1
|
Wang H, Wang C, Zhang Y, Wang Z, Zhu Y, Wang Y, Hong X, Zhang H, Fan N, Qiu M. Recent Advances in Xenes Based FET for Biosensing Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500752. [PMID: 40364779 DOI: 10.1002/advs.202500752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/05/2025] [Indexed: 05/15/2025]
Abstract
In recent years, monoelemental 2D materials (Xenes) such as graphene, graphdiyne, silicene, phosphorene, and tellurene, have gained significant traction in biosensing applications. Owing to their ultra-thin layered structure, exceptionally high specific surface area, unique surface electronic properties, excellent mechanical strength, flexibility, and other distinctive features, Xenes are recognized for their potential as materials with low detection limits, high speed, and exceptional flexibility in biosensing applications. In this review, the unique properties of Xenes, their synthesis, and recent theoretical and experimental advances in applications related to biosensing, including DNA/RNA biosensors, protein biosensors, small molecule biosensors, cell, and ion biosensors are comprehensively summarized. Finally, the challenges and prospects of this emerging field are discussed.
Collapse
Affiliation(s)
- Huide Wang
- State Key Laboratory of Radio frequency Heterogeneous integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chen Wang
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yule Zhang
- State Key Laboratory of Radio frequency Heterogeneous integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ziqian Wang
- State Key Laboratory of Radio frequency Heterogeneous integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yihan Zhu
- State Key Laboratory of Radio frequency Heterogeneous integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yun Wang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, 518040, China
| | - Xiangqian Hong
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, 518040, China
| | - Han Zhang
- State Key Laboratory of Radio frequency Heterogeneous integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ning Fan
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, 518040, China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
2
|
Xing F, Qing F, Zhou M, Ning C, Liao W, Li X. Radio frequency switching devices based on two-dimensional materials for high-speed communication applications. NANOSCALE HORIZONS 2025. [PMID: 40331301 DOI: 10.1039/d5nh00105f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Two-dimensional (2D) materials, with their atomic-scale thickness, high carrier mobility, tunable wide bandgap, and excellent electrical and mechanical properties, have demonstrated vast application prospects in research on radio frequency (RF) switch devices. This review summarizes the recent advances in 2D materials for RF switch applications, focusing on the performance and mechanisms of 2D material-based RF switch devices at high frequencies, wide bandwidths, and high transmission rates. The analysis includes the design and optimization of devices based on graphene, transition metal dichalcogenides, hexagonal boron nitride, and their heterojunctions. By comparing the key performance parameters such as insertion loss, isolation, and cutoff frequency of the switches, this review reveals the influence of material selection, structural design, and defect control on device performance. Furthermore, it discusses the challenges of 2D material-based RF switches in practical applications, including material defect control, reduction of contact resistance, and the technical bottlenecks of large-scale industrial production. Finally, this review envisions future research directions, proposing potential pathways for improving device performance through heterojunction structure design, multifunctional integration, and process optimization. This study is of great significance for advancing the development of high-performance RF switches and the application of communication technologies in 6G and higher frequency bands.
Collapse
Affiliation(s)
- Fei Xing
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China.
| | - Fangzhu Qing
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China.
- School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu 611731, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, Chengdu 611731, China
| | - Mo Zhou
- Shenzhen College of International Education, Shenzhen 518000, China
| | - Congcong Ning
- School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu 611731, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, Chengdu 611731, China
| | - Wanyi Liao
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China.
| | - Xuesong Li
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China.
