1
|
Tran NA, Moonshi SS, Lam AK, Lu CT, Vu CQ, Arai S, Ta HT. Nanomaterials in cancer starvation therapy: pioneering advances, therapeutic potential, and clinical challenges. Cancer Metastasis Rev 2025; 44:51. [PMID: 40347350 PMCID: PMC12065774 DOI: 10.1007/s10555-025-10267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/29/2025] [Indexed: 05/12/2025]
Abstract
Gaining significant attention in recent years, starvation therapy based on the blocking nutrients supply to cancer cells via blood occlusion and metabolic interventions is a promisingly novel approach in cancer treatment. However, there are many crucial obstacles to overcome to achieve effective treatment, for example, poor-targeting delivery, cellular hypoxia, adverse effects, and ineffective monotherapy. The starvation-based multitherapy based on multifunctional nanomaterials can narrow these gaps and pave a promising way for future clinical translation. This review focuses on the progression in nanomaterials-mediated muti-therapeutic modalities based on starvation therapy in recent years and therapeutic limitations that prevent their clinical applications. Moreover, unlike previous reviews that focused on a single aspect of the field, this comprehensive review presents a broader perspective on starvation therapy by summarising advancements across its various therapeutic strategies.
Collapse
Affiliation(s)
- Nam Anh Tran
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Shehzahdi S Moonshi
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Alfred K Lam
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4215, Australia
- Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Cu Tai Lu
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4215, Australia
- Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Cong Quang Vu
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Satoshi Arai
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
2
|
Choi DY, Ha CH, Lee SJ, Cheon SH, Seong GH. Fucoidan-chitosan nanocarriers for anticancer therapy through chemodynamic, photothermal, and glucose starvation strategies. Colloids Surf B Biointerfaces 2025; 253:114726. [PMID: 40288112 DOI: 10.1016/j.colsurfb.2025.114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
The tumour microenvironment (TME) presents a distinctive set of challenges and opportunities in the context of targeted cancer therapies, offering potential avenues for reducing non-specific cell death and side effects on normal cells. By combining chemodynamic therapy, starvation therapy, and photothermal therapy, our approach aims to activate drug release and generate reactive oxygen species within the TME. Specifically, we developed a fucoidan-chitosan (F/CS) nanocarrier loaded with 3,3',5,5'-tetramethylbenzidine (T), Prussian blue (P), and glucose oxidase (GOx) (F/CS@TPGOx). It has been reported that fucoidan and chitosan target P-selectin and the glucose-rich microenvironment of pathological cancer. Furthermore, F/CS@TPGOx at a concentration of 4 µg/mL was observed to reduce cancer cell viability to less than 20 % following a four-hour incubation period. This indicates that fucoidan, the carrier, exhibits anticancer activity that is more pronounced than that observed in conventional anticancer nanocarriers. The findings demonstrated the efficacy of F/CS@TPGOx in cancer cell death in both in vitro and in vivo settings. This suggests F/CS@TPGOx as a promising material for targeted cancer therapy with the potential to be used in clinical biomedicine as a therapeutic platform with high efficacy and minimal side effects.
Collapse
Affiliation(s)
- Da Yeong Choi
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Chang Hyeon Ha
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Su Jeong Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Se Hwa Cheon
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea.
| |
Collapse
|
3
|
Liu Y, Yang J, Wu J, Jiang Z, Zhang X, Meng F. The Application of Multifunctional Metal-Organic Frameworks for the Detection, Adsorption, and Degradation of Contaminants in an Aquatic Environment. Molecules 2025; 30:1336. [PMID: 40142111 PMCID: PMC11945069 DOI: 10.3390/molecules30061336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/01/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Water pollution poses a severe threat to both aquatic ecosystems and human health, highlighting the crucial importance of monitoring and regulating its levels in water bodies. In contrast to traditional single-treatment approaches, multiple-treatment methods enable the simultaneous detection and removal of water pollutants using a single material. This innovation not only offers convenience but also fosters a more holistic and effective approach to water remediation. Metal-organic frameworks (MOFs) are versatile porous materials that offer significant potential for use in wastewater treatment. This article examines the latest developments in the application of MOFs for multifaceted wastewater treatment. MOFs are used for simultaneous detection and removal, or for the detection and degradation of contaminants. Some MOFs exhibited different functions for different contaminants, and some MOFs showed one function (adsorption or detection) for more than one contaminant. All the multifunctional MOFs facilitate the multiple treatment of the real wastewater. Lastly, existing challenges and future outlooks concerning MOF materials for wastewater treatment are also addressed in this paper.
Collapse
Affiliation(s)
- Yachen Liu
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China; (Y.L.); (J.W.); (Z.J.); (X.Z.)
| | - Jinbin Yang
- Shandong High-Tech Medical Device Innovation Center Co., Ltd., Zibo 255000, China;
| | - Junlin Wu
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China; (Y.L.); (J.W.); (Z.J.); (X.Z.)
| | - Zehao Jiang
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China; (Y.L.); (J.W.); (Z.J.); (X.Z.)
| | - Xinyu Zhang
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China; (Y.L.); (J.W.); (Z.J.); (X.Z.)
| | - Fanjun Meng
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China; (Y.L.); (J.W.); (Z.J.); (X.Z.)
| |
Collapse
|
4
|
Wang H, Huang X, Gao R, Li K, Li D, Xu Z, Ling Z, Pan C, Gao L, Chen H. Multifunctional Artificial Peroxisome Basing on Lactate Oxidase as a Self-Cascade Enhancing Active Oxygen Amplifier for Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7275-7290. [PMID: 39840958 DOI: 10.1021/acsami.4c17559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The intricacy, diversity, and heterogeneity of cancers make research focus on developing multimodal synergistic therapy strategies. Herein, an oxygen (O2) self-feeding peroxisomal lactate oxidase (LOX)-based LOX-Ce6-Mn (LCM) was synthesized using a biomineralization approach, which was used for cascade chemodynamic therapy (CDT)/photodynamic therapy (PDT) combination therapies through dual depletion of lactate (Lac) and reactive oxygen species (ROS) generation. After endocytosis into tumor cells, the endogenous hydrogen peroxide (H2O2) can be converted to O2 by the catalase-like (CAT) activity of LCM, which can facilitate the catalytic reaction of LOX to consume more Lac and alleviate tumor hypoxia to enhance the generation of singlet oxygen (1O2) upon light irradiation. In addition, the H2O2 produced by LOX catalysis and oxidase-like (OXD) activity of LCM can be catalyzed into highly toxic hydroxyl radicals (•OH) via the Fenton-like reaction, enhancing oxidative damage to tumor cells. Both in vitro and in vivo experiments confirmed that LCM significantly promoted ROS accumulation and effectively inhibited tumor growth by inducing tumor cell autophagy under the combined effect of Lac depletion and CDT with PDT. Therefore, integrally designed LCM for reprogramming metabolism and the tumor microenvironment offers a promising multimodal strategy for tumor treatments.
Collapse
Affiliation(s)
- Huihui Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Xueping Huang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ran Gao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ke Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Dandan Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Zhuobin Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Zemin Ling
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Chun Pan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| |
Collapse
|
5
|
Wang Y, Tang Y, Guo L, Yang X, Wu S, Yue Y, Xu C. Recent advances in zeolitic imidazolate frameworks as drug delivery systems for cancer therapy. Asian J Pharm Sci 2025; 20:101017. [PMID: 39931355 PMCID: PMC11808527 DOI: 10.1016/j.ajps.2025.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 04/16/2024] [Accepted: 11/24/2024] [Indexed: 02/13/2025] Open
Abstract
Biological nanotechnologies based on functional nanoplatforms have synergistically catalyzed the emergence of cancer therapies. As a subtype of metal-organic frameworks (MOFs), zeolitic imidazolate frameworks (ZIFs) have exploded in popularity in the field of biomaterials as excellent protective materials with the advantages of conformational flexibility, thermal and chemical stability, and functional controllability. With these superior properties, the applications of ZIF-based materials in combination with various therapies for cancer treatment have grown rapidly in recent years, showing remarkable achievements and great potential. This review elucidates the recent advancements in the use of ZIFs as drug delivery agents for cancer therapy. The structures, synthesis methods, properties, and various modifiers of ZIFs used in oncotherapy are presented. Recent advances in the application of ZIF-based nanoparticles as single or combination tumor treatments are reviewed. Furthermore, the future prospects, potential limitations, and challenges of the application of ZIF-based nanomaterials in cancer treatment are discussed. We except to fully explore the potential of ZIF-based materials to present a clear outline for their application as an effective cancer treatment to help them achieve early clinical application.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yixin Tang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Lei Guo
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xi Yang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Shanli Wu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ying Yue
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
6
|
He T, Yang W, Yang Y, Peng S, Shuai C. Gold nanoparticles-supported iron oxide particles endows bone scaffolds with anti-tumor function. Free Radic Res 2025; 59:169-182. [PMID: 39936845 DOI: 10.1080/10715762.2025.2466246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025]
Abstract
Iron oxide (Fe-O) has anti-tumor properties, due to its ability of catalyzing hydrogen peroxide (H2O2) of tumor cells to generate reactive oxygen species (ROS) and then cause ferroptosis. Its anti-tumor performance is restricted due to insufficient H2O2 in tumor cells. A nanomedicine, Au nanoparticles (NPs) grown on Fe-O, was integrated into poly-l-lactide (PLLA) scaffolds. Results indicated that Au NPs could consume glucose of tumor cells to produce H2O2, which supplemented reaction substrate. PLLA/Au@Fe-O scaffold showed enhanced anti-tumor activities against MG63, including increased mortality, decreased migration and colony formation. PLLA/Au@Fe-O scaffold promoted ferroptosis in MG63, including up-regulation of COX-2 protein, down-regulation of FTH1 protein and GPX4 protein. PLLA/Au@Fe-O scaffold also promoted autophagy in MG63, including down-regulation of P62 protein, and up-regulation of LC3BII/I. Mechanistically, PLLA/Au@Fe-O scaffold possessed enhanced anti-tumor activities through promoting ferroptosis and autophagy.
Collapse
Affiliation(s)
- Tiantian He
- Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang, China
| | - Wenjing Yang
- Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang, China
| | - Youwen Yang
- Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Cijun Shuai
- Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang, China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| |
Collapse
|
7
|
Zhang X, An M, Zhang J, Zhao Y, Liu Y. Nano-medicine therapy reprogramming metabolic network of tumour microenvironment: new opportunity for cancer therapies. J Drug Target 2024; 32:241-257. [PMID: 38251656 DOI: 10.1080/1061186x.2024.2309565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/26/2023] [Indexed: 01/23/2024]
Abstract
Metabolic heterogeneity is one of the characteristics of tumour cells. In order to adapt to the tumour microenvironment of hypoxia, acidity and nutritional deficiency, tumour cells have undergone extensive metabolic reprogramming. Metabolites involved in tumour cell metabolism are also very different from normal cells, such as a large number of lactate and adenosine. Metabolites play an important role in regulating the whole tumour microenvironment. Taking metabolites as the target, it aims to change the metabolic pattern of tumour cells again, destroy the energy balance it maintains, activate the immune system, and finally kill tumour cells. In this paper, the regulatory effects of metabolites such as lactate, glutamine, arginine, tryptophan, fatty acids and adenosine were reviewed, and the related targeting strategies of nano-medicines were summarised, and the future therapeutic strategies of nano-drugs were discussed. The abnormality of tumour metabolites caused by tumour metabolic remodelling not only changes the energy and material supply of tumour, but also participates in the regulation of tumour-related signal pathways, which plays an important role in the survival, proliferation, invasion and metastasis of tumour cells. Regulating the availability of local metabolites is a new aspect that affects tumour progress. (The graphical abstract is by Figdraw).
