1
|
Peng X, Li L, Peng Y, Zhou G, An Z. Bioengineering and omics approaches for Type 1 diabetes practical research: advancements and constraints. Ann Med 2025; 57:2322047. [PMID: 39704022 DOI: 10.1080/07853890.2024.2322047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 12/21/2024] Open
Abstract
Insulin dependency arises from autoimmunity that targets the β cells of the pancreas, resulting in Type 1 diabetes (T1D). Despite the fact that T1D patients require insulin for survival, insulin does not provide a cure for this disease or prevent its complications. Despite extensive genetic, molecular, and cellular research on T1D over the years, the translation of this understanding into effective clinical therapies continues to pose a significant obstacle. It is therefore difficult to develop effective clinical treatment strategies without a thorough understanding of disease pathophysiology. Pancreatic tissue bioengineering models of human T1D offer a valuable approach to examining and controlling islet function while tackling various facets of the condition. And in recent years, due to advances in high-throughput omics analysis, the genotypic and molecular profiles of T1D have become finer tuned. The present article will examine recent progress in these areas, along with their utilization and constraints in the realm of T1D.
Collapse
Affiliation(s)
- Xi Peng
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Li
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yihua Peng
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guangju Zhou
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zhenmei An
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Juguilon C, Khosravi R, Radisic M, Wu JC. In Vitro Modeling of Interorgan Crosstalk: Multi-Organ-on-a-Chip for Studying Cardiovascular-Kidney-Metabolic Syndrome. Circ Res 2025; 136:1476-1493. [PMID: 40403116 PMCID: PMC12180411 DOI: 10.1161/circresaha.125.325497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/24/2025]
Abstract
Cardiovascular-kidney-metabolic syndrome is a progressive disorder driven by perturbed interorgan crosstalk among adipose, liver, kidney, and heart, leading to multiorgan dysfunction. Capturing the complexity of human cardiovascular-kidney-metabolic syndrome pathophysiology using conventional models has been challenging. Multi-organ-on-a-chip platforms offer a versatile means to study underlying interorgan signaling at different stages of cardiovascular-kidney-metabolic syndrome and bolster clinical translation.
Collapse
Affiliation(s)
- Cody Juguilon
- Stanford Cardiovascular Institute (C.J., J.C.W.), Stanford University, Stanford, CA
- Division of Cardiovascular Medicine, Department of Medicine (C.J., J.C.W.), Stanford University, Stanford, CA
| | - Ramak Khosravi
- Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (R.K., M.R.)
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC (R.K.)
| | - Milica Radisic
- Stanford Cardiovascular Institute (C.J., J.C.W.), Stanford University, Stanford, CA
- Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (R.K., M.R.)
- Institute of Biomedical Engineering (M.R.)
- University of Toronto, Ontario, Canada (M.R.)
| | - Joseph C Wu
- Stanford Cardiovascular Institute (C.J., J.C.W.), Stanford University, Stanford, CA
- Division of Cardiovascular Medicine, Department of Medicine (C.J., J.C.W.), Stanford University, Stanford, CA
- Greenstone Biosciences, Palo Alto, CA (J.C.W.)
| |
Collapse
|
3
|
Mendes M, Morais AS, Carlos A, Sousa JJ, Pais AC, Mihăilă SM, Vitorino C. Organ-on-a-chip: Quo vademus? Applications and regulatory status. Colloids Surf B Biointerfaces 2025; 249:114507. [PMID: 39826309 DOI: 10.1016/j.colsurfb.2025.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/15/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Organ-on-a-chip systems, also referred to as microphysiological systems (MPS), represent an advance in bioengineering microsystems designed to mimic key aspects of human organ physiology and function. Drawing inspiration from the intricate and hierarchical architecture of the human body, these innovative platforms have emerged as invaluable in vitro tools with wide-ranging applications in drug discovery and development, as well as in enhancing our understanding of disease physiology. The facility to replicate human tissues within physiologically relevant three-dimensional multicellular environments empowers organ-on-a-chip systems with versatility throughout different stages of the drug development process. Moreover, these systems can be tailored to mimic specific disease states, facilitating the investigation of disease progression, drug responses, and potential therapeutic interventions. In particular, they can demonstrate, in early-phase pre-clinical studies, the safety and toxicity profiles of potential therapeutic compounds. Furthermore, they play a pivotal role in the in vitro evaluation of drug efficacy and the modeling of human diseases. One of the most promising prospects of organ-on-a-chip technology is to simulate the pathophysiology of specific subpopulations and even individual patients, thereby being used in personalized medicine. By mimicking the physiological responses of diverse patient groups, these systems hold the promise of revolutionizing therapeutic strategies, guiding them towards tailored intervention to the unique needs of each patient. This review presents the development status and evolution of microfluidic platforms that have facilitated the transition from cells to organs recreated on chips and some of the opportunities and applications offered by organ-on-a-chip technology. Additionally, the current potential and future perspectives of these microphysiological systems and the challenges this technology still faces are discussed.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Ana Sofia Morais
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Carlos
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Alberto Canelas Pais
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Silvia M Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal.