- School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu 611731, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, Chengdu 611731, China
| |
Collapse
|
3
|
Ziewer J, Ghosh A, Hanušová M, Pirker L, Frank O, Velický M, Grüning M, Huang F. Strain-Induced Decoupling Drives Gold-Assisted Exfoliation of Large-Area Monolayer 2D Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419184. [PMID: 39972663 PMCID: PMC11983244 DOI: 10.1002/adma.202419184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/04/2025] [Indexed: 02/21/2025]
Abstract
Gold-assisted exfoliation (GAE) is a groundbreaking mechanical exfoliation technique that produces centimeter-scale single-crystal monolayers of 2D materials. Such large, high-quality films offer unparalleled advantages over the micron-sized flakes typically produced by conventional exfoliation techniques, significantly accelerating the research and technological advancements in the field of 2D materials. Despite its wide applications, the fundamental mechanism of GAE remains poorly understood. In this study, using MoS₂ on Au as a model system, ultra-low frequency Raman spectroscopy is employed to elucidate how the interlayer interactions within MoS2 crystals are impacted by the gold substrate. The results reveal that the coupling at the first MoS2-MoS2 interface between the adhered layer on the gold substrate and the adjacent layer is substantially weakened, with the binding force being reduced to nearly zero. This renders the first interface the weakest point in the system, thereby the crystal preferentially cleaves at this junction, generating large-area monolayers with sizes comparable to the parent crystal. Biaxial strain in the adhered layer, induced by the gold substrate, is identified as the driving factor for the decoupling effect. The strain-induced decoupling effect is established as the primary mechanism of GAE, which can also play a significant role in general mechanical exfoliations.
Collapse
Affiliation(s)
- Jakob Ziewer
- Centre for Quantum Materials and TechnologiesSchool of Mathematics and PhysicsQueen's University BelfastUniversity RoadBelfastBT7 1NNUK
| | - Abyay Ghosh
- Centre for Quantum Materials and TechnologiesSchool of Mathematics and PhysicsQueen's University BelfastUniversity RoadBelfastBT7 1NNUK
| | - Michaela Hanušová
- J. Heyrovský Institute of Physical ChemistryCzech Academy of SciencesDolejškova 2155/3Prague18223Czech Republic
- Faculty of Chemical EngineeringUniversity of Chemistry and TechnologyPrague Technická 5Prague 616628Czech Republic
| | - Luka Pirker
- J. Heyrovský Institute of Physical ChemistryCzech Academy of SciencesDolejškova 2155/3Prague18223Czech Republic
| | - Otakar Frank
- J. Heyrovský Institute of Physical ChemistryCzech Academy of SciencesDolejškova 2155/3Prague18223Czech Republic
| | - Matěj Velický
- J. Heyrovský Institute of Physical ChemistryCzech Academy of SciencesDolejškova 2155/3Prague18223Czech Republic
| | - Myrta Grüning
- Centre for Quantum Materials and TechnologiesSchool of Mathematics and PhysicsQueen's University BelfastUniversity RoadBelfastBT7 1NNUK
| | - Fumin Huang
- Centre for Quantum Materials and TechnologiesSchool of Mathematics and PhysicsQueen's University BelfastUniversity RoadBelfastBT7 1NNUK
| |
Collapse
|
4
|
Hadke S, Kang MA, Sangwan VK, Hersam MC. Two-Dimensional Materials for Brain-Inspired Computing Hardware. Chem Rev 2025; 125:835-932. [PMID: 39745782 DOI: 10.1021/acs.chemrev.4c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Recent breakthroughs in brain-inspired computing promise to address a wide range of problems from security to healthcare. However, the current strategy of implementing artificial intelligence algorithms using conventional silicon hardware is leading to unsustainable energy consumption. Neuromorphic hardware based on electronic devices mimicking biological systems is emerging as a low-energy alternative, although further progress requires materials that can mimic biological function while maintaining scalability and speed. As a result of their diverse unique properties, atomically thin two-dimensional (2D) materials are promising building blocks for next-generation electronics including nonvolatile memory, in-memory and neuromorphic computing, and flexible edge-computing systems. Furthermore, 2D materials achieve biorealistic synaptic and neuronal responses that extend beyond conventional logic and memory systems. Here, we provide a comprehensive review of the growth, fabrication, and integration of 2D materials and van der Waals heterojunctions for neuromorphic electronic and optoelectronic devices, circuits, and systems. For each case, the relationship between physical properties and device responses is emphasized followed by a critical comparison of technologies for different applications. We conclude with a forward-looking perspective on the key remaining challenges and opportunities for neuromorphic applications that leverage the fundamental properties of 2D materials and heterojunctions.