Collapse
Affiliation(s)
- Xiaojie Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Min An
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Juntao Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yumeng Zhao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
8
|
Mirhadi E, Butler AE, Kesharwani P, Sahebkar A. Utilizing stimuli-responsive nanoparticles to deliver and enhance the anti-tumor effects of bilirubin. Biotechnol Adv 2024; 77:108469. [PMID: 39427964 DOI: 10.1016/j.biotechadv.2024.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Bilirubin (BR) is among the most potent endogenous antioxidants that originates from the heme catabolic pathway. Despite being considered as a dangerous and cytotoxic waste product at high concentrations, BR has potent antioxidant effects leading to the reduction of oxidative stress and inflammation, which play an important role in the development and progression of cancer. The purpose of this study is to introduce PEGylated BR nanoparticles (NPs), themselves or in combination with other anti-cancer agents. BR is effective when loaded into various nanoparticles and used in cancer therapy. Interestingly, BRNPs can be manipulated to create stimuli-responsive carriers providing a sustained and controlled, as well as on-demand, release of drug in response to internal or external factors such as reactive oxygen species, glutathione, light, enzymes, and acidic pH. This review suggests that BRNPs have the potential as tumor microenvironment-responsive delivery systems for effective targeting of various types of cancers.
Collapse
Affiliation(s)
- Elaheh Mirhadi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Feng M, Xing C, Jin Y, Feng X, Zhang Y, Wang B. Reticular Chemistry for Enhancing Bioentity Stability and Functional Performance. J Am Chem Soc 2024. [PMID: 39561393 DOI: 10.1021/jacs.4c09259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Addressing the fragility of bioentities that results in instability and compromised performance during storage and applications, reticular chemistry, specifically through metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), offers versatile platforms for stabilization and enhancement of bioentities. These highly porous frameworks facilitate efficient loading and mass transfer, offer confined environments and selective permeability for stabilization and protection, and enable finely tunable biointerfacial interactions and microenvironments for function optimization, significantly broadening the applications of various bioentities, including enzymes, nucleic acids, cells, etc. This Perspective outlines strategies for integrating bioentities with reticular frameworks, highlighting new design ideas for existing issues within these strategies. It emphasizes the crucial roles of these frameworks for bioentities in enhancing stability, boosting activity, imparting non-native functions, and synergizing bioentity systems. Concluding with a discussion of the challenges and prospects in the design, characterization, and practical applications of these biocomposites, this Perspective aims to inspire further development of high-performance biocomposites in this promising field.
Collapse
Affiliation(s)
- Mengchu Feng
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chunyan Xing
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yehao Jin
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiao Feng
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuanyuan Zhang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Wang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
10
|
Mi T, Kong X, Chen M, Guo P, He D. Inducing disulfidptosis in tumors:potential pathways and significance. MedComm (Beijing) 2024; 5:e791. [PMID: 39415848 PMCID: PMC11480524 DOI: 10.1002/mco2.791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Regulated cell death (RCD) is crucial for the elimination of abnormal cells. In recent years, strategies aimed at inducing RCD, particularly apoptosis, have become increasingly important in cancer therapy. However, the ability of tumor cells to evade apoptosis has led to treatment resistance and relapse, prompting extensive research into alternative death processes in cancer cells. A recent study identified a novel form of RCD known as disulfidptosis, which is linked to disulfide stress. Cancer cells import cystine from the extracellular environment via solute carrier family 7 member 11 (SLC7A11) and convert it to cysteine using nicotinamide adenine dinucleotide phosphate (NADPH). When NADPH is deficient or its utilization is impaired, cystine accumulates, leading to the formation of disulfide bonds in the actin cytoskeleton, triggering disulfidptosis. Disulfidptosis reveals a metabolic vulnerability in tumors, offering new insights into cancer therapy strategies. This review provides a detailed overview of the mechanisms underlying disulfidptosis, the current research progress, and limitations. It also highlights innovative strategies for inducing disulfidptosis and explores the potential of combining these approaches with traditional cancer therapies, particularly immunotherapy, to expedite clinical translation.
Collapse
Affiliation(s)
- Tao Mi
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
| | - Xiangpan Kong
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
| | - Meiling Chen
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
| | - Peng Guo
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
- Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouP.R. China
| | - Dawei He
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
| |
Collapse
|
11
|
Agrawal S, Singh GK, Tiwari S. Focused starvation of tumor cells using glucose oxidase: A comprehensive review. Int J Biol Macromol 2024; 281:136444. [PMID: 39389487 DOI: 10.1016/j.ijbiomac.2024.136444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Starvation therapy targets the high metabolic demand of tumor cells. It primarily leans over the consumption of intracellular glucose and simultaneous blockade of alternative metabolic pathways. The strategy involves the use of glucose oxidase (GOx) for catalyzing the conversion of glucose into gluconic acid and hydrogen peroxide. Under these conditions, metabolic re-programming of tumor cells enables the utilization of substrates such as amino acids, fatty acids and lipids. This can be overcome by co-administration of chemo-, photo- and immuno-therapeutics together with glucose oxidase. Targeted delivery of glucose oxidase at tumor site can be enabled with the use of nanoformulations. In this review, we highlight that the outcomes of starvation therapy can be improved using rationally developed nano-formulations. It is possible to load synergistically acting bioactives in these formulations and deliver in site-specific manner and hence achieve the elimination of tumors cells with greater efficacy.
Collapse
Affiliation(s)
- Shivanshu Agrawal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Gireesh K Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Gaya 824236, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India.
| |
Collapse
|
12
|
Tang Y, Chen F, Fang G, Zhang H, Zhang Y, Zhu H, Zhang X, Han Y, Cao Z, Guo F, Wang W, Ye D, Ju J, Tan L, Li C, Zhao Y, Zhou Z, An L, Jiao S. A cofactor-induced repressive type of transcription factor condensation can be induced by synthetic peptides to suppress tumorigenesis. EMBO J 2024; 43:5586-5612. [PMID: 39358623 PMCID: PMC11574045 DOI: 10.1038/s44318-024-00257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Transcriptional factors (TFs) act as key determinants of cell death and survival by differentially modulating gene expression. Here, we identified many TFs, including TEAD4, that form condensates in stressed cells. In contrast to YAP-induced transcription-activating condensates of TEAD4, we found that co-factors such as VGLL4 and RFXANK alternatively induced repressive TEAD4 condensates to trigger cell death upon glucose starvation. Focusing on VGLL4, we demonstrated that heterotypic interactions between TEAD4 and VGLL4 favor the oligomerization and assembly of large TEAD4 condensates with a nonclassical inhibitory function, i.e., causing DNA/chromatin to be aggregated and entangled, which eventually impede gene expression. Based on these findings, we engineered a peptide derived from the TEAD4-binding motif of VGLL4 to selectively induce TEAD4 repressive condensation. This "glue" peptide displayed a strong antitumor effect in genetic and xenograft mouse models of gastric cancer via inhibition of TEAD4-related gene transcription. This new type of repressive TF phase separation exemplifies how cofactors can orchestrate opposite functions of a given TF, and offers potential new antitumor strategies via artificial induction of repressive condensation.
Collapse
Grants
- 2020YFA0803200 MOST | National Key Research and Development Program of China (NKPs)
- 2023YFC2505903 MOST | National Key Research and Development Program of China (NKPs)
- 32270747,92168116, 22077002, 82222052 MOST | National Natural Science Foundation of China (NSFC)
- 32200567, 31930026, 82150112 MOST | National Natural Science Foundation of China (NSFC)
- 32070710, 82372613 MOST | National Natural Science Foundation of China (NSFC)
- 82361168638, 32170706, 82002493 MOST | National Natural Science Foundation of China (NSFC)
- 22ZR1448100, 22QA1407200, 23ZR1448900 STCSM | Natural Science Foundation of Shanghai Municipality ()
- 22QA1407300, 23ZR1480400, 23YF1432900 STCSM | Natural Science Foundation of Shanghai Municipality ()
- STCSM | Natural Science Foundation of Shanghai Municipality (上海市自然科学基金)
Collapse
Affiliation(s)
- Yang Tang
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Fan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Gemin Fang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Hui Zhang
- Department of General Surgery, Hua'shan Hospital, Fudan University Shanghai Medical College, Shanghai, 200040, China
| | - Yanni Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Hanying Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xinru Zhang
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yi Han
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhifa Cao
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Fenghua Guo
- Department of General Surgery, Hua'shan Hospital, Fudan University Shanghai Medical College, Shanghai, 200040, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Dan Ye
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Junyi Ju
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lijie Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Chuanchuan Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Liwei An
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
13
|
Han H, Santos HA. Nano- and Micro-Platforms in Therapeutic Proteins Delivery for Cancer Therapy: Materials and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409522. [PMID: 39263818 DOI: 10.1002/adma.202409522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Proteins have emerged as promising therapeutics in oncology due to their great specificity. Many treatment strategies are developed based on protein biologics, such as immunotherapy, starvation therapy, and pro-apoptosis therapy, while some protein biologics have entered the clinics. However, clinical translation is severely impeded by instability, short circulation time, poor transmembrane transportation, and immunogenicity. Micro- and nano-particles-based drug delivery platforms are designed to solve those problems and enhance protein therapeutic efficacy. This review first summarizes the different types of therapeutic proteins in clinical and research stages, highlighting their administration limitations. Next, various types of micro- and nano-particles are described to demonstrate how they can overcome those limitations. The potential of micro- and nano-particles are then explored to enhance the therapeutic efficacy of proteins by combinational therapies. Finally, the challenges and future directions of protein biologics carriers are discussed for optimized protein delivery.
Collapse
Affiliation(s)
- Huijie Han
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
14
|
Saboorizadeh B, Zare-Dorabei R, Safavi M, Safarifard V. Applications of Metal-Organic Frameworks (MOFs) in Drug Delivery, Biosensing, and Therapy: A Comprehensive Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22477-22503. [PMID: 39418638 DOI: 10.1021/acs.langmuir.4c02795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The porous materials known as metal-organic frameworks (MOFs) stand out for their enormous surface area, adaptable pore size and shape, and structural variety. These characteristics make them well-suited for various applications, especially in healthcare. This review thoroughly summarizes recent studies on the use of MOFs in drug delivery, biosensing, and therapeutics. MOFs may encapsulate medications, target certain cells or tissues, and regulate their release over time. Additionally, MOFs have the potential to be used in biosensing applications, allowing for the selective detection of chemical and biological substances. MOFs' optical or electrical characteristics may be modified to make biosensors that track physiological data. MOFs show potential for targeted drug delivery and the regulated release of therapeutic substances in cancer treatment. In addition, they may work as potent antibacterial agents, providing a less dangerous option than traditional antibiotics that increase antibiotic resistance. For practical applications, further research is required as well as more consideration for the problems with toxicity and biocompatibility. In addition to addressing the difficulties and promising possibilities in this area, this study intends to provide insights into the potential of MOFs in healthcare for drug delivery, biosensing, and treatment. Despite several essential reviews in this area, it was necessary to look into the most recent research on drug delivery, biosensing, and therapy as a combined concept.