| |
Collapse
|
4
|
Lallouet M, Olçomendy L, Gaitan J, Montiège K, Monchablon M, Pirog A, Chapeau D, Puginier E, Renaud S, Raoux M, Lang J. A microfluidic twin islets-on-chip device for on-line electrophysiological monitoring. LAB ON A CHIP 2025; 25:1831-1841. [PMID: 40042033 DOI: 10.1039/d4lc00967c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Pancreatic islets play a major role in glucose homeostasis as well as in diabetes, and islets-on-chip devices have been mainly developed using optical means for on-line monitoring. In contrast, no well-characterized electrophysiological platform for on-line analysis with unrivalled temporal resolution has been reported. Extracellular electrophysiology monitors two crucial parameters, islet β-cell activity and β-to-β-cell coupling, does not require chemical or genetic probes with inherent potential bias, is non-invasive and permits repetitive long-term monitoring. We have now developed and characterized a microfluidic islets-on-chip for combined electrophysiology (on-line) and hormone monitoring (off-line) with two chambers for concomitant monitoring. Fabrication of the device, based on commercial or easily manufacturable components, is within the reach of non-specialized laboratories. The chip permits convenient loading as well as long-term culture with comparable glucose kinetics and low shear stress in both chambers. An optimized flow rate did not alter islet β-cell electrical activity or coupling in response to glucose. Culturing for up to 8 days did not change islet survival as well as glucose-induced electrical or secretory kinetics of islet β-cells. The addition of a physiological amino acid mix, in the presence of elevated glucose, made a considerable change in the functional organisation of islet β-cell activity in terms of frequency and coupling, which explains the ensuing strong increase in insulin secretion. This device thus allows reliable long-term multiparametric on-line monitoring in two islet populations. The ease of fabrication, assembly and handling should permit widespread long-term on-line monitoring of islet activity in native micro-organs (e.g. controls/mutants), pseudo-islets or stem-cell-derived islet-like organoids.
Collapse
Affiliation(s)
- Marie Lallouet
- Univ. Bordeaux, CNRS, Bordeaux INP, Institute of Chemistry and Biology of Membranes, CBMN, UMR 5248, Pessac, France.
| | - Loic Olçomendy
- Univ. Bordeaux, CNRS, Bordeaux INP, Integration from Material to System, IMS, UMR 5218, F-33400 Talence, France
| | - Julien Gaitan
- Univ. Bordeaux, CNRS, Bordeaux INP, Institute of Chemistry and Biology of Membranes, CBMN, UMR 5248, Pessac, France.
| | - Killian Montiège
- Univ. Bordeaux, CNRS, Bordeaux INP, Integration from Material to System, IMS, UMR 5218, F-33400 Talence, France
| | - Marie Monchablon
- Univ. Bordeaux, CNRS, Bordeaux INP, Institute of Chemistry and Biology of Membranes, CBMN, UMR 5248, Pessac, France.
- Univ. Bordeaux, CNRS, Bordeaux INP, Integration from Material to System, IMS, UMR 5218, F-33400 Talence, France
| | - Antoine Pirog
- Junia, Electronics-Physics-Acoustics Department, F-59000 Lille, France
| | - Dorian Chapeau
- Univ. Bordeaux, CNRS, Bordeaux INP, Institute of Chemistry and Biology of Membranes, CBMN, UMR 5248, Pessac, France.
| | - Emilie Puginier
- Univ. Bordeaux, CNRS, Bordeaux INP, Institute of Chemistry and Biology of Membranes, CBMN, UMR 5248, Pessac, France.
| | - Sylvie Renaud
- Univ. Bordeaux, CNRS, Bordeaux INP, Integration from Material to System, IMS, UMR 5218, F-33400 Talence, France
| | - Matthieu Raoux
- Univ. Bordeaux, CNRS, Bordeaux INP, Institute of Chemistry and Biology of Membranes, CBMN, UMR 5248, Pessac, France.
| | - Jochen Lang
- Univ. Bordeaux, CNRS, Bordeaux INP, Institute of Chemistry and Biology of Membranes, CBMN, UMR 5248, Pessac, France.
| |
Collapse
|
5
|
Alfred MO, Ochola L, Okeyo K, Bae E, Ogongo P, Odongo D, Njaanake K, Robinson JP. Application of microphysiological systems to unravel the mechanisms of schistosomiasis egg extravasation. Front Cell Infect Microbiol 2025; 15:1521265. [PMID: 40041145 PMCID: PMC11876127 DOI: 10.3389/fcimb.2025.1521265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
Despite decades of control efforts, the prevalence of schistosomiasis remains high in many endemic regions, posing significant challenges to global health. One of the key factors contributing to the persistence of the disease is the complex life cycle of the Schistosoma parasite, the causative agent, which involves multiple stages of development and intricate interactions with its mammalian hosts and snails. Among the various stages of the parasite lifecycle, the deposition of eggs and their migration through host tissues is significant, as they initiate the onset of the disease pathology by inducing inflammatory reactions and tissue damage. However, our understanding of the mechanisms underlying Schistosoma egg extravasation remains limited, hindering efforts to develop effective interventions. Microphysiological systems, particularly organ-on-a-chip systems, offer a promising approach to study this phenomenon in a controlled experimental setting because they allow the replication of physiological microenvironments in vitro. This review provides an overview of schistosomiasis, introduces the concept of organ-on-a-chip technology, and discusses its potential applications in the field of schistosomiasis research.