Collapse
Affiliation(s)
- Shreyash Hadke
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Min-A Kang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Ai R, Cui X, Li Y, Zhuo X. Local Strain Engineering of Two-Dimensional Transition Metal Dichalcogenides Towards Quantum Emitters. NANO-MICRO LETTERS 2025; 17:104. [PMID: 39777585 PMCID: PMC11711739 DOI: 10.1007/s40820-024-01611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
Two-dimensional transition metal dichalcogenides (2D TMDCs) have received considerable attention in local strain engineering due to their extraordinary mechanical flexibility, electonic structure, and optical properties. The strain-induced out-of-plane deformations in 2D TMDCs lead to diverse excitonic behaviors and versatile modulations in optical properties, paving the way for the development of advanced quantum technologies, flexible optoelectronic materials, and straintronic devices. Research on local strain engineering on 2D TMDCs has been delved into fabrication techniques, electronic state variations, and quantum optical applications. This review begins by summarizing the state-of-the-art methods for introducing local strain into 2D TMDCs, followed by an exploration of the impact of local strain engineering on optical properties. The intriguing phenomena resulting from local strain, such as exciton funnelling and anti-funnelling, are also discussed. We then shift the focus to the application of locally strained 2D TMDCs as quantum emitters, with various strategies outlined for modulating the properties of TMDC-based quantum emitters. Finally, we discuss the remaining questions in this field and provide an outlook on the future of local strain engineering on 2D TMDCs.
Collapse
Affiliation(s)
- Ruoqi Ai
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Ximin Cui
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Yang Li
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Xiaolu Zhuo
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, People's Republic of China.
| |
Collapse
|
6
|
Tallon B, Lipton-Duffin J, MacLeod J. Exfoliation of Graphene onto Si(111)-7 × 7 under Ultrahigh Vacuum Provides Some Protection against Exposure to Air. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39565241 DOI: 10.1021/acs.langmuir.4c03712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The investigation of graphene as a protective coating for different materials has been an area of active research for well over a decade. However, graphene's ability to protect clean, reconstructed silicon from ambient gases has remained uninvestigated. Here, we describe the use of a clean ultrahigh vacuum transfer method to deposit graphene onto the Si(111)-7 × 7 reconstruction. Using a combination of X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM), we confirmed the successful transfer of graphene onto the surface. We then exposed the graphene-protected surface to 120 L of ambient air in the vacuum chamber and found that although the reconstruction is destroyed on unprotected terraces, clean and ordered silicon can be imaged through the transferred graphene. Exposing the sample to ambient air at atmospheric pressure for 2 days produces a strong signature of oxidation in XPS, and STM images revealed that although graphene can still be identified, the regions beneath the graphene appear amorphous. This work demonstrates that graphene provides some protection against the oxidation of Si(111)-7 × 7 by air, but that this protective ability is not sufficient to forestall oxidation during prolonged exposure to atmospheric conditions.
Collapse
Affiliation(s)
- Brody Tallon
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Josh Lipton-Duffin
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Central Analytical Research Facility, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Jennifer MacLeod
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
7
|
Chen S, Li B, Dai C, Zhu L, Shen Y, Liu F, Deng S, Ming F. Controlling Gold-Assisted Exfoliation of Large-Area MoS 2 Monolayers with External Pressure. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1418. [PMID: 39269080 PMCID: PMC11397389 DOI: 10.3390/nano14171418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Gold-assisted exfoliation can fabricate centimeter- or larger-sized monolayers of van der Waals (vdW) semiconductors, which is desirable for their applications in electronic and optoelectronic devices. However, there is still a lack of control over the exfoliation processes and a limited understanding of the atomic-scale mechanisms. Here, we tune the MoS2-Au interface using controlled external pressure and reveal two atomic-scale prerequisites for successfully producing large-area monolayers of MoS2. The first is the formation of strong MoS2-Au interactions to anchor the top MoS2 monolayer to the Au surface. The second is the integrity of the covalent network of the monolayer, as the majority of the monolayer is non-anchored and relies on the covalent network to be exfoliated from the bulk MoS2. Applying pressure or using smoother Au films increases the MoS2-Au interaction, but may cause the covalent network of the MoS2 monolayer to break due to excessive lateral strain, resulting in nearly zero exfoliation yield. Scanning tunneling microscopy measurements of the MoS2 monolayer-covered Au show that even the smallest atomic-scale imperfections can disrupt the MoS2-Au interaction. These findings can be used to develop new strategies for fabricating vdW monolayers through metal-assisted exfoliation, such as in cases involving patterned or non-uniform surfaces.