Collapse
Affiliation(s)
- Bahar Saboorizadeh
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P.O. Box 3353-5111, Tehran 33131-93685, Iran
| | - Vahid Safarifard
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
15
|
Cai J, Xu Y, Liao F. Advances in multifunctional metal-organic framework (MOF)-based nanoplatforms for cancer starvation therapy. Expert Rev Mol Med 2024; 26:e27. [PMID: 39397711 PMCID: PMC11488333 DOI: 10.1017/erm.2024.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024]
Abstract
Cancer remains a significant threat to human health today. Even though starvation therapy and other treatment methods have recently advanced to a new level of rapid development in tumour treatment, their limited therapeutic effectiveness and unexpected side effects prevent them from becoming the first option in clinical treatment. With rapid advancement in nanotechnology, the utilization of nanomaterials in therapeutics offers the potential to address the shortcomings in cancer treatment. Notably, multifunctional metal-organic framework (MOF) has been widely employed in cancer therapy due to their customizable shape, adjustable diameter, high porosity, diverse compositions, large specific surface area, high degree of functionalization and strong biocompatibility. This paper reviews the current progress and success of MOF-based multifunctional nanoplatforms for cancer starvation therapy, as well as the prospects and potential barriers for the application of MOF nanoplatforms in cancer starvation therapy.
Collapse
Affiliation(s)
- Jinghan Cai
- Renmin Hospital of Wuhan University, Wuhan University, Wuhan, P. R. China
| | - Yan Xu
- University Hospital, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Fei Liao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| |
Collapse
|
16
|
Huang J, Ma Y, Jiang X, Xian J, Fu Z, Ouyang H. Robust Luminescent Pyrene-Based Metal-Organic Framework Hydrogel as a pH-Responsive Fluorescence Emitter for Sensitive Immunoassay of Cardiac Troponin I. Anal Chem 2024; 96:15042-15049. [PMID: 39219053 DOI: 10.1021/acs.analchem.4c03407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Despite many luminescent advantages including outstanding absorption coefficient and high quantum yield, pyrene and its derivatives have been suffering from a dramatic aggregation-caused quenching (ACQ) effect. Although the dramatic ACQ effect of pyrene-based fluorophores has been restrained in pyrene-doped metal-organic frameworks (MOFs), the low loading of fluorescent (FL) units substantially impedes the improved luminescent behaviors. Herein, pyrene-based MOFs hydrogel was synthesized with a high loading of pyrene as the unique organic linker blocks instead of a dopant in MOFs. The gel matrix contributed to rigidifying the location of the FL emitters and achieving intensive FL emission and high luminescent stability and therefore efficiently overcoming the ACQ effect. Furthermore, the protonation of pyrene in the MOFs hydrogel remarkably decreased the luminescent intensity, which endowed the FL hydrogel with highly pH-responsive activity in the broad range (pH 4-10). Interestingly, glucose oxidase was immobilized into ZIF-8 as a highly efficient luminescent quencher, which contributed to catalyzing the form of gluconic acid and thus drastically quenching the FL signal of the MOFs hydrogel. Furthermore, the emitter-quencher pair of pyrene-based MOFs hydrogel and glucose oxidase was successfully employed to develop an ultrasensitive FL immunoassay platform for cardiac troponin I (as a model analyte). The limit of detection for cardiac troponin I was 5.2 pg/mL (3σ). The proof-of-principle study demonstrated the thrilling auxiliary effect of tailorable MOFs hydrogel on boosting the feasibility of aqueous insoluble FL chromophores for trace analysis.
Collapse
Affiliation(s)
- Junyi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yuchan Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xin Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jiaxin Xian
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hui Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
17
|
Sun QJ, Guo WT, Liu SZ, Tang XG, Roy VA, Zhao XH. Rise of Metal-Organic Frameworks: From Synthesis to E-Skin and Artificial Intelligence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45830-45860. [PMID: 39178336 DOI: 10.1021/acsami.4c07732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Metal-organic frameworks (MOFs) have attained broad research attention in the areas of sensors, resistive memories, and optoelectronic synapses on the merits of their intriguing physical and chemical properties. In this review, recent progress on the synthesis of MOFs and their electronic applications is introduced and discussed. Initially, the crystal structures and properties of MOFs encompassing optical, electrical, and chemical properties are discussed in brief. Subsequently, advanced synthesis methods for MOFs are introduced, categorized into hydrothermal approach, microwave synthesis, mechanochemical synthesis, and electrochemical deposition. After that, the various roles of MOFs in widespread applications, including sensing, information storage, optoelectronic synapses, machine learning, and artificial intelligence, are discussed, highlighting their versatility and the innovative solutions they provide to long-standing challenges. Finally, an outlook on remaining challenges and a future perspective for MOFs are proposed.
Collapse
Affiliation(s)
- Qi-Jun Sun
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wen-Tao Guo
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Shu-Zheng Liu
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xin-Gui Tang
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Vellaisamy Al Roy
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong 999077, P. R. China
| | - Xin-Hua Zhao
- School of Intelligent Manufacturing and Electrical Engineering, Guangzhou Institute of Science and Technology, Guangzhou 510540, P. R. China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
18
|
Alven S, Gandidzanwa S, Ngalo B, Poswayo O, Madanhire T, Aderibigbe BA, Tshentu Z. Platinum Group Metals Nanoparticles in Breast Cancer Therapy. Pharmaceutics 2024; 16:1162. [PMID: 39339199 PMCID: PMC11434984 DOI: 10.3390/pharmaceutics16091162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Despite various methods currently used in cancer therapy, breast cancer remains the leading cause of morbidity and mortality worldwide. Current therapeutics face limitations such as multidrug resistance, drug toxicity and off-target effects, poor drug bioavailability and biocompatibility, and inefficient drug delivery. Nanotechnology has emerged as a promising approach to cancer diagnosis, imaging, and therapy. Several preclinical studies have demonstrated that compounds and nanoparticles formulated from platinum group metals (PGMs) effectively treat breast cancer. PGMs are chemically stable, easy to functionalise, versatile, and tunable. They can target hypoxic microenvironments, catalyse the production of reactive oxygen species, and offer the potential for combination therapy. PGM nanoparticles can be incorporated with anticancer drugs to improve efficacy and can be attached to targeting moieties to enhance tumour-targeting efficiency. This review focuses on the therapeutic outcomes of platinum group metal nanoparticles (PGMNs) against various breast cancer cells and briefly discusses clinical trials of these nanoparticles in breast cancer treatment. It further illustrates the potential applications of PGMNs in breast cancer and presents opportunities for future PGM-based nanomaterial applications in combatting breast cancer.
Collapse
Affiliation(s)
- Sibusiso Alven
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| | | | - Basabele Ngalo
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Olwethu Poswayo
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Tatenda Madanhire
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
- Department of Chemistry, University of South Africa, Johannesburg 1710, South Africa
| | | | - Zenixole Tshentu
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| |
Collapse
|
19
|
Wang Z, Wang J, Xu W, Qiao L, Xie Y, Gao M, Wang D, Li C. Fasting-Mimicking Diet Facilitates Anti-tumor Therapeutic Effects by Nutrient-Sensitive Nanocomposites. Adv Healthc Mater 2024; 13:e2400943. [PMID: 38856967 DOI: 10.1002/adhm.202400943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Cancer cells support their uncontrolled proliferation primarily by regulating energy metabolism. Inhibiting tumor growth by blocking the supply of nutrients is an effective treatment strategy. Fasting-mimicking diet (FMD), as a low-calorie, low-protein, low-sugar, high-fat diet, can effectively reduce the nutrient supply to tumor cells. However, the significant biological barrier presented by the tumor microenvironment imposes greater demands and challenges for drug design. This study constructs the multifunctional nanocomposite ZnFe2O4@TiO2@CHC@Orl-FA (ZTCOF), which has great potential to overcome the aforementioned drawbacks. ZnFe2O4@TiO2 could produce 1O2 with ultrasound, and stimulate the Fenton-like conversion of endogenous H2O2 to ·OH, achieving a combined therapeutic effect of sonodynamic therapy (SDT) and chemodynamic therapy (CDT). Orl (Orlistat) and CHC (α-cyano-4-hydroxycinnamic acid) not only block tumor cell energy metabolism but also increase sensitivity to reactive oxygen species, enhancing the cytotoxic effect on tumor cells. Furthermore, combining the treatment strategies with FMD condition control can further inhibit cancer cell energy metabolism, achieving significant synergistic anti-tumor therapy. Both in vitro and in vivo experiments confirm that ZTCOF with SDT/CDT/starvation can achieve effective tumor suppression and destruction. This work provides theoretical and technical support for anti-tumor multimodal synergistic therapy.
Collapse
Affiliation(s)
- Zhifang Wang
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Junrong Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Wencheng Xu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Luying Qiao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Yulin Xie
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Minghong Gao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Chunxia Li
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
20
|
Fan G, Hou S, Zhang W, Jiang H, Xiao F, Yu J, Tian L. Polymer-DNA Carriers Co-Deliver Photosensitizer and siRNA for Light-Promoted Gene Transfection and Hypoxia-Relieved Photodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202405600. [PMID: 38757208 DOI: 10.1002/anie.202405600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/30/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Photochemical internalization is an efficient strategy relying on photodynamic reactions to promote siRNA endosomal escape for the success of RNA-interference gene regulation, which makes gene-photodynamic combined therapy highly synergistic and efficient. However, it is still desired to explore capable carriers to improve the delivery efficiency of the immiscible siRNA and organic photosensitizers simultaneously. Herein, we employ a micellar nanostructure (PSNA) self-assembled from polymer-DNA molecular chimeras to fulfill this task. PSNA can plentifully load photosensitizers in its hydrophobic core simply by the nanoprecipitation method. Moreover, it can organize siRNA self-assembly by the densely packed DNA shell, which leads to a higher loading capacity than the typical electrostatic condensation method. The experimental results prove that this PSNA carrier can greatly facilitate siRNA escape from the endosome/lysosome and enhance transfection. Accordingly, the PSNA-administrated therapy exhibits a significantly improved anti-tumor efficacy owing to the highly efficient co-delivery capability.
Collapse
Affiliation(s)
- Guiling Fan
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Shengxin Hou
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Wenkang Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Hengfeng Jiang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Fan Xiao
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Jiantao Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
21
|
Yao Y, Xu R, Shao W, Tan J, Wang S, Chen S, Zhuang A, Liu X, Jia R. A Novel Nanozyme to Enhance Radiotherapy Effects by Lactic Acid Scavenging, ROS Generation, and Hypoxia Mitigation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403107. [PMID: 38704679 PMCID: PMC11234405 DOI: 10.1002/advs.202403107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Indexed: 05/07/2024]
Abstract
Uveal melanoma (UM) is a leading intraocular malignancy with a high 5-year mortality rate, and radiotherapy is the primary approach for UM treatment. However, the elevated lactic acid, deficiency in ROS, and hypoxic tumor microenvironment have severely reduced the radiotherapy outcomes. Hence, this study devised a novel CoMnFe-layered double oxides (LDO) nanosheet with multienzyme activities for UM radiotherapy enhancement. On one hand, LDO nanozyme can catalyze hydrogen peroxide (H2O2) in the tumor microenvironment into oxygen and reactive oxygen species (ROS), significantly boosting ROS production during radiotherapy. Simultaneously, LDO efficiently scavenged lactic acid, thereby impeding the DNA and protein repair in tumor cells to synergistically enhance the effect of radiotherapy. Moreover, density functional theory (DFT) calculations decoded the transformation pathway from lactic to pyruvic acid, elucidating a previously unexplored facet of nanozyme activity. The introduction of this innovative nanomaterial paves the way for a novel, targeted, and highly effective therapeutic approach, offering new avenues for the management of UM and other cancer types.