Collapse
Affiliation(s)
- Martin Omondi Alfred
- Department of Medical Microbiology and Immunology, University of Nairobi, Hospital Road, Kenyatta National Hospital, Nairobi, Kenya
- Department of Tropical and Infectious Diseases, Kenya Institute of Primate Research, Nairobi, Kenya
| | - Lucy Ochola
- Department of Tropical and Infectious Diseases, Kenya Institute of Primate Research, Nairobi, Kenya
| | - Kennedy Okeyo
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Euiwon Bae
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Paul Ogongo
- Department of Tropical and Infectious Diseases, Kenya Institute of Primate Research, Nairobi, Kenya
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - David Odongo
- Department of Medical Microbiology and Immunology, University of Nairobi, Hospital Road, Kenyatta National Hospital, Nairobi, Kenya
| | - Kariuki Njaanake
- Department of Medical Microbiology and Immunology, University of Nairobi, Hospital Road, Kenyatta National Hospital, Nairobi, Kenya
| | - J. Paul Robinson
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
6
|
Youhanna S, Kemas AM, Wright SC, Zhong Y, Klumpp B, Klein K, Motso A, Michel M, Ziegler N, Shang M, Sabatier P, Kannt A, Sheng H, Oliva‐Vilarnau N, Büttner FA, Seashore‐Ludlow B, Schreiner J, Windbergs M, Cornillet M, Björkström NK, Hülsmeier AJ, Hornemann T, Olsen JV, Wang Y, Gramignoli R, Sundström M, Lauschke VM. Chemogenomic Screening in a Patient-Derived 3D Fatty Liver Disease Model Reveals the CHRM1-TRPM8 Axis as a Novel Module for Targeted Intervention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407572. [PMID: 39605182 PMCID: PMC11744578 DOI: 10.1002/advs.202407572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Indexed: 11/29/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a leading cause of chronic liver disease with few therapeutic options. To narrow the translational gap in the development of pharmacological MASH treatments, a 3D liver model from primary human hepatocytes and non-parenchymal cells derived from patients with histologically confirmed MASH was established. The model closely mirrors disease-relevant endpoints, such as steatosis, inflammation and fibrosis, and multi-omics analyses show excellent alignment with biopsy data from 306 MASH patients and 77 controls. By combining high-content imaging with scalable biochemical assays and chemogenomic screening, multiple novel targets with anti-steatotic, anti-inflammatory, and anti-fibrotic effects are identified. Among these, activation of the muscarinic M1 receptor (CHRM1) and inhibition of the TRPM8 cation channel result in strong anti-fibrotic effects, which are confirmed using orthogonal genetic assays. Strikingly, using biosensors based on bioluminescence resonance energy transfer, a functional interaction along a novel MASH signaling axis in which CHRM1 inhibits TRPM8 via Gq/11 and phospholipase C-mediated depletion of phosphatidylinositol 4,5-bisphosphate can be demonstrated. Combined, this study presents the first patient-derived 3D MASH model, identifies a novel signaling module with anti-fibrotic effects, and highlights the potential of organotypic culture systems for phenotype-based chemogenomic drug target identification at scale.
Collapse
|
7
|
Weitzberg E, Ingelman-Sundberg M, Lundberg JO, Engberg G, Schulte G, Lauschke VM. The 75-Year Anniversary of the Department of Physiology and Pharmacology at Karolinska Institutet-Examples of Recent Accomplishments and Future Perspectives. Pharmacol Rev 2024; 76:1089-1101. [PMID: 39414365 DOI: 10.1124/pharmrev.124.001433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 10/18/2024] Open
Abstract
Karolinska Institutet is a medical university encompassing 21 departments distributed across three departmental or campus groups. Pharmacological research has a long and successful tradition at the institute with a multitude of seminal findings in the areas of neuronal control of vasodilatation, cardiovascular pharmacology, neuropsychopharmacology, receptor pharmacology, and pharmacogenomics that resulted in, among many other recognitions, two Nobel prizes in Physiology and Medicine, one in 1970 to Ulf von Euler for his discovery of the processes involved in storage, release, and inactivation of neurotransmitters and the other in 1982 to Sune Bergström and Bengt Samuelsson for their work on prostaglandins and the discovery of leukotrienes. Pharmacology at Karolinska Institutet has over the last decade been ranked globally among the top 10 according to the QS World University Ranking. With the Department of Physiology and Pharmacology now celebrating its 75-year anniversary, we wanted to take this as an opportunity to showcase recent research achievements and how they paved the way for current activities at the department. We emphasize examples from preclinical and clinical research where the dpartment's integrative environment and robust infrastructure have successfully facilitated the translation of findings into clinical applications and patient benefits. The close collaboration between preclinical scientists and clinical researchers across various disciplines, along with a strong network of partnerships within the department and beyond, positions us to continue leading world-class pharmacological research at the Department of Physiology and Pharmacology for decades to come. SIGNIFICANCE STATEMENT: Pharmacological research at Karolinska Institutet has a long and successful history. Given the 75-year anniversary of the Department of Physiology and Pharmacology, this perspective provides an overview of recent departmental achievements and future trajectories. For these developments, interdisciplinary and intersectoral collaborations and a clear focus on result translation are key elements to continue its legacy of world-leading pharmacological research.
