation and standardization work based on this perspective. The key points of the whole process quality control, performance evaluation methods and the concept of whole life cycle management of 3D-printed medical devices are emphasized. Furthermore, the significance of regulation and standardization is pointed out. Finally, aspects worthy of attention and future perspectives in this field are discussed.
Collapse
Affiliation(s)
- Zhongboyu Jin
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Chaofan He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Qianqian Han
- National Institutes for Food and Drug Control, Beijing, 102629 China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, 450002 China
- Cancer Center, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
50
|
Li B, Zhang M, Lu Q, Zhang B, Miao Z, Li L, Zheng T, Liu P. Application and Development of Modern 3D Printing Technology in the Field of Orthopedics. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8759060. [PMID: 35211626 PMCID: PMC8863440 DOI: 10.1155/2022/8759060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 12/31/2022]
Abstract
3D printing, also known as additive manufacturing, is a technology that uses a variety of adhesive materials such as powdered metal or plastic to construct objects based on digital models. Recently, 3D printing technology has been combined with digital medicine, materials science, cytology, and other multidisciplinary fields, especially in the field of orthopedic built-in objects. The development of advanced 3D printing materials continues to meet the needs of clinical precision medicine and customize the most suitable prosthesis for everyone to improve service life and satisfaction. This article introduces the development of 3D printing technology and different types of materials. We also discuss the shortcomings of 3D printing technology and the current challenges, including the poor bionics of 3D printing products, lack of ideal bioinks, product safety, and lack of market supervision. We also prospect the future development trends of 3D printing.
Collapse
Affiliation(s)
- Binglong Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
- Shandong University Cheeloo College of Medicine, Jinan, 250100 Shandong, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
| | - Qunshan Lu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Baoqing Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Zhuang Miao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Lei Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Tong Zheng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Peilai Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| |
Collapse
|