Collapse
Affiliation(s)
- Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Ru Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Weihuan Shao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Ji Tan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Shaoyun Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Shuhan Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| |
Collapse
|
22
|
Yu J, Tang M, Zhou Z, Wei Z, Wan F, Hou S, Li Q, Li Y, Tian L. Biologically produced and metal-organic framework delivered dual-cut CRISPR/Cas9 system for efficient gene editing and sensitized cancer therapy. Acta Biomater 2024; 178:296-306. [PMID: 38417646 DOI: 10.1016/j.actbio.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Manipulation of the lactate metabolism is an efficient way for cancer treatment given its involvement in cancer development, metastasis, and immune escape. However, most of the inhibitors of lactate transport carriers suffer from poor specificity. Herein, we use the CRISPR/Cas9 system to precisely downregulate the monocarboxylate carrier 1 (MCT1) expression. To avoid the self-repairing during the gene editing process, a dual-Cas9 ribonucleoproteins (duRNPs) system is generated using the biological fermentation method and delivered into cells by the zeolitic imidazolate framework-8 (ZIF-8) nanoparticles, enabling precise removal of a specific DNA fragment from the genome. For efficient cancer therapy, a specific glucose transporter 1 inhibitor (BAY-876) is co-delivered with the duRNPs, forming BAY/duRNPs@ZIF-8 nanoparticle. ZIF-8 nanoparticles can deliver the duRNPs into cells within 1 h, which efficiently downregulates the MCT1 expression, and prohibits lactate influx. Through simultaneous inhibition of the lactate and glucose influx, BAY/duRNPs@ZIF-8 prohibits ATP generation, arrests cell cycle, inhibits cell proliferation, and finally induces cellular apoptosis both in vitro and in vivo. Consequently, we demonstrate that the biologically produced duRNPs delivered into cells by the nonviral ZIF-8 carrier have expanded the CRISPR/Cas gene editing toolbox and elevated the gene editing efficiency, which will promote biological studies and clinical applications. STATEMENT OF SIGNIFICANCE: The CRISPR/Cas9 system, widely used as an efficient gene editing tool, faces a challenge due to cells' ability to self-repair. To address this issue, a strategy involving dual-cutting of the genome DNA has been designed and implemented. This strategy utilizes biologically produced dual-ribonucleoproteins delivered by a metal-organic framework. The effectiveness of this dual-cut CRISPR-Cas9 system has been demonstrated through a therapeutic approach targeting the simultaneous inhibition of lactate and glucose influx in cancer cells. The utilization of the dual-cut gene editing strategy has provided valuable insights into gene editing and expanded the toolbox of the CRISPR/Cas-based gene editing system. It has the potential to enable more efficient and precise manipulation of specific protein expression in the future.
Collapse
Affiliation(s)
- Jiantao Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Mao Tang
- Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Zhengdong Zhou
- Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Zixiang Wei
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Feiyan Wan
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Shengxin Hou
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Qing Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Yan Li
- Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, PR China.
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, PR China.
| |
Collapse
|
23
|
Guo H, Guo M, Xia Z, Shao Z. Membrane-coated nanoparticles as a biomimetic targeted delivery system for tumour therapy. BIOMATERIALS TRANSLATIONAL 2024; 5:33-45. [PMID: 39220664 PMCID: PMC11362346 DOI: 10.12336/biomatertransl.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 09/04/2024]
Abstract
Drug therapy towards tumours often causes adverse effects because of their non-specific nature. Membrane-coated technology and membrane-coated nanoparticles provide an advanced and promising platform of targeted and safe delivery. By camouflaging the nanoparticles with natural derived or artificially modified cell membranes, the nano-payloads are bestowed with properties from cell membranes such as longer circulation, tumour or inflammation-targeting, immune stimulation, augmenting the performance of traditional therapeutics. In this review, we review the development of membrane coating technology, and summarise the technical details, physicochemical properties, and research status of membrane-coated nanoparticles from different sources in tumour treatment. Finally, we also look forward to the prospects and challenges of transforming membrane coating technology from experiment into clinical use. Taken together, membrane-coated nanoparticles are bound to become one of the most potential anti-tumour strategies in the future.
Collapse
Affiliation(s)
- Haoyu Guo
- Department of Orthopaedic, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Department of Orthopaedic, Beijing Jishuitan Hospital, Fourth Medical College of Peking University, Beijing, China
| | - Mingke Guo
- Department of Orthopaedics, Affiliated Hospital of NCO School of Army Medical University, Shijiazhuang, Hebei Province, China
| | - Zhidao Xia
- Centre for Nanohealth, ILS2, Medical School, Swansea University, Swansea, UK
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
24
|
Zhang C, Han ZY, Chen KW, Wang YZ, Bao P, Ji P, Yan X, Rao ZY, Zeng X, Zhang XZ. In Situ Formed Microalgae-Integrated Living Hydrogel for Enhanced Tumor Starvation Therapy and Immunotherapy through Photosynthetic Oxygenation. NANO LETTERS 2024; 24:3801-3810. [PMID: 38477714 DOI: 10.1021/acs.nanolett.4c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The effectiveness of various cancer therapies for solid tumors is substantially limited by the highly hypoxic tumor microenvironment (TME). Here, a microalgae-integrated living hydrogel (ACG gel) is developed to concurrently enhance hypoxia-constrained tumor starvation therapy and immunotherapy. The ACG gel is formed in situ following intratumoral injection of a biohybrid fluid composed of alginate, Chlorella sorokiniana, and glucose oxidase, facilitated by the crossing-linking between divalent ions within tumors and alginate. The microalgae Chlorella sorokiniana embedded in ACG gel generate abundant oxygen through photosynthesis, enhancing glucose oxidase-catalyzed glucose consumption and shifting the TME from immunosuppressive to immunopermissive status, thus reducing the tumor cell energy supply and boosting antitumor immunity. In murine 4T1 tumor models, the ACG gel significantly suppresses tumor growth and effectively prevents postoperative tumor recurrence. This study, leveraging microalgae as natural oxygenerators, provides a versatile and universal strategy for the development of oxygen-dependent tumor therapies.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Zi-Yi Han
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Ke-Wei Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yu-Zhang Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Peng Bao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Ping Ji
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Yong Rao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xuan Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| |
Collapse
|
25
|
Liu X, Hu T, Jia Y, Yang S, Yang Y, Cui Z, Wang T, Liang R, Tan C, Wang Y. A MgAl-LDH-CuS nanosheet-based thermo-responsive composite hydrogel with nir-responsive angiogenesis inhibitor releasing capability for multimode starvation therapy. J Nanobiotechnology 2024; 22:127. [PMID: 38520008 PMCID: PMC10960490 DOI: 10.1186/s12951-024-02384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
The rapid proliferation of tumors is highly dependent on the nutrition supply of blood vessels. Cutting off the nutrient supply to tumors is an effective strategy for cancer treatment, known as starvation therapy. Although various hydrogel-based biomaterials have been developed for starvation therapy through glucose consumption or intravascular embolization, the limitations of single-mode starvation therapy hinder their therapeutic effects. Herein, we propose a dual-function nutrition deprivation strategy that can block the nutrients delivery through extravascular gelation shrinkage and inhibit neovascularization through angiogenesis inhibitors based on a novel NIR-responsive nanocomposite hydrogel. CuS nanodots-modified MgAl-LDH nanosheets loaded with angiogenesis inhibitor (sorafenib, SOR) are incorporated into the poly(n-isopropylacrylamide) (PNIPAAm) hydrogel by radical polymerization to obtain the composite hydrogel (SOR@LDH-CuS/P). The SOR@LDH-CuS/P hydrogel can deliver hydrophobic SOR with a NIR-responsive release behavior, which could decrease the tumor vascular density and accelerate cancer cells apoptosis. Moreover, the SOR@LDH-CuS/P hydrogel exhibits higher (3.5 times) compressive strength than that of the PNIPAAm, which could squeeze blood vessels through extravascular gelation shrinkage. In vitro and in vivo assays demonstrate that the interruption of nutrient supply by gelation shrinkage and the prevention of angiogenesis by SOR is a promising strategy to inhibit tumor growth for multimode starvation therapy.
Collapse
Affiliation(s)
- Xueyan Liu
- School of Pharmaceutical Sciences, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, P. R. China
- Laboratory for Clinical Medicine, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, P. R. China
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tingting Hu
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Yijiang Jia
- School of Pharmaceutical Sciences, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, P. R. China
- Laboratory for Clinical Medicine, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, P. R. China
| | - Shuqing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhuolin Cui
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tao Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, P. R. China.
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China.
| | - Yuji Wang
- School of Pharmaceutical Sciences, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, P. R. China.
- Laboratory for Clinical Medicine, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, P. R. China.
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| |
Collapse
|
26
|
Jastrząb R, Tomecki R, Jurkiewicz A, Graczyk D, Szczepankowska AK, Mytych J, Wolman D, Siedlecki P. The strain-dependent cytostatic activity of Lactococcus lactis on CRC cell lines is mediated through the release of arginine deiminase. Microb Cell Fact 2024; 23:82. [PMID: 38481270 PMCID: PMC10938756 DOI: 10.1186/s12934-024-02345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most commonly diagnosed cancers, posing a serious public health challenge that necessitates the development of new therapeutics, therapies, and prevention methods. Among the various therapeutic approaches, interventions involving lactic acid bacteria (LAB) as probiotics and postbiotics have emerged as promising candidates for treating and preventing CRC. While human-isolated LAB strains are considered highly favorable, those sourced from environmental reservoirs such as dairy and fermented foods are also being recognized as potential sources for future therapeutics. RESULTS In this study, we present a novel and therapeutically promising strain, Lactococcus lactis ssp. lactis Lc4, isolated from dairy sources. Lc4 demonstrated the ability to release the cytostatic agent - arginine deiminase (ADI) - into the post-cultivation supernatant when cultured under conditions mimicking the human gut environment. Released arginine deiminase was able to significantly reduce the growth of HT-29 and HCT116 cells due to the depletion of arginine, which led to decreased levels of c-Myc, reduced phosphorylation of p70-S6 kinase, and cell cycle arrest. The ADI release and cytostatic properties were strain-dependent, as was evident from comparison to other L. lactis ssp. lactis strains. CONCLUSION For the first time, we unveil the anti-proliferative properties of the L. lactis cell-free supernatant (CFS), which are independent of bacteriocins or other small molecules. We demonstrate that ADI, derived from a dairy-Generally Recognized As Safe (GRAS) strain of L. lactis, exhibits anti-proliferative activity on cell lines with different levels of argininosuccinate synthetase 1 (ASS1) expression. A unique feature of the Lc4 strain is also its capability to release ADI into the extracellular space. Taken together, we showcase L. lactis ADI and the Lc4 strain as promising, potential therapeutic agents with broad applicability.
Collapse
Affiliation(s)
- Rafał Jastrząb
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, Warsaw, 02-106, Poland
- Olimp Laboratories, Pustynia 84F, Debica, 39-200, Poland
| | - Rafał Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, Warsaw, 02-106, Poland
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-089, Poland
| | - Aneta Jurkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, Warsaw, 02-106, Poland
| | - Damian Graczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, Warsaw, 02-106, Poland
| | - Agnieszka K Szczepankowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, Warsaw, 02-106, Poland
| | | | - Damian Wolman
- Olimp Laboratories, Pustynia 84F, Debica, 39-200, Poland
| | - Pawel Siedlecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, Warsaw, 02-106, Poland.
| |
Collapse
|
27
|
Mao M, Zu Y, Zhang Y, Qiu Y, Lin Y, Luo F, Weng Z, Lin C, Qiu B, Lin Z. Photoelectrochemical Sensor for H 2S Based on a Lead-Free Perovskite/Metal-Organic Framework Composite. Anal Chem 2024; 96:4290-4298. [PMID: 38427621 DOI: 10.1021/acs.analchem.4c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Halide perovskites have emerged as a highly promising class of photoelectric materials. However, the application of lead-based perovskites has been hindered by their toxicity and relatively weak stability. In this work, a composite material comprising a lead-free perovskite cesium copper iodide (CsCu2I3) nanocrystal and a metal-organic framework (MOF-801) has been synthesized through an in situ growth approach. The resulting composite material, denoted as CsCu2I3/MOF-801, demonstrates outstanding stability and exceptional optoelectronic characteristics. MOF-801 may serve a dual role by acting as a protective barrier between CsCu2I3 nanocrystals and the external environment, as well as promoting the efficient transfer of photogenerated charge carriers, thereby mitigating their recombination. Consequently, CsCu2I3/MOF-801 demonstrates its utility by providing both stability and a notably high initial photocurrent. Leveraging the inherent reactivity between H2S and the composite material, which results in the formation of Cu2S and structural alteration, an exceptionally sensitive photoelectrochemical sensor for H2S detection has been designed. This sensor exhibits a linear detection range spanning from 0.005 to 100 μM with a remarkable detection limit of 1.67 nM, rendering it highly suitable for precise quantification of H2S in rat brains. This eco-friendly sensor significantly broadens the application horizon of perovskite materials and lays a robust foundation for their future commercialization.