Collapse
Affiliation(s)
- Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| |
Collapse
|
8
|
Guan H, Zhao S, Li J, Wang Y, Niu P, Zhang Y, Zhang Y, Fang X, Miao R, Tian J. Exploring the design of clinical research studies on the efficacy mechanisms in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1363877. [PMID: 39371930 PMCID: PMC11449758 DOI: 10.3389/fendo.2024.1363877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/23/2024] [Indexed: 10/08/2024] Open
Abstract
This review examines the complexities of Type 2 Diabetes Mellitus (T2DM), focusing on the critical role of integrating omics technologies with traditional experimental methods. It underscores the advancements in understanding the genetic diversity of T2DM and emphasizes the evolution towards personalized treatment modalities. The paper analyzes a variety of omics approaches, including genomics, methylation, transcriptomics, proteomics, metabolomics, and intestinal microbiomics, delineating their substantial contributions to deciphering the multifaceted mechanisms underlying T2DM. Furthermore, the review highlights the indispensable role of non-omics experimental techniques in comprehending and managing T2DM, advocating for their integration in the development of tailored medicine and precision treatment strategies. By identifying existing research gaps and suggesting future research trajectories, the review underscores the necessity for a comprehensive, multidisciplinary approach. This approach synergistically combines clinical insights with cutting-edge biotechnologies, aiming to refine the management and therapeutic interventions of T2DM, and ultimately enhancing patient outcomes. This synthesis of knowledge and methodologies paves the way for innovative advancements in T2DM research, fostering a deeper understanding and more effective treatment of this complex condition.
Collapse
Affiliation(s)
- Huifang Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jiarui Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ping Niu
- Department of Encephalopathy, The Affiliated Hospital of Changchun university of Chinese Medicine, Jilin, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Modi PS, Singh A, Chaturvedi A, Agarwal S, Dutta R, Nayak R, Singh AK. Tissue chips as headway model and incitement technology. Synth Syst Biotechnol 2024; 10:86-101. [PMID: 39286054 PMCID: PMC11403008 DOI: 10.1016/j.synbio.2024.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Tissue on a chip or organ-on-chip (OOC) is a technology that's dignified to form a transformation in drug discovery through the use of advanced platforms. These are 3D in-vitro cell culture models that mimic micro-environment of human organs or tissues on artificial microstructures built on a portable microfluidic chip without involving sacrificial humans or animals. This review article aims to offer readers a thorough and insightful understanding of technology. It begins with an in-depth understanding of chip design and instrumentation, underlining its pivotal role and the imperative need for its development in the modern scientific landscape. The review article explores into the myriad applications of OOC technology, showcasing its transformative impact on fields such as radiobiology, drug discovery and screening, and its pioneering use in space research. In addition to highlighting these diverse applications, the article provides a critical analysis of the current challenges that OOC technology faces. It examines both the biological and technical limitations that hinder its progress and efficacy and discusses the potential advancements and innovations that could drive the OOC technology forward. Through this comprehensive review, readers will gain a deep appreciation of the significance, capabilities, and evolving landscape of OOC technology.
Collapse
Affiliation(s)
- Prerna Suchitan Modi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Abhishek Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Awyang Chaturvedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Shailly Agarwal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Raghav Dutta
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Ranu Nayak
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Alok Kumar Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
10
|
Shoji JY, Davis RP, Mummery CL, Krauss S. Global Literature Analysis of Organoid and Organ-on-Chip Research. Adv Healthc Mater 2024; 13:e2301067. [PMID: 37479227 DOI: 10.1002/adhm.202301067] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Organoids and cells in organ-on-chip platforms replicate higher-level anatomical, physiological, or pathological states of tissues and organs. These technologies are widely regarded by academia, the pharmacological industry and regulators as key biomedical developments. To map advances in this emerging field, a literature analysis of 16,000 article metadata based on a quality-controlled text-mining algorithm is performed. The analysis covers titles, keywords, and abstracts of categorized academic publications in the literature and preprint databases published after 2010. The algorithm identifies and tracks 149 and 107 organs or organ substructures modeled as organoids and organ-on-chip, respectively, stem cell sources, as well as 130 diseases, and 16 groups of organisms other than human and mouse in which organoid/organ-on-chip technology is applied. The analysis illustrates changing diversity and focus in organoid/organ-on-chip research and captures its geographical distribution. The downloadable dataset provided is a robust framework for researchers to interrogate with their own questions.