Collapse
Affiliation(s)
- Sikai Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Bingrui Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Chaoqi Dai
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Lemei Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Yan Shen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Fei Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Fangfei Ming
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Rajan A, Buchberger S, Edwards B, Zivanovic A, Kushwaha N, Bigi C, Nanao Y, Saika BK, Armitage OR, Wahl P, Couture P, King PDC. Epitaxial Growth of Large-Area Monolayers and van der Waals Heterostructures of Transition-Metal Chalcogenides via Assisted Nucleation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402254. [PMID: 38884948 DOI: 10.1002/adma.202402254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/08/2024] [Indexed: 06/18/2024]
Abstract
The transition-metal chalcogenides include some of the most important and ubiquitous families of 2D materials. They host an exceptional variety of electronic and collective states, which can in principle be readily tuned by combining different compounds in van der Waals heterostructures. Achieving this, however, presents a significant materials challenge. The highest quality heterostructures are usually fabricated by stacking layers exfoliated from bulk crystals, which - while producing excellent prototype devices - is time consuming, cannot be easily scaled, and can lead to significant complications for materials stability and contamination. Growth via the ultra-high vacuum deposition technique of molecular-beam epitaxy (MBE) should be a premier route for 2D heterostructure fabrication, but efforts to achieve this are complicated by non-uniform layer coverage, unfavorable growth morphologies, and the presence of significant rotational disorder of the grown epilayer. This work demonstrates a dramatic enhancement in the quality of MBE grown 2D materials by exploiting simultaneous deposition of a sacrificial species from an electron-beam evaporator during the growth. This approach dramatically enhances the nucleation of the desired epi-layer, in turn enabling the synthesis of large-area, uniform monolayers with enhanced quasiparticle lifetimes, and facilitating the growth of epitaxial van der Waals heterostructures.
Collapse
Affiliation(s)
- Akhil Rajan
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Sebastian Buchberger
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187, Dresden, Germany
| | - Brendan Edwards
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Andela Zivanovic
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187, Dresden, Germany
| | - Naina Kushwaha
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
- STFC Central Laser Facility, Research Complex at Harwell, Harwell Campus, Didcot, OX11 0QX, UK
| | - Chiara Bigi
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Yoshiko Nanao
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Bruno K Saika
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Olivia R Armitage
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Peter Wahl
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
- Physikalisches Institut, Universität Bonn, Nussallee 12, 53115, Bonn, Germany
| | - Pierre Couture
- Ion Beam Centre, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Phil D C King
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| |
Collapse
|
9
|
Liu H, Zhao J, Ly TH. Clean Transfer of Two-Dimensional Materials: A Comprehensive Review. ACS NANO 2024; 18:11573-11597. [PMID: 38655635 DOI: 10.1021/acsnano.4c01000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The growth of two-dimensional (2D) materials through chemical vapor deposition (CVD) has sparked a growing interest among both the industrial and academic communities. The interest stems from several key advantages associated with CVD, including high yield, high quality, and high tunability. In order to harness the application potentials of 2D materials, it is often necessary to transfer them from their growth substrates to their desired target substrates. However, conventional transfer methods introduce contamination that can adversely affect the quality and properties of the transferred 2D materials, thus limiting their overall application performance. This review presents a comprehensive summary of the current clean transfer methods for 2D materials with a specific focus on the understanding of interaction between supporting layers and 2D materials. The review encompasses various aspects, including clean transfer methods, post-transfer cleaning techniques, and cleanliness assessment. Furthermore, it analyzes and compares the advances and limitations of these clean transfer techniques. Finally, the review highlights the primary challenges associated with current clean transfer methods and provides an outlook on future prospects.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Thuc Hue Ly
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
10
|
Wu K, Wang H, Yang M, Liu L, Sun Z, Hu G, Song Y, Han X, Guo J, Wu K, Feng B, Shen C, Huang Y, Shi Y, Cheng Z, Yang H, Bao L, Pantelides ST, Gao HJ. Gold-Template-Assisted Mechanical Exfoliation of Large-Area 2D Layers Enables Efficient and Precise Construction of Moiré Superlattices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313511. [PMID: 38597395 DOI: 10.1002/adma.202313511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/07/2024] [Indexed: 04/11/2024]