Collapse
Affiliation(s)
- Mengfan Mao
- MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Yexin Zu
- MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Yating Zhang
- MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Yongzhen Qiu
- MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Yue Lin
- MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Fang Luo
- MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Cuiying Lin
- MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Bin Qiu
- MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Zhenyu Lin
- MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| |
Collapse
|
28
|
Wu X, Li Y, Wen M, Xie Y, Zeng K, Liu YN, Chen W, Zhao Y. Nanocatalysts for modulating antitumor immunity: fabrication, mechanisms and applications. Chem Soc Rev 2024; 53:2643-2692. [PMID: 38314836 DOI: 10.1039/d3cs00673e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Immunotherapy harnesses the inherent immune system in the body to generate systemic antitumor immunity, offering a promising modality for defending against cancer. However, tumor immunosuppression and evasion seriously restrict the immune response rates in clinical settings. Catalytic nanomedicines can transform tumoral substances/metabolites into therapeutic products in situ, offering unique advantages in antitumor immunotherapy. Through catalytic reactions, both tumor eradication and immune regulation can be simultaneously achieved, favoring the development of systemic antitumor immunity. In recent years, with advancements in catalytic chemistry and nanotechnology, catalytic nanomedicines based on nanozymes, photocatalysts, sonocatalysts, Fenton catalysts, electrocatalysts, piezocatalysts, thermocatalysts and radiocatalysts have been rapidly developed with vast applications in cancer immunotherapy. This review provides an introduction to the fabrication of catalytic nanomedicines with an emphasis on their structures and engineering strategies. Furthermore, the catalytic substrates and state-of-the-art applications of nanocatalysts in cancer immunotherapy have also been outlined and discussed. The relationships between nanostructures and immune regulating performance of catalytic nanomedicines are highlighted to provide a deep understanding of their working mechanisms in the tumor microenvironment. Finally, the challenges and development trends are revealed, aiming to provide new insights for the future development of nanocatalysts in catalytic immunotherapy.
Collapse
Affiliation(s)
- Xianbo Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yuqing Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Mei Wen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yongting Xie
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Ke Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
29
|
Jiang J, Su Z, He Q, Duan W, Huang Y, Liu L. A Nanoplatform Based on Pillar[5]arene Nanovalves for Combined Drug Delivery and Enhanced Antitumor Activity. Chemistry 2024; 30:e202400007. [PMID: 38258423 DOI: 10.1002/chem.202400007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
Modern nanodrug delivery technologies offer new approaches in the fight against cancer. However, due to the heterogeneity of tumors and side effects of anticancer drugs, monotherapies are less effective. Herein, we report a novel pH and light dual-responsive nanodrug delivery platform. The platform was formed by sulfonate-modified gold nanoparticles loaded with the anticancer drugs doxorubicin (DOX) and glucose oxidase (GOx) and then covered by water-soluble pillar[5]arene as a nanovalve. The nanovalve formed by the host-guest interaction between pillar[5]arene and the sulfonic acid group grafted onto the gold nanoparticle increased the drug loading capacity of the nanoplatform and enabled sustained release of the drug in a simulated weakly acidic tumor environment. The released GOx can consume intracellular glucose, namely, starvation therapy, while the generated hydrogen peroxide can further kill tumor cells, complementing DOX chemotherapy. Gold nanoparticles have good photothermal conversion ability and can enhance the drugs release rate under specific wavelengths of light irradiation. The results of in vitro and in vivo experiments showed that this novel nanodrug delivery platform has good biocompatibility and better therapeutic efficacy relative to monotherapy. This study successfully developed a combined chemo/starvation therapy strategy with good tumor suppression, providing a new approach for cancer treatment.
Collapse
Affiliation(s)
- Jianfeng Jiang
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry, Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Zhilian Su
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry, Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qin He
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry, Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Wengui Duan
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry, Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yan Huang
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Traditional Medical & Pharmaceutical Science, Nanning, China
| | - Luzhi Liu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry, Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi, 537000, PR China
| |
Collapse
|
30
|
Xie Y, Wang M, Qiao L, Qian Y, Xu W, Sun Q, Luo S, Li C. Photothermal-Enhanced Dual Inhibition of Lactate/Kynurenine Metabolism for Promoting Tumor Immunotherapy. SMALL METHODS 2024; 8:e2300945. [PMID: 37906051 DOI: 10.1002/smtd.202300945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/16/2023] [Indexed: 11/02/2023]
Abstract
Traditionally referred to as "metabolic junk", lactate has now been recognized as essential "energy currency" and crucial "messenger" that contributes to tumor evolution, immunosuppression, etc., thus presenting a promising strategy for antitumor interventions. Similarly, kynurenine (Kyn) also exerts an immunosuppressive function, thereby significantly compromising the effectiveness of immunotherapy. This study proposes and validates a strategy for enhancing immunotherapy through photothermal-assisted depletion of lactate sustained by cycle-like O2 supply, with blocking the tryptophan (Trp)/Kyn metabolic pathway. In brief, a nanozyme therapeutic agent (PNDPL) is constructed, which mainly consists of PtBi nanozymes, lactate oxidase (LOX) and the indoleamine 2,3-dioxygenase (IDO) inhibitor NLG919. The PtBi nanozymes, which exhibit a catalase (CAT)-like activity, form a positive feedback loop with LOX to consume lactate while self-supplying O2 . Moreover, PtBi nanozymes retain enzyme-like performance even in a slightly acidic tumor microenvironment. Under 1064 nm irradiation, photothermal therapy (PTT) not only induces tumor cell death but also accelerates lactate exhaustion. Therefore, the combination of lactate depletion-induced starvation therapy and PTT, along with the blocking of IDO-mediated immune escape, effectively inhibits tumor growth and reverses immunosuppressive microenvironment, thus preventing tumor metastasis. This study represents the first investigation into the synergistic antitumor effects by lactate metabolism regulation and IDO-related immunotherapy.
Collapse
Affiliation(s)
- Yulin Xie
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Luying Qiao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Yanrong Qian
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Wencheng Xu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Qianqian Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Shuiping Luo
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
31
|
Zhang Z, Liang X, Yang X, Liu Y, Zhou X, Li C. Advances in Nanodelivery Systems Based on Metabolism Reprogramming Strategies for Enhanced Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6689-6708. [PMID: 38302434 DOI: 10.1021/acsami.3c15686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Tumor development and metastasis are closely related to the complexity of the metabolism network. Recently, metabolism reprogramming strategies have attracted much attention in tumor metabolism therapy. Although there is preliminary success of metabolism therapy agents, their therapeutic effects have been restricted by the effective reaching of the tumor sites of drugs. Nanodelivery systems with unique physical properties and elaborate designs can specifically deliver to the tumors. In this review, we first summarize the research progress of nanodelivery systems based on tumor metabolism reprogramming strategies to enhance therapies by depleting glucose, inhibiting glycolysis, depleting lactic acid, inhibiting lipid metabolism, depleting glutamine and glutathione, and disrupting metal metabolisms combined with other therapies, including chemotherapy, radiotherapy, photodynamic therapy, etc. We further discuss in detail the advantages of nanodelivery systems based on tumor metabolism reprogramming strategies for tumor therapy. As well as the opportunities and challenges for integrating nanodelivery systems into tumor metabolism therapy, we analyze the outlook for these emerging areas. This review is expected to improve our understanding of modulating tumor metabolisms for enhanced therapy.
Collapse
Affiliation(s)
- Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoya Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xi Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiangyu Zhou
- Department of Thyroid and Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Basic Medicine Research Innovation Center for Cardiometabolic Disease, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
32
|
Kim K, Park MH. Advancing Cancer Treatment: Enhanced Combination Therapy through Functionalized Porous Nanoparticles. Biomedicines 2024; 12:326. [PMID: 38397928 PMCID: PMC10887220 DOI: 10.3390/biomedicines12020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer remains a major global health challenge, necessitating the development of innovative treatment strategies. This review focuses on the functionalization of porous nanoparticles for combination therapy, a promising approach to enhance cancer treatment efficacy while mitigating the limitations associated with conventional methods. Combination therapy, integrating multiple treatment modalities such as chemotherapy, phototherapy, immunotherapy, and others, has emerged as an effective strategy to address the shortcomings of individual treatments. The unique properties of mesoporous silica nanoparticles (MSN) and other porous materials, like nanoparticles coated with mesoporous silica (NP@MS), metal-organic frameworks (MOF), mesoporous platinum nanoparticles (mesoPt), and carbon dots (CDs), are being explored for drug solubility, bioavailability, targeted delivery, and controlled drug release. Recent advancements in the functionalization of mesoporous nanoparticles with ligands, biomaterials, and polymers are reviewed here, highlighting their role in enhancing the efficacy of combination therapy. Various research has demonstrated the effectiveness of these nanoparticles in co-delivering drugs and photosensitizers, achieving targeted delivery, and responding to multiple stimuli for controlled drug release. This review introduces the synthesis and functionalization methods of these porous nanoparticles, along with their applications in combination therapy.
Collapse
Affiliation(s)
- Kibeom Kim
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Republic of Korea;
| | - Myoung-Hwan Park
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Republic of Korea;
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Republic of Korea
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
33
|
Cheng Q, Shi X, Li Q, Wang L, Wang Z. Current Advances on Nanomaterials Interfering with Lactate Metabolism for Tumor Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305662. [PMID: 37941489 PMCID: PMC10797484 DOI: 10.1002/advs.202305662] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/15/2023] [Indexed: 11/10/2023]
Abstract
Increasing numbers of studies have shown that tumor cells prefer fermentative glycolysis over oxidative phosphorylation to provide a vast amount of energy for fast proliferation even under oxygen-sufficient conditions. This metabolic alteration not only favors tumor cell progression and metastasis but also increases lactate accumulation in solid tumors. In addition to serving as a byproduct of glycolytic tumor cells, lactate also plays a central role in the construction of acidic and immunosuppressive tumor microenvironment, resulting in therapeutic tolerance. Recently, targeted drug delivery and inherent therapeutic properties of nanomaterials have attracted great attention, and research on modulating lactate metabolism based on nanomaterials to enhance antitumor therapy has exploded. In this review, the advanced tumor therapy strategies based on nanomaterials that interfere with lactate metabolism are discussed, including inhibiting lactate anabolism, promoting lactate catabolism, and disrupting the "lactate shuttle". Furthermore, recent advances in combining lactate metabolism modulation with other therapies, including chemotherapy, immunotherapy, photothermal therapy, and reactive oxygen species-related therapies, etc., which have achieved cooperatively enhanced therapeutic outcomes, are summarized. Finally, foreseeable challenges and prospective developments are also reviewed for the future development of this field.