Collapse
Affiliation(s)
- Jun-Ya Shoji
- Hybrid Technology Hub, Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0372, Norway
| | - Richard P Davis
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, 2300RC, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, 2300RC, the Netherlands
| | - Christine L Mummery
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, 2300RC, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, 2300RC, the Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, Enschede, 7522NB, the Netherlands
| | - Stefan Krauss
- Hybrid Technology Hub, Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0372, Norway
| |
Collapse
|
11
|
Mickols E, Meyer A, Handin N, Stüwe M, Eriksson J, Rudfeldt J, Blom K, Fryknäs M, Sellin ME, Lauschke VM, Karlgren M, Artursson P. OCT1 (SLC22A1) transporter kinetics and regulation in primary human hepatocyte 3D spheroids. Sci Rep 2024; 14:17334. [PMID: 39068198 PMCID: PMC11283471 DOI: 10.1038/s41598-024-67192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024] Open
Abstract
3D spheroids of primary human hepatocytes (3D PHH) retain a differentiated phenotype with largely conserved metabolic function and proteomic fingerprint over weeks in culture. As a result, 3D PHH are gaining importance as a model for mechanistic liver homeostasis studies and in vitro to in vivo extrapolation (IVIVE) in drug discovery. However, the kinetics and regulation of drug transporters have not yet been assessed in 3D PHH. Here, we used organic cation transporter 1 (OCT1/SLC22A1) as a model to study both transport kinetics and the long-term regulation of transporter activity via relevant signalling pathways. The kinetics of the OCT1 transporter was studied using the fluorescent model substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP+) and known OCT1 inhibitors in individual 3D PHH. For long-term studies, 3D PHH were treated with xenobiotics for seven days, after which protein expression and OCT1 function were assessed. Global proteomic analysis was used to track hepatic phenotypes as well as prototypical changes in other regulated proteins, such as P-glycoprotein and Cytochrome P450 3A4. ASP+ kinetics indicated a fully functional OCT1 transporter with a Km value of 14 ± 4.0µM as the mean from three donors. Co-incubation with known OCT1 inhibitors decreased the uptake of ASP+ in the 3D PHH spheroids by 35-52%. The long-term exposure studies showed that OCT1 is relatively stable upon activation of nuclear receptor signalling or exposure to compounds that could induce inflammation, steatosis or liver injury. Our results demonstrate that 3D PHH spheroids express physiologically relevant levels of fully active OCT1 and that its transporter kinetics can be accurately studied in the 3D PHH configuration. We also confirm that OCT1 remains stable and functional during the activation of key metabolic pathways that alter the expression and function of other drug transporters and drug-metabolizing enzymes. These results will expand the range of studies that can be performed using 3D PHH.
Collapse
Affiliation(s)
| | - Alina Meyer
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Niklas Handin
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Malin Stüwe
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Jens Eriksson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jakob Rudfeldt
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Kristin Blom
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Mårten Fryknäs
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Centre of Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Maria Karlgren
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
12
|
Li J, Sun L, Bian F, Pandol SJ, Li L. Emerging approaches for the development of artificial islets. SMART MEDICINE 2024; 3:e20230042. [PMID: 39188698 PMCID: PMC11235711 DOI: 10.1002/smmd.20230042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/05/2024] [Indexed: 08/28/2024]
Abstract
The islet of Langerhans, functioning as a "mini organ", plays a vital role in regulating endocrine activities due to its intricate structure. Dysfunction in these islets is closely associated with the development of diabetes mellitus (DM). To offer valuable insights for DM research and treatment, various approaches have been proposed to create artificial islets or islet organoids with high similarity to natural islets, under the collaborative effort of biologists, clinical physicians, and biomedical engineers. This review investigates the design and fabrication of artificial islets considering both biological and tissue engineering aspects. It begins by examining the natural structures and functions of native islets and proceeds to analyze the protocols for generating islets from stem cells. The review also outlines various techniques used in crafting artificial islets, with a specific focus on hydrogel-based ones. Additionally, it provides a concise overview of the materials and devices employed in the clinical applications of artificial islets. Throughout, the primary goal is to develop artificial islets, thereby bridging the realms of developmental biology, clinical medicine, and tissue engineering.
Collapse
Affiliation(s)
- Jingbo Li
- Department of EndocrinologyZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Lingyu Sun
- Department of Clinical LaboratoryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Feika Bian
- Department of Clinical LaboratoryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Stephen J. Pandol
- Division of GastroenterologyDepartment of MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Ling Li
- Department of EndocrinologyZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| |
Collapse
|
13
|
Vasconez Martinez MG, Frauenlob M, Rothbauer M. An update on microfluidic multi-organ-on-a-chip systems for reproducing drug pharmacokinetics: the current state-of-the-art. Expert Opin Drug Metab Toxicol 2024; 20:459-471. [PMID: 38832686 DOI: 10.1080/17425255.2024.2362183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
INTRODUCTION Advances in the accessibility of manufacturing technologies and iPSC-based modeling have accelerated the overall progress of organs-on-a-chip. Notably, the progress in multi-organ systems is not progressing with equal speed, indicating that there are still major technological barriers to overcome that may include biological relevance, technological usability as well as overall accessibility. AREAS COVERED We here review the progress in the field of multi-tissue- and body-on-a-chip pre and post- SARS-CoV-2 pandemic and review five selected studies with increasingly complex multi-organ chips aiming at pharmacological studies. EXPERT OPINION We discuss future and necessary advances in the field of multi-organ chips including how to overcome challenges regarding cell diversity, improved culture conditions, model translatability as well as sensor integrations to enable microsystems to cover organ-organ interactions in not only toxicokinetic but more importantly pharmacodynamic and -kinetic studies.