Abstract
Moiré superlattices, consisting of rotationally aligned 2D atomically thin layers, provide a highly novel platform for the study of correlated quantum phenomena. However, reliable and efficient construction of moiré superlattices is challenging because of difficulties to accurately angle-align small exfoliated 2D layers and the need to shun wet-transfer processes. Here, efficient and precise construction of various moiré superlattices is demonstrated by picking up and stacking large-area 2D mono- or few-layer crystals with predetermined crystal axes, made possible by a gold-template-assisted mechanical exfoliation method. The exfoliated 2D layers are semiconductors, superconductors, or magnets and their high quality is confirmed by photoluminescence and Raman spectra and by electrical transport measurements of fabricated field-effect transistors and Hall devices. Twisted homobilayers with angle-twisting accuracy of ≈0.3°, twisted heterobilayers with sub-degree angle-alignment accuracy, and multilayer superlattices are precisely constructed and characterized by their moiré patterns, interlayer excitons, and second harmonic generation. The present study paves the way for exploring emergent phenomena in moiré superlattices.
Collapse
Affiliation(s)
- Kang Wu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hao Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Meng Yang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li Liu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhenyu Sun
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guojing Hu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanpeng Song
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xin Han
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Jiangang Guo
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Kehui Wu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Baojie Feng
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chengmin Shen
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuan Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Youguo Shi
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, Beijing, 100049, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Zhigang Cheng
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Haitao Yang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Hefei National Laboratory, Hefei, Anhui, 230088, P. R. China
| | - Lihong Bao
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Hefei National Laboratory, Hefei, Anhui, 230088, P. R. China
| | - Sokrates T Pantelides
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Department of Physics and Astronomy & Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Hong-Jun Gao
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Hefei National Laboratory, Hefei, Anhui, 230088, P. R. China
| |
Collapse
|
11
|
Dufresne SKY, Zhdanovich S, Michiardi M, Guislain BG, Zonno M, Mazzotti V, O'Brien L, Kung S, Levy G, Mills AK, Boschini F, Jones DJ, Damascelli A. A versatile laser-based apparatus for time-resolved ARPES with micro-scale spatial resolution. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:033907. [PMID: 38517258 DOI: 10.1063/5.0176170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
We present the development of a versatile apparatus for 6.2 eV laser-based time and angle-resolved photoemission spectroscopy with micrometer spatial resolution (time-resolved μ-ARPES). With a combination of tunable spatial resolution down to ∼11 μm, high energy resolution (∼11 meV), near-transform-limited temporal resolution (∼280 fs), and tunable 1.55 eV pump fluence up to 3 mJ/cm2, this time-resolved μ-ARPES system enables the measurement of ultrafast electron dynamics in exfoliated and inhomogeneous materials. We demonstrate the performance of our system by correlating the spectral broadening of the topological surface state of Bi2Se3 with the spatial dimension of the probe pulse, as well as resolving the spatial inhomogeneity contribution to the observed spectral broadening. Finally, after in situ exfoliation, we performed time-resolved μ-ARPES on a ∼30 μm flake of transition metal dichalcogenide WTe2, thus demonstrating the ability to access ultrafast electron dynamics with momentum resolution on micro-exfoliated materials.
Collapse
Affiliation(s)
- S K Y Dufresne
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - S Zhdanovich
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - M Michiardi
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - B G Guislain
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - M Zonno
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - V Mazzotti
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - L O'Brien
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - S Kung
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - G Levy
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - A K Mills
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - F Boschini
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Québec J3X 1S2, Canada
| | - D J Jones
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - A Damascelli
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|