Collapse
Affiliation(s)
- Qian Cheng
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| | - Xiao‐Lei Shi
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| | - Qi‐Lin Li
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| | - Lin Wang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| | - Zheng Wang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| |
Collapse
|
34
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 203] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
35
|
Wang B, Zhang S, Shen ZT, Hou T, Zhao YH, Huang MS, Li J, Chen H, Hu PH, Luo ZJ, Yuan S, Wang FM, Li W, Shu C, Xia XH, Ding Y. Core-Shell Reactor Partitioning Enzyme and Prodrug by ZIF-8 for NADPH-Sensitive In Situ Prodrug Activation. Angew Chem Int Ed Engl 2023; 62:e202314025. [PMID: 37881154 DOI: 10.1002/anie.202314025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
Enzyme-prodrug therapies have shown unique advantages in efficiency, selectivity, and specificity of in vivo prodrug activation. However, precise spatiotemporal control of both the enzyme and its substrate at the target site, preservation of enzyme activity, and in situ substrate depletion due to low prodrug delivery efficiency continue to be great challenges. Here, we propose a novel core-shell reactor partitioning enzyme and prodrug by ZIF-8, which integrates an enzyme with its substrate and increases the drug loading capacity (DLC) using a prodrug as the building ligand to form a Zn-prodrug shell. Cytochrome P450 (CYP450) is immobilized in ZIF-8, and the antitumor drug dacarbazine (DTIC) is coordinated and deposited in its outer layer with a high DLC of 43.6±0.8 %. With this configuration, a much higher prodrug conversion efficiency of CYP450 (36.5±1.5 %) and lower IC50 value (26.3±2.6 μg/mL) are measured for B16-F10 cells with a higher NADPH concentration than those of L02 cells and HUVECs. With the tumor targeting ability of hyaluronic acid, this core-shell enzyme reactor shows a high tumor suppression rate of 96.6±1.9 % and provides a simple and versatile strategy for enabling in vivo biocatalysis to be more efficient, selective, and safer.
Collapse
Affiliation(s)
- Bo Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Sheng Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Zi-Tao Shen
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Ting Hou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi-Han Zhao
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Meng-Sheng Huang
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Huan Chen
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Peng-Hui Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Zi-Jiang Luo
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Feng-Min Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chang Shu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ya Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
36
|
Gui J, Chen H, Liu J, Liu Y, Wu C, Zhu X, Wei M, Liu M, Zhang Y, Yao S. Consuming intracellular glucose and regulating the levels of O 2/H 2O 2 via the closed cascade catalysis system of Cu-CeO 2 nanozyme and glucose oxidase. J Colloid Interface Sci 2023; 651:191-199. [PMID: 37542894 DOI: 10.1016/j.jcis.2023.07.190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Imbalances in the intracellular environment caused by high levels of glucose, H2O2, and hypoxia can greatly impact cancer development and treatment. However, there is limited research on regulating the levels of these species simultaneously in tumor cells. Here, a pH-responsive nanozyme-enzyme hybrid system was developed to regulate intracellular glucose, H2O2 and O2. The system, named DMSN@Cu-CeO2@GOx, consists of Cu-CeO2 nanoparticles and glucose oxidase (GOx) immobilized in dendritic mesoporous silica (DMSN) spheres. GOx efficiently consumes glucose in tumor cells, causing a drop in pH and producing a significant amount of H2O2. Cu-CeO2 then catalyzes the conversion of H2O2 to O2 due to its high catalase-like (CAT) activity in weakly acidic conditions. The process was monitored by fluorescence probes, and the mechanism was investigated through fluorescence spectroscopy and confocal laser scanning microscopy. The cascade catalytic system with excellent biocompatibility continuously consumes glucose and elevates the level of O2 in cells. This hybrid nanomaterial offers a means to regulate the glucose/H2O2/O2 levels in cells and may provide insights into starvation therapy by modulating reactive species within cells.
Collapse
Affiliation(s)
- Jialing Gui
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Haoyu Chen
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Jing Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Yani Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Cuiyan Wu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Mingjie Wei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China.
| | - Meiling Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
37
|
Duan H, Wang F, Xu W, Sheng G, Sun Z, Chu H. Recent advances in the nanoarchitectonics of metal-organic frameworks for light-activated tumor therapy. Dalton Trans 2023; 52:16085-16102. [PMID: 37814810 DOI: 10.1039/d3dt02725b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Metal-organic frameworks (MOFs) have received extensive attention in tumor therapy because of their advantages, including large specific surface area, regular pore size, adjustable shape, and facile functionalization. MOFs are porous materials formed by the coordination bonding of metal clusters and organic ligands. This review summarized the most recent advancements in tumor treatment based on nMOFs. First, we discuss the classification of MOFs, which primarily include the series of isoreticular MOF (IRMOF), zeolitic imidazolate framework (ZIF), coordination pillared-layer (CPL), Materials of Institute Lavoisier (MIL), porous coordination network (PCN), University of Oslo (UiO) and Biological metal-organic frameworks (BioMOFs). Then, we discuss the use of nMOFs in antitumor therapy, including drug delivery strategies, photodynamic therapy (PDT), photothermal therapy (PTT), and combination therapy. Finally, the obstacles and opportunities in nMOFs are discussed.
Collapse
Affiliation(s)
- Huijuan Duan
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Fang Wang
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Weizhe Xu
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Gang Sheng
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Zhaogang Sun
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Hongqian Chu
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| |
Collapse
|
38
|
Zhu J, Cai H, Xu C, Wang W, Song X, Li B, Shen Y, Dong X. Acidity-Responsive Nanoreactors Destructed "Warburg Effect" for Toxic-Acidosis and Starvation Synergistic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304058. [PMID: 37475522 DOI: 10.1002/smll.202304058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Indexed: 07/22/2023]
Abstract
"Warburg Effect" shows that most tumor cells rely on aerobic glycolysis for energy supply, leading to malignant energy deprivation and an "internal alkaline external acid" tumor microenvironment. Destructing the "Warburg Effect" is an effective approach to inhibit tumor progression. Herein, an acidity-responsive nanoreactor (Au@CaP-Flu@HA) is fabricated for toxic acidosis and starvation synergistic therapy. In the nanoreactor, the fluvastatin (Flu) could reduce lactate efflux by inhibiting the lactate-proton transporter (monocarboxylate transporters, MCT4), resulting in intracellular lactate accumulation. Meanwhile, the glucose oxidase-mimic Au-nanocomposite consumes glucose to induce cell starvation accompanied by gluconic acid production, coupling with lactate to exacerbate toxic acidosis. Also, the up-regulated autophagic energy supply of tumor cells under energy deprivation and hypoxia aggravation is blocked by autophagy inhibitor CaP. Cellular dysfunction under pHi acidification and impaired Adenosine Triphosphate (ATP) synthesis under starvation synergistically promote tumor cell apoptosis. Both in vitro and in vivo studies demonstrate that this combinational approach of toxic-acidosis/starvation therapy could effectively destruct the "Warburg Effect" to inhibit tumor growth and anti-metastatic effects.
Collapse
Affiliation(s)
- Jiawei Zhu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Hao Cai
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Chengshuang Xu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Xuejiao Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Buhong Li
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Yi Shen
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
39
|
Yu J, Li Q, Wei Z, Fan G, Wan F, Tian L. Ultra-stable MOF@MOF nanoplatform for photodynamic therapy sensitized by relieved hypoxia due to mitochondrial respiration inhibition. Acta Biomater 2023; 170:330-343. [PMID: 37607616 DOI: 10.1016/j.actbio.2023.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/20/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
Metal-organic frameworks (MOFs) with periodically arranged porphyrinic linkers avoiding the self-quenching issue of porphyrins in photodynamic therapy (PDT) have been widely applied. However, the porphyrinic MOFs still face challenges of poor stability under physiological conditions and limited photodynamic efficiency by the hypoxia condition of tumors. Herein, we fabricate the MOF@MOF structure with a protective MOF shell to improve the stability and relieve the hypoxia condition of tumors for sensitized PDT. Under protection of the MOF shell, the MOF@MOF structure can keep intact for 96 h under physiological conditions. Consequently, the tumoral accumulation efficiency is two folds of the MOF core. Furthermore, the MOF shell decomposes under acidic environment, and the loaded inhibitor of mitochondria pyruvate carrier (7-amino carboxycoumarins-2, 7ACC2) will be released. 7ACC2 inhibits the mitochondrial pyruvate influx and simultaneously blocks glucose and lactate from fueling the mitochondrial respiration, thereupon relieving the hypoxia condition of tumors. Under a 5-min laser irradiation, the 7ACC2 carrying MOF@MOF nanoplatforms induced doubled cellular apoptosis and reduced 70% of the tumor growth compared with the cargo-free MOF@MOF. In summary, the design of this stable and hypoxia self-relievable MOF@MOF nanoplatform will enlighten the future development of MOF-based nanomedicines and PDT. STATEMENT OF SIGNIFICANCE: Though widely used for photodynamic therapy (PDT) in previous studies, porphyrinic metal-organic frameworks (MOFs) still face challenges in poor stability under physiological conditions and limited photodynamic efficiency due to the hypoxia condition of tumors. In order to solve these problems, (1) we develop the MOF@MOF strategy to improve the physiological stability; (2) an inhibitor of mitochondria pyruvate carrier, 7-amino carboxycoumarins-2 (7ACC2), is loaded to inhibit the mitochondrial pyruvate influx and simultaneously block glucose and lactate from fueling the mitochondrial respiration, thereupon relieving the hypoxia condition of tumors. In comparison with previous studies, our strategy simultaneously improves stability and overcomes the limited PDT efficiency in the hypoxia tumor tissue, which will enlighten the future development of MOF-based nanomedicines and PDT.
Collapse
Affiliation(s)
- Jiantao Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Qing Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Zixiang Wei
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Guiling Fan
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Feiyan Wan
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, PR China.
| |
Collapse
|
40
|
Yang P, Yang W, Zhang H, Zhao R. Metal-Organic Framework for the Immobilization of Oxidoreductase Enzymes: Scopes and Perspectives. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6572. [PMID: 37834709 PMCID: PMC10574266 DOI: 10.3390/ma16196572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Oxidoreductases are a wide class of enzymes that can catalyze biological oxidation and reduction reactions. Nowadays, oxidoreductases play a vital part in most bioenergetic metabolic pathways, which have important applications in biodegradation, bioremediation, environmental applications, as well as biosensors. However, free oxidoreductases are not stable and hard to be recycled. In addition, cofactors are needed in most oxidoreductases catalyze reactions, which are so expensive and unstable that it hinders their industrial applications. Enzyme immobilization is a feasible strategy that can overcome these problems. Recently, metal-organic frameworks (MOFs) have shown great potential as support materials for immobilizing enzymes due to their unique properties, such as high surface-area-to-volume ratio, chemical stability, functional designability, and tunable pore size. This review discussed the application of MOFs and their composites as immobilized carriers of oxidoreductase, as well as the application of MOFs as catalysts and immobilized carriers in redox reactions in the perspective of the function of MOFs materials. The paper also focuses on the potential of MOF carrier-based oxidoreductase immobilization for designing an enzyme cascade reaction system.