Collapse
Affiliation(s)
| | - Martin Frauenlob
- CellChipGroup, Institute of Applied Synthetic Chemistry, Technische Universitaet Wien, Vienna, Austria
| | - Mario Rothbauer
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Ingelman-Sundberg M, Lauschke VM. Individualized Pharmacotherapy Utilizing Genetic Biomarkers and Novel In Vitro Systems As Predictive Tools for Optimal Drug Development and Treatment. Drug Metab Dispos 2024; 52:467-475. [PMID: 38575185 DOI: 10.1124/dmd.123.001302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/15/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
In the area of drug development and clinical pharmacotherapy, a profound understanding of the pharmacokinetics and potential adverse reactions associated with the drug under investigation is paramount. Essential to this endeavor is a comprehensive understanding about interindividual variations in absorption, distribution, metabolism, and excretion (ADME) genetics and the predictive capabilities of in vitro systems, shedding light on metabolite formation and the risk of adverse drug reactions (ADRs). Both the domains of pharmacogenomics and the advancement of in vitro systems are experiencing rapid expansion. Here we present an update on these burgeoning fields, providing an overview of their current status and illuminating potential future directions. SIGNIFICANCE STATEMENT: There is very rapid development in the area of pharmacogenomics and in vitro systems for predicting drug pharmacokinetics and risk for adverse drug reactions. We provide an update of the current status of pharmacogenomics and developed in vitro systems on these aspects aimed to achieve a better personalized pharmacotherapy.
Collapse
Affiliation(s)
- Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.I.-S., V.M.L.); Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.I.-S., V.M.L.); Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| |
Collapse
|
15
|
Aizenshtadt A, Wang C, Abadpour S, Menezes PD, Wilhelmsen I, Dalmao‐Fernandez A, Stokowiec J, Golovin A, Johnsen M, Combriat TMD, Røberg‐Larsen H, Gadegaard N, Scholz H, Busek M, Krauss SJK. Pump-Less, Recirculating Organ-on-Chip (rOoC) Platform to Model the Metabolic Crosstalk between Islets and Liver. Adv Healthc Mater 2024; 13:e2303785. [PMID: 38221504 PMCID: PMC11468483 DOI: 10.1002/adhm.202303785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Indexed: 01/16/2024]
Abstract
Type 2 diabetes mellitus (T2DM), obesity, and metabolic dysfunction-associated steatotic liver disease (MASLD) are epidemiologically correlated disorders with a worldwide growing prevalence. While the mechanisms leading to the onset and development of these conditions are not fully understood, predictive tissue representations for studying the coordinated interactions between central organs that regulate energy metabolism, particularly the liver and pancreatic islets, are needed. Here, a dual pump-less recirculating organ-on-chip platform that combines human pluripotent stem cell (sc)-derived sc-liver and sc-islet organoids is presented. The platform reproduces key aspects of the metabolic cross-talk between both organs, including glucose levels and selected hormones, and supports the viability and functionality of both sc-islet and sc-liver organoids while preserving a reduced release of pro-inflammatory cytokines. In a model of metabolic disruption in response to treatment with high lipids and fructose, sc-liver organoids exhibit hallmarks of steatosis and insulin resistance, while sc-islets produce pro-inflammatory cytokines on-chip. Finally, the platform reproduces known effects of anti-diabetic drugs on-chip. Taken together, the platform provides a basis for functional studies of obesity, T2DM, and MASLD on-chip, as well as for testing potential therapeutic interventions.
Collapse
Affiliation(s)
- Aleksandra Aizenshtadt
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Chencheng Wang
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Transplantation MedicineExperimental Cell Transplantation Research GroupOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Shadab Abadpour
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Transplantation MedicineExperimental Cell Transplantation Research GroupOslo University HospitalP.O. Box 4950Oslo0424Norway
- Institute for Surgical ResearchOslo University HospitalOsloNorway
| | - Pedro Duarte Menezes
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- James Watt School of EngineeringUniversity of GlasgowRankine BuildingGlasgowG12 8LTUK
| | - Ingrid Wilhelmsen
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Andrea Dalmao‐Fernandez
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Department of PharmacyFaculty of Mathematics and Natural SciencesUniversity of OsloP.O. Box 1083Oslo0316Norway
| | - Justyna Stokowiec
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Alexey Golovin
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Mads Johnsen
- Section for Chemical Life SciencesDepartment of ChemistryUniversity of OsloP.O. Box 1033Oslo0315Norway
| | - Thomas M. D. Combriat
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
| | - Hanne Røberg‐Larsen
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Section for Chemical Life SciencesDepartment of ChemistryUniversity of OsloP.O. Box 1033Oslo0315Norway
| | - Nikolaj Gadegaard
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- James Watt School of EngineeringUniversity of GlasgowRankine BuildingGlasgowG12 8LTUK
| | - Hanne Scholz
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Transplantation MedicineExperimental Cell Transplantation Research GroupOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Mathias Busek
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Stefan J. K. Krauss
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| |
Collapse
|
16
|
Kemas AM, Zandi Shafagh R, Taebnia N, Michel M, Preiss L, Hofmann U, Lauschke VM. Compound Absorption in Polymer Devices Impairs the Translatability of Preclinical Safety Assessments. Adv Healthc Mater 2024; 13:e2303561. [PMID: 38053301 PMCID: PMC11469150 DOI: 10.1002/adhm.202303561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Organotypic and microphysiological systems (MPS) that can emulate the molecular phenotype and function of human tissues, such as liver, are increasingly used in preclinical drug development. However, despite their improved predictivity, drug development success rates have remained low with most compounds failing in clinical phases despite promising preclinical data. Here, it is tested whether absorption of small molecules to polymers commonly used for MPS fabrication can impact preclinical pharmacological and toxicological assessments and contribute to the high clinical failure rates. To this end, identical devices are fabricated from eight different MPS polymers and absorption of prototypic compounds with different physicochemical properties are analyzed. It is found that overall absorption is primarily driven by compound hydrophobicity and the number of rotatable bonds. However, absorption can differ by >1000-fold between polymers with polydimethyl siloxane (PDMS) being most absorptive, whereas polytetrafluoroethylene (PTFE) and thiol-ene epoxy (TEE) absorbed the least. Strikingly, organotypic primary human liver cultures successfully flagged hydrophobic hepatotoxins in lowly absorbing TEE devices at therapeutically relevant concentrations, whereas isogenic cultures in PDMS devices are resistant, resulting in false negative safety signals. Combined, these results can guide the selection of MPS materials and facilitate the development of preclinical assays with improved translatability.
Collapse
Affiliation(s)
- Aurino M. Kemas
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm17177Sweden
| | - Reza Zandi Shafagh
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm17177Sweden
- Dr. Margarete Fischer‐Bosch Institute of Clinical Pharmacology70376StuttgartGermany
- University of Tuebingen72074TuebingenGermany
- Division of Micro‐ and NanosystemsKTH Royal Institute of TechnologyStockholm10044Sweden
| | - Nayere Taebnia
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm17177Sweden
| | - Maurice Michel
- Department of Oncology and PathologyScience for Life LaboratoryKarolinska InstitutetStockholm17165Sweden
| | - Lena Preiss
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm17177Sweden
- Department of Drug Metabolism and Pharmacokinetics (DMPK)Merck KGaA64293DarmstadtGermany
| | - Ute Hofmann
- Dr. Margarete Fischer‐Bosch Institute of Clinical Pharmacology70376StuttgartGermany
| | - Volker M. Lauschke
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm17177Sweden
- Dr. Margarete Fischer‐Bosch Institute of Clinical Pharmacology70376StuttgartGermany
- University of Tuebingen72074TuebingenGermany
| |
Collapse
|
17
|
Liu J, Du Y, Xiao X, Tan D, He Y, Qin L. Construction of in vitro liver-on-a-chip models and application progress. Biomed Eng Online 2024; 23:33. [PMID: 38491482 PMCID: PMC10941602 DOI: 10.1186/s12938-024-01226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
The liver is the largest internal organ of the human body. It has a complex structure and function and plays a vital role in drug metabolism. In recent decades, extensive research has aimed to develop in vitro models that can simulate liver function to demonstrate changes in the physiological and pathological environment of the liver. Animal models and in vitro cell models are common, but the data obtained from animal models lack relevance when applied to humans, while cell models have limited predictive ability for metabolism and toxicity in humans. Recent advancements in tissue engineering, biomaterials, chip technology, and 3D bioprinting have provided opportunities for further research in in vitro models. Among them, liver-on-a-Chip (LOC) technology has made significant achievements in reproducing the in vivo behavior, physiological microenvironment, and metabolism of cells and organs. In this review, we discuss the development of LOC and its research progress in liver diseases, hepatotoxicity tests, and drug screening, as well as chip combinations. First, we review the structure and the physiological function of the liver. Then, we introduce the LOC technology, including general concepts, preparation materials, and methods. Finally, we review the application of LOC in disease modeling, hepatotoxicity tests, drug screening, and chip combinations, as well as the future challenges and directions of LOC.
Collapse
Affiliation(s)
- Jie Liu
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Yimei Du
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xinxin Xiao
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Daopeng Tan
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yuqi He
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
18
|
Shie M, Fang H, Kan K, Ho C, Tu C, Lee P, Hsueh P, Chen C, Lee AK, Tien N, Chen J, Shen Y, Chang J, Shen Y, Lin T, Wang B, Hung M, Cho D, Chen Y. Highly Mimetic Ex Vivo Lung-Cancer Spheroid-Based Physiological Model for Clinical Precision Therapeutics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206603. [PMID: 37085943 PMCID: PMC10238206 DOI: 10.1002/advs.202206603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/10/2023] [Indexed: 05/03/2023]
Abstract
Lung cancer remains a major health problem despite the considerable research into prevention and treatment methods. Through a deeper understanding of tumors, patient-specific ex vivo spheroid models with high specificity can be used to accurately investigate the cause, metastasis, and treatment strategies for lung cancer. Biofabricate lung tumors are presented, consisting of patient-derived tumor spheroids, endothelial cells, and lung decellularized extracellular matrix, which maintain a radial oxygen gradient, as well as biophysicochemical behaviors of the native tumors for precision medicine. It is also demonstrated that the developed lung-cancer spheroid model reproduces patient responses to chemotherapeutics and targeted therapy in a co-clinical trial, with 85% accuracy, 86.7% sensitivity, and 80% specificity. RNA sequencing analysis validates that the gene expression in the spheroids replicates that in the patient's primary tumor. This model can be used as an ex vivo predictive model for personalized cancer therapy and to improve the quality of clinical care.
Collapse
Affiliation(s)
- Ming‐You Shie
- School of DentistryChina Medical UniversityTaichung406040Taiwan
- x‐Dimension Center for Medical Research and TranslationChina Medical University HospitalTaichung404332Taiwan
- Department of Bioinformatics and Medical EngineeringAsia UniversityTaichung41354Taiwan
| | - Hsin‐Yuan Fang
- x‐Dimension Center for Medical Research and TranslationChina Medical University HospitalTaichung404332Taiwan
- Department of Thoracic SurgeryChina Medical University HospitalTaichung City40447Taiwan
- School of MedicineChina Medical UniversityTaichung City40447Taiwan
| | - Kai‐Wen Kan
- x‐Dimension Center for Medical Research and TranslationChina Medical University HospitalTaichung404332Taiwan
| | - Chia‐Che Ho
- Department of Bioinformatics and Medical EngineeringAsia UniversityTaichung41354Taiwan
- High Performance Materials Institute for x‐Dimensional PrintingAsia UniversityTaichung City41354Taiwan
| | - Chih‐Yen Tu
- School of MedicineChina Medical UniversityTaichung City40447Taiwan
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineChina Medical University HospitalTaichung40447Taiwan
| | - Pei‐Chih Lee
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichung City406040Taiwan
| | - Po‐Ren Hsueh
- School of MedicineChina Medical UniversityTaichung City40447Taiwan
- Department of Laboratory MedicineChina Medical University HospitalTaichung City404332Taiwan
| | - Chia‐Hung Chen
- School of MedicineChina Medical UniversityTaichung City40447Taiwan
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineChina Medical University HospitalTaichung40447Taiwan
| | | | - Ni Tien
- Department of Laboratory MedicineChina Medical University HospitalTaichung City404332Taiwan
- Department of Medical Laboratory Science and BiotechnologyChina Medical UniversityTaichung City406040Taiwan
| | - Jian‐Xun Chen
- Department of Thoracic SurgeryChina Medical University HospitalTaichung City40447Taiwan
- School of MedicineChina Medical UniversityTaichung City40447Taiwan
| | - Yu‐Cheng Shen
- Department of Thoracic SurgeryChina Medical University HospitalTaichung City40447Taiwan
| | - Jan‐Gowth Chang
- Center for Precision MedicineChina Medical University HospitalTaichung City404332Taiwan
- Epigenome Research CenterChina Medical University HospitalTaichung City404332Taiwan
| | - Yu‐Fang Shen
- Department of Bioinformatics and Medical EngineeringAsia UniversityTaichung41354Taiwan
- High Performance Materials Institute for x‐Dimensional PrintingAsia UniversityTaichung City41354Taiwan
| | - Ting‐Ju Lin
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichung City406040Taiwan
| | - Ben Wang
- H. Milton Stewart School of Industrial and System EngineeringGeorgia Institute of Technology755 Ferst Dr NWAtlantaGA30332USA
- School of Materials Science and EngineeringGeorgia Institute of Technology771 Ferst Dr NWAtlantaGA30332USA
| | - Mien‐Chie Hung
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichung City406040Taiwan
- Center for Molecular MedicineChina Medical University HospitalTaichung City404332Taiwan
- Research Center for Cancer BiologyChina Medical UniversityTaichung City406040Taiwan
| | - Der‐Yang Cho
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichung City406040Taiwan
- Department of NeurosurgeryChina Medical University HospitalTaichung City404332Taiwan
- Translational Cell Therapy CenterChina Medical University HospitalTaichung City404332Taiwan
| | - Yi‐Wen Chen
- x‐Dimension Center for Medical Research and TranslationChina Medical University HospitalTaichung404332Taiwan
- Department of Bioinformatics and Medical EngineeringAsia UniversityTaichung41354Taiwan
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichung City406040Taiwan
| |
Collapse
|