Collapse
Affiliation(s)
- Pengyan Yang
- School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Wenhui Yang
- School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rui Zhao
- School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
41
|
Li S, Wang Q, Jia Z, Da M, Zhao J, Yang R, Chen D. Recent advances in glucose oxidase-based nanocarriers for tumor targeting therapy. Heliyon 2023; 9:e20407. [PMID: 37780773 PMCID: PMC10539972 DOI: 10.1016/j.heliyon.2023.e20407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023] Open
Abstract
Glucose oxidase (GOx) can specifically catalyze the conversion of β-d-glucose into gluconic acid and hydrogen peroxide (H2O2) in the presence of oxygen, making it promising for tumor starvation therapy and oxidative therapy. However, GOx's immunogenicity, poor in vivo stability, short half-life, and potential systemic toxicity, limit its application in cancer therapy. Nanocarriers are capable of improving the pharmacological properties of therapeutic drugs (e.g. stability, circulating half-life, and tumor accumulation) and lower toxicity, hence resolving GOx issues and enhancing its efficacy. Although the application of targeted nanocarriers based on GOx has recently flourished, this field has not yet been reviewed and evaluated. Herein, we initially examined the mechanism of GOx-based nanocarriers for enhanced tumor therapy. Also, we present a comprehensive and up-to-date review that highlights GOx-based nanocarriers for tumor targeting therapy. This review expands on GOx-based nano-targeted combination therapies from both passive and active targeting perspectives, meanwhile, active targeting is further classified into ligand-mediated targeting and physical-mediated targeting. Furthermore, this review also emphasizes the present challenges and promising advancements.
Collapse
Affiliation(s)
- Su Li
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Qinghua Wang
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China
| | - Zhen Jia
- Department of Obstetrics and Gynecology, Haidong No. 2 People's Hospital, Haidong, 810699, China
| | - Mengting Da
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, 810001, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, 810001, China
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Daozhen Chen
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Hospital of Nanjing Medical University, Wuxi, 214002, China
- Department of Obstetrics and Gynecology, Haidong No. 2 People's Hospital, Haidong, 810699, China
| |
Collapse
|
42
|
Chen W, Yang M, Li J, Chen Z, Hu L, Zhang J, Cai L, Qiu L, Chen J. GSH-Activatable Metal-Phenolic Networks for Photothermal-Enhanced Chemotherapy and Chemodynamic Therapy. J Funct Biomater 2023; 14:436. [PMID: 37754850 PMCID: PMC10531558 DOI: 10.3390/jfb14090436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Chemotherapy (CT) plays an important role in the antitumor process, but the unsatisfactory therapeutic efficacy and the obvious toxic side effects of CT seriously restrict its application. To overcome the limitations of CT, the strategy of chemotherapy enhanced by chemodynamic therapy (CDT) and photothermal therapy (PTT) has been considered a promising approach to improve the anticancer effect. Herein, a novel GSH-activatable Cu2+-Quercetin network (QC) was synthesized via a convenient strategy to load Au nanoparticles (NPs) and DOX, named QCDA, for the synergistic therapy of CT/CDT/PTT. The results showed that QCDA exhibited GSH-sensitive degradation and "cargos" release in cancer cells, and then PTT and CDT caused by Au NPs and Cu+ significantly enhanced the CT effect of DOX and Quercetin on anticancer. More importantly, the PTT and depleted GSH accelerated the Fenton-like ionization process resulting in facilitating the CDT efficiency. Collectively, the multi-mode synergistic strategy of CT/CDT/PTT, which showed an excellent therapeutic effect, maybe a potential therapeutic pathway for anticancer.
Collapse
Affiliation(s)
- Weijun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; (W.C.); (M.Y.); (J.L.); (Z.C.)
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Meiyang Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; (W.C.); (M.Y.); (J.L.); (Z.C.)
| | - Jie Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; (W.C.); (M.Y.); (J.L.); (Z.C.)
| | - Zhilan Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; (W.C.); (M.Y.); (J.L.); (Z.C.)
| | - Lefei Hu
- Department of Biological Science, National University of Singapore, Singapore 119077, Singapore;
| | - Jiannan Zhang
- Department of Anesthesiology, Wuxi Traditional Chinese Medicine Hospital, Wuxi 214071, China; (J.Z.); (L.C.)
| | - Liangyu Cai
- Department of Anesthesiology, Wuxi Traditional Chinese Medicine Hospital, Wuxi 214071, China; (J.Z.); (L.C.)
| | - Lipeng Qiu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; (W.C.); (M.Y.); (J.L.); (Z.C.)
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; (W.C.); (M.Y.); (J.L.); (Z.C.)
| |
Collapse
|
43
|
Simanurak O, Pekthong D, Somran J, Wangteeraprasert A, Srikummool M, Kaewpaeng N, Parhira S, Srisawang P. Enhanced apoptosis of HCT116 colon cancer cells treated with extracts from Calotropis gigantea stem bark by starvation. Heliyon 2023; 9:e18013. [PMID: 37483695 PMCID: PMC10362240 DOI: 10.1016/j.heliyon.2023.e18013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Calotropis gigantea stem bark extract, particularly the dichloromethane fraction (CGDCM), demonstrated the most potent antiproliferative effects on hepatocellular carcinoma HepG2 and colorectal HCT116 cells. The current study focused on enhancing the effectiveness of cancer treatment with CGDCM at concentrations close to the IC50 in HCT116 cells by reducing their nutrient supply. CGDCM (2, 4, and 8 μg/mL) treatment for 24 h under glucose conditions of 4.5 g/L without fetal bovine serum (FBS) supplementation or serum starvation (G+/F-), glucose 0 g/L with 10% FBS or glucose starvation (G-/F+), and glucose 0 g/L with 0% FBS or complete starvation (G-/F-) induced a greater antiproliferative effect in HCT116 cells than therapy in complete medium with glucose 4.5 g/L and 10% FBS (G+/F+). Nonetheless, the anticancer effect of CGDCM at 4 μg/mL under (G-/F-) showed the highest activity compared to other starvation conditions. The three starvation conditions showed a significant reduction in cell viability compared to the control (G+/F+) medium group, while the inhibitory effect on cell viability did not differ significantly among the three starvation conditions. CGDCM at 4 μg/mL in (G-/F-) medium triggered apoptosis by dissipating the mitochondrial membrane potential and arresting cells in the G2/M phase. This investigation demonstrated that a decrease in intracellular ATP and fatty acid levels was associated with enhanced apoptosis by treatment with CGDCM at 4 μg/mL under (G-/F-) conditions. In addition, under (G-/F-), CGDCM at 4 μg/mL increased levels of reactive oxygen species (ROS) and was suggested to primarily trigger apoptosis in HCT116 cells. Thus, C. gigantea extracts may be useful for the future development of alternative, effective cancer treatment regimens.
Collapse
Affiliation(s)
- Orakot Simanurak
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Dumrongsak Pekthong
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand
| | | | - Metawee Srikummool
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Naphat Kaewpaeng
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Supawadee Parhira
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Piyarat Srisawang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
44
|
Meng X, Wang L, Zhao N, Zhao D, Shen Y, Yao Y, Jing W, Man S, Dai Y, Zhao Y. Stimuli-responsive cancer nanomedicines inhibit glycolysis and impair redox homeostasis. Acta Biomater 2023:S1742-7061(23)00341-0. [PMID: 37343908 DOI: 10.1016/j.actbio.2023.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
The solid tumors are characterized with oxidative stress and metabolic reprogramming, which has been independently used for targeted tumor monotherapy. However, the potential of targeting metabolism-redox circuit in tumor therapy has long been neglected. Herein, we report a hybrid nanocarrier for concurrent targeting of glycolysis and redox balance in the current work. The nanocarriers are made of pH- and ATP-responsive zeolitic imidazolate framework (ZIF-8) as the porous core that was further coated with poloxamer 407 as the steric stabilizer. Two active cargos, glucose oxidase (GOx) and 3-bromopyruvate (3-BrPA) were co-loaded in the core of nanocarrier. GOx is well-known for its ability of producing hydrogen peroxide at the expense of glucose and oxygen. 3-BrPA can reduce oxygen and glucose consumption through glycolysis, which sensitized cancer cells to GOx-induced apoptosis. At the cellular level, the hybrid nanocarrier significantly impaired the redox balance in the liver hepatocellular carcinoma cell line (HepG2), as evidenced by the depletion of glutathione and boost of reactive oxygen species. The potency of hybrid nanocarrier in terms of suppressing HepG2 cell energy metabolism was proven by the exhaustion of ATP. As a consequence, cell viability was greatly reduced. The in vivo efficacy of hybrid nanocarriers was demonstrated in HepG2 tumor-bearing mice. The current work presents an approach of targeting metabolism-redox circuit for tumor treatment, which may enrich the available anti-tumor strategies. STATEMENT OF SIGNIFICANCE: Metabolic alterations and elevated reactive oxygen species (ROS) are two characteristics of cancer. The metabolic patterns of cancer cells are elaborately reprogrammed to enable the rapid propagation of cancer cells. However, the potential of targeting the metabolism-redox circuit in anti-tumor therapy has long been neglected. As a proof-of-concept, we report an engineered stimuli-responsive nanomedicine that can eradicate cancer cells via cooperative glycolysis inhibition and redox impairment. The current work presents an approach of targeting the metabolism-redox circuit for tumor treatment, which may enrich the available anti-tumor strategies.
Collapse
Affiliation(s)
- Xuan Meng
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Lin Wang
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ning Zhao
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Delong Zhao
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yongli Shen
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yuan Yao
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Wenjie Jing
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shuli Man
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yujie Dai
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
45
|
Li Y, Zhang Y, Dong Y, Akakuru OU, Yao X, Yi J, Li X, Wang L, Lou X, Zhu B, Fan K, Qin Z. Ablation of Gap Junction Protein Improves the Efficiency of Nanozyme-Mediated Catalytic/Starvation/Mild-Temperature Photothermal Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210464. [PMID: 36964940 DOI: 10.1002/adma.202210464] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/22/2023] [Indexed: 06/02/2023]
Abstract
Reactive oxygen species (ROS)-mediated tumor catalytic therapy is typically hindered by gap junction proteins that form cell-to-cell channels to remove cytotoxic ROS, thereby protecting tumor cells from oxidative damage. In this work, a multifunctional nanozyme, FePGOGA, is designed and prepared by Fe(III)-mediated oxidative polymerization (FeP), followed by glucose oxidase (GOx) and GAP19 peptides co-loading through electrostatic and π-π interactions. The FePGOGA nanozyme exhibits excellent cascade peroxidase- and glutathione-oxidase-like activities that efficiently catalyze hydrogen peroxide conversion to hydroxyl radicals and convert reduced glutathione to oxidized glutathione disulfide. The loaded GOx starves the tumors and aggravates tumor oxidative stress through glucose decomposition, while GAP19 peptides block the hemichannels by inducing degradation of Cx43, thus increasing the accumulation of intracellular ROS, and decreasing the transport of intracellular glucose. Furthermore, the ROS reacts with primary amines of heat shock proteins to destroy their structure and function, enabling tumor photothermal therapy at the widely sought-after mild temperature (mildPTT, ≤45 °C). In vivo experiments demonstrate the significant antitumor effectof FePGOGA on cal27 xenograft tumors under near-infrared light irradiation. This study demonstrates the successful ablation of gap junction proteins to overcome resistance to ROS-mediated therapy, providing a regulator to suppress tumor self-preservation during tumor starvation, catalytic therapy, and mildPTT.
Collapse
Affiliation(s)
- Yongjuan Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yu Zhang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Ya Dong
- Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Ozioma Udochukwu Akakuru
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Xiaohan Yao
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jinmeng Yi
- Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xinyan Li
- Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Linlin Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaohan Lou
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Baoyu Zhu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kelong Fan
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
46
|
Yu S, Xu K, Wang Z, Zhang Z, Zhang Z. Bibliometric and visualized analysis of metal-organic frameworks in biomedical application. Front Bioeng Biotechnol 2023; 11:1190654. [PMID: 37234479 PMCID: PMC10206306 DOI: 10.3389/fbioe.2023.1190654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Background: Metal-organic frameworks (MOFs) are hybrid materials composed of metal ions or clusters and organic ligands that spontaneously assemble via coordination bonds to create intramolecular pores, which have recently been widely used in biomedicine due to their porosity, structural, and functional diversity. They are used in biomedical applications, including biosensing, drug delivery, bioimaging, and antimicrobial activities. Our study aims to provide scholars with a comprehensive overview of the research situations, trends, and hotspots in biomedical applications of MOFs through a bibliometric analysis of publications from 2002 to 2022. Methods: On 19 January 2023, the Web of Science Core Collection was searched to review and analyze MOFs applications in the biomedical field. A total of 3,408 studies published between 2002 and 2022 were retrieved and examined, with information such as publication year, country/region, institution, author, journal, references, and keywords. Research hotspots were extracted and analyzed using the Bibliometrix R-package, VOSviewer, and CiteSpace. Results: We showed that researchers from 72 countries published articles on MOFs in biomedical applications, with China producing the most publications. The Chinese Academy of Science was the most prolific contributor to these publications among 2,209 institutions that made contributions. Reference co-citation analysis classifies references into 8 clusters: synergistic cancer therapy, efficient photodynamic therapy, metal-organic framework encapsulation, selective fluorescence, luminescent probes, drug delivery, enhanced photodynamic therapy, and metal-organic framework-based nanozymes. Keyword co-occurrence analysis divided keywords into 6 clusters: biosensors, photodynamic therapy, drug delivery, cancer therapy and bioimaging, nanoparticles, and antibacterial applications. Research frontier keywords were represented by chemodynamic therapy (2020-2022) and hydrogen peroxide (2020-2022). Conclusion: Using bibliometric methods and manual review, this review provides a systematic overview of research on MOFs in biomedical applications, filling an existing gap. The burst keyword analysis revealed that chemodynamic therapy and hydrogen peroxide are the prominent research frontiers and hot spots. MOFs can catalyze Fenton or Fenton-like reactions to generate hydroxyl radicals, making them promising materials for chemodynamic therapy. MOF-based biosensors can detect hydrogen peroxide in various biological samples for diagnosing diseases. MOFs have a wide range of research prospects for biomedical applications.
Collapse
Affiliation(s)
- Sanyang Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Kaihao Xu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Zhenhua Wang
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Zhichang Zhang
- Department of Computer, School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Zhongti Zhang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
47
|
Yin B, Wong WK, Ng YM, Yang M, Leung FKC, Wong DSH. Smart Design of Nanostructures for Boosting Tumor Immunogenicity in Cancer Immunotherapy. Pharmaceutics 2023; 15:pharmaceutics15051427. [PMID: 37242669 DOI: 10.3390/pharmaceutics15051427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Although tumor immunotherapy has emerged as a promising therapeutic method for oncology, it encounters several limitations, especially concerning low response rates and potential off-targets that elicit side effects. Furthermore, tumor immunogenicity is the critical factor that predicts the success rate of immunotherapy, which can be boosted by the application of nanotechnology. Herein, we introduce the current approach of cancer immunotherapy and its challenges and the general methods to enhance tumor immunogenicity. Importantly, this review highlights the integration of anticancer chemo/immuno-based drugs with multifunctional nanomedicines that possess imaging modality to determine tumor location and can respond to stimuli, such as light, pH, magnetic field, or metabolic changes, to trigger chemotherapy, phototherapy, radiotherapy, or catalytic therapy to upregulate tumor immunogenicity. This promotion rouses immunological memory, such as enhanced immunogenic cell death, promoted maturation of dendritic cells, and activation of tumor-specific T cells against cancer. Finally, we express the related challenges and personal perspectives of bioengineered nanomaterials for future cancer immunotherapy.
Collapse
Affiliation(s)
- Bohan Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Wai-Ki Wong
- State Key Laboratory for Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yip-Ming Ng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Franco King-Chi Leung
- State Key Laboratory for Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Dexter Siu-Hong Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
48
|
Ji M, Liu H, Gou J, Yin T, He H, Zhang Y, Tang X. Recent advances in nanoscale metal-organic frameworks for cancer chemodynamic therapy. NANOSCALE 2023; 15:8948-8971. [PMID: 37129051 DOI: 10.1039/d3nr00867c] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chemodynamic therapy (CDT), a novel therapeutic approach based on Fenton (Fenton-like) reaction, has been widely employed for tumor therapy. This approach utilizes Fe, Cu, or other metal ions (Mn, Zn, Co, or Mo) to react with the excess hydrogen peroxide (H2O2) in tumor microenvironments (TME), and form highly cytotoxic hydroxyl radical (˙OH) to kill cancer cells. Recently, nanoscale metal-organic frameworks (nMOFs) have attracted considerable attention as promising CDT agents with the rapid development of cancer CDT. This review focuses on summarizing the latest advances (2020-2022) on the design of nMOFs as nanomedicine for CDT or combination therapy of CDT and other therapies. The future development and challenges of CDT are also proposed based on recent progress. Our group hopes that this review will enlighten the research and development of nMOFs for CDT.
Collapse
Affiliation(s)
- Muse Ji
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China.
| | - Hongbing Liu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China.
| | - Jingxin Gou
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China.
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China
| | - Haibing He
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China.
| | - Yu Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China.
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China.
| |
Collapse
|
49
|
Wang K, Yu A, Liu K, Feng C, Hou Y, Chen J, Ma S, Huang L, Dai X. Nano-LYTACs for Degradation of Membrane Proteins and Inhibition of CD24/Siglec-10 Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300288. [PMID: 36866919 PMCID: PMC10161071 DOI: 10.1002/advs.202300288] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Indexed: 05/06/2023]
Abstract
Lysosome-targeting chimeras (LYTACs) are an emerging therapeutic modality that effectively degrade cancer cell membranes and extracellular target proteins. In this study, a nanosphere-based LYTAC degradation system is developed. The amphiphilic peptide-modified N-acetylgalactosamine (GalNAc) can self-assemble into nanospheres with a strong affinity for asialoglycoprotein receptor targets. They can degrade different membranes and extracellular proteins by linking with the relevant antibodies. CD24, a heavily glycosylated glycosylphosphatidylinositol-anchored surface protein, interacts with Siglec-10 to modulate the tumor immune response. The novel Nanosphere-AntiCD24, synthesized by linking nanospheres with CD24 antibody, accurately regulates the degradation of CD24 protein and partially restores the phagocytic function of macrophages toward tumor cells by blocking the CD24/Siglec-10 signaling pathway. When Nanosphere-AntiCD24 is combined with glucose oxidase, an enzyme promoting the oxidative decomposition of glucose, the combination not only effectively restores the function of macrophages in vitro but also suppresses tumor growth in xenograft mouse models without detectable toxicity to normal tissues. The results indicate that GalNAc-modified nanospheres, as a part of LYTACs, can be successfully internalized and are an effective drug-loading platform and a modular degradation strategy for the lysosomal degradation of cell membrane and extracellular proteins, which can be broadly applied in the fields of biochemistry and tumor therapeutics.
Collapse
Affiliation(s)
- Kun Wang
- Institute of Biopharmaceutical and Health EngineeringShenzhen Key Laboratory of Gene and Antibody TherapyState Key Laboratory of Chemical OncogenomicsShenzhen International Graduate SchoolTsinghua UniversityShenzhenGuangdong518055China
- School of Life SciencesTsinghua UniversityBeijing100084China
| | - Albert Yu
- Institute of Biopharmaceutical and Health EngineeringShenzhen Key Laboratory of Gene and Antibody TherapyState Key Laboratory of Chemical OncogenomicsShenzhen International Graduate SchoolTsinghua UniversityShenzhenGuangdong518055China
| | - Kewei Liu
- Institute of Biopharmaceutical and Health EngineeringShenzhen Key Laboratory of Gene and Antibody TherapyState Key Laboratory of Chemical OncogenomicsShenzhen International Graduate SchoolTsinghua UniversityShenzhenGuangdong518055China
| | - Chunyan Feng
- Institute of Biopharmaceutical and Health EngineeringShenzhen Key Laboratory of Gene and Antibody TherapyState Key Laboratory of Chemical OncogenomicsShenzhen International Graduate SchoolTsinghua UniversityShenzhenGuangdong518055China
| | - Yibo Hou
- Institute of Biopharmaceutical and Health EngineeringShenzhen Key Laboratory of Gene and Antibody TherapyState Key Laboratory of Chemical OncogenomicsShenzhen International Graduate SchoolTsinghua UniversityShenzhenGuangdong518055China
| | - Jiawei Chen
- Institute of Biopharmaceutical and Health EngineeringShenzhen Key Laboratory of Gene and Antibody TherapyState Key Laboratory of Chemical OncogenomicsShenzhen International Graduate SchoolTsinghua UniversityShenzhenGuangdong518055China
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health EngineeringShenzhen Key Laboratory of Gene and Antibody TherapyState Key Laboratory of Chemical OncogenomicsShenzhen International Graduate SchoolTsinghua UniversityShenzhenGuangdong518055China
| | - Laiqiang Huang
- Institute of Biopharmaceutical and Health EngineeringShenzhen Key Laboratory of Gene and Antibody TherapyState Key Laboratory of Chemical OncogenomicsShenzhen International Graduate SchoolTsinghua UniversityShenzhenGuangdong518055China
- School of Life SciencesTsinghua UniversityBeijing100084China
| | - Xiaoyong Dai
- Institute of Biopharmaceutical and Health EngineeringShenzhen Key Laboratory of Gene and Antibody TherapyState Key Laboratory of Chemical OncogenomicsShenzhen International Graduate SchoolTsinghua UniversityShenzhenGuangdong518055China
| |
Collapse
|
50
|
Liu W, Deng Y, Yuan Y, Ouyang SL, Liu Q, Chen X. Pore Size Tunable Trypsin@ZIF-90 and Hydrogel Integrated Lateral Flow Point-of-Care Platform for ATP Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21690-21698. [PMID: 37071807 DOI: 10.1021/acsami.3c02888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The cost-effective, convenient, visible, and equipment-free determination of biomarkers is always the priority development concern of disease diagnosis. The paper-based signal output strategy permits output visual signals without instruments and is regarded as a promising approach with simple operation and low cost. Herein, by varying the addition amount of trypsin, we pioneered a novel enzyme mineralization strategy to construct trypsin@ZIF-90 with tunable porosity properties and catalytic activity. The successful synthesis of trypsin@ZIF-90, which is tagged with T1, T3,... (Tx, x is the addition amount of trypsin. Unit: mg), demonstrated the feasibility of this strategy. By serving the constructed trypsin@ZIF-90-T1 as the target recognition module, and a new designed hydrogel-integrated pH indicator strip as the signal reporter, a point-of-care test (POCT) platform was developed for convenient and equipment-free measurement of adenosine triphosphate (ATP). The enzymatic activity measurement of trypsin@ZIF-90 and concurrently the quantitative analysis of ATP can be favorably realized by simple counting the flow distance and coverage area of water released during the reaction on a pH indicator strip. As a result, this portable platform can enable rapid detection of ATP in the linear range of 20-1500 μM and possesses favorable sensitivity, selectivity, and applicability. Thus, the constructions of tunable frameworks and paper-based POCT are of outstanding significance in the fields of porous metal-organic framework synthesis, enzyme mineralization, and rapid detection for medical diagnostics and environmental monitoring applications.
Collapse
Affiliation(s)
- Wei Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yuan Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yuni Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Stephen L Ouyang
- The High School Attached to HNU-Meixihu High School, Changsha, Hunan 410205